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A B S T R A C T

The Common Fisheries Policy of the European Union aims to exploit fish stocks at a level of Maximum
Sustainable Yield by 2020 at the latest. At the Mediterranean level, the General Fisheries Commission for the
Mediterranean (GFCM) has highlighted the importance of reversing the observed declining trend of fish stocks.
In this complex context, it is important to obtain reliable biomass estimates to support scientifically sound advice
for sustainable management of marine resources. This paper presents a machine learning methodology for the
classification of pelagic species schools from acoustic and environmental data. In particular, the methodology
was tuned for the recognition of anchovy, sardine and horse mackerel. These species have a central role in the
fishing industry of Mediterranean countries and they are also of considerable importance in the trophic web
because they occupy the so-called middle trophic level. The proposed methodology consists of a classifier based
on an optimized two layer feed-forward neural network. Morphological, bathymetric, energetic and positional
features, extracted from acoustic data, are used as input, together with other environmental data features. The
classifier uses an optimal number of neurons in the hidden layer, and a feature selection strategy based on a
genetic algorithm. Working on a dataset of 2565 fish schools, the proposed methodology permitted us to identify
the these three fish species with an accuracy of around 95%.

1. Introduction

The small pelagic fish species, such as European anchovy (Engraulis
encrasicolus), European sardine (Sardina pilchardus) and horse mackerel
(Trachurus trachurus), play an important socio-economic role and they
constitute more than one third of sea fishing overall (FAO, GFCM,
2016). For this reason, they are included in a category of considerable
importance in the fishing industry and in the international canning
industry operating in the fisheries sector (FAO, GFCM, 2016; Lleonart &
Maynou, 2003). Furthermore, small pelagics are of considerable im-
portance in the trophic web because they occupy the so–called middle
trophic level (Rumolo et al., 2016, 2017, 2018) between the base of the
trophic chain (phytoplankton/zooplankton) and the predators (Cury
et al., 2000, 2003; Pauly et al., 1998). Thus, these species play a fun-
damental role in energy transfers from primary producers to final
consumers (Preciado et al., 2008; Morote et al., 2008). Mainly for an-
chovy and sardine, many authors have highlighted how these short-

living species are characterized by large interannual fluctuations in the
biomass (Crawford, 1987; Schwartzlose & Alheit, 1999; Palomera et al.,
2007; Basilone et al., 2017, 2018; Bonanno et al., 2018). In the years
when the levels of biomass are low, the effect of a high fishing effort
would lead to a collapse of these resources even from one year to an-
other. The collapse of these species has been well-documented in the
literature showing that the recovery times are very long and can have
catastrophic socio–economic impacts on the seafaring communities that
live thanks to the income from fishing and marketing of canned pro-
ducts (Gascuel, 2005; Pauly et al., 2002; Jackson et al., 2001; Cooke,
1984). At the Mediterranean level, where such species are shared
among different fisheries belonging to different countries, there is a
clear awareness that these resources should be sustainably exploited
(FAO, GFCM, 2016).

Nevertheless, in the last years, Mediterranean fisheries have faced
serious challenges, with roughly 85% of the scientifically assessed fish
stocks considered to be fished outside biologically sustainable limits
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(FAO, GFCM, 2016). The General Fisheries Commission for the Medi-
terranean (GFCM), through the Resolution GFCM/40/2016/2 for a mid-
term strategy (2017–2020), singled out the importance of reversing the
declining trend of fish stocks through strengthened scientific advice in
support of management. Furthermore, the Common Fisheries Policy
(CFP) of the European Union aims to exploit fish stocks at a level of
Maximum Sustainable Yield (MSY) by 2020 at the latest. In this com-
plex context, it is essential to obtain reliable biomass estimates to
support scientifically sound advice for sustainable management of
marine resources. This is especially relevant in a highly dynamic en-
vironment such as the central Mediterranean sea where hydrology
strongly influences the variability in primary production as well as in
the other levels of the pelagic food web (Valenti et al., 2012; Bonanno
et al., 2015, 2016). The most common and adopted method for esti-
mating small pelagic biomass and distribution is the acoustic method
(Simmonds & MacLennan, 2008). The combined use of acoustic data,
acquired along transects according to a specific survey design (Barra
et al., 2015), and experimental catches through a pelagic net permit us
to evaluate biomasses of the target fish species in small or broad sea
areas (Bonanno et al., 2015, 2016). The allocation of acoustic back-
scattered energy to different pelagic species can be performed in var-
ious ways (Petitgas et al., 2003). One of the most sensitive aspects of the
acoustic method for biomass estimation is the species identification of
insonified fish schools, which can be performed either by trawl sam-
pling or by scrutinizing the echograms; that is, applying expert criteria
and considering additional information such as school distribution and
behavioural patterns (Simmonds & MacLennan, 2008; Horne, 2000;
Martignac et al., 2015; Kloser et al., 2002). However, these techniques,
in addition to being time-consuming, may result in considerable var-
iations of the biomass estimates in relation to the experience of the
scrutinizer expert (Tsagarakis et al., 2015). Incorrect pelagic fish spe-
cies classification can limit the reliability of acoustic abundance esti-
mates. Therefore, the objective species identification directly from
acoustic data may give a significant contribution to the reliability of
acoustic abundance estimates without any human error during the data
analysis (Lawson et al., 2001).

