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Abstract

The aim of this paper is to study the Euler dynamics of 2D pe-
riodic layer of non uniform vorticity. We consider the zero thick-
ness limit and we compare the Euler solution with the vortex-sheet
evolution predicted by the Birkhoff-Rott equation. The well known
process of singularity formation in the vortex-sheet shape correlates
with the appearance of several complex singularities in the Euler so-
lution of the vortex-layer datum. These singularities approach the
real axis and are responsible for the roll-up process in the layer mo-
tion.

Keywords. Vortex-sheet Birkhoff-Rott equation Vortex layer Singularity
tracking methods

1 Introduction

Shear layer flows naturally arise in many oceanic and atmospheric pro-
cesses. These layers can be represented by a thin transition region across
which the velocity of the flow experiences a rapid variation which is related
to a large amount of vorticity within the layer. If the thickness of the layer
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goes to zero, one obtains a vortex sheet curve across which the velocity
field has a discontinuity in the component tangent to the curve, while the
vorticity is infinite and concentrated on the curve.

To prove that the vortex sheet motion is the zero-thickness limit of the
dynamics of a shear layer it is an important problem that has been tackled
through different approaches, like formal asymptotics, see [47, 26], numer-
ical methods [6], and rigorous methods, see [45, 9, 8]. In particular, in [9],
for a layer of uniform vorticity distributed around an analytic curve, and
through the use of the abstract Cauchy-Kowalewski theorem, the authors
proved convergence to the BR dynamics; a rigorous estimate of the error
in terms of the thickness of the layer was in fact given.

One of the main issue related to the mathematical treatment of vortex
sheet flows is the Kelvin-Helmholtz instability. This phenomenon leads to
the ill-posedness of the BR equation in Sobolev norms [15, 27], and to the
formation of the curvature singularity in finite time, also for analytic initial
data. In the latter case local in time well-posedness of the BR equation was
achieved in [58], while long time existence was proven in [14] for a small
perturbation of the flat sheet. We mention that the singularity formation
had been predicted by the analysis of Moore, see [48, 49] and also [3], and
by direct numerical simulations [39, 55, 24].

To continue vortex sheet motion beyond the singularity time of the BR
solution invokes models including regularization components such as finite
layer thickness [6, 13], surface tension [52, 35, 4], vortex blob regulariza-
tion [42, 2, 5, 43], Euler-α model [34, 7, 13], viscosity effects [59, 26, 20,
56], or a more sophisticated notion of BR solution [61]. All these models
generally ensure convergence to the vortex-sheet solution at times the sin-
gularity formation, and allow the continuation of the vortex-sheet solution
after singularity time. The post-singularity motion is characterized by typi-
cal phenomena like roll-up process and spiral formation with trailing arms
wrapping around the core of the sheet.

In this work we analyze the motion of a 2D periodic inviscid thin layer
on which a non uniform vorticity is concentrated. In the zero thickness
limit the layer reduces to the infinite array of periodic vortex sheets intro-
duced in [13]. We shall show that the small disturbances of the equilibrium
solution of the BR equation are linearly unstable, and have an exponential
growth rate which is dependent on the distance between two consecutive
sheets. This instability is the mechanism leading to the finite time singular-
ity formation. By applying the singularity tracking methods, we shall ana-
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lyze the singularity formation for a flat sheet with non uniform strength; the
results will be compared with the singularity analysis of the Euler dynam-
ics of the small-thickness layer motion. Although the Euler solution does
not develops a real singularity, we shall see how the solution has complex
singularities whose distance form the real domain is dependent on the ini-
tial thickness of the layer, and how the singularities are compatible with an
eruptive behavior of the vorticity within the layer.

The rest of paper is organized as follows: in Section 2 we introduce the
infinite array of periodic vortex sheets and we prove how the equilibrium
solution of the BR equation develops a Kelvin-Helmholtz instability (Sub-
section 2.1), leading to the singularity formation in finite time (Subsection
2.2). In Section 3 we analyse the motion of a 2D inviscid thin vortex layer
of non uniform vorticity. We perform the 2D singularity analysis on the
Euler solution in Subsections 3.2 and 3.3.

2 Singularity formation an array of periodic vor-
tex sheets data

The initial configuration we consider is the infinite array of vortex sheets,
which was presented in [13]; it consists of planar curves periodic in the
tangential direction x and evenly distributed along the normal direction y:
on these curves the vorticity is concentrated as delta-function.

