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Abstract
Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against

pathogens, a plant’s reaction to stressful environments, soil fertility, and a plant’s relation-

ship with other microorganisms. Such effects imply a broad reprogramming of the plant’s

metabolic activity. However, little information is available regarding the role of AMF and

their relation to other soil plant growth—promoting microorganisms in the plant metabo-

lome, especially under realistic field conditions. In the present experiment, we evaluated the

effects of inoculation with AMF, either alone or in combination with plant growth–promoting

rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots

of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-

rich environment. These two treatments were compared to infection by the natural AMF

population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by

AMF and decreased the root concentrations of most compounds in all metabolic pathways,

especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF

+PGPR increased the concentrations of such compounds compared to inoculation with

AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were

mostly changed by the treatments, with reduced amination activity in roots most likely due

to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome

differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR

used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic com-

pounds for their own growth, it is likely that this result was due to an increased concentration

of mineral N in soil inoculated with AMF+PGPR compared to AMF alone.
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Introduction
Most land plants live in symbiosis with AMF. This mutualistic symbiosis plays a crucial role in
the uptake of nutrients by the host plant and its defence against pathogens and frequently in-
creases plant growth and stress resistance [1,2]. From a nutritional perspective, AMF can dom-
inate the uptake of phosphorus (P) and other nutrients with low mobility in soil even in the
absence of any plant growth response [3]. Yet their role in the uptake of nitrogen (N) and its
importance for plant N nutrition is still unclear [4] and can vary according to the nutrient sta-
tus of the host plant [5,6]; the type of nutrient supplied to the soil [7,8] and its availability; and
interactions among the plant, AMF, and soil bacteria [8–10]. In addition, the arbuscular my-
corrhizal (AM) fungal partner can influence important plant transcriptomic pathways related
to plant N uptake and metabolism [11–13] and other metabolic pathways [14]. Thus, AMF can
influence a wide range of plant metabolic processes. Such effects can be due to the effects of
AMF on resource availability, which has direct major implications for the regulation of meta-
bolic networks [15–18]; to the presence of the AM fungal partner itself [19]; to variations in the
energy cost of the uptake of nutrients and feeding of plant-associated microbes [20]; and to
their interactions with the plant and other soil microbes [21,22]. Among the soil microorgan-
isms different than AMF, plant growth promoting rhizobacteria (PGPR) are likely to influence
both plant growth and plant-AMF relationships mainly through indirect mechanisms includ-
ing an increase in soil nutrient availability [23] whereas their direct effect on plant growth are
still under debate [24]. However, few studies have evaluated the effects of either AMF or other
plant growth–promoting microorganisms on plant metabolic pathways, and most that have
been conducted under controlled greenhouse conditions in sterilised uninoculated media as a
control [24–26] or have analysed only target compounds [27,28]. Metabolomics has improved
at elucidating complex metabolic pathways thanks to increasing standardization of extraction
and analytic procedures, especially gas chromatography (GC)-electronic ionization (EI)-mass
spectrometry (MS)–based techniques, and increasing compound annotation in databases [29–
32]. The aim of the present experiment was to evaluate the effects of AMF field inoculation,
alone or in combination with a consortium of PGPR efficient at mineralising organic matter,
on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum
durum Desf.) grown under N-limited, P-rich field conditions. Such condition was chosen since
it has been shown that N limitation can reduce the AM benefit for the plant, especially under
high P availability [6]. We hypothesized that a competition occurs between AM fungi and
plants for nitrogen coming from the soil organic matter and that this should rearrange the
metabolome of the plant root. An additional hypothesis is that the ability of PGPR to release N
from the native organic matter should consist in an increase of N availability and thus reduce
the competition for N between plant and AM fungus.

Materials and Methods

Ethics Statement
No specific permits were required for the described field study. The location is not protected in
any way. The experiment did not involve endangered or protected species.

