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rigorous proof was given in [12] for the case of a layer of uniform vorticity with
the interfaces having analytic regularity, see also [11]; the case of non uniform
vorticity is addressed in [17]. For other cases with singular initial vorticity, see
e.g. [49,50,10]

The main issue related to vortex sheets is the fact that, in their dynamics,
a mechanism similar to the Kelvin-Helmholtz instability is clearly present.
This instability is ultimately responsible for the ill-posedness of the Birkhoff–
Rott(BR) equation. Moreover, also when considering initial conditions with
analytic regularity, a class of data where the Kelvin-Helmholtz instability can
be controlled, one can observe a finite-time appearance of curvature singularity.
This was firstly shown by Moore in [54,55] through a remarkable analysis
based on formal asymptotic expansion. Moore’s results were supported by the
investigation presented in [4], by direct numerical simulations [63,46,45,26,
56], and later rigorously proved in [31,20]. Local in time well-posedness of
the BR equation was achieved, for analytic initial data, in [65] while, in [19],
long-time existence was obtained for small perturbations of the flat profile.
For a weaker notion of the solution of the BR equation see [69], where it is
also shown that, under minimal regularity assumptions, the vortex-sheet is in
fact analytic; see also [47].

To continue the vortex-sheet motion after the singularity requires the use
of models with regularization effects such as finite sheet thickness [6], vortex
blob regularization [2,5,48], Euler-α model [41,8,9], viscosity effects [67,28,
22,64,16]. Numerical results show that, before the singularity formation, these
models converge to the vortex-sheet solution while allowing the continuation
of the vortex-sheet solution after the blow-up.

In this paper we analyze the roll-up phenomenon arising from the regular-
ized BR equation through the Euler-α model (hereafter BR-α ). The Euler-α
model was originally introduced in the Euler-Poincaré variational framework
[39,40], and later used by various authors in different contexts, such as the
analysis of turbulent flow, see e.g.[32], and the regularization of the vortex
sheet motion in [41,8,9]. The existence of a unique global weak solution to the
2D Euler-α equation, with initial datum in the class of Radon measure, was
achieved in [57]. For fixed sign measures the convergence, up to a subsequence,
to a weak solution of the 2D Euler equation, was proved in [9].

As shown in [41], the BR-α model allows to continue the vortex-sheet
solution after the singularity time and to follow the roll-up phenomenon in the
vortex-sheet. In this paper we shall reconsider this problem from a different
perspective: performing the complex singularity analysis on the solution of
the BR-α equation, we shall show that, although the singularity formation
is prevented, the roll-up phenomenon is related to the presence of complex
singularities in the solution having similar characterization of the singularity of
the non regularized BR solution. The configuration we shall take into account
consists of an infinite array of vortex-sheets.

The rest of the paper is organized as follows. In Section 2 we give a short re-
view of some of the results concerning well-posedness and singular behavior of
the vortex-sheets. In Section 3 we construct the infinite array of vortex-sheets
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initial datum and we perform the singularity analysis on the BR solution. In
Section 4 the Euler-α model is introduced, the resulting regularized vortex-
sheet motion described and the singularity analysis presented. The evolution
of a thin layer of vorticity, ruled by the Euler equations, is analyzed in Section
5. Some final remark is given in Section 6.

2 Instability, ill-posedness, and short time analytic regularity

We consider the 2D Euler equation in the form

∂tω + u ·∇ω = 0,

where the velocity u is expressed in terms of the vorticity as

u = K ∗ ω

where

K =
1

2π

r⊥

r2
, (2.1)

being r = (x, y). Notice also that the velocity can be expressed in terms of a
stream function Ψ as

u =
r⊥

r
DΨ Ψ(r) ≡ 1

2π
log r. (2.2)

If one assumes that the vorticity is concentrated on a curve y = ϕ(x, t)
with density γ(x, t), i.e. that

ω(x, t) = γ(x, t)δ(y − ϕ(x, t)),

one can derive, see [51], the BR equation in the form

∂tγ + ∂x(Uγ) = 0 (2.3)

∂tϕ+ U∂xϕ = V, (2.4)

where the velocity on the curve (U, V ) is given by:

U − iV =

∫
γ(x′)

x− x′ + i [ϕ(x)− ϕ(x′)]
dx′ (2.5)
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2.1 Linear ill-posedness

Consider a flat vortex–sheet ϕ = 0 of uniform density γ0 and consider small
perturbation around this profile: (γ0 + γ̃, ϕ̃). The linearization of the BR equa-
tions reads as

∂tγ̃ = −γ0∂xŨ

∂tϕ̃ = Ṽ

where

Ũ = −γ0

[
sign(x)

1

2π|x|

]
∗ ∂xϕ̃

Ṽ =

[
sign(x)

1

2π|x|

]
∗ γ̃

If one writes the above system in the Fourier space one gets

∂tγ̃(ξ) = i
γ2

0

2
ξ2sign(ξ)ϕ̃(ξ)

∂tϕ̃(ξ) = −i1
2

sign(ξ)γ̃(ξ)

which gives

γ̃(ξ), ϕ̃(ξ) ∼ exp (|γ0||ξ|t/2) (2.6)

The above exponential amplification law for the spectrum (the higher the
Fourier mode, the larger the exponential amplification) is equivalent to the
linear ill–posedness of the BR equation.

