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Witnessing nonclassicality through large deviations in quantum optics
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Nonclassical correlations in quantum optics as resources for quantum computation are important in the quest
for highly specialized quantum devices. Here, we put forward a methodology to witness nonclassicality of the
output field from a generic quantum optical setup via the statistics of time-integrated photocurrents. Specifically,
exploiting the thermodynamics of quantum trajectories, we express a known nonclassicality witness for bosonic
fields fully in terms of the source master equation, thus bypassing the explicit calculation of the output light state.
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I. INTRODUCTION

During the past decades, several platforms have been
proposed for implementing efficiently quantum computing
[1–3]: all of them suffer from the effect of decoherence,
given by the coupling to the environment [4], which ulti-
mately deteriorates the nonclassical properties of the systems
considered. In fact, for a quantum computational scheme to
outperform a classical one, one requires that at least one of its
component exhibits genuinely quantum features [5]. When the
environment is the electromagnetic vacuum causing photon
emission, such as in dissipative optical networks [6], the
statistical analysis of the output light contains the information
about the dynamical features of the open quantum systems [7].
In particular, the emitted photons can be used as a resource
for quantum information processing [8]. Hence, the detection
and optimization of nonclassical correlations in the photons
emitted by a general optical setup is of primary relevance for a
variety of technological applications. In this work, we present
a methodology to witness nonclassicality of the light emitted
from a generic quantum optical setup via the statistics of
time-integrated photocurrents. Specifically, the types of setups
we consider include an open quantum system, which is the
source of photons, and an optical circuit used to manipulate
the emission, as shown in Fig. 1. To obtain the statistical
properties of the photons arriving at the detectors we make use
of the large-deviations approach [9–12]. This allows us access
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to the joint probability distribution of the photon counting at
long times, together with relevant statistical quantities such
as the fluctuations of the counting fields and corresponding
cross-correlation functions. In this way a nonclassicality crite-
rion is formulated based on the time-integrated observables of
the detection [13–16]. Theoretically, this establishes, from the
theoretical point of view, a natural link between the statistical-
physics approach for analyzing the output and the dynamics
of open quantum systems [13], and a general class of non-
classicality measures in quantum optics. We provide simple
but instructive examples, where nonclassical correlations are
witnessed in different dynamical regimes of the sources and
for a broad range of parameters of the components of the op-
tical circuit. Our theoretical scheme is effective in predicting
the outcomes of quantum optics experiments that make use of
photon counting to witness nonclassicality [17–22].

II. OPEN QUANTUM SYSTEMS AND LARGE DEVIATION

Our goal is to access the statistical properties of the output
light of an open quantum system emitting into NL different
modes called Bμ, with μ = 1, . . . , NL. The photon-counting
statistics at the detectors (see Fig. 1) provides information
about the state of the open system as well as about the
features of the optical circuit [7]. The counting statistics is
fully characterized by the cumulants of the associated photon-
counting probability distribution, which are encoded in the
scaled cumulant-generating function (SCGF). Next we briefly
review how to compute the SCGF in a rather general setting.
The evolution of the reduced density operator of the open
system ρ, in the Markovian approximation, is given by the
well-known Lindblad master equation [23–25],

ρ̇ = −i[Ĥ, ρ] +
NL∑

μ=1

D(L̂μ)ρ ≡ L[ρ], (1)
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FIG. 1. Sketch of the dissipative quantum optical network. A
generic quantum network is composed of a series of interconnected
elements (system) emitting continuously detected radiation in the
environment. The emission fields can be manipulated and trans-
formed via a series of unitary operations in an optical circuit using
beam splitters and phase shifters. The photodetectors (D1 and D2)
allow the simultaneous reconstruction of the quantum trajectories
for two emission channels. Their correlation properties are studied
to uncover quantum nonclassicality of radiation.

where the jump operator L̂μ corresponds to the interaction
with the field mode Bμ and D(L̂μ)[ρ] = ∑NL

μ=1[L̂μρL̂†
μ −

1
2 {L̂†

μL̂μ, ρ}]. Following a standard approach of open quantum
system theory [23], we gather information about the evolution
of ρ by continuous monitoring of the environment.