Across each curve the velocity field experiences a jump in the compo-
nent tangential to the curve, and the vorticity concentrated along the curves
can be expressed at each time t as

ω(x, t) =
∑
h∈Z

γ̂(p, t)δ(x− xh(p, t)),

where x(p, t) = (x(p, t), y(p, t)), xh(p, t) = (x(p, t), y(p, t) − hLy) is
the generic h-th vortex sheet curve, δ is the Dirac function, and Ly is the
distance between two consecutive sheets. The variable p is a Lagrangian
variable constant along particle paths. The relevant quantities are the true
vortex strength γ̂(p, t), which is a measure of the jump of the velocity
field across the curves, and the time independent vortex strength γ(p) =

γ̂(p, t)|∂pxh(p, t)|.
Assuming that Lx is the periodicity in the tangential direction, one has

x(p+kLx, t) = kLx+x(p, t), y(p+kLx, t) = y(p, t), γ(p+kLx) = γ(p),

for each k ∈ Z.
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The motion of the generic marker x(p, t) of a sheet (hereafter we shall
relax the subscript h in xh) is governed by the BR equation, see [53, 44]:

∂x(p, t)

∂t
= −
∫ Lx/2

−Lx/2
γ(p̃)KLx,Ly(x(p, t)− x(p̃, t)))dp̃, (2.1)

where the integral is intended in the principal value sense.
One can see, [1, 13], that the kernel KLx,Ly in (2.1) has the following

form:

KLx,Ly(x) =

(
∂ΨLx,Ly

∂y
(x, y),−

∂ΨLx,Ly

∂x
(x, y)

)
, (2.2)

where

ΨLx,Ly(x, y) =
x2

2LxLy
− 1

2π
log

∣∣∣∣θ1(π(i
x

Ly
+

y

Ly
), e
−πLx

Ly

)∣∣∣∣ , (2.3)

being θ1(z, q) = 2
∑∞

n=0(−1)nq(n+1/2)2 sin[(2n + 1)z] the Jacobi theta
function of the first kind.

The streamfunction (2.3) is the solution of the following periodic prob-
lem in the domain Ω = [−Lx/2, Lx/2]× [−Ly/2, Ly/2], see [1]:
∇2ΨLx,Ly(x, y) = −δ0,0,
ΨLx,Ly(−Lx/2, y) = ΨLx,Ly(Lx/2, y), ∀y ∈ [−Ly/2, Ly/2],
ΨLx,Ly(x,−Ly/2) = ΨLx,Ly(x, Ly/2), ∀x ∈ [−Lx/2, Lx/2].

(2.4)

One can therefore write explicitly the components of the kernel KLx,Ly as
follows:

KLx,Ly(x) =

− 1

2Ly
<

θ′1
(
π(i x

Ly
+ y

Ly
), e
−πLx

Ly

)
θ1

(
π(i x

Ly
+ y

Ly
), e
−πLx

Ly

)
 ,

− x

LxLy
− 1

2Ly
=

θ′1
(
π(i x

Ly
+ y

Ly
), e
−πLx

Ly

)
θ1

(
π(i x

Ly
+ y

Ly
), e
−πLx

Ly

)
 . (2.5)

2.1 The Kelvin-Helmholtz instability

In this Subsection we explain how, for the infinite array of periodic vor-
tex sheet configuration, the BR equation develops the Kelvin-Helmholtz
instability.

We first write the BR equation (2.1) in terms of the complex variable
z(p, t) = x(p, t) + iy(p, t) as
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∂z∗(p, t)

∂t
= −
∫ Lx/2

−Lx/2
γ(p̃) [KS (z(p, t)− z(p̃, t)) +Kx (z(p, t)− z(p̃, t))] dp̃(2.6)

where z∗ denotes the complex conjugate of z, and the kernels KS,Kx are
defined as

KS(z) = − 1

2Ly

θ′1(π
z̃(p,t)−z̃(p̃,t)

Ly
, e
−πLx

Ly )

θ1(π
z̃(p,t)−z̃(p̃,t)

Ly
, e
−πLx

Ly )
, z̃ = −iz, (2.7)

Kx(z) =
i

2LxLy
(z + z∗). (2.8)

Notice that from the properties of the θ1 function we have

K∗S(z) = KS(z∗).