In previous studies, statistical models were applied to directly
identify different species present in small pelagics assemblages. For
example, a statistical spectral method has been proposed for echo
classification of data in the Southern California Bight coastal area
(Demer et al., 2009). Moreover, a Classification–Trees approach for
species identification of fish–school echo-traces in the North Sea was
adopted (Fernandes, 2009). Several studies have used school de-
scriptors extracted from acoustic data to classify species. The de-
scriptors are generally divided into four categories: morphological (e.g.,
geometry of the school), bathymetric (e.g., position of the school in the
water column), energetic (e.g., properties of the backscattered signal),
and positional (e.g., offshore distance of the school) (Robotham et al.,
2010; Scalabrin, 1991; Scalabrin & Massé, 1993; Reid, 1999;

Campanella & Taylor, 2016). In the Mediterranean sea, Campanella
et al. (D'Elia et al., 2014) identified various sub-groups of anchovies,
sardines, horse mackerels and other pelagic species (OPS), mainly
taking into account the bathymetric, energetic and morphologic fea-
tures of fish schools; the authors used Classification Trees, reaching an
accuracy on 75% of the cases. In other studies, has emerged that the
classification methods through heuristic approaches, such as neural
networks, offer different results depending on the used data type. For
example, Robotham et al. (Robotham et al., 2010) and Charef et al.
(Charef et al., 2010) reached a percentage of successful classification of
around 87% and 89%, respectively, selecting proper subsets of acoustic
features. In Fontana et al. (Fontana et al., 2017) the authors applied a
PNN neural network for discriminating groups of sardines and ancho-
vies and taking into account only the morphological and energetic
parameters of schools. The percentage of successful classification was
on average about 74%. In this paper, a machine learning methodology
is applied to identify fish schools of three small pelagic fish species:
anchovy, sardine and horse mackerel. One of the novelties of this paper,
compared to others in the literature, regards the combined use of en-
vironmental and acoustic features. A comparison between two meth-
odologies, which take into account a three–classes species classifier and
a combination of binary species classifiers, was also performed for the
final classification scheme to be adopted.

2. Materials and methods

The computational methodology adopted for the automatic identi-
fication of pelagic fish species is schematized in Fig. 1. The identifica-
tion problem is reduced to a classification task, which is performed by
using a machine learning methodology. In the following, each block of
the workflow is described in detail.

2.1. Data collection

The collected data were acquired during 16 acoustic surveys carried
out between 2005 and 2015 in the central Mediterranean Sea. In par-
ticular, 11 surveys were carried out in the Strait of Sicily and five
surveys along the Italian coasts of the Tyrrhenian Sea (Fig. 2). The
surveys were all performed during the summer between June and
September. The acoustic data were collected using a Simrad EK60 sci-
entific echo-sounder, equipped with two hull–mounted split-beam
transducers operating at 38 and 120 kHz. The current scientific echo-
sounders, available in the market, are unable to directly recognize
species composition of the fish schools met during a typical echo
survey. Consequenlty, the acoustic data acquisition phase is integrated
by a biological sampling phase through a pelagic trawl net. In this way,
for each trawl haul, it is possible to obtain both species composition and
size distribution of the insonified fishes. The adoption of the nearest
haul method (Petitgas et al., 2003) may permit us to merge the

Fig. 1. The workflow of the proposed methodology.
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Fig. 2. The figure shows the position of the anchovy (red), sardine (black) and horse mackerel (orange) schools respectively associated with monospecific hauls. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Schematic view of the relative positions of the vessel and the pelagic trawl net (left-hand panel). Scatterplot between the sea bottom depth and the distance
between the pelagic trawl net and the ITI hull-mounted transducers (right-hand panel).
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biological and acoustic data, and to obtain small pelagic fish density (t/
nm2) for each nautical mile, irrespective of the echo traces (Bonanno
et al., 2018). The pelagic trawl net used to allow a direct match be-
tween the catch and the echograms for the validation of the acquired
data has a horizontal opening of 13÷15 m, vertical mouth opening of
6÷ 9 m and a mesh size of 10mm in the cod–end (Charef et al., 2010;
Cabreira et al., 2009). The echograms were acquired during diurnal
trawl hauls, and the entire dataset was built considering only the
monospecific catches of anchovy (EE — Engraulis encrasicolus), sardine
(SP — Sardina pilchardus) and horse mackerel (TT — Trachurus tra-
churus). For the aim of this study, only those trawl hauls where 80% of
the catch (with a minimum weight of 5 kg) comprised the same species
were considered as monospecific hauls. During the trawl hauls con-
sidered in the present study, the distance between the EK60 hull-
mounted transducers and the net ranged between 170 and 540m.
Consequently, the time interval between the echo sounder beam and
the trawl net ranged between 83 and 262 s, considering a typical vessel
speed of about 4 knots during the trawl haul (Fig. 3). For this method,
which is typically adopted in field experiments (D'Elia et al., 2014;
Charef et al., 2010; Cabreira et al., 2009), this is a technical limitation
that cannot be overcome at the moment with the available devices and,
consequently, the described procedure is the only one that is adopted
during an acoustic survey at sea. During daylight, pelagic fish schools
are located very close to the bottom (D'Elia et al., 2014). For this
reason, to reduce the effects of escaping behaviour of fishes, during the
trawl operations the net is positioned very close to the bottom. In the
present study, the following single–species trawl hauls were analyzed:
21 hauls with 1164 EE schools, 22 hauls with 1160 SP schools and 11
hauls with 241 schools of TT. During the surveys, monospecific trawl
hauls of other pelagic species have never been met. The vertical profiles
of the main physical–chemical parameters of the water column were
acquired through a multi-parameter CTD probe SBE911 (Sea-Bird Inc.,
13,431 NE 20th Street, Bellevue, Washington 98,005 USA). The probe
was equipped with sensors for monitoring temperature, salinity, fluor-
escence and oxygen. CTD profiles were collected during the survey
according to the MEDIAS (MEDiteranean International Acoustic
Survey) protocol which foresees that” Since the environmental para-
meters are very important for small pelagic fish, a minimum of 3 CTD
stations should be held per transect or a grid of stations with density
adequate to describe the oceanography of the surveyed area”.