Let us divide our jump operators into N subsets, Ji, each
of size ni, with i = 1, . . . , N , and

∑N
i=1 ni = NL: suppose we

record the occurrence of jump events due to the action of
the operators in the first M subsets (M < N), and let Km

be the absolute number of detected jumps in time (counting
field) corresponding to each subset Jm with m = 1, 2, . . . , M.
Furthermore we assume that the action of these jump op-
erators induces photoemission. In short notation, we define
the vector K = (K1, K2, . . . , KM ) to be the photon counting
associated with each Jm. The probability to observe K counts
from each decay channel after a time t is Pt (K) = Tr{ρK(t )},
where ρK(t ) is the unnormalized reduced density operator
conditioned to K [26]. The moment-generating function as-
sociated with Pt (K) reads Zt (s) = ∑∞

K=0 Pt (K)e−s·K, with
s = (s1, . . . , sM ). Here sm is the conjugated field correspond-
ing to Km.

The outcomes of photocount experiments are time-
integrated photocurrents:

〈ki〉 = 1

t

ni∑
j=1

Tr

{∫ t

0
dτ L̂†

j L̂ jρ(τ )

}
, (2)

with i = 1, 2, . . . , M. For t much greater than the typi-
cal timescale of the system τc, the probability distribution
associated with the photon-counting measurement takes a
large deviation form [10]. Specifically, at long times the
moment-generating function can be asymptotically approxi-
mated through the large-deviation theory as an exponential
function of time as

Zt (s) ∼ etθ (s). (3)

This basically expresses the large-deviation principle for the
moment-generating function. The analog for the count prob-
ability reads Pt (K) ∼ etϕ(K/t ), where ϕ(x) = − mins{xs +

θ (s)}. The function θ (s) = 1
t ln Zt (s) is the SCGF. It can

be proven [10,27] that this is given by the maximum real
eigenvalue of the deformed superoperator

Ls[ρ] = L[ρ] −
M∑

i=1

(1 − e−si )
ni∑

μi=0

L̂μiρL̂†
μi

, (4)

which features the standard Liouvillian and the dissipator,
with the jump parts corresponding to each subset Ji, the
latter being weighted by the factor e−si . The cumulants of the
distribution Pt (K) at long times are given by the derivative of
θ (s) at s = 0: cumulants give direct access to the moments of
the associated distribution [28].

In this work, for the sake of clarity, we consider the case
M = 2 and n1 = n2 = 1, i.e., two distinct counting fields each
associated with a single jump operator, as shown in Fig. 1.
Then Eq. (4) takes the form Ls1,s2 [ρ] = L[ρ] − ∑2

μ=1(1 −
e−sμ )L̂μρL̂†

μ, and the maximum real eigenvalue of Ls1,s2 is
θ (s1, s2) = 1

t ln Zt (s1, s2), with Zt (s1, s2) being the moment-
generating function of the probability distribution Pt (K1, K2)
associated with the photocount measurement described by the
jump operators L̂μ in the long-time limit. In particular, we
recover the moments of the marginal distributions P(K1) and
P(K2) by setting s1 = 0 or s2 = 0. By exploiting the double
weighting it is possible to access the correlations between the
counting fields at the detectors. In particular the covariance
reads

cov(k1, k2) = 〈k1k2〉 − 〈k1〉〈k2〉 = ∂s1∂s2θ (s1, s2)|s1=s2=0.

(5)

All other moments can be easily recovered in terms of higher-
order derivatives of θ (s1, s2). The possibility of accessing the
full statistics of the joint probability distribution, as we see
in the following, allows us to make use of nonclassicality
measures on the bath operators, with the idea of finding possi-
ble signatures of quantum correlations between the detection
events (in the long-time limit).