To show how the Kelvin-Helmholtz instability forms, we determine the
growth rate of the perturbation of an equilibrium solution of (2.6). It is easy
to check that the flat solution zh(p, t) = z(p, t)+ihLy = p+ihLy, γ(p) = 1

is an equilibrium solution for the BR equation. We now consider the linear
evolution of zh(p) = p + ihLy + µ(p, t) where µ(p, t) = Ak̃(t)e

ik̃p +

Bk̃(t)e
−ik̃p, being |Ak̃(0)| � 1, |Bk̃(0)| � 1; k̃ = 2πk/Lx where k ∈ Z.

To write the equation for the time evolution of the disturbance µ first
we use ∑

k,h∈Z

1

z − π(h+ ikλ)
=
θ′1(z, e

−πλ)

θ1(z, e−πλ)
,

where θ′1(z, q) denotes the derivative with respect to z of θ1; second the
periodicity condition

zh(p+ kLx, t) = z0(p, t) + kLx + ihLy, ∀k, h ∈ Z,

obtaining that

−
∫ Lx/2

−Lx/2
γ(p̃) [KS (z(p, t)− z(p̃, t))] dp̃ =

− 1

2π

∑
k,h∈Z

−
∫ Lx/2

−Lx/2

γ(p̃)

z̃(p, t)− z̃(p̃, t)− ikLx − hLy
dp̃ =

− 1

2π

∑
k,h∈Z

−
∫ (k+1/2)Lx

(k−1/2)Lx

γ(p̃)

z̃(p, t)− z̃h(p̃− kLx, t)
dp̃ =

− 1

2π

∑
h∈Z

−
∫ −∞
∞

γ(p̃)

z̃(p, t)− z̃h(p̃, t)
dp̃,
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Hence, the equation of the perturbation µ has the following form:

∂µ(p, t)∗

∂t
=

1

2πi

∑
h∈Z

−
∫ ∞
−∞

1

p− p̃+ ihLy + (µ(p, t)− µ(p̃, t))
dp̃+

i

2Ly
(µ(p, t) + µ∗(p, t)) (2.9)

and, as (µ(p, t)− µ(p̃, t)) is small, to leading order we obtain

∂µ(p, t)∗

∂t
=

1

2πi

∑
h∈Z

(
−
∫ ∞
−∞

1

p− p̃+ ihLy
dp̃−−

∫ ∞
−∞

(µ(p, t)− µ(p̃, t))

(p− p̃+ ihLy)2
dp̃

)
+

i

2Ly
(µ(p, t) + µ∗(p, t)) .

(2.10)

The first integral (2.10) vanishes, and by means of integrating by parts
the second integral we obtain

∂µ(p, t)∗

∂t
= − 1

πi

∑̂+∞

h=0
−
∫ ∞
−∞

µp(p̃, t)(p− p̃)
(p− p̃)2 + (hLy)2

dp̃+

i

2Ly
(µ(p, t) + µ∗(p, t)) . (2.11)

where µp = ∂pµ, and the symbol
∑̂

means that the term for h = 0 is
multiplied by a factor 1/2.

As

−
∫ +∞

−∞

e±ik̃p̃(p− p̃)
(p− p̃)2 + (hLy)2

dp̃ = ∓iπe−k̃hLy±ik̃p

and substituting in (2.11) we obtain

Ȧ∗
k̃
(t)e−ik̃p + Ḃ∗

k̃
(t)eik̃p =

ik̃
∑̂+∞

h=0

[
Ak̃(t)e

−k̃hLy+ik̃p +Bk̃(t)e
−k̃hLy−ik̃p

]
+

+
i

2Ly

(
Ak̃e

ik̃p +Bk̃e
−ik̃p + A∗

k̃
e−ik̃p +B∗

k̃
eik̃p
)

=

ik̃(ek̃Ly + 1)

2(ek̃Ly − 1)

[
Ak̃(t)e

ik̃p +Bk̃(t)e
−ik̃p
]

+

+
i

2Ly

(
Ak̃e

ik̃p +Bk̃e
−ik̃p + A∗

k̃
e−ik̃p +B∗

k̃
eik̃p
)
, (2.12)

where we have used
∑+∞

h=0 e
−hx = ex/(ex − 1) for x > 0. From (2.12) we

obtain the following system of ODE
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Ż(t) = AZ(t), (2.13)

where Z(t) = (<(Ak̃(t)),=(Ak̃(t)),<(Bk̃(t)),=(Bk̃(t))), and

A =


0 1

2Ly
0 q

- 1
2Ly

0 q 0
0 q 0 1

2Ly

q 0 - 1
2Ly

0

 ,

where q = − k̃(ek̃Ly+1)

2(ek̃Ly−1)
− 1

2Ly
. The matrix A admits a positive eigenvalue

with multiplicity 2

λ =

√
k̃2(ek̃Ly + 1)2

4(ek̃Ly − 1)2
+

(ek̃Ly + 1)

2Ly(ek̃Ly − 1)
.