The same analysis can be carried if one uses the lagrangian formulation of
the BR equation. Following Saffman [62] we write:

∂tZ̄(Γ, t) = − i

2π

∫
dΓ ′

Z(Γ, t)− Z(Γ ′, t)
(2.7)

In this formulation the flat uniform sheet is expressed by Z = Γ/γ0, and we
write a small periodic perturbation of this profile as

Z =
Γ

γ0
+

∞∑
n=−∞

an(t)einΓα

where the parameter α is related to the wavelength of the perturbation: in
particular, for γ0 > 0, the wavelength λ, as measured in the physical space, is
λ = 2π/(αγ0); thereofore a 2π periodic perturbation corresponds to α = 1/γ0.
Substituting the above expression in the BR equation, to first order in the size
of the perturbation, one derives the following equations for the coefficients an

∂tān = −inαγ
2
0

2
a−n (2.8)
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that give an to grow like eσt with σ = nαγ2
0/2. This result, for 2π-periodic

perturbations, is consistent with (2.6). This kind of exponential growth of
small perturbation leads to linear ill–posedness of the BR equation. In fact,
see [13], one can construct a solution of the linearized BR equation in the form

y = ε
∑

An sin
nπx

λ
exp

nπγ0t

λ

and choosing An = exp
(
−|n|1/2 − nπγ0t0/λ

)
one gets a solution that is C∞

for t < t0 but with infinite norm in any Sobolev space for t > t0.

2.2 Well posedness results

If the initial data are analytic one can prove that the BR equation are well
posed. In what follows we shall denote by D(ρ) the strip of the complex plane
of width ρ > 0:

D(ρ) ≡ {(x, η) : x ∈ R/πZ , |η| < ρ} ,
For a function f : D(ρ)→ C we introduce the notation:

|f |ρ ≡ sup
(x,η)∈D(ρ)

|f(x+ iη)| ,

|f |(α)
ρ ≡ sup

(x,η), (x̄,η)∈D(ρ)

|f(x+ iη)− f(x̄+ iη)|
|x− x̄|α

Definition 2.1 Let f : D(ρ)→ C analytic. Then se say f ∈ Bρ when:

‖f‖ρ ≡ |f |ρ + |f |(α)
ρ <∞

Definition 2.2 Let f : D(ρ)→ C analytic. then we say f ∈ Bmρ when:

‖f‖m,ρ ≡
∑
j≤m

|∂jxf |ρ + |∂mx f |(α)
ρ <∞

Definition 2.3 Let t ∈ [0, T ] and let β and ρ be such that βT < ρ. A function
f(·, ·) will be said to be in Bmρ,β,T when f(·, t) ∈ Bmρ−βt ∀t ∈ [0, T ] and when:

‖f‖m,ρ,β,T ≡
∑
j≤m

sup
0≤t≤T

|∂jxf(·, t)|ρ−βt + sup
0≤t≤T

|∂mx f(·, t)|(α)
ρ−βt <∞

One can prove the following result [65].

Theorem 2.1 (Sulem,Sulem,Bardos and Frisch, 1981) Suppose the ini-
tial data ϕ0 ∈ B2

ρ0 and γ0 ∈ B1
ρ0 . Then there exists β > 0 such that Eqs. (2.3)-

(2.4) admit a unique solution (γ, ϕ) with γ ∈ B1
ρ0,β,T

, ϕ ∈ B2
ρ0,β,T

.

The proof is based on the following estimate which bounds the velocity
(U, V ) in terms of the jump strength γ and of the norm of the base curve ϕ.

Proposition 2.1 Let (γ, ϕ) ∈ B1
ρ0 × B2

ρ0 . Then the velocity (U, V ), as ex-
pressed by (2.5) is in B1

ρ0 ×B
1
ρ0 , and the following estimate holds:

‖(U, V )‖1,ρ ≤ c (‖γ‖1,ρ + ‖ϕ‖2,ρ)
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2.3 Finite time singularity and ill–posedness of the BR equation

The linear ill–posedness, in general, does not necessarily mean that the equa-
tion is ill-posed, as non linearities, when the initial small disturbance grows
in size, cannot be neglected and could tame the exponential growth of higher
Fourier modes. In [54] Moore gave a formal asymptotic analysis of the nonlin-
ear effects. He constructed a solution that develops, in finite time, a singularity;
the intensity of the vorticity remains finite but behaves, at the singularity time
as |x|1/2 so that a blow up in the derivative is present. At the singularity time
the shape of the curve forms a cusp: the tangent to the curve, behaves, as
|x|3/2, so that a blow up of the curvature of the sheet is present.

A rigorous proof of the finite–time singularity formation and of ill–posedness
was achieved by Caflisch and Orellana in [20]. They where able to construct a
solution of BR equation (2.7) in the form:

Z(Γ, t) = Γ + S0 + r. (2.9)

The term S0 solves the linearized BR equation, where linearization is per-
formed close to the flat sheet with intensity γ0 = 1, and develops a finite
time singularity. It is interesting to notice that equation (2.8) shows that the
linearized BR evolution can be written in terms of the Hilbert transform H

∂tZ̄ =
γ0

2
H[∂ΓZ], (2.10)

where we are considering 2π-periodic odd disturbances, and the Hilbert trans-
form is defined, in terms of its symbol, as H = sign(n).