III. VOGEL’S NONCLASSICALITY CRITERION (VC)

This criterion [29,30] gives a necessary and sufficient
condition to establish whether correlations in a stationary radi-
ation field are nonclassical or not. It consists of a rephrasing of
the well-known nonclassicality criterion based on the negativ-
ity of the Glauber-Sudarshan distribution (or P distribution)
[31,32] in terms of photon-counting detection. Referring to
the setup in Fig. 1, let us consider the generic bosonic oper-
ators ĥi (i = 1, 2), of the two output fields, and assume they
are normally ordered functions of the associated destruction
and creation operators âi and â†

i of each mode. A generic
operator acting on the two-mode field is defined as f̂ =∑∞

n,m=0 fnmĥ†n
1 ĥm

2 , which is a normally ordered power series of

ĥi and ĥ†
i . The expectation value of 〈: f̂ † f̂ :〉 reads as follows:

〈: f̂ † f̂ :〉 =
∞∑

n,m,k,l=0

fnm f ∗
kl

〈
ĥ†n+k

1 ĥm+l
2

〉

=
∫

C
P (α1, α2)| f (α1, α2)|2d2α1d2α2, (6)
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FIG. 2. Nonclassicality witness for emission from coupled atoms. (a) Third-order Vogel’s determinant for a system of two coherently
driven interacting atoms (coupling strength J) subject to dephasing, as a function of the dephasing rate γφ and the Rabi frequency 
. Panels
(b)–(d) are for different coupling strengths: J = 0.01 (b), J = 0.1 (c), and J = 0.5 (d). In all cases we observe a sharp separation between
classical (positive Vogel’s determinant) and quantum states of the emitted radiation (negative regions).

where the last equality follows from the optical equivalence
theorem [33], f (α1, α2) = ∑∞

n,m=0 fnmĥ†n
1 (α1, α

∗
1 )ĥm

2 (α2, α
∗
2 ),

and where P (α1, α2) is the Glauber-Sudarshan distribution.
Since 〈: f̂ † f̂ :〉 < 0 entails P (α1, α2) < 0 for some points
(α1, α2) of the phase space, the negativity of Eq. (6) is a
clear signature of nonclassicality in radiation fields. Note
that Eq. (6) is a quadratic form and is non-negative iff all
the principal minors of the matrix Mnm,kl = 〈ĥn+k

1 ĥm+l
2 〉 [see

Eq. (A1) in Appendix] are positive, according to the Sylvester
criterion [34]. Referring to the setup in Fig. 1 and according
to Refs. [29,34], we express the VC in terms of click-counting
operators, which, from the open quantum system point of
view, take the form ĥ j = L̂†

j L̂ j . Thus the elements of Mnm,kl

are the moments of the photon-counting stationary distribu-
tion P(K1, K2), which gives the probability to record K1 clicks
at photodetector D1 and K2 clicks at D2. Hence, the criterion
is now formulated in terms of time-integrated functions, like
the photocurrents defined in Eq. (2). The moments in Mnm,kl

are easily calculated through iterative derivation of the two-
mode moment-generating function associated with P(K1, K2).
Note that the mixed derivatives of the double-biased scaled
cumulant-generating function θ (s1, s2) give us the mixed
scaled cumulants directly linked to the two-mode moments
in Mnm,kl .

Different setups have been proposed, realized, and suc-
cessfully used [20–22] in order to measure the click-counting
distribution, thus uncovering quantum correlations of ra-
diation fields. The click-counting distribution can approxi-
mate P(K1, K2) involving photon-counting via a long-time
measurement through photon-number-resolving detectors. As
shown in Ref. [34], once the estimate of the stationary proba-
bilities are known it is clearly possible to recover the moments
in Mnm,kl . Usually, the higher the order of the moment we
calculate, the less accurate our estimate will be. In the cases
we study next, low-order moments are enough to determine
nonclassical features of radiation. It was shown [34] that the
binomial form for the click-counting probability distribution
holds for any positive-operator-valued measurement (POVM)
either linear or nonlinear in the number of emitted photons.
Thus the large-deviation formalism allows us to inherently

access all the cumulants associated with any photon-counting
process defined by the unraveling of the master equation.