Therefore the linearized modes of any disturbances have positive growth
rate, implying an ill-posed linear motion. This is known as the Kelvin-
Helmholtz instability. We notice that if let Ly → ∞, and take Lx = 2π,
the infinite array of periodic vortex sheets reduces to the classical single
periodic vortex sheet curve, see [39, 55]. In this case λ = k/2 which is
exactly the growth rate reported in [39, 55] for the periodic vortex sheet.

2.2 Singularity formation for the Birkhoff-Rott solution

In this section we show how the Kelvin-Helmholtz instability induces the
singularity formation in finite time for the solution of the BR equation.

For the purpose of our analysis we need to compute the numerical so-
lution of (2.1). In particular we use a fourth order Runge-Kutta scheme as
temporal discretization and, following Krasny [39], we compute the nu-
merical value of the integral in (2.1) by using the alternating point quadra-
ture formula. To evaluate the θ1 function it is enough to consider in the
summation only the first 20 terms, because the summation rapidly de-
creases to zero with n. The main difficulty in computing the vortex sheet
motion is related to the Kelvin-Helmholtz growth of the round-off distur-
bances. To avoid this unwanted phenomenon, we apply the filtering tech-
nique proposed by Krasny in [39], according to which at each time step the
Fourier modes having amplitude smaller than the threshold value 10−27 are
set to zero. Computation is performed with 32-digit precision.

We consider, as initial condition, the flat sheets with a sinusoidal vortex
strength
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x(p, 0) = (p, 0), γ(p) = sin(p), p ∈ [−π, π], (2.14)

and Lx = Ly = 2π.
To analyze the process of the singularity formation we apply the sin-

gularity tracking method, which allows to determine the position and the
algebraic character of the complex singularity nearest to the real axis. This
method has been widely used to perform a singularity analysis in equa-
tions arising in fluid dynamics. Besides the paper cited in the introduc-
tion for the BR equation, we recall here the applications to the incom-
pressible Euler flow, see [10, 28, 46, 21, 51], to boundary layer flow, see
[23, 25, 30, 31, 32, 33], to Camassa-Holm and Degasperi-Procesi equa-
tions, [25, 22], to the KdV equation in [36, 29], and others [36, 37, 38, 60].
See also the recent review paper [11] on the various singularity tracking
procedures.

The complex singularity tracking method is based on the link between
the asymptotic properties of the Fourier spectrum and the radius of analyt-
icity of a real function. In particular, suppose that u(z) is a real function
having a complex singularity in z∗ = x∗+iδ∗ and that u(z) ≈ (z−z∗)α+iτ ,
using a steepest descent argument it is possible to give the asymptotic (in
k) behaviour of the spectrum uk of u(z):

uk ≈ CXk
−(α+1)e−δ

∗k sin(kx∗ + τ log(k) + φ). (2.15)

To apply the singularity tracking method to BR solution, we consider
the Fourier modes of the components

(X(p, t), Y (p, t)) = x(p, t)− p =

(∑
k

Xk(t)e
ikp,
∑
k

Yk(t)e
ikp

)
,

obtained from the numerical solution of (2.1). Hence, the asymptotic be-
haviour of the spectrum of X for large k (same arguments for the compo-
nent Y and its Fourier modes) is:

Xk(t) ≈ CX(t)k−(αX(t)+1)e−δX(t)k sin (kξX(t) + τX(t) log(k) + φX(t)) ,

(2.16)
where z∗ = ξX + iδX is the position of the singularity. The best way

to find the parameters CX , αX , δX , ξXτX , φX in (2.16) is to perform a fit-
ting procedure to the logarithmic of (2.16). In particular, we suppose that
(2.16) holds point-wise for each k, and equating six consecutive modes
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Xk−5, · · · , Xk to the form in (2.16) we obtain a system for the parameters
CX , αX , δX , ξXτX , φX whose solution returns the k-dependent values of
the parameters. The values of the various parameters are actually retrieved
in the band of k where they are almost k-independent, and this happens in
general in the first 30− 100 modes.