The term r corrects for nonlinear effects and, in [20], it is shown to be
small, so that the singular behavior is preserved by the nonlinear evolution.
An example of the singular solution is:

S0(Γ, t) = ε(1− i)
[(

1− e−t/2−iΓ
)1+ν

−
(

1− e−t/2+iΓ
)1+ν

]
where ε > 0 is small and ν is chosen such that 0 < ν < 1. One immediately
recognizes that, at time t = 0, S0 develops the kind of singularity predicted
by the formal analysis of Moore. More precisely one can say:

1. S0 solves the linear equation (2.10)
2. S0 is analytic in the strip |ImΓ | < t/2 for t > 0
3. S0 is small and decays as t → ∞. At t = 0 S0 has a singularity in its

(1 + ν)-th derivative.

The result proven by Caflisch and Orellana is the following.

Theorem 2.2 (Caflisch and Orellana, 1989) Suppose that S0 satisfies 1.-
3. above. Then there exists r(Γ, t) such that (2.9) is a solution of the BR
equation and

‖r‖1,0 < cε2e−|t|/2.

Moreover ∂ΓΓ r = O(ε2) and has the same blow up as S0.
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The above finite time singularity construction, together with the fact that
solution of the BR equation are preserved by the following transformations

Zb(Γ, t) = ¯Z(Γ,−t) Zs(Γ, t) = Z(Γ, t− t0) Zn(Γ, t) = n−1Z(nΓ, nt)

where used in [20] to construct solutions that blow–up in an arbitrarily short
time.

Theorem 2.3 (Ill-posedness of the BR equation, Caflisch and Orel-
lana 1989) For any positive ν, k, ε, δ there is an initial datum Z = Γ + S0

such that |S0|Hk < ε and such that sup |∂1+ν
Γ Z| goes to infinity for t = t0 < δ.

3 Infinite array of periodic vortex sheets

In this section we present a numerical study of the singularity formation for
a vortex sheet curve. The initial configuration consists on a infinite array of
planar inviscid vortex sheet curves, periodic in the tangential direction and
evenly distributed along the normal variable. The geometry of the problem is
illustrated in Fig.1: across each curve the velocity field experiences a jump in
the component tangential to the curve, passing from v− to v+. The vorticity
is concentrated along the curves and is zero outside and can therefore be
expressed as

ω(x(p, t), y(p, t)) =
∑
h∈Z

γ̂δ(xh(p, t)),

where xh(p, t) = (x(p, t), y(p, t)−hLy) is a parametrization of the h-th vortex
sheet curve, p is a Lagrangian variable chosen to be constant along paths
moving with the average of the velocities on either side of the sheet, and δ is
the Dirac function. The jump in the velocity across a sheet is given by the true
vortex sheet strength γ̂ = (v+ − v−)×n, being n the normal vector pointing
in planar region where the velocity field is given by v+. The circulation Γ
along particle paths is conserved. In particular, indicating with s(p) the arc
length in p, the circulation dΓ along the path (s(p), s(p + dp)) is conserved,
and from γ̂ = dΓ/ds follows that γ(p) = γ̂(p, t)|∂pxh(p, t)| does not depend
on time.

Assuming that each vortex-sheet curve is Lx periodic in the x-direction,
and that Ly is the distance between two consecutive curves along the y-
direction, see Fig.1, the periodicity conditions of the problem are

x(p+ kLx, t) = kLx + x(p, t), y(p+ kLx, t) = y(p, t), γ(p+ kLx) = γ(p),

for k ∈ Z, and γ is equal for all the sheets. The motion of the generic marker
x(p, t) of a sheet (hereafter we shall omit the subscript h in xh) is governed
by the BR equation that, in terms of the parametrization p of the curve, is
written as:

∂x(p, t)

∂t
=

∫ Lx/2

−Lx/2
γ(p̃)KLx,Ly (x(p, t)− x(p̃, t)))dp̃. (3.11)
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In (3.11) the kernel KLx,Ly has to take into account the periodicity of the
problem, and it can be obtained from

KLx,Ly (x) =

(
∂ΨLx,Ly
∂y

(x, y),−
∂ΨLx,Ly
∂x

(x, y)

)
, (3.12)

where ΨLx,Ly is the streamfunction solution of the following 2D periodic prob-
lem in the domain Ω = [−Lx/2, Lx/2]× [−Ly/2, Ly/2]:∇

2ΨLx,Ly (x, y) = −δ(x, y),
ΨLx,Ly (−Lx/2, y) = ΨLx,Ly (Lx/2, y), ∀y ∈ [−Ly/2, Ly/2]
ΨLx,Ly (x,−Ly/2) = ΨLx,Ly (x, Ly/2), ∀x ∈ [−Lx/2, Lx/2]

(3.13)

The solution of (3.13), up to a constant, is reported in [1]

ΨLx,Ly (x, y) =
x2

2LxLy
− 1

2π
log

∣∣∣∣θ1

(
π(i

x

Ly
+

y

Ly
), e
−π LxLy

)∣∣∣∣ , (3.14)

where we have introduced the Jacobi theta function of the first kind θ1(z, q) =

2
∑∞
n=0(−1)nq(n+1/2)2 sin[(2n+1)z]. Hence the kernel KLx,Ly has the following

components:

KLx,Ly (x) =

− 1

2Ly
<

θ′1
(
π(i xLy + y

Ly
), e
−π LxLy

)
θ1

(
π(i xLy + y

Ly
), e
−π LxLy

)
 ,

− x

LxLy
− 1

2Ly
=

θ′1
(
π(i xLy + y

Ly
), e
−π LxLy

)
θ1

(
π(i xLy + y

Ly
), e
−π LxLy

)

 . (3.15)

Notice that KLx,Ly is singular in (0, 0) and therefore the integral in (3.11)
is intended in a principal value sense. To analyze the singularity formation
process of the BR equation we need to give an accurate evaluation of the
right hand side of (3.11). This is accomplished by using standard numerical
procedures for vortex sheet computations. In particular we use a fourth order
Runge–Kutta scheme as temporal discretization, and integration in (3.11) is
performed by using the alternating point quadrature formula, see [46]. Re-
garding the evaluation of the θ1 function it is enough to only consider the first
20 terms of the summation, as the various terms rapidly decrease with n. To
avoid that Kelvin-Helmholtz instability leads to the growth of the round-off
disturbances we apply the Fourier filtering technique proposed by Krasny in
[46]: at each time step the Fourier modes of the solution having amplitude less
than the threshold value 10−27 are set to zero. Computation is performed with
32-digit precision.
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xh+1(p, t)

xh(p, t)

Ly

Lx

n

v−

v+

v−

v+

Fig. 1 Scheme of the infinite array of periodic vortex sheet curves. Each curve xh(p, t)
represents a vortex sheet curve, periodic in the x−direction.

3.1 Singularity formation for Birkhoff-Rott equation

In this section we give a numerical construction of the finite–time singularity
of the BR equation (3.11). As initial condition we consider the sinusoidal
perturbation of a flat sheet

x(p, 0) = (p, 0.5 sin(p)), γ(p) = 1, p ∈ [−π, π], (3.16)

and Lx = Ly = 2π.
To follow the process of the singularity formation we apply the singularity

tracking method. If a solution develops a real singularity the method, before
the blow-up, allows to determine the position and the character of the complex
singularity that is the nearest to the real axis. This technique has been widely
used to capture the singular behavior of several solutions of equations arising in
fluid dynamics. Besides the cited papers regarding the vortex-sheet singularity
formation, singularity tracking has been applied to investigate the complex
singularities of the incompressible Euler flow, [66,14,33,59,52,23], to follow the
singularity formation for Prandtl solution in [25,27,35] and to investigate on
the connection with the separation phenomena in the zero viscosity limit [36–
38]. In this context also equations with dispersive character have been recently
analyzed: we mention the Camassa-Holm and Degasperi-Procesi equations in
[27,24], the nonlinear Schrödinger equation in [61], the KdV equation in [42,
34], and others [42–44]. See also the recent review paper [15] on the various
singularity tracking procedures.

Here we apply the singularity tracking to the Fourier modes of the compo-
nents

(X(p, t), Y (p, t)) = (x(p, t)− p, y(p, t)) =

(∑
k

Xk(t)eikp,
∑
k

Yk(t)eikp

)
,

obtained from the numerical solution of (3.11). The method is based on the
assumption, see [21], that ifX(p, t) has a complex singularity in zs(t) = ξX(t)+
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iδX(t) of order µX(t) + iτX(t), then the Fourier modes of X have the following
asymptotic behavior:

Xk(t) ≈ CX(t)k−(µX(t)+1)e−δX(t)k sin(kξX(t) + τX(t) log(k) + φX(t)). (3.17)

In principle the parameters CX , µX , δX , ξXτX , φX in (3.17) should be at each
time independent of the value of k although in practice the parameters are bet-
ter estimated in specific band of k. Hence, as previously done by other authors,
see for instance [3], we suppose that (3.17) holds point-wise for each k, and
equating six consecutive modesXk−5, Xk−4, Xk−3, Xk−2, Xk−1, Xk to the form
in (3.17) we obtain a nonlinear system for the parameters CX , µX , δX , ξXτX , φX
whose solution returns the k-dependent values of the parameters. We have
found at each time that CX , µX , δX , ξXτX , φX are actually k-independent in
the range of the first 30 − 50 wavenumbers (see Fig.2), hence at each time
we assume as values for the various parameters in (3.17) those obtained in
this range of wavenumbers. Both components have a singularity in the same
position in the complex plane (that is δX(t) ≈ δY (t) and ξX(t) ≈ ξY (t)), while
the two characterizations µX and µY are slightly different. The time evolu-
tion of δX(t) and ξX(t) is shown in Figs.3a-b: at tc ≈ 1.507 δX(tc) ≈ 0 and
ξX(tc) ≈ 1.288. The time evolution of µX(t), µY (t) is shown in Fig.3c: at the
singularity time ts = 1.507 we have obtained µX(t) ≈ 1.61, µY (t) ≈ 1.725,
meaning that both the components (X(p, t), Y (p, t)) experience at ts a blow-
up in their second derivative in p∗ ≈ 1.288. Regarding the values of τX , τY we
have obtained that they are of order 10−1 at ts. As X and Y have a blow up
in their second derivatives, the curve at time ts remains smooth as shown in
Fig.4a. Also the curvature κ(p, t) = (xpypp−ypxpp)/((x2