In Fig. 4, the acoustic survey design and the position of the CTD
stations in the Tyrrhenian Sea and in the Strait of Sicily are shown.

2.2. Preprocessing

The analysis of acoustic data at 38 kHz and 120 kHz was carried out
with the Myriax Software Pty Ltd.'s Echoview (Higginbottom, 2000);
the adopted workflow was structured in two consecutive steps. In the
first step, the removal of background noise from the echograms of both
frequencies was performed by using the method proposed in (De
Robertis & Higginbottom, 2007). This is a simple post-processing
technique that assumes that background noise dominates some part of
the acoustic signal, in which the backscattered signal has a negligible
contribution. If this assumption is met, then the method can provide
robust and accurate estimates of background noise. The estimated
background noise is then removed from the echograms by using simple
mathematical operators. Due to the different acoustic power values
transmitted by the two transducers (2000W at 38 kHz and 250W at
120 kHz) and the different seawater absorption for the two frequencies,
the effects of background noise are more evident in echograms at
120 kHz. Taking into account the large area covered during the echo
surveys, from shallow waters to offshore areas, from the Strait of Sicily
(mean latitude 37° N) to the Ligurian sea (mean latitude 43° N), with
different background noise levels, it was decided to adopt an objective
approach to analyze the whole acoustic dataset. Consequently, the
workflow adopted in this study foresaw the removal of background

noise from the echograms of both frequencies. On the virtual echo-
grams, which were obtained by summing echograms of the two fre-
quencies, two convolution kernels were applied, characterized by a
median filter (3× 3) and a dilation filter (5× 5), respectively. This
approach permitted us to remove individual (small) samples, in
agreement to (Fernandes, 2009). Finally, the use of a threshold of
−116 dB permitted us to obtain a binary mask to be applied to the
original 38 kHz echogram (D'Elia et al., 2014; MEDIAS-Handbook,
2015). In the second step, candidate fish schools were detected and
isolated from the masked 38 kHz echograms using the SHAPES algo-
rithm, implemented in Echoview (Barange, 1994). The detection
parameters that we used were: minimum total school length of 10m,
minimum school height of 1m, minimum candidate length of 5m,
minimum candidate height of 1m, a maximum vertical linking distance
of 2m, and maximum horizontal linking distance of 5m. The two
linking distances are the vertical and horizontal semi-axes of an ellipse.
The ellipse is moved around the boundary of a school candidate. If any
part of any other school candidate falls within the oval, a link is created
between the school candidates (Kang, 2011). Fig. 5 shows an example
of an echogram in which Engraulis encrasicolus schools were identified.
For each identified fish school, it was possible to extract a set of de-
scriptors grouped into four categories: morphological (parameters that
characterize the shape of the bench), energetic (parameters derived
from backscattered signals), bathymetric (position of the school in the
water column) and positioning (distance from the coast). Table 1 shows
the complete list of the features extracted for each school. More in-
formation on the meaning of the individual parameters is reported in
Table 10. The school position with respect to the coast was calculated
by determining the distance between the school coordinates and the
coordinates of the nearest point of the coastline.

The collected CTD profiles data were processed using SEASOFT-
WIN32 software, according to the Mediterranean and Ocean Data Base
Instructions (Brankart, 1994). For each identified fish school, the en-
vironmental parameters of the nearest CTD profile have been associated
by taking into account the values acquired near the sea surface (typi-
cally 5m) and the bottom.

2.3. Feature selection

Feature selection is fundamental to the success of many real–world
applications of machine learning techniques. The primary goal of fea-
ture selection algorithms is to speed-up the response of the machine
learning model and to reduce the presence of noise features or low
significance features. In classification tasks, like the one described in
this work, feature selection is the search for an element (subset) of the
partition set of the feature set that optimizes the classification perfor-
mances. In many real cases, the feature selection is a computationally
intractable problem, and its solution needs a proper heuristic (Kohavi &
John, 1997). Mainly, there are two classes of feature selection methods:
the filter approaches, which score the subset by looking at the intrinsic
properties of data, and the so-called wrapper approaches, which use a
predictive model (often the classification model itself) to evaluate the
feature subset (Guyon & Elisseeff, 2003).

The main difference between the two methods is on running time,
encouraging the filter versus the wrapper; conversely, the wrapper has
demonstrated to be more accurate. In this work, one filter and one
wrapper approach have been adopted. In the following subsections,
these two methods will be described.