Results shows that both components have a singularity in the same posi-
tion in the complex plane (that is δX(t) ≈ δY (t) and ξX(t) ≈ ξY (t)), while
the two characterizations αX and αY are different. The time evolutions
of the width of the analyticity δX = δY is shown in Figure 1(a) , while
the time evolutions of the characterizations αX , αY are shown in Figure
1(b). We have found that at ts ≈ 1.911 the singularity hits the real domain
(δX = 0) in p∗ ≈ π/2, and that the characterizations are αX ≈ 1.84 and
αY ≈ 1.97, being the values of τX , τY of order 10−2 at ts. Notice that for
symmetry reasons there is also a singularity placed in −p∗. This means
that both the components (X(p, t), Y (p, t)) experience at ts a blow-up in
their second derivative in p∗ due to the presence of a branch singularity. As
X and Y have a blow up in their second derivatives, the curve at time ts
has a smooth behavior as shown in Figure 2(a), while the eruptive behavior
of the second derivatives can be deduced from Figure 2(b), where the time
evolution ofXpp from t = 1.7 up to t = 1.9 (just prior the singularity time)
is shown: in p∗ the second derivative Xpp rapidly decreases for p→ (p∗)−

while it rapidly increases for p→ (p∗)+ (Ypp has a similar behavior).
At t ≈ ts also the curvature κ(p, t) = (xpypp − ypxpp)/((x2p + y2p)

3/2)

and the true vortex sheet strength γ̂(p, t) = γ(p)/|xp, yp| become singular
in p∗. Applying the singularity tracking method to k and γ̂ we obtain that κ
diverges, being the characterization ακ ≈ −0.63, while γ̂ forms a square-
root cusp having characterization αγ̂ ≈ 0.55 (see Figure 1(b)), and also
in this case both the imaginary part of the complex characterizations due
to the asymptotic behaviour in (2.16) is negligible. The time evolutions of
the curvature κ and the true vortex sheet strength γ̂ are shown in Figures
2(c),2(d) from t = 1.7 up to t = 1.91 as functions of the signed arc length
from p = 0.

3 Vortex layer of non uniform vorticity

In this Section we consider the regularization of the vortex sheet motion
given by an inviscid layer of small thickness whose evolution is governed
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t
1.85 1.86 1.87 1.88 1.89 1.9 1.911.911
0

0.01

0.02

0.03

0.04

δX , δY , δγ̂ , δκ

(a)

t

1,85 1,86 1,87 1,88 1,89 1,9 1.911

-0.5

0

0.5

1

1.5

2

αγ̂

ακ

αY

αX

(b)

Figure 1: a) The time evolutions of the width of the analyticity
δX , δY , δκ, δγ̂ of X, Y, κ, γ̂ from t = 1.85 up to ts = 1.911. At ts δX =
δY = δκ = δγ̂ ≈ 0 meaning that the BR solution develops a singularity b)
The time evolutions of the characterizations αX , αY , ακ, αγ̂ from t = 1.85
up to ts = 1.911. At ts, αX ≈ 1.84, αY ≈ 1.97, ακ ≈ −0.63, αγ̂ ≈ 0.55.

by Euler equations. Several authors considered this problem and compared
the motion of a layer of uniform vorticity with the vortex sheet motion
governed by the BR equation, see [48, 6, 9, 26]. Here we consider a layer
of non uniform vorticity concentrated on the layer of thickness ε.

Following the analysis performed in [13], we introduce the rescaled
variable Y = y/ε and assume the initial vorticity to be of the form

ω0(x, y) = ε−1f(x, Y ) (3.1)

where f(x, Y ) has a rapid decay in Y , and
∫
f(x, Y )dY is finite. In the

limit ε→ 0, the layer shrinks to a sheet.
The Euler equations in the vorticity-streamfunction formulation are the

following:

∂tω + u∂xω + v∂yω = 0 (3.2)

∂2xxψ + ∂2yyψ = −ω, (3.3)

u = ∂yψ, v = −∂xψ, (3.4)

ω(x, y, t = 0) = ε−1f(x, Y ), (3.5)

f(x, Y ) = sin(x) exp
(
−Y 2/2

)
/
√

2π. (3.6)

The problem is solved in the periodic domain D = [−π, π] × [−π, π].
Equation (3.2) is the vorticity-transport equation, (3.3) is the Poisson equa-
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x
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p
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p
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(b)

s

0 1 2 3

γ̂

0

0.2
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0.6
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1
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t = 1.7

(c)

s

0 1 2 3

κ

-6
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4

6

t = 1.7
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(d)