Experimental design
A field trial was performed in 2011–2012 in a typical semiarid Mediterranean area (37°33’N–
13°31’E, 178 m a.s.l.) on a deep, well-structured soil classified as a Vertic Xerochrept. Soil char-
acteristics (0–0.60 m layer) were as follows: 52% clay, 25% sand, pH 8.2 (1:2.5 H2O), 16.8 g
kg−1 total carbon (C; Walkley—Black), 1.78 g kg−1 total N (Kjeldahl), 92 mg kg−1 available
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P2O5 (Olsen), 1.37 g kg
−1 total P2O5, 35 cmol kg−1 cation exchange capacity, 37.2% water con-

tent at field capacity, and 19.6% at the permanent wilting point. The climate at the experimen-
tal site is semiarid Mediterranean. From September to March, mean rainfall is 490 mm and
mean air temperature ranges from 9.2°C to 11.9°C. During the cropping season, total rainfall
(513 mm) was well distributed, whereas air temperature was 1.3°C lower than the long-term
average. Weather data were collected from a weather station located within 500 m of the exper-
imental site. Soil was cropped in the previous growing season with durum wheat. Before the ex-
periment started, soil was ploughed at a depth of 30 cm in the summer and then shallow
harrowed twice to control weeds and prepare suitable seedbed conditions. The natural AM
spore population in the field measured before sowing by the wet-sieving method consisted of
mainly by Glomus-group AM species and Acaulospora at an overall AM spore density of 5
spores per 100 g air-dried soil.

The experiment included three treatments (replicated six times): uninoculated control
(NAT), inoculation with AMF alone (AMF), and inoculation with both AMF and PGPR (AMF
+PGPR). Plots were arranged according to a randomised block design. Inoculation with AMF
included the application of a commercial polispecies inoculum (Micronised Endo Mycorrhizae;
Symbio, Wormley, Surrey, Great Britain) at a rate of 1.55 g m−2 at the time of sowing. The inoc-
ulum was composed of the following AM species: Scutellospora calospora, Acaulospora laevis,
Glomus aggregatum, Rhizophagus irregulare (syn G. intraradices), Funneliformis mosseae (syn
G.mosseae), G. fasciculatum, G. etunicatum e G. deserticola, and Gigaspora margarita. The in-
oculum was composed of 95% AM spores and 5% organic material. Total spore density in the
inoculum was 25 g−1 per species. Inoculation with AMF+PGPR was performed by applying to
the soil both 1.55 g m−2 AM inoculum as previously described and 1.55 g m−2 of a commercial
PGPR inoculum. The PGPR inoculum was also purchased from Symbio (Bacillus Sp. on bran;
Symbio, Wormley, Surrey, Great Britain) and was composed of Bacillus amyloliquefaciens, B.
brevis, B. circulans, B. coagulans, B. firmus, B. halodenitrificans, B. laterosporus, B. licheniformis,
B.megaterium, B.mycoides, B. pasteurii, B. polymyxa, and B. subtilis, each at a density of 2 bil-
lion cfu g−1. Durum wheat (cv. Anco Marzio, 1000-seed weight 47.4 g, 95% germination) was
sown on 16 December 2012 at a rate of 350 seeds m−2 in rows 18.75 cm apart. The experimen-
tal plot consisted of eight rows, each 6 m long. Each experimental plot was spaced 0.5 m out
from the next to avoid cross inoculation among treatments and 0.5-m wide corridors were
tilled once per month to avoid AMF and PGPR movements across plots. Weeds were con-
trolled by hand during the experiment. At wheat tillering (110 days after sowing), the above-
ground biomass of a subplot (six rows 75 cm long) was harvested and weighed and a
subsample of 1 kg fresh matter was taken and oven dried at 70°C until a constant weight. Dry
mass was determined and further analysed for total N (Kjieldhal) and P (Bertramson), the lat-
ter after 48 h of heating at 550°C and no addition of magnesium nitrate. Roots (0–0.30 m layer)
from five random plants from each plot were also sampled and two root subsamples of about 3
g were taken. The first subsample was immediately freeze dried in liquid N to stop metabolic
activity and stored at—80°C for further analysis. The other subsample was stained with 0.05%
trypan blue in lactic acid according to [33] and root colonization by AM fungi was measured
using the grid intersect method as described in [34].