2.3.1. The filter approach
The filter approach that we adopted, named filter select (FS for short)

is based on the feature statistics, and it applies in the case of a binary
label assignment of a dataset. The method is described in Chapter 5 of
the book by Theodoridis et al. (Theodoridis & Koutroumbas, 2008). The
binary labels identify two paired samples for each features j, and the
absolute value zj of the difference between the feature means of the two
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Fig. 4. Acoustic survey design (brown lines) and position of the CTD stations (red dots) in the surveyed areas. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Typical echogram acquired during an echo survey. The use of the SHAPE algorithm permitted to evidence the candidate fish school (labelled “region”). The
right-hand panel evidences some details of such algorithm; in this case, two candidate fish schools are considered to belong to a single fish school. Some of the
features listed in Table 1 are visible in the central panel. The colour scale for the Sv values is shown on the right side of the figure.
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sample, normalized by the sum of the variances, is used for the selec-
tion. Thus, high values of zj favours the selection of the feature j. Each zj
is then weighed by weight wj so defined

= −∗ ∗w z α ρ(1 )j j j (1)

where ρj is the average of the absolute values of the pearson correlations
between the candidate feature j and the others. The value α sets the
weighting factor by a scalar value between 0 and 1. When α=0 po-
tential features are not weighted. A value of ρ≈ 1 reduces the weight of
the features that are highly correlated with the others. The final output
of FS is a ranking of the overall set of features, accordingly to the values
of the weights w. The implementation details and parameters values
that will be used for the experiments will be discussed in Section 3.2.1.

2.3.2. The wrapper approach
The wrapper approach is referred to as wrapper select (WS for short).

In the general framework of wrapper approaches, an algorithm gen-
erates a candidate solution for the feature selection problem, and an
evaluation function is used to test its quality (Huan & Motoda, 1998).
Taking into consideration that the feature selection can be configured
as an optimization problem, one possible solution is to use a genetic
algorithm (GA for short) to generate a pool of candidate solutions and
to use the performances of the classification algorithm as fitness func-
tion (Tsai et al., 2013).

Given that an input sample is a vector in ℜm (→ ∈xi
mR ), a candidate

solution of the feature selection problem can be represented as a mask
vector → ∈s {0, 1}m where each component sj∈ {0,1} and sj=1 means
that the feature j is present in the set of the selected features. Each mask
vector →s defines a function fs that maps each → ∈xi

mR into a vector

→ = → ∈f x z( )s i i
rR (2)

with

∑> =
=

m r s
j

m

j
1 (3)

The GA will operate on a population of masks vectors S, and the goal
will be the optimization of the accuracy of the classification algorithm
that processes the masked data vectors. The implementation details and
the parameter values of the GA will be discussed in Section 3.2.2.

2.4. Classification

The adoption of a proper classifier depends on the specific

classification problem, in this case, a feed-forward neural network with
a single hidden layer, was adopted as a classification algorithm. In
contrast to other classifiers, feed–forward neural networks are char-
acterized by the so–called universal property of the neural network
(Hornik et al., 1989) which states that a feed–forward network with a
single hidden layer containing a finite number of neurons can approx-
imate each continuous functions on compact subsets of n–tuples of real
numbers, under mild assumptions on the activation functions. Conse-
quently, this general topology was adopted as a base for the classifiers.
In this work, two different classifier architecture were considered for
the pelagic species identification. The first, which is named multi-
class–neural (MCN for short) is a feed-forward neural network with
m=40 inputs, one hidden layer with K neurons and three outputs,
each representing the probability that a fish belongs to the corre-
sponding class (see Fig. 6(a)). The second architecture uses the para-
digm of the combination of binary classifiers, and is indicated as mul-
tibinary–neural (MBN for short). This classifier is a combination of three
binary classifiers Bh, each using class h as a class of positives, (h=EE,
SP or TT), and ∪j≠hj as a class of negatives, indicated as other pelagic
species (OPS for short, see Fig. 6(b)). Each classifier Bh is a feed forward
neural network with one hidden layer of K units, m inputs and two
outputs each giving the probabilities ph(x) and qh(x) of an input sample
x of being and not being of class h respectively. Let I be the indicator
function of a predicate P, i.e. I(P)= 1 if P is true, otherwise I(P)=0. If a
function

= > ∗f h x I p x q x p x( , ) ( ( ) ( )) ( )h h h (4)

is defined, then setting also:

∏= <
=

f OPS x I p x q x( , ) ( ( ) ( ))
h EE SP TT

h h
, , (5)

the combination paradigm assign to x the final class

= =c x argmax f k x( ) ( ( , ))k EE SP TT OPS, , , (6)

The definition of the combination strategy states that the species h
of an unknown element x is assigned to the one with the higher positive
probability (ph(x)) greater than corresponding negative
(ph(x) > qh(x)), otherwise to the OPS class in the case that no positive
probabilities are greater than corresponding negatives (ph(x) < qh(x)
for each h). The possibility to identify an unknown class of fish (OPS)
with respect to the three considered one is a useful property that
characterizes the MBN classifier vs the MCN one.

Table 1
The list of extracted features.

Type No. Descriptor Units Type No. Descriptor Units

Morphological 1 Kurtosis dB re 1m−1 21 Height_mean m
2 Attack_angle ° 22 Standard_deviation
3 Corrected_length m 23 Skewness dB re l m−1

4 Corrected_thickness m Energetic 24 Sv_mean dB re l m−1

5 Corrected_perimeter m 25 Sv_max dB re l m−1

6 Corrected_area m2 26 Sv_min dB re l m−1

7 Image_compactness 27 Sv_noise dB re l m−1

8 Corrected_mean_amplitude m2/m3 28 Nasc m2/nmi2

9 Corrected MVBS dB re 1m2/m3 29 ABC m2/nmi2

10 Coefficient of variation % Bath 30 Mean school depth m
11 Horizontal roughness coefficient dB re 1m2/m3 31 Bottom depth m
12 Vertical_roughness_coefficient dB re 1m2/m3 Pos 32 Distance from the coast nmi
13 3D_school_area m2 33 Water temperature at 5m deg C
14 3D_schοo1_volume m3 Environmental 34 Water temperature at the bottom deg C
15 Area_backscatter_strength m2/nmi2 35 Salinity at 5 m PSU
16 Density_number fish/nmi2 36 Salinity at the bottom PSU
17 Density_weight kg/nmi2 37 Fluorescence at 5m ug/1
18 Thickness_mean m 38 Fluorescence at the bottom ug/1
19 Range_mean m 39 Oxygen at 5m mg/1
20 Beam_volume_sum m3 40 Oxygen at the bottom mg/1
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3. Experimental results