Figure 2: a) The vortex sheet curve from t = 1.7 up to t = 1.9 (time steps
of 0.05) and t = 1.91, just prior the singularity time. b) Time evolution of
the second derivative Xpp of the X component from t = 1.7 up to t = 1.9
(time steps of 0.05). At t = 1.9 the singularity is very close the real domain,
and Xpp exhibits an eruptive behavior in p∗ = ±π/2. c) Time evolution of
the true vortex sheet strength γ̂ in terms of the arc-length s(p) from p = 0
(only s ≥ 0 is shown). At t = 1.91 γ̂ has a square-root cusp behavior in
p∗. d) Time evolution of the curvature κ in terms of the arc length s (only
s ≥ 0 is shown). At t = 1.91 κ experiences an eruptive behaviour in p∗,
similarly to the derivative Xpp.
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tion for the streamfunction, and equation (3.4) links the streamfunction to
the velocity components. The initial condition is given by (3.5) and (3.6),
and it represents a flat layer having thickness of order ε, in which the vor-
ticity strength has a sinusoidal profile along the tangential direction, and it
has a highly peaked gaussian profile along the normal direction. Numerical
simulations are employed by using a fully spectral numerical scheme with
a semi-implicit third order Runge-Kutta scheme as temporal discretization,
see[62].

3.1 Vortex layer motion

We have performed several numerical simulations of (3.2)-(3.6) with the
regularization parameter ranging from ε2 = 0.005 to ε2 = 0.02. To com-
pare the vortex layer motion with the vortex sheet dynamics, we consider
the material curve C which, at t = 0, is placed in the center of the layer. We
evolve in time the curve C following the lagrangian path of fluid particles
initially distributed on C.

The behavior of C is shown at time t = 1.91, just prior the singularity
time of the BR solution, in Figure 3(a) for the various ε, and compared with
the BR solution. As one could expect, the curve C shows a better agreement
with the BR case as ε→ 0.

After the singularity time for the BR solution, the typical roll-up pro-
cess of the thin vorticity layer begins to manifest (see also [59, 13] for
the roll-up process of vorticity layer). For all the ε considered, the vortic-
ity concentrates close to the points where the singularity should form in
the vortex sheet governed by the BR equation (i.e. in p = ±π/2 ) and,
due to the incompressibility condition, the flow bulges outwards close to
that points, leading to the formation of two cores of negative and positive
vorticity visible for instances in Figures 3(b)-3(d) for ε2 = 0.02, 0.005 at
t = 6, and ε2 = 0.005 at t = 4. As time passes the two cores begin to rotate
in opposite direction, and two spirals with trailing arms wrapping around
the cores of the layer form. In Figures 3(c),3(e) the spirals are well visible
for ε2 = 0.02, 0.005 at t = 6.

The different initial thickness of the layer induces different flow motion.
From Figures 3(b)-3(d) one can observe how the roll-up process is more
sustained for the lower ε, with the curve C showing, at a specific time, an
increasing number of windings for decreasing ε.
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3.2 Singularity analysis

Although the vortex layer, and consequently the curve C, is regular for all
time, it is of interest to characterize the complex singularities of the layer
solution, and how they are related to the parameter ε.

In order to perform the singularity analysis of Euler’s solution, we ap-
ply the singularity tracking method for bi-variate function, see [46, 51]
and also [30, 32, 33]. In particular, given the Fourier expansion of Euler’s
solution

ω(x, y) =
∑
k1,k2

ωk1k2e
ik1xeik2y,

if one considers those modes (k1, k2) such that k1 = k cos θ and k2 =

k sin θ, where k = |(k1, k2)|, then the Fourier coefficients, for k → ∞,
have the following asymptotic behavior:

ωk1k2 ≈ k−(α(θ)+1)e−δ(θ)keikx
∗(θ) where (k1, k2) = k(cos θ, sin θ).

(3.7)
The width of the analyticity strip δ∗ is the minimum over all directions θ,
i.e. δ∗ = minθ δ(θ).

When dealing with bi-variate function it is more convenient to work
with the shell-summed Fourier amplitudes, defined as

AK ≡
∑

K≤|(k1,k2)|<K+1

|ωk1k2| . (3.8)

The asymptotic behavior of these amplitudes is, see [51]

AK ≈ CK−(αSh+1/2) exp (−δShK) when K →∞, (3.9)

where δSh gives the width of the analyticity strip and αSh gives information
on the characterization of the singularity. As proven in [51], if one denotes
with θ∗ the angle where δ(θ) takes its minimum (i.e. δ∗ = δ(θ∗)), then
δSh = δ(θ∗) and αSh = α(θ∗) − 1/2, that is the rates of exponential and
algebraic decay of the shell-summed Fourier amplitudes are, respectively,
the width of the analyticity and the characterization of the most relevant
complex singularity of the solution.