Metabolite extraction and derivatization
Roots were lyophilised and ground in liquid N, and a 20-mg aliquot was processed as follows
according to [35,36]. Samples were added to 0.75 ml methanol:chloroform:water (5:2:2), agitat-
ed at 4°C for 5 min, vortexed briefly, and then centrifuged at 6000 rpm for 2 min. After centri-
fugation, 0.60 ml supernatant was collected and dried in a SpeedVac. The dried extract was
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added to 2 ml of an internal retention index (from C8 to C16 at 0.8 mg/ml and from C18 to
C30 at 0.4 mg/ml) and 5 μl of a methoxyamine hydrochloride solution (20 mg/ml in pyridine)
and then shaken at 30°C for 90 min. Then 45 μl N-Methyl-N-(trimethylsilyl) trifluoroaceta-
mide (MSTFA) with 1% trimethylchlorosilane (TMCS) for trimethylsilylation was added and
the solution was shaken at 37°C for 30 min.

GC-TOF-MS analysis and spectra processing
GC-MS analysis was performed on an Agilent 6890 gas chromatograph coupled with a Leco
Pegasus III TOF mass spectrometer controlled by Leco ChromaTOF software 2.32. The gas
chromatograph was equipped with an Rtx-5Sil MS column (Restek, Bellefonte, PA; 30 m long,
0.25 mm i.d. with 0.25 μm 95%-dimethyl-5% diphenyl polysiloxane film) and an additional 10
m integrated guard column. GC-time of flight (TOF)-MS analysis was performed according to
[37]. Briefly, helium (99.99% purity) was used as a carrier gas at a constant flow of 1 ml/min.
Oven temperature was held at 50°C for 1 min, then increased 10°C/min to 330°C, after which it
was held at 330°C for 5 min. The transfer line was held at 280°C and the ion source at 250°C.
Ionization was performed at 70 eV. A 290-s solvent delay was set. The mass range was set at
85–600 mass units acquired at 10 spectra s−1 and 1800 V detector voltage with no mass defect
option. Resolution was 1 ppm with 2% error for isotopic abundance patterns. Spectra were
compared to those present in the Fiehn Library (fiehnlab.ucdavis.edu/projects/FiehnLib, in-
cluding 1,013 metabolites on 2014) and NIST 2005 with at least 95% matching.

HILIC-Q-TOF-MS analysis and spectra processing
HILIC-Q-TOFMS analysis (hydrophilic interaction chromatography time of flight mass spec-
trometry) was performed on an Agilent 1290 UHPLC equipped with a Waters Acuity 1.7 μm
BEH HILIC 2.1 × 150 mm column for separation and coupled with an Agilent G6530A accu-
rate-mass QTOF equipped with an Agilent ESI Jet Stream ion source. Mobile phases were Sol-
vent A (5mM ammonium acetate with 0.2% acetic acid) and Solvent B (9:1 acetonitrile:water
with 5mM ammonium acetate and 0.2% acetic acid). Dry samples were resuspended in 100 μl
solvent B and then injected in the column under the following gradient conditions: from 0 to 4
min, isocratic 100% B; from 4 to 12 min, B linearly reduced to 45%; from 12 to 20 min, isocratic
45% B. After the run, there was a 20-min re-equilibration phase before the next sample was in-
jected. The following Source/MS conditions were applied: electrospray ionization (ESI) set in
positive mode, 3000 V capillary voltage; source gas temperature set to 350°C and gas flow to 10
L/min, mass range acquisition 50–1700 Da at 4 scans per second. After deconvolution, raw
data were aligned and adducts [M+H+] searched against METLIN, NIST MS, and MZmine
software. Metabolite intensities were identified as the peak height for the largest precursor ion
(not normalized).

Annotation and statistical analyses
One way analysis of variance (ANOVA) [38] was performed for biomass, N and P content and
uptake, and percent root colonization by AMF. When treatments were significant, least signifi-
cant differences were computed to separate means. Enrichment metabolomics analyses were
performed on Zea mays precompiled background sets in MBRole [39], and analyses of meta-
bolic pathways were performed using Pathos [40] with minimum variation set at 20%. The P
value of annotation for Biological Role in MBRole was adjusted for multiple testing using the
false discovery rate according to [41].