p+y2
p)3/2) and the true

vortex sheet strength γ̂(p, t) = γ(p)/|(xp, yp)| become singular at ts. Applying
the singularity tracking method to κ and γ̂ as function of p, we obtain that κ
forms a singularity in p∗ having characterization µκ ≈ −0.46, while γ̂ forms
a singularity in p∗ having characterization µγ̂ ≈ 0.541. This means that the
curvature κ diverges close p∗, in particular κ diverges positively at p∗− and
negatively at p∗+, while the true vortex sheet strength γ̂ has a square-root
cusp behavior at p∗. The curvature κ and the true vortex sheet strength γ̂
are shown in Figs.4b-c at t = 1.505 as functions of the signed archlenght from
p = 0 (only positive arc length are shown): the divergent behavior of κ and
the cusp behavior of γ̂ can be seen close s(p∗) ≈ 1.166.

All the characterizations of the singularities of X,Y, κ and γ̂ are in full
agreement with those predicted by Moore in his analysis on the vortex-sheet
curvature singularity formation [54], where the predicted values are 3/2 for
X,Y , −1/2 for κ and 1/2 for γ̂.

1 In both cases the imaginary part of the complex characterizations due to the asymptotic
behavior in (3.17) is negligible.
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Fig. 2 Results of the numerical fitting of (3.17) from t = 0.9 up to t = 1.5,increments of 0.1,
and t = 1.505. (a) Fitting of the width of analyticity strip δX , δY of the components of the
curve X,Y . For all time δX ≈ δY . δX is k-independent in a range of wavenumber k whose
size increases in time. (b) Fitting of the positions of the real part ξX , ξY of the singularities
of X,Y . For all time ξX ≈ ξY . ξX is k-independent in the range of the first 50 wavenumber.
(c) Fitting of the real part µX and of the imaginary part τX of the characterization of the
singularity of X. At t = 1.505 The k-independent value of µX is 1.62, while τX ≈ 10−3.
(d) Fitting of the real part µY and of the imaginary part τY of the characterization of the
singularity of Y . At t = 1.505 the k-independent value of µY is 1.72, while τY ≈ 10−1.
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Fig. 3 a) The distances δX = δY from the real plane of the singularity of the BR solution.
b) Real part of the complex position of the singularity of the BR solution. c) Time evolution
of the characterizations µX , µY of the singularities. Tracking is from t = 0.9 to t = 1.505,
time steps of 0.05. At t ≈ 1.507 both components of the BR solution become singular due
to singularities of characterizations µX ≈ 1.72, µY ≈ 1.62.

4 Regularization of the Birkhoff-Rott equation: the BR-α model.

The α-regularization arises when one derives the velocity from the vorticity
through a regularized kernel; i.e.

u = Kα ∗ ω, (4.18)
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where

Kα = Gα ∗K with Gα ≡
1

α2

1

2π
K0

( r
α

)
(4.19)

being K0 the modified Bessel function of the second kind of order 0. The
function Gα is the Green function associated with the Helmholtz operator
L−1
α =

(
I− α2∆

)
. As for the Euler equation, and analogously to (2.2), one

can write the velocity in terms of a stream function Ψα

u =
r⊥

r
DΨα Ψα(r) ≡ 1

2π

[
log r +K0

( r
α

)]
.

When the flow is governed by the Euler-α equation, and assuming the
configuration of the vortex-sheet type, one can derive [9] the BR-α equation:

∂tZ(Γ, t) =

∫
Kα (Z(Γ, t)− Z(Γ ′, t)) dΓ ′

In [8,9] it is proved the global well posedness of the BR-α equation. Define:

|Z|∗ = inf
|Z(Γ )− Z(Γ ′)|
|Γ − Γ ′|

Theorem 4.4 (Bardos,Linshiz and Titi, 2008) Suppose Z0(Γ ) belongs to
C1,β with 0 < β < 1, and that |Z0|∗ > 0. Then, for any T > 0, there exists a
unique solution of the Euler-α equation with initial datum Z(Γ, 0) = Z0.

4.1 Euler-α regularization for the infinite array of vortex sheets

Following the framework introduced in the previous Section, the regularized
kernel Kα

Lx,Ly
is defined by applying Lα, the inverse of Helmholtz operator,

to the singular kernel KLx,Ly that we defined in Section 3:

Kα
Lx,Ly = Lα(KLx,Ly ) = Gα ∗KLx,Ly in Ω, (4.20)

The definition of Kα
Lx,Ly

is equivalent to define the regularized streamfunc-
tion ΨαLx,Ly such that

Kα
Lx,Ly (x) =

(
∂ΨαLx,Ly
∂y

(x, y),−
∂ΨαLx,Ly
∂x

(x, y)

)
. (4.21)

It follows from (4.21) that ΨαLx,Ly satisfies in Ω

∆ΨαLx,Ly (x, y) = −∇×
(
Lα(KLx,Ly )

)
= −∇× (Gα ∗KLx,Ly ) =

−Gα ∗ (∇×KLx,Ly ) = −Gα ∗ δ(x, y) = −Lα(δ(x, y)). (4.22)