The shell-summed amplitudes of the vorticity ω of the Euler solution
are shown in Figure 4(a) for various values of the initial thickness ε2 at t =

ts in lin-log scale. As expected, the amplitudes have decreasing exponential
decay for decreasing ε (see Figure 4(b)). We also notice that the fitting
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procedures are in this case applied to particular bands of K. In fact, due to
the initial choice the flat gaussian layer, the first part of the shell summed
amplitudes exhibits for all ε almost a gaussian decay, so that it is convenient
to focus only on the last range of the amplitudes which is actually affected
by the presence of complex singularities. For instances for ε2 = 0.01−0.02

only K ≥ 100 are considered, whereas for ε2 = 0.005 we considered
K ≥ 200 (see Figure 4(a)).

Regarding the characterization of the singularity, which is obtained by
determining the rate of algebraic decay αSh in (3.9), we have obtained that
αSh is, at t = 1.91 of order αSh ≈ −0.5. This reveals that the vorticity has
an inverse square root singularity, meaning that the complexified vorticity
has an eruptive behaviour. This is somewhat expected, as the vorticity is
highly concentrated and shows an eruptive behavior along the thin layer,
especially for decreasing ε. The obtained characterization is also compati-
ble with that found in [11] for the streamfunction of a viscous periodic thin
layer of non uniform vorticity of distinguished sign. In particular in [11]
it was shown that the streamfunction had a 3/2-characterized singularity,
revealing an eruptive behavior in the second derivatives of the streamfunc-
tion and, consequently, in the vorticity. We stress here that the outcomes
of the fitting procedures applied to (3.9) does not give any further infor-
mation on all the possible complex singularities of the Euler solution. It is
likely, in fact, that the various complex singularities actually form a com-
plex manifold as predicted by previous analysis on the Euler equation with
analytic initial data, [28, 46, 51].

3.3 Singularity analysis for the material curve C

The aim of this subsection is to perform a comparison between the sin-
gularity of the BR solution, and the complex singularities of the curve C
retrieved from the vortex layer motion presented in subsection 3.1. The
analysis we shall present is different from the one presented in the previ-
ous subsection, as it is applied to the components of a curve, and it allows
to retrieve information also on the position of the singularities.

We apply the singularity tracking methods, and in particular we use the
Borel-Polya-van der Hoeven method (BPH). This method is very power-
ful, and it allows to retrieve information on the positions and the character-
izations of the various algebraic singularities of an analytic function, ex-
tending the singularity tracking method based on the asymptotic behaviour
(2.16). It was originally proposed in [50] to investigate on the various com-
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Figure 3: a) Vortex sheet curve for the BR equation and the material curves
C for various values of the initial thickness of the layer at t = 1.91 (just
prior the singularity formation for the BR solution) b)-c) Vorticity distri-
bution for the vortex layer and material curve C (black lines) for ε2 = 0.02
at t = 4 and t = 6 d)-e) Vorticity distribution for the vortex layer and
material curve C (black lines) for ε2 = 0.005 at t = 4 and t = 6.
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Figure 4: a) Fourier shell summed amplitudes in lin-log scale at t = ts for
various values of the initial thickness of the layer. For decreasing thickness
the amplitudes exhibit a decreasing exponential decay rate, meaning that
the width of the analyticity δSh of the Euler solution decreases with ε. b)
Width of the analyticity δSh evaluated through (3.9) for various ε2 at t = ts.

plex singularities of the Burgers equation, and later to analyse the complex
singularities of a wall shear of a boundary layer flow ([32]), and the com-
plex singularities for the regularized BR-α in [13]. We shall not give further
details on this method, and we refer the interest reader to the previous cited
papers for an exhaustive reading on this method and how can be applied.