The goal of this work is to provide a suitable classifier for the
identification of pelagic species. To this purpose, two different neural
network classifiers has been considered, the MCN and the MBN. The
experiments have been performed in two stages. In the first one, a
proper estimation of the number of neurons in the hidden layer has

been carried out. The second stage is devoted to the selection of the
subset of features, using filter and wrapper approaches. The following
parameters were used for both the sets of experiments involving the two
neural networks:

• General topology of the network:
- Two levels (one hidden)

Fig. 6. Outline of the two classifiers: (a) Multiclass-neural on the left and (b) Multibinary-neural on the right. In gray there are the K hidden units.

Fig. 7. Boxplots of the accuracies of the classifiers for each number of hidden units K. In the subfigure (a) the accuracy of the MCN classifier. In the other subfigures
the performance of each binary classifier that will be part of the MBN classifier: BEE, in subfigure (b), BSP, in subfigure (c) and BTT, in subfigure (d). In plots (b), (c) and
(d) of the binary classifiers OPS stands for Other Pelagic Species.
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- Activation functions for the first level: sigmoids
- Activation functions for the second level: softmax
- Performance funcion: crossentropy, no regularization

• Learning algorithm: Scaled conjugate gradient backpropagation,
with the following parameters:
- Min− grad=1×10−6 (minimum performance gradient before
training is stopped)

- Validation− checks=10 (maximum Validation Checks before
training is stopped).

- σ=5.0×10−5 (change in weight for second derivative approx-
imation)

- λ=5.0× 10−7 (parameter for regulating the indefiniteness of the
Hessian)

3.1. Estimation of the hidden layer neurons

As already stated in Section 2.1 the dataset X used for the experi-
ments is composed of 1164 samples of the EE class, 1160 samples of the
SP class and 241 sample of the TT class. The total number of extracted
features is m=40. Thus, each element x in the dataset is a row vector
of size m. Notice that the number of samples in the TT class is less than
the amount of sample in other classes, which means that the X dataset is
an unbalanced dataset. In this case, it is necessary to process the dataset
to obtain a balanced training set for the neural networks.

3.1.1. Estimation for the MCN classifier
The input dataset X was subsampled by using 10 different extraction

Xi
0, i=1,… , 10, each of them of size 720, obtaining 10 balanced da-

tasets of 240 elements for each of the classes. For each extracted dataset
Xi

0, different versions of the MCN classifier have been considered, each
using a different number of neurons K in the hidden layer, in the integer
interval K=[3,60] with steps of 1 neuron. For every value of K, a
10–fold cross validation procedure has been performed. This means
that for each value of K, 100 different runs are computed (10 fold on 10
different extracted datasets). The median values of the classifier ac-
curacies have been used to select the number of neurons. In particular,
K=41 has been chosen. Fig. 7(a) shows the boxplots of the accuracies
for each K, where a red notch represents the median value. It is also
possible to observe that increasing the number of neurons does not
seem to improve the classification performances. Table 2 shows means
and variance of accuracies, mean absolute errors (MAE), mean squared
errors (MSE) and Pearson correlation (R) values of the MCN network
adopting the selected number of neurons. The sets where the measures
have been computed are training, validation and test. The validation set
size is 15% of the total training size. The MCN shows an average test
accuracy of around 90%.

3.1.2. Estimation for the MBN classifier
To test the efficacy of MBN 30 dataset Xi

h, i=1,… , 10, h= EE, SP,
TT, were extracted. The reason is always related to the need to avoid an
unbalanced training set. Considering that the MBN is the combination
of three binary classifiers, each of the single classifier was tested on a
group of 10 datasets. In more details, Xi

EE, Xi
SP, i=1,… 10 are the

Table 2
The performance obtained by the classifiers with the selected number of hidden units units.

Accuracy MAE MSE R

mean var mean var mean var mean var

MBN Training 92,75% 0,08% 0,1269 0,0019 0,0543 0,0005 0,8790 0,0031
Validation 91,04% 0,13% 0,1440 0,0018 0,0685 0,0005 0,8436 0,0040
Test 88,20% 0,22% 0,1575 0,0014 0,0799 0,0004 0,8169 0,0028

MCN Training 93,30% 0,29% 0,0718 0,0032 0,0278 0,0007 0,9344 0,0043
Validation 91,73% 0,36% 0,0889 0,0031 0,0415 0,0008 0,8996 0,0052
Test 90,56% 0,29% 0,0939 0,0029 0,0453 0,0007 0,8905 0,0045

S. Aronica et al.

datasets used by the binary classifiers BEE and BSP respectively, each 
composed by 480 elements of positives samples (EE, or SP) and 
240 + 240 negatives samples (SP + TT or EE + TT), obtained by the 
union of the items belonging to the 2 classes of negative examples. The 
total number of elements of each dataset Xi

EE, Xi
SP is 720. The last group 

of 10 datasets Xi
TTi =1,  … , 10 are the datasets related to BTT, the 

classifier for the TT class, that is the class with the lower cardinality 
(240). Therefore, each of the Xi

TT have a size of ∣Xi
TT ∣ = 480, where 240 

are the positives instances (TT), and 120 + 120 are the negative in-
stances (from SP + EE classes). Fig. 7 (b,c,d) shows the accuracy of 
each single classifier Bh, h = EE, SP, TT for each extracted dataset and 
for each number of neurons K in the hidden layer, again with 
K ∈ [3, 60]. For each value of K, 100 different runs are computed (10 
fold on 10 different extracted datasets). The results indicate a number 
of neurons for the hidden layer equal to {22,48,21} for the EE, SP, TT 
classifiers respectively (see Fig. 7(b,c,d)). Also, in this case, the median 
values of the accuracies have been used. The values of K are set in each 
Bh, h = EE, SP, TT, which are subsequently combined to build the MBN 
classifier (see Section 2.4 for details about the combination paradigm).