All data for annotated and unannotated identified GC and LC peaks were standardised by
setting the mean to 0 and the standard deviation to 1. This allowed the computation of means
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of different compounds with the same biological role without algebraic distortions due to a dif-
ferent actual concentration—to—MS signal ratio. Biological role means of standardised data
from annotated and unannotated identified GC peaks were computed and ANOVAs were run
on these means to highlight average variations in compounds in the same biological group. Ca-
nonical discriminant analysis (CDA) [38] was run using biological group means as vectors to
summarize between-treatments variation. The percentage of compounds not varying or vary-
ing at either>+20% or<−20% of the base condition was drawn from Pathos results for each
metabolic pathway significantly annotated in MBRole.

Results

Plant growth
Inoculation with AMF (either alone or in combination with PGPR) increased by 23.3% the
aboveground biomass of durum wheat, although this change was not significant (Table 1). It
also slightly decreased both N (−7.8%) and P (−8.0%) content. Soil inoculation with AMF al-
most doubled wheat root colonization by AM fungi (Fig 1). No effects of treatment on wheat
above ground biomass, grain yield and yield components were observed at maturity (Table A
in S1 File).

Biological classes
A total of 315 GC peaks were found, 118 of which clearly identified and 9 of which were as-
signed to a carbohydrate chemical structure. A Kegg ID was given to only 83 compounds and
used for an enrichment metabolomics analysis against Z.mays precompiled background sets in
MBRole, which annotated only 73, 38, 44, 64, and 28 Kegg IDs in Pathways, Enzyme interac-
tions, Biological role, Chemical groups, and Other interactions, respectively (Tables A, B, C, D,
and F in S1 File, respectively). In general, AMF showed a lower concentration of most GC-sep-
arated compounds than NAT, especially saturated fatty acids (SaFA) and AA (Fig 2 and
Table G in S1 File). No differences were observed in the concentrations of any compounds be-
tween AMF+PGPR and either NAT or AMF (Fig 2). CDA run using classes of compounds
from GC only separated AMF from NAT (Fig 3). Canonical Variable 1 accounted for 94% of
the total variance and mostly depended on unsaturated fatty acids (UnFA) (standardized ca-
nonical coefficient, SCORE = −6.02), unannotated carbohydrates (SCORE = +5.82), SaFA
(SCORE = +5.42) and AA (SCORE = +5.23). Few correlations were found between Canonical
Variable 2 and the concentrations of different classes of compounds included in the CDA.
When root extract was separated by HILIC, 516 peaks were found and 52 compounds were as-
signed a simple empirical formula (Table H in S1 File). Among them, 80% contained P in their
structures. HILIC-separated compounds included carnitines, glycerophosphocholine,

Table 1. Aboveground biomass, its N and P and root infection by AM fungi at tillering of durumwheat grown in the field.

Aboveground biomass N content N uptake P content P uptake
Mg ha–1 mg N g–1 biomass kg N ha–1 mg P g–1 biomass kg P ha–1

NAT 1.52±0.177 18.78±0.970 28.39±2.441 3.60±0.117 5.40±0.260

AMF 1.85±0.240 16.88±0.383 31.30±4.176 3.37±0.173 6.17±0.733

AMF+PGPR 1.89±0.223 17.78±0.868 34.25±5.574 3.25±0.075 6.17±0.793

P-value 0.106 0.236 0.253 0.153 0.525

NAT = wheat with natural arbuscular mycorrhizal inoculum; AMF = wheat inoculated with spores of AM fungi; AMF+PGPR = wheat inoculated with both

spores of AM fungi and plant growth—promoting rhizobacteria.

doi:10.1371/journal.pone.0129591.t001
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lysophosphatidylcholines, phosphatidylcholines, lysophosphatidylethanolamines, and phos-
phatidylethanolamines. In particular, lysophosphatidylcholine 16:0 was lower in AMF than
NAT, whereas concentrations of the other compounds, both singly or grouped by chemical
class, did not vary significantly by treatment. CDA run using HILIC-separated compounds did
not discriminate among treatments (data not shown).