Hence ΨαLx,Ly solves the following 2D periodic problem in Ω:
(∆− α2∆2)ΨαLx,Ly (x, y) = −δ(x, y),

ΨαLx,Ly (−Lx/2, y) = ΨαLx,Ly (Lx/2, y), ∀y ∈ [−Ly/2, Ly/2],

ΨαLx,Ly (x,−Ly/2) = ΨαLx,Ly (x, Ly/2), ∀x ∈ [−Lx/2, Lx/2].
(4.23)
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It easy to check that the solution of (4.23) is

ΨαLx,Ly = ΨLx,Ly + α2Gα, (4.24)

and Gα is the solution of (I− α2∆)Gα(x, y) = −δ(x, y),
Gα(−Lx/2, y) = Gα(Lx/2, y), ∀y ∈ [−Ly/2, Ly/2],
Gα(x,−Ly/2) = Gα(x, Ly/2), ∀x ∈ [−Lx/2, Lx/2].

(4.25)

To obtain Gα we use the method of the image and the fact that the Green’s
function solution in the free space of the Helmholtz operator L−1

α is given by
−K0 (r/α) /(2πα), where K0 is the modified Bessel function of the second kind
of zeroth-order. Hence

Gα = −
∑
m,n∈Z

1

2πα2
K0

(√
(x−mLx)2 + (y − nLy)2

α

)

and

ΨαLx,Ly (x, y) =
x2

2LxLy
− 1

2π
log

∣∣∣∣θ1

(
π(i

x

Ly
+

y

Ly
), e
−π LxLy

)∣∣∣∣+

−
∑
m,n∈Z

1

2π
K0

(√
(x−mLx)2 + (y − nLy)2

α

)
. (4.26)

The Euler-α regularization of the BR equation is given by

∂xα(p, t)

∂t
=

∫ Lx/2

−Lx/2
γ(p̃)Kα

Lx,Ly (x(p, t)− x(p̃, t)))dp̃, (4.27)

with Kα
Lx,Ly

obtained from (4.21) and (4.26).

Numerical solution of (4.27) is obtained by using the same procedures
adopted for the non-regularized BR equation. To compute Gα, thanks to the
rapid decay of K0, it is enough, at least for the values of the parameter α we
have chosen, to add only the terms with m,n ≤ 2.

4.2 Roll-up phenomena in the regularized BR-α model

The BR-α model allows to continue the vortex-sheet motion after the singular-
ity time ts, see [41]. We have performed several numerical simulations of (4.27)
with the initial condition (3.16) and with different values for the regulariza-
tion parameter, α = 0.1, 0.05, 0.01. Vortex sheet behavior at time t = 1.505,
just prior the singularity time of the non-regularized BR solution, is shown
in Fig.4a for the various α and compared with the BR solution: as expected,
taking smaller α values, the BR-α solution shows a better agreement with
the BR case. This results is confirmed in Fig.4b-c where the curvature κ and
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Fig. 4 a) Vortex sheet curve at t = 1.505 for BR solution and BR-α solution. The black
dot is the point where singularity forms in the component of the BR solution at ts = 1.507.
The BR-α curve better approximates the BR curve by decreasing α.b) Signed curvature κ
as function of the signed arc length s(p) starting from p = 0. In the BR case, the curvature
is strongly increasing positively at s(p) ≈ 1.16− and negatively at s(p) ≈ 1.16+, and at ts it
diverges as an inverse of a square-root singularity. The BR-α curvature better approximates
the BR curvature by decreasing α. c) True vortex-strength γ̂ as function of the signed arc
length s(p). In the BR case γ̂ has a cusp behavior at s(p∗) ≈ 1.16, and at ts develops
a square-root singularity. The BR-α vortex-strength better approximates the BR vortex-
strength by decreasing α.
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the true vortex-strength γ̂ are shown at the same time for the various α and
compared with the BR case: the regularizing effects in the BR-α solution are
here more evident and, while approaching as α decreases the configuration of
the BR case, both κ and γ̂ have smooth behavior.

After the singularity time ts for the BR solution, the vortex-sheet motion
given by the BR-α model is characterized by the typical roll-up phenomenon
leading to spiral formation: this is clearly visible in Fig.5, Fig.7a and Fig.8a for
the various α at different times. The precursor of the spiral formation is the
first winding formation. It can be detected by the presence on the sheet of two
consecutive particles moving in opposite directions, so that, at a specific time,
they have the same tangential component; this is equivalent to the condition
∂px(p, t) = 0 which is verified at t ≈ 3.1, 2.46, 1.81 for α = 0.1, 0.05, 0.01, re-
spectively, and at the spatial location having the highest true vortex-strength,
i.e. the core of the sheet. After the formation of this first winding, the roll-up
phenomenon is significantly faster for smaller values of α.