Table 2 shows the means and variance of accuracies, mean absolute 
errors, mean squared errors and peasron correlation values of the MBN 
that uses the selected number of hidden units for every single binary 
classifier. The sets where the measures have been computed are 
training, validation and test. The result of the test average accuracy is 
around 88%. The training algorithms of each MBN network are the 
same as the MCN.

3.1.3. Analysis of the results
A comparison of the results, as reported in Table 2 show that the 

MCN multiclass has slightly better performances than the MBN net-
work. The final number of hidden units for the two networks are 
summarized in Table 3. Although the values seem to have an oscillating 
trend, the lower number of hidden units was selected to obtain the 
simpler network (a lesser number of hidden units means a lesser 
number of weights), assuming the same accuracy level.

3.2. Feature selection experiments

The following sections report the results of the feature selection 
strategies FS and WS for the two classifier architectures. The goal of the 
experiments is to study the suitable feature selection method. The 
neural networks have the number of hidden units reported i Table 3.

3.2.1. Using the “filter select” (FS) approach
The FS method has been used setting the value α to 0.8. As already 

specified, the FS approach works for the case of binary class label as-
signment and does not make any use of a classifier to rank the features. 
To apply the FS approach to the MBN classifier three different binary 
labellings Lh on the input dataset Xh have been considered, so that the 
label 1 in Lh was related to the items belonging to class h. The appli-
cation of FS to the dataset Xh produces a ranked list of features Ih. The 
FS method has been computed on 100 balanced datasets extracted from 
the input, resulting in a list of 100 ranked features, for each h, stored in
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a matrix Mh of 100× 40 integers in the range {1,40}. The resulting
selected features Sh have been the ones that appeared at least 55 times
in the rankings of the top 55% features. This threshold has been chosen
as a reasonable value above the 50%. Table 8 shows in the first columns
and first three rows the number of features selected by the FS, for each
of the binary classifiers Bh. For the case of MCN, a specific strategy for
the use FS on a 3 class labelled dataset has been used. This is mandatory
taking into account that the FS works only for the case of two label
assignment. Let us consider the three different labeling Lh related to the
datasets Xh, h= EE, TT, SP. The application of FS to each one of the
dataset will create three rankings, Ih, h= EE, TT, SP. The ranking
vector J related to the three classes dataset is build iteratively in the
following way:

=J 0/;

for alli=1, . . , 40 do

= ∩ −T I I i J[ (1),.., ( )] ;h h h

= −J J J J i T T N[ (1), (2),.. ( 1), (1),.., ( )]

end for.
where [Ih(1), Ih(2), .., Ih(i)] are the three ranked lists of rank at most i

related to every single labelling, N is the cardinality of the set T. The
definition of the combination strategy is such that the ranking J is
constructed by appending to J, at each iteration i, the new common
elements among the three ranked lists with maximum rank i. In this
case, the resulting selected features S have been the ones that appeared
at least 55 times in the rankings of the top 55% features.

Table 4 lists the features selected by FS. In this table, there is a check
(a character” x”) if the feature is considered for the corresponding
classifier.

Table 5 shows the performance of the MCN and MBN when using
the features selected by FS. The results show an improvement of test

accuracy for MBN (∼89% vs 88%) and a decrease of improvements for
MCN (87% vs 90%) with respect to the simple case of no feature se-
lection in Table 2. Note that the number of features selected by FS is
significantly reduced (see Table 8).

3.2.2. Using the “wrapper select” (WS) approach
The WS uses a GA (see before, Section 2.3.2) to search for the best

subset of features. The procedure can be applied for the case of MCN or
MBN.

The used GA algorithm adopts the single point crossover as cross-
over operator and uniform mutation as mutation operator. The selec-
tion operator was set to binary tournament. Details about these op-
erators can be found in the book by Michalewicz (Michalewicz, 1996).

The max number of generations of the GA has been set to 30, and
the probabilities for crossover (pc) and mutation (pm) have been set to
pc=0.7, pm=0.05 respectively.

The fitness function of the GA is the accuracy of the relative clas-
sifier (MCN or the three Bh) computed on a test set.

The GA algorithm was executed 100 times, where a training-test
split is produced in each run. In compliance with the previous experi-
mental settings, 10 balanced datasets are extracted, and in each one, a
10 fold cross validation procedure is executed. The classifier that we
used is trained on the training set, and the fitness is computed on the
test set.

The GA will finally select a list of best chromosomes sk where each
bit sjk j=1, 2,… 40 indicates if the corresponding feature j should be
considered as input for the MCN classifier (sjk=1) or not (sjk=0).

3.3. Setting

∑= = …
=

j s jΓ( ) 1, 40
k

j
k

1

100

(7)

the feature j is selected if Γ(j) > 55.
For the case of MBN, the GA procedure is applied for each of the

three classifiers Bh h= EE, SP, TT.
The features selected by WS for the three classifiers are reported in

Table 6, the symbols in the table have the same meaning of the ones in
Table 4.