Metabolic pathways
A total of 25 metabolic pathways were significantly annotated on Z.mays background in
MBRole, and 23 of these were analysed in Pathos on Arabidopsis thaliana background. Symbi-
osis with AM fungi reduced the concentrations of most compounds in all metabolic pathways.
No changes were observed for oxidative phosphorylation. AMF mostly upregulated metabo-
lites involved in carbon fixation in photosynthetic organisms (Fig 4). AMF+PGPR mostly in-
creased the concentrations of compounds in all metabolic pathways except for galactose
metabolism and the biosynthesis of unsaturated fatty acids.

Metabolic enrichment analysis showed that AMF down-regulated key pathways belonging
to the backbone of primary metabolism, such as amino acid biosynthesis and interconversions,
especially those involving alanine, glutamine, asparagine, and phenylalanine (Table C in S1
File); TCA cycle and glycolysis; and carbohydrate biosynthesis and metabolism (sugar, starch,
pentose phosphate, galactose; Table B in S1 File). Lipid-related pathways, such as fatty acid bio-
synthesis and glicerolipid metabolism, were also down-regulated.

Peptide metabolic pathways were more depressed in AMF and AMF+PGPR compared to
NAT. In particular, a reduction in products formed by asparagine synthase (glutamine-hydro-
lysing; EC 6.3.5.4) and glutamate-ammonia ligase (EC 6.3.1.2) was observed in different meta-
bolic pathways, such as alanine, aspartate, and glutamate metabolism (map 00250) and
arginine and proline metabolism (map 00330). In addition, a lower abundance of compounds
included in the urea cycle (map 00330), especially ornithine and its direct product, putrescine
(data not shown), was found in AMF than NAT. Gamma-amino butyric acid (GABA) was
slightly higher in AMF than NAT. Only one metabolic pathway leading to GABA formation

Fig 1. Root colonization by AMF in roots of durumwheat.Wheat with natural arbuscular mycorrhizal
inoculum (NAT), inoculated with AM fungi spores (AMF), or inoculated with both AMF and plant growth—
promoting rhizobacteria (AMF+PGPR). Data are means±S.E. (n = 6).

doi:10.1371/journal.pone.0129591.g001
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Fig 2. Groupmeans ± S.E. across standardised data for identified GC peaks grouped per biological group significantly varying according to the
treatments. n indicates the number of compounds contributing to the relative mean, and P is the P value of the ANOVA for that group. Carbohydrates were
analysed separately according to KEGG annotation. All compounds includes both annotated and unannotated compounds. GC was run with methanol:
chloroform:water (5:2:2) extracts from roots of durum wheat grown in the field with natural arbuscular mycorrhizal inoculum (NAT), inoculation with AM fungi
(AMF), or inoculation with both AMF and plant growth—promoting rhizobacteria (PGPR). FA&E, fatty acids and their esters. Please see Table G in S1 File for
non-significantly varying classes of compounds.

doi:10.1371/journal.pone.0129591.g002
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was higher in AMF than NAT (glutamate decarboxylase, EC 4.1.1.15). Because all other
GABA-forming pathways showed reduced concentrations of the other metabolites directly
leading to GABA (namely, succinic acid in butanoate metabolism [map 00650] and putrescine
[map 00330]) and an increase in some precursors of these metabolites (maleate in map 00650),
it is likely that AMF reduced amination activity in roots compared to NAT. Compared to
AMF, AMF+PGPR reduced both GABA and one of its direct precursors, glutamic acid, and in-
creased other GABA precursors, the compounds in the urea cycle, and glutamine, which is
formed from glutamic acid in competition with GABA formation. Finally, AMF+PGPR re-
duced the concentration of pipecolic acid compared to either AMF or NAT, although no differ-
ences were observed between AMF and NAT.