IV. NONCLASSICALITY IN DISSIPATIVE CIRCUITS

Typical coherent and squeezed radiation sources (pumped
cavities, nonlinear active media) can be studied from the point
of view of open quantum system theory [7]. Referring to the
generic setup in Fig. 1, we now consider two different source
structures: a pair of coupled two-level atoms, each coherently
driven and subject to decay in their own emission channel, and
two noninteracting atoms whose outputs are correlated via a
beam splitter and a phase shifter. In both cases we introduce
dephasing on each atom with the rate γφ : such a dephasing
channel spoils coherence, hence it is expected to affect the
nonclassicality of emitted light.

V. TWO COUPLED ATOMS

The total Hamiltonian of the system reads

Ĥ =
2∑

i=1

[


2 (σ̂+

i + σ̂−
i ) + √

γ (σ̂+
i âi + H.c.)

]
+ J (σ̂+

1 σ̂−
2 + H.c.), (7)

where γ is the decay rate of each atom, 
 is the Rabi
frequency, σ̂+

i and σ̂−
i are the ladder operators, âi is the anni-

hilation operator of the bosonic mode coupled to the ith atom,1

and J is the coupling strength. The jump operators of this el-
ementary network are thus Ĵ1 = √

γ σ̂−
1 and Ĵ2 = √

γ σ̂−
2 . We

can straightforwardly compute the large-deviation moments
matrix and the corresponding Vogel determinants for the joint
photon-counting probability distribution. It is worth noting
that the second-order principal minor (M(2)) does not contain
information on the cross correlations between the emitted

1The âi operators are intended as time-mode bosonic operators, or
input modes, i.e., Fourier transform of field normal mode operators
âω under the assumption of white coupling between the system and
the environment [35].
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field, which is our focus. Thus, it is necessary to consider
the next-order minor. A numerical investigation of the third-
order principal minor (M(3), see the Appendix) reveals the
presence of quantum correlations between detection events
in the emission channels. Figure 2 shows M(3) as a function
of the Rabi frequency 
 and the dephasing rate γφ for three
values of the coupling rate J . In each case, nonclassicality is
reduced as the dephasing rate grows. Negativity grows with

, reaching a maximum and then saturating to a positive
value. Dephasing destroys quantum coherences, making the
atoms behave like classical objects, and this results in classical
radiation fields, as expected. Higher values of 
 speed up Rabi
oscillations: the effective coarse-graining time integration is
lower bounded by 1/γ . Hence, we expect the time-integrated
photocurrent becomes insensitive to the intensity fluctuations,
resulting in a crossover between negative and non-negative
values of the determinant. Furthermore we notice that the
absolute minimum of the third-order determinant does not
grow linearly with the coupling strength, but rather decreases
when increasing J . It is indeed expected that the strong cou-
pling between the two atoms makes the emission less likely
to happen [36]. The strong-coupling contribution results in an
effective shift of the energy level of the system and the perfect
resonance condition is lost: the dominant component of the
output fields becomes a vacuum, hence reducing the amount
of cross correlations.

VI. NONINTERACTING ATOMS AND UNITARY CIRCUIT

We consider next the case in which correlations can
arise by processing the emitted fields of two noninteracting
atoms (J = 0) through a unitary transformation employing
a beam splitter (ÛBS = cos ζ 1 + i sin ζ σ̂x) and a phase
shifter (Fig. 3). The corresponding jump operators read Ĵ1 =√

γ1 cos ζ σ̂−
1 + i

√
γ2 sin ζ σ̂−

2 and Ĵ2 = i
√

γ1 sin ζ σ̂−
1 +√

γ2 cos ζ σ̂−
2 . We set 
 = 0.5γ and γφ = 0.1 and study

nonclassicality as a function of the reflectivity R = sin2 ζ and
the phase difference δ between the two channels due to the
phase shifter. For total transmission (ζ = 0) and total reflec-
tion (ζ = π/2), we notice that the determinant is positive.
The maximum negativity is reached for a 50/50 beam splitter
and decreases as the phase shift δ grows. Thus, by adjusting
appropriately the parameters of the optical circuit, such as
the relative phase shift δ, it is possible to enhance or destroy
quantum interference effects of the output state.