Table 7 show the performance of the MCN and MBN when using the
features selected by WS. The results show a significant improvement of

Table 3
The number of hidden units K for each neural network.

K

MBN EE 22
SP 48
TT 21

MCN 41

Table 4
The list of features selected by FS; the”x” symbol indicates that the corresponding feature was selected as input for the binary classifier of the class EE, SP or TT.

No. Descriptor MBN MCN 2No. Descriptor MBN MCN

EE SP TT EE SP TT

1 Kurtosis × × × 21 Height_mean
2 Attack_angle × 22 Standard_deviation
3 Corrected_lenght × × 23 Skewness
4 Corrected_thickness 24 Sv_mean
5 Corrected_perimeter × × × 25 Sv_max
6 Corrected_area 26 Sv_min
7 Image_compactness × × × × 27 Sv_noise
8 Corrected_mean_amplitude × × × 28 Nasc
9 Corrected_MVBS 29 ABC × × × ×
10 Coefficient_of_variation 30 Mean_school_depth × × × ×
11 Horizontal_roughness_coefficient × 31 Bottom_depth × × ×
12 Vertical_roughness_coefficient 32 Distance_from_coast ×
13 3D_school_area 33 Water temperature to 5m × × ×
14 3D_school_volume 34 Water Temperature at bottom ×
15 Area_Backscatter_Strenght 35 Salinity to 5m × × × ×
16 Density_number 36 Salinity at bottom × × × ×
17 Density_weight × × × 37 Florescence to 5m × ×
18 Thickness_mean × 38 Fluorescence at the bottom
19 Range_mean 39 Oxygen to 5m × × × ×
20 Beam_volume_sum × × × 40 Oxygen at the bottom × ×

S. Aronica et al.
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test accuracies for both MBN and MCN (∼95%) with respect to the
previous results in Table 5.

3.3.1. Analysis of the results
The goal of this section is to select the suitable set of features for the

two classifiers structure, with the previously elected number of hidden
units. ¡by comparing the data in Table 5 and Table 7 it is clear that the
best results regarding accuracy are obtained by using the WS approach
both on MBN and MCN classifiers. In particular, the accuracy of the two
classifiers is almost equal. The total number of features selected is re-
ported in Table 8.

Fig. 8 shows the mean accuracy of the test phase for the two net-
works MCN and MBN, and the three input features sets: all the features
without any selection, features selected by using the FS (filter select)
method, and features selected using the WS (wrapper select) method.

3.3.2. Experiments with the OPS class
This set of experiments was carried out to evaluate the proposed

model in the case of the presence of the OPS class. Unfortunately, a
dataset of the used feature measurements for species different from EE,
SP, TT was not available. This limitation is overcomed generating a
synthetic species OPS in the following way. Given our dataset X, a
matrix Q of size 10×40 random values are extracted from the data
matrix which stores X. The values in Q represent the seeds for the
generation of synthetic data. The final set of 100 OPS elements are
generated such that each feature value yi(j) is a uniform random value
in the interval [mj+ σj,Uj] ∪ [Lj,mj− σj] where mj is the median of the
column j in Q, σj is its standard deviation and Lj,Uj are minimum and
maximum values in column j. This process of random data generation
allows us to generate OPS feature samples far enough from the median

value of each feature in j in Q. Finally, the dataset Y is built adding the
elements y1, . . , y100 to X. Table 9 reports in columns the classifier
output and in rows the actual class of the data. This kind of table is
often referred to as confusion matrix and it is useful to highlights the
correctly and misclassified data. In particular, it shows the classification
rates of each class for the test set data, averaged on 10 fold, using a 10
fold cross validation procedure. The total accuracy, computed as the
sum of the value in the matrix diagonal, is around 96%.

4. Discussion

The used classifiers perform quite equally using theWS approach. In
the end, due to the unique property of the MBN to recognize an un-
known class, makes it preferable to MCN. Its performances are im-
proved with respect to the 88% of accuracy reached by the networks
with no feature selection, and also concerning the accuracy using the FS
approach as feature selection. Fig. 9 shows the final MBN classifier. It is
possible to observe that each binary classifier used for the combination
adopts a different set of features. Each set is the result of the wrap-
per–select algorithm applied to the related binary classifier. The results
in Table 3.3 indicate that the MBN classifier can accurately identify EE
schools in 95% of cases using only 12 of the available features, the SP in
94% of cases using 18 features while TT in ∼97% of cases using only
other 11 features. Moreover, MBN was also able to recognize 97% of
OPS cases, which is specified in the paragraph 3.3 and is relative to data
generated synthetically.

In Table 3 the features indicated by numbers from 33 to 40 are
related to water conditions (temperature, salinity and so on), and most
of these features are selected by the WS procedure as input for the
binary classifiers. It also seems that the variables related to

Table 5
The performance of the classifiers obtained by using the rank-feature selection (filter approach) method.

Accuracy MAE MSE R

mean var mean var mean var mean var
MBN Training 93,17% 0,08% 0,1177 0,0018 0,0509 0,0005 0,8862 0,0032

Validation 92,15% 0,11% 0,1275 0,0018 0,0593 0,0005 0,8658 0,0034
Test 89,41% 0,17% 0,1396 0,0016 0,0705 0,0005 0,8392 0,0035

MCN Training 90,09% 0,46% 0,0923 0,0033 0,0384 0,0008 0,9076 0,0055
Validation 89,41% 0,49% 0,1095 0,0035 0,0532 0,0010 0,8682 0,0077
Test 87,32% 0,50% 0,1114 0,0032 0,0548 0,0009 0,8652 0,0067

Table 6
The list of features selected by WS; the”x” symbol indicates that the corresponding feature was selected as input for the binary classifier of the class EE, SP or TT.