To better understand how the sheets evolves, we now give a detailed expla-
nation of the roll-up evolution for the case α = 0.01. In Figs.6a-f the curvature
κ and the true vortex strength γ̂ are shown at different times. At t = 1.89 the
first winding has done a complete turn around the core of the vortex sheet; at
this time a significant quantity of vorticity has accumulated close to the core
of the sheet placed in s ≈ 1.146 where γ̂ has its maximum value which is now
7.25, about six times the maximum value of γ̂ at t = 1.505, compare to Fig.4c.
The increasing value of γ̂ in the core physically expresses a compression of
particles close to the core. Particle compression in the core also leads to the
stretching of the arms of the spiral, as particles on the arms of sheets tend
to depart from each other, leading to the growth of ∂ps in the points of max-
imum stretching and the consequent minima formation in γ̂ visible in figure
in s ≈ 1.07, 1.23. In the core of the sheet, to be more precise in s ≈ 1.144
(positive curvature) and in s ≈ 1.147 (negative curvature), κ has dramatically
increased its values which is now about 140 times larger than the curvatures at
t = 1.505, see Fig.4b. The increasing curvature close to the core of the sheet is
the typical effect characterizing the curvature singularity seen in the non reg-
ularized BR equation, see Figs.4b-c. However the regularized BR-α evolution
of the sheet leads to the formation of other points of local increasing curvature
in s ≈ 1.117 (positive) and in s ≈ 1.179 (negative). At the same time also a
secondary local maximum in γ̂ is already formed in s ≈ 1.17 and another one
is just formed at s ≈ 1.179, meaning that particles are locally compressed in
these two points of the arms of the spiral, supporting the roll-up phenomenon
with the formation of consequent high curvature points. The vortex-strength
of the two local maxima is significantly weaker than the vortex-strength of the
core, being γ̂(1.17) ≈ 0.85 and γ̂(1.179) ≈ 0.79.

As time passes the strength of the core becomes stronger, being γ̂ ≈ 10.22.
At this time the curve is stretched in two other points close to the core and
leading, as before, to the formation of two other local maxima in γ̂, as visible
in Fig.6c at t = 1.95: the points are located in s ≈ 1.189 and s ≈ 1.26,
between the core and the two previous local maxima formed at t = 1.89.
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Fig. 5 Vortex-sheet motion for α = 0.01 at several times. In (a)-(b) the black circles are
points in which the true vortex-strength has its maxima, while the crosses are the points in
which the curvature increases its amplitude (see also Fig.6) .

These two high-strength points however are weaker than the previous pair as
γ̂(1.189) ≈ 0.57 and γ̂(1.26) ≈ 0.52; likewise, the pair of the previous local
maxima, now located in s ≈ 1.2 and s ≈ 1.328, weaken, being their vortex-
strength halved with respect the time t = 1.89. At the same time two points
of increasing curvature are formed in s ≈ 1.186 (positive) and s ≈ 1.264
(negative). As time passes the formation of local maxima in γ̂ and the local
maxima/minima in κ is more evident, as shown at t = 2.05 in Figs.6e-f. As
we shall see in the next subsection, these critical points are all related to the
presence of complex singularities different from the BR complex singularity
responsible for the curvature divergence in the non-regularized case.

For larger values of α the spiral formation is slower, and the first winding
in the roll up process begins later. When α = 0.1 the appearance of solution
at time t = 4.9 is similar to the solution for α = 0.01 at time t = 1.95; an
analogous similarity is observed with the solution for α = 0.05 at time 3.35.
At these times, in fact, for both α = 0.1, 0.05 there are four arms formed in
the spiral as in the case α = 0.01, as shown in Figs.7a-8a. Moreover, as for
α = 0.01, there are two pairs of local maxima in γ̂ on the left and on the
right of the core (see Figs.7b-8b), and two pairs of local maxima/minima in κ
on the left and on the right of the core, see Figs.7c-8c. The main differences
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Fig. 6 Time evolution for the true vortex-strength γ̂ and the curvature κ for α = 0.01 at
t = 1.89, 1.95, 2.05. In (c)-(f) figures are cut in their normal extension to better visualize
the secondary maxima/minima points: the maximum of γ̂ at s = 1.381 is 16, whereas the
maximum/minimum of κ reaches 3500. As time passes, during the roll up process, several
local maxima/minima form in both γ̂ and κ.
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Fig. 7 (a) Vortex sheet curve for α = 0.1 at t = 4.9. Black circle are point of maximum
vortex strength γ̂, red corsses are points of local increasing curvature. (b) The true vortex-
strength γ̂ as a function of the signed arc length for α = 0.1 at t = 4.9. (c) The curvature
κ as function of the arc length for α = 0.1 at t = 4.9 .

between the various α can be summarized as follows: (i) the extension of the
spiral diminishes as α decreases; (ii) the values of the maxima of γ̂ and of the
maxima/minima of κ increases as α decreases; (iii) the times when the various
arms form are delayed for larger α.

4.3 Singularity Tracking for the BR-α model: comparison with the BR results

The aim of this subsection is to compare the complex singularities of the
BR-α case with the analysis presented in Section 3.1 for the BR equation.
Therefore we apply the singularity tracking methods to detect the complex
singularities of the BR-α solution. In particular we use the Borel-Polya-van
der Hoeven method (BPH) that was originally proposed in [58], and the Padé
approximants, see the Appendix for more details.