AMF increased the concentration of xilitol and reduced its derivatives (D-xilose, D-arabitol,
and L-arabinose) in pentose and the glucuronate interconversions pathway (map 00040) com-
pared to NAT. This led to a reduction in 2-oxoglutarate and pyruvate. In contrast, AMF
+PGPR increased D-arabitol, 2-oxoglutarate, pyruvate, and L-arabinose compared to AMF but
not NAT. D-xilose (map 00040) can also derive from the metabolism of starch and sucrose
(map 00050), where few compounds were annotated (7 out of 37), and none of these were

Fig 3. CDA run using biological groupmeans of standardised data from identified GC peaks as vectors. The percentage of the total variance
explained by each canonical axis is shown in parentheses. NAT, blue circles; AMF, red triangles; AMF+PGPR, green squares. Please note that CDA vectors
do not represent perpendicular directions through the space of the original variables. Fatty acids vectors include both fatty acids and their esters.

doi:10.1371/journal.pone.0129591.g003
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directly related to D-xilose. This allows for little elucidation of the latter pathway. Finally, AMF
and AMF+PGPR increased the concentration of malic acid compared to NAT in carbon fixa-
tion in photosynthetic organisms (map 00710). On the one hand, malic acid is directly con-
verted to pyruvate by means of a malate dehydrogenase (EC 1.1.1.40) under light conditions in
map 00710. On the other hand, pyruvate can undergo different transformations in pyruvate
metabolism (map 00620): it can be indirectly converted to malic acid to feed the glycolysis/glu-
cogenesis, glyoxylate and citrate cycles; it can be indirectly or directly interconverted with lactic
acid by means of an L-lactate dehydrogenase (EC 1.1.1.27); or it can be transferred to the bio-
synthesis of leucine, lysine, or fatty acid or the metabolism of propanoate, butanoate, and ke-
tone bodies. We found that pyruvate decreased in AMF compared to NAT and increased in
AMF+PGPR compared to AMF, whereas lactic acid was lower in AMF and AMF+PGPR than

Fig 4. The percentage of annotated compounds included in Pathos in eachmetabolic pathway.Compounds are displayed as unchanged (green bars),
or significantly increased (blue bars), or significantly decreased (red bars) at 20%minimum variation. The first number in parentheses indicates the total
number of annotated compounds in the pathway, and the second number indicates the percentage of annotated compounds from the present data set in
each metabolic pathway. Only those pathways that were significantly annotated in MBRole are shown.

doi:10.1371/journal.pone.0129591.g004
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in NAT. Finally, annotation indicated that two out of 4 sterols (namely zymosterol, Kegg:
C05437; and ergosterol, Kegg: C01694) were indicated as potentially deriving from the fungi.
However, no differences in zymosterol concentration among treatments were found, and er-
gosterol was 36.5% and 41.5% lower in AMF and AMF+PGPR, respectively, if comparing to
NAT, thus we exclude that these sterols were deriving from the AMF. In general, steroid bio-
synthesis (map 00100, adjusted P annotation = 0.054 in MBRole) was slightly depressed by
AMF and AMF+PGPR compared to NAT. No metabolite potentially belonging to bacteria
was found.

Discussion
Above ground plant N content was on average 17.81 mg N g−1 dry matter. Such N content at
tillering can be considered as very low [42]. This indicates that the N availability in the soil was
limiting plant growth, as observed by [43]. This was likely because of the intrinsic low soil N
content and the previous cultivation of wheat, an N-depleting species.

Root AM infection of plots with natural AM inoculum (NAT) was on average slightly
higher than 20%, which is similar to [44] but markedly lower than [45,46]. This suggests that,
in our experiment, the actual soil conditions were unfavourable for the infection of roots by the
natural AM consortium, probably because of several factors, such as the high intensity of the
tillage technique adopted (mouldboard ploughing) and the high availability of phosphorus in
the soil, both of which are detrimental to natural AM infection [45,47,48]. Soil inoculation
with AM fungi, either alone or in combination with PGPR, markedly increased wheat root col-
onization by AM fungi, as in other studies [44,48].