No. Descriptor MBN MCN No. Descriptor MBN MCN

EE SP TT EE SP TT

1 Kurtosis 21 Height_mean ×
2 Attack_angle × 22 Standard_deviation × ×
3 Corrected_lenght × 23 Skewness
4 Corrected_thickness 24 Sv_mean ×
5 Corrected_perimeter × × 25 Sv_max ×
6 Corrected_area × 26 Sv_min ×
7 Image_compactness 27 Sv_noise ×
8 Corrected_mean_amplitude 28 Nasc ×
9 Corrected_MVBS × × 29 ABC
10 Coefficient_of_variation 30 Mean_school_depth × ×
11 Horizontal_roughness_coefficient × 31 Bottom_depth × × × ×
12 Vertical_roughness_coefficient × × 32 Distance_from_coast × × × ×
13 3D_school_area × 33 Water temperature to 5m × × × ×
14 3D_school_volume × 34 Water Temperature at bottom × × × ×
15 Area_Backscatter_Strenght 35 Salinity to 5m × × ×
16 Density_number × 36 Salinity at bottom × × ×
17 Density_weight × 37 Florescence to 5m × × × ×
18 Thickness_mean × 38 Fluorescence at the bottom × × × ×
19 Range_mean × × 39 Oxygen to 5m × × × ×
20 Beam_volume_sum 40 Oxygen at the bottom × × × ×
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temperature, fluorescence and oxygen to 5m are useful for every single
binary classifier.

There are several studies that in different ways (MLP, SVM, PNN,
Classification Tree, etc.) and for different species (anchovy, sardines,
horse mackerel, capelin, polar cod, herring, Norway pout and more)
have dealt with the pelagic species identification problem by taking
both the species ecology and behavior into account (Fernandes, 2009;
McClatchie et al., 2000; Fernandes et al., 2006; Fässler et al., 2007).
However, they do not seem as effective as the one that we propose here.
Our belief is that the difference is due to the adoption of additional
ecological features, and to the adopted feature selection process. This
procedure has lowered the number of input variables for the neural
network, from the initial 40 to just over a third of them.

Of course, it would be very interesting to extend this work even in
environments where there are multispecies fish schools in which the
variability of the composition of the same does not constitute a lim-
itation.

5. Conclusions

A reliable evaluation of marine fish resources is very important for
planning fisheries management actions, which may support the sus-
tainable exploitation of such resources, and for ensuring not only the

conservation of biodiversity but also the protection of fish resources.
However, this assessment for small pelagic fishes is not a simple task
and can be obtained through both the monitoring of fishery landings
(fishery dependent data) and the acoustic evaluation through scientific
surveys at sea (fishery independent sources). While monitoring landings
can give an estimation of fish biomass taken from the sea, acoustic
surveys can give an idea of the total biomass present in the surveyed
area.

Consequently, an accurate estimation of abundance and distribution
of small pelagics in a given sea area can permit more accurate man-
agement plans. In this context, the present study aimed to improve the
procedures of species identification of the insonified pelagic fish
schools. The results of our experiments have suggested a classification
scheme that uses a combination of binary classifiers, each one adopting
a specific subset of features indicated by the wrapper approach. The
performance of the classifier suggests that it is capable of taking ad-
vantage of the acoustic and environmental features. One of the ad-
vantages of the classifier is that it can also determine if a fish school
does not belong to one of the three considered species. This special
behaviour could be useful when future devices will be designed to help
fishermen to improve the selectivity of their fishery activity, thus re-
ducing by-catches. The methodology adopted for the classification of
small pelagic schools shows that environmental features are of some
importance. This result is corroborated by the results obtained by

Table 7
The performance obtained with the features selected by using the wrapper method (using a GA).

Accuracy MAE MSE R

MBN mean var mean var mean var mean var
Training 96,99% 0,06% 0,0457 0,0013 0,0176 0,0003 0.9619 0.0017
Validation 96,80% 0,06% 0,0566 0,0012 0,0254 0,0003 0,9456 0,0016
Test 94,90% 0,15% 0.0636 0.0013 0.0323 0.0003 0.9298 0.0021

MCN Training 96,26% 0,18% 0,0408 0,0016 0,0136 0,0003 0,9687 0,0018
Validation 95,32% 0,18% 0,0545 0,0016 0,0239 0,0004 0,9437 0,0026
Test 93,99% 0,23% 0,0555 0,0014 0,0251 0,0003 0,9414 0,0018

Table 8
The number of features selected by the two methods.

No. Features

FS WS
MBN EE 15 12

SP 13 18
TT 14 11

MCN 15 24

Fig. 8. The mean accuracy obtained for the three configuration of input features.

Table 9
The rate confusion matrix of the classifier.

OPS EE SP TT

OPS 97,09% 2,91% 0 0
EE 2,33% 95,35% 2,33% 0
SP 0.38% 5,13% 94,49% 0
TT 0.44% 2,72% 0 96,84%

S. Aronica et al.
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Bonanno et al. (Bonanno et al., 2014) in the Strait of Sicily and in the
Aegean Sea. The authors studying the habitat suitability of anchovies
and sardines have highlighted environmental ranges favorable to the
two species. The results of this work, which also take into consideration
a third species (Trachurus trachurus), seem to be promising and ap-
plicable also in other areas of the Mediterranean Sea.
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