Singularity tracking with the BPH method is applied to the Fourier ex-
pansion of the components (Xε(p, t), Y ε(p, t)) = (xC(p, t) − p, yC(p, t)),
where C = (xC(p, t), yC(p, t)). Up to ts we have clearly distinguished and
characterized, in both Xε and Y ε, two main complex singularities whose
location will be denoted with p̃ε1 = p1,ε + iδ1,ε and p̃ε2 = p2,ε + iδ2,ε

3. In
Figure 5(a), p̃ε1 and p̃ε2 are tracked in the complex plane at t = 1.911 and
from t = 2.5 up to t = 6 (time steps of 0.5) for ε2 = 0.005, 0.01, 0.02 (only
p ≥ 0 is shown). In the same figure the tracking of the BR singularity is
shown from t = 1 up to t = 1.91. Due to the symmetry of the problem, it
is expected that the singularities p̃ε1 and p̃ε2 are symmetric with respect to π,
and their distance from the real domain diminishes as time passes and for
decreasing ε. Moreover as ε decreases the distance in the complex plane
between the two singularities diminishes.

These singularities have similar characterizations for all times we have

3Hereafter we shall also label these singularities simply with their locations p̃ε1 and p̃ε2
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considered. In fact, we have determined through the BPH method that
αXp̃ε1 = αXp̃ε2 and αYp̃ε1 = αYp̃ε2 have always values in the range (1.45−1.95) for
all the time considered. The obtained characterizations are compatible with
the BR-singularity, and reveal an eruptive behavior in the second derivative
of the components Xε and Y ε. In Figure 5(b) ∂ppXε, ∂ppY

ε are shown for
ε = 0.005 and t = 6, and they have an evident eruption close p ≈ 0.61 and
p ≈ 2.52, very close to the real part of the positions of p̃ε1 and p̃ε2 (Figure
5(a)).

4 Conclusion

We have analyzed the motion of a vortex layer of non uniform vorticity
whose evolution is governed by the Euler equation. The initial configu-
ration we have studied, in the zero thickness limit, consists in an infinite
array of periodic vortex sheets. The motion of the sheets is governed by
the BR equation that, in finite time, develops a singularity. We have char-
acterized, through the singularity tracking method, the singularities of the
components of the curve as a 3/2 branch singularity. We have compared
the vortex sheets motion with the dynamics of a material curve centered
within the layer, and we have shown that, for small thickness of the layer,
this material curve closely follows the BR solution. However due to the
regularization induced by the finite thickness of the layer, this material
curve does not develop singularity and, after the singularity time for the
BR solution, shows well known features of the shear layer flow like roll-up
process and spiral formation.

Although Euler solution is regular globally in time, we have shown
through the singularity analysis that the solution has complex singulari-
ties whose distances from the real domain diminishes as the thickness of
the layer goes to zero. Through the analysis of the Fourier shell summed
amplitudes we have also characterized the relevant singularities, obtaining
that the complex singularities are compatible with an eruptive behavior of
the vorticity within the layer.

It remains still unsolved the question whether the various regularization
of the BR equation have a common limit in the zero-regularization limits
(vortex blob, Euler-α, approximation with viscous-inviscid layer), a prob-
lem that appears relevant also considering the non uniqueness results ob-
tained in [43]. In [59] it was suggested that the blob methods well capture
some large scale features of the viscous vortex-layer motion, and in [34]
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Figure 5: a) Tracking of the singularities p̃ε1, p̃
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2 in the complex p-plane

at t = 1.911 and from t = 2.5 up to t = 6 (time steps of 0.5) for
ε2 = 0.005, 0.01, 0.02. The dashed line is the tracking of the BR singular-
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the authors numerically proved that blob and BR-α appear to be similar
regularization, although blob regularization seems to exhibit a somehow ir-
regular behaviors. It would be interesting to see whether these regularized
models have similarities in the behavior of the complex singularities. In
[13] it was in fact given evidence that the Euler-α regularization of the BR
equation develops complex singularities, similarly to the results presented
here. The relevant approximation with viscous layers, not considered here,
has a fundamental importance. For wall bounded flows there are results
in different contexts (see e.g. [16, 54, 40] and references therein), and we
postpone to [12] the analysis of the influence of the viscosity effects on the
dynamics of layer of small thickness. It would be also interesting to study
the behavior of the layer using the framework of the matched asymptotics
as it is usually done for wall bounded flows, see e.g. [18, 19, 41] where
it is suggested that analyticity might be necessary for the tangential vari-
able only. An inner expansion technique for vortex layer was in fact used
in [17] to derive an approximation of the flow inside the layer, see also
[57] in a different context; matching with the outer flow is however more
challenging with respect to the wall bounded flow counterpart, because the
outer Euler flow is not a priori known due to the layer motion, although it
might be necessary to achieve the justification of the BR model as a zero
viscosity approximation of Navier-Stokes solutions.
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