Means across standardised data of identified compounds suggested that soil inoculation
with AMF alone decreased concentrations of low molecular weight compounds in roots, partic-
ularly AA and saturated FA&E. Similar results were found by [49] for Lotus japonicus grown
with or without AM fungi under different conditions. Information about the effects of AMF on
the root metabolome is scarce. Other experiments showed that in the legumeMedicago trunca-
tula, AMF increased the concentration of AA in the roots [19]. In Lolium perenne, colonisation
by Neotyphodium lolii, a fungal endophyte, reduced the content of nitrate and several amino
acids in the host plant [50]. Hodge and Fitter [51] showed that AM fungi have a high N de-
mand and retain most N taken as organic compounds for their own growth. In the present ex-
periment, native organic matter and wheat roots of the previous crop were the only sources of
N available for plants. Thus, it is possible that the greater development of AM hyphae in the
soil in AMF than NAT resulted in a reduced N available to the plant. Thus, the reduced amina-
tion activity in AMF than NAT observed in the present study could have resulted either direct-
ly from increased root mycorrhization, as shown in L. japonicus [49], or indirectly from
reduced N availability for the plant in AMF than NAT. This is consistent with the finding that
GABA, which is synthesised in competition with many other AA, increased in AMF compared
to NAT, as this molecule is implicated in a wide range of plant responses to external factors, in-
cluding plant microbe interaction and biotic and abiotic stresses [52] and nutrient limitation
[53]. This compound is an important constituent of root exudates that alters the growth and
activity of some PGPR [54–56]. Accordingly, the higher amino acid content in AMF+PGPR
than AMF may be due to the mineralisation activity by PGPR and to the further increase in N
availability, especially ammonium and nitrate for plants. Indeed, the Bacillus species used in
the present study are sturdy plant growth promoters that could have benefitted plants through
their mineralisation activity or by reducing competition with other bacteria. This is corroborat-
ed by the reduced concentration of pipecolic acid in AMF+PGPR compared to AMF or NAT.
Pipecolic acid is implied in systemic acquired resistance against bacteria and stresses [57–59]
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and accumulates into the plant at increasing N availability [60]. Bacillus volatiles, especially
2,3-butanediol and acetoin, promote plant growth [61]. However, in the present study, the
only annotated compound implicated in the 2,3-butanediol/acetoin/GABA system (map
00650) was pyruvate, which is included in 25 different annotated metabolic pathways. This
should curb any speculation about any effect of PGPR on wheat metabolic reprogramming.
Fatty acids and their esters and carbohydrates, especially those that are unannotated, also con-
tributed to separate AMF samples from NAT but not from AMF+PGPR. Simple sugars are the
most important carbon sources exported from roots to the intra-radical mycelium (IRM) [62].
Just as lipids are synthesised into the IRM, these sugars consistently flow to the the extra-radi-
cal mycelium (ERM) [63]. AM symbiosis and N and P availability can affect the fatty acid con-
tent in roots [64]. However, lipids arising from AM fungi usually emerge in the roots in the late
stage of symbiosis [65]. This could explain why we observed no variation in carnitines, which
accumulate in mycorrhizal roots only in the late stage of AM symbiosis [66]. In early, active
stages, high demand for lipids by ERM [67] can result in a reduction of lipids in mycorrhizal
roots compared to non-mycorrhizal roots.

Conclusions
The present data, obtained through metabolomics analyses of field grown wheat, showed that
inoculation with AMF negatively affected amination activity in the root and concentrations of
most of amino acids. Inoculation with AMF+PGPR increased concentrations of amino acids
compared to AMF. This support the hypothesis that N availability is crucial for the AM benefit
to the plant and that AM fungi can compete with the plant for N coming from the organic mat-
ter. Because most N taken directly in organic form from AM fungi is retained in AM structures
[51], this result is likely due to the increase in soil inorganic N in AMF+PGPR compared to
AMF. Inoculation of the soil with exotic AMF also resulted in a reprogramming of primary me-
tabolism, with a clear shift from the biosynthesis of common AA to GABA. The low percentage
of compound annotation in plant metabolic pathways (ca. 23% of GC peaks) obscures the met-
abolic reprogramming at play in carbohydrate metabolism. Nonetheless, many compounds im-
plicated in C fixation were increased in AM rather than non-AM roots, and this agrees with
the findings of several authors reporting increased C fixation even in the absence of a signifi-
cant growth response [19,28,64]. In addition, the increase in xilitol, which is crucial in the in-
teraction between plants and AM fungi [19,49,68], suggests that plants were actively feeding
the fungal symbionts.
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