VII. CONCLUSIONS

In summary, we have shown how to detect signatures of
nonclassicality through the statistics of time-integrated quan-
tities, such as the photon counts. This offers the possibility to
benchmark approaches for producing quantum resources for
information and computation via general optical circuits and
open quantum systems. Our findings can be extended both to
imperfect detection and to recently proposed high-performing
photon-number-resolving detection schemes [37]. Finally, we
point out here a possible outlook of this work: the formalism
here developed can be implemented to tackle the problem of
characterizing many-body phases of matter by analyzing the
statistical properties of emitted and scattered photons or bath
quanta in general.

FIG. 3. Nonclassicality witness for emission from the optical
circuit. The system (a) is composed of a two coherently driven
noninteracting atoms subject to dephasing γφ , emitting into the input
channel of a generic unitary circuit composed of a phase shifter
and a beam splitter. (b) We show the value of the third-order Vogel
determinant as a function of the reflectivity R = sin2 ζ and the phase
shift δ.
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APPENDIX

In line with Ref. [29] we put the elements Mnm,kl in
ascending order with respect to the sum of the couples of
indexes (n + m) and such that (n, m) < (n − 1, m + 1). The
resulting matrix reads as follows:

M =

⎛
⎜⎜⎜⎜⎝

1 〈ĥ1〉 〈ĥ2〉
〈
ĥ2

1

〉 〈ĥ1ĥ2〉 . . .

〈ĥ1〉
〈
ĥ2

1

〉 〈ĥ1ĥ2〉
〈
ĥ3

1

〉 〈
ĥ2

1ĥ2
〉

. . .

〈ĥ2〉 〈ĥ1ĥ2〉
〈
ĥ2

2

〉 〈
ĥ2

1ĥ2
〉 〈

ĥ1ĥ2
2

〉
. . .

...
...

...
...

...

⎞
⎟⎟⎟⎟⎠,

(A1)

where each element is a moment of the bivariate count-
ing probability distribution associated with the counting
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operators. In the case of large deviation calculation, our av-
erage includes an integration over the duration time of trajec-
tories [as in Eq. (2)]; thus we have direct access to the scaled
time-integrated cumulant of such photon-counting probability
distribution. The moments resulting by combination of scaled
cumulants will be scaled in turn. From Eq. (3) we have that
Mnm,kl = ∂n+k

∂sn+k
1

∂m+l

∂sm+l
2

Zt (s1, s2) ∝ t n+m+k+l ; i.e., the power of t

depends only on the position of the element in the matrix.
Thus the power function of t multiplying each summand
featured in the determinant is invariant under permutation of
indexes, the scaling resulting only in an overall positive factor
t f (N ) multiplying each N th order Vogel determinant. Up to
a multiplicative constant, the third-order principal minor we
used in the examples reads as follows (s dependencies are

omitted):

M(3) = 2

(
∂θ

∂s1

∂θ

∂s2

)(
∂2θ

∂s1∂s2
+ ∂θ

∂s1

∂θ

∂s2

)

−
(

∂2θ

∂s1∂s2
+ ∂θ

∂s1

∂θ

∂s2

)2

−
(

∂θ

∂s1

)2[
∂2θ

∂s1∂s2

+
(

∂θ

∂s2

)2
]

−
(

∂θ

∂s2

)2
[

∂2θ

∂2s1
+

(
∂θ

∂s1

)2
]

+
[

∂2θ

∂s1∂s2
+

(
∂θ

∂s2

)2
][

∂2θ

∂s2
1

+
(

∂θ

∂s1

)2
]
, (A2)

evaluated at point s1 = s2 = 0.
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