Singularity tracking is applied to the Fourier expansion of the components
(Xα(p, t), Yα(p, t)) = (xα(p, t) − p, yα(p, t)) obtained from the numerical so-
lution of (4.27). The crucial difference with respect to the BR case is that
the α model shows the emergence of several complex singularities. Up to
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Fig. 8 (a) Vortex sheet curve for α = 0.05 at t = 3.35. Black circle are point of maximum
vortex strength γ̂, red corsses are points of local increasing curvature. (b) The true vortex-
strength γ̂ as a function of the signed arc length for α = 0.05 at t = 3.35. (c) The curvature
κ as function of the arc length for α = 0.05 at t = 3.35.

ts we have clearly distinguished and characterized, in both the components
Xα, Yα, two main complex singularities whose location will be denoted with
p̃α1 = p1,α + iδ1,α and p̃α2 = p2,α + iδ2,α. Hereafter we shall also label these
singularities simply with their locations p̃α1 and p̃α2 . These singularities are
tracked in time in the complexified p-plane from t = 0.9 up to t = ts and their
trajectories are shown in Fig.9 2. For higher α, p̃α1 and p̃α2 remain quite distant
from the real axis: this is the consequence of the regularizing effect due to the

smoothing kernel (4.21). The characterizations µ
p̃α1
X , µ

p̃α1
Y and µ

p̃α2
X , µ

p̃α2
Y of the

singularities are reported at t = 1.505 in Table 1, and they reveal that both
components have a blow up in their second derivatives, compatible with the
predicted values obtained from the singularity analysis in BR case.

2 For α = 0.01 the singularity p̃α1 is clearly detected only from t = 1.3.
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Fig. 9 The tracking of the complex singularities p̃α1 and p̃α2 of the components Xα of the
BR-α solution from t = 0.9 up t = ts in the complex plane (p, pim). For α = 0.01, p̃α1 is
well detected only from t = 1.3. The dotted line is the tracking of the complex singularity
of the BR solution. The singularity p̃α2 is closer to the BR singularity and it is in general
more closer to the real domain than p̃α1 . At t = ts the singularities have characterizations
compatible with the predicted singularity characterization of the BR solution (see Table 1).

α µ
p̃α1
X µ

p̃α1
Y µ

p̃α2
X µ

p̃α2
Y µακ

0.1 1.89 1.95 1.76 1.86 -0.22
0.05 1.85 1.94 1.74 1.81 -0.38
0.01 1.76 1.85 1.65 1.69 -0.41

0 1.61 1.72 -0.44

Table 1 The characterizations of the complex singularities p̃α1 , p̃
α
2 of the components of the

vortex-sheet curve and characterizations µακ of the main complex singularities of the curva-
ture, (the case α = 0 refers to the only singularity of the BR solution). Characterizations
are evaluated at time t = 1.505.

4.4 Singularity Tracking for the BR-α model: curvature singularity effects in
the roll-up process

Just before the BR singularity time, at t = 1.505, the curvature κ is very large
also for the regularized version. This can be seen in Fig.4b where one observes
two spikes localized close to the core of the sheet. Passing the BR singularity
time, the roll-up process intensifies and the curvature spikes grow considerably,
see Figs.6b. However we have observed that other points of locally increasing
(positive and negative) curvature form along the various arms of the spiral. In
this section we show that these new spikes are due to the presence of complex
singularities in the curvature itself.

As done in Section 4.2 we describe the case α = 0.01. The positions of the
complex singularities of κ are obtained through the Padé approximants, and
they are shown in Figs.10-12 at t = 1.505, 1.89, 1.95.
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At t = 1.505 we have clearly detected one complex singularity placed in
≈ (1.205, 0.224). The singularity closest to the real domain corresponds to the
point where the curvature has a sharp variation and obviously coincides with
the maximum of the true vortex strength. This agrees with the results we ob-
tained in the BR case, where the singularity in the curvature causes, just before
the singularity formation, a rapid variation from a diverging positive curva-
ture to a diverging negative one, see Fig.4b. By applying the BHP method we
have obtained that this singularity has characterization µακ = −0.41, in very
good agreement with the value −0.46 predicted in the BR case (the charac-
terizations for α = 0.1, 0.05 are shown in Table1, and they also agree with the
values −0.46). One can therefore conclude that this complex singularity is the
regularized counterpart of the real BR curvature singularity.

In the same figure appear two additional complex singularities; with re-
spect to the main singularity, they are placed on the left and on the right.
At the time shown the presence of these singularities has no physical coun-
terpart; however these two secondary singularities anticipate the formation of
the points of locally increasing curvature that we have previously examined in
Section 4.2, see Fig.5b and Fig.11. In fact, at t = 1.89, the singularities previ-
ously detected at t = 1.505 are now closer to the real axis, and the real part
of their complex position strictly corresponds to the arc length values where
the curvature increases, see Fig.6b. Moreover, several other singularities are
visible and approaching the real axis. At t = 1.95, the singularities are still
closer to the real axis, and other singularities are clearly detected by the Padé
approximants.

5 The Euler evolution of a vortex layer

In this Section we perform a comparison of the results obtained for the BR-
α model with the motion of a vortex layer of small thickness. This problem
has been addressed by several authors. Moore and Dhanak in [54] and [28],
through a matched asymptotic expansion, derived a correction to the BR equa-
tion that takes into account the effect of the thickness of the layer. A recent
investigation [64] seems to show that these corrections are not able to prevent
singularity formation. In [6] the authors performed an extensive numerical in-
vestigation considering the case of a layer of uniform thickness: their analysis
is based on a system governing the two interfaces bounding the vorticity layer.
Benedetto and Pulvirenti, in the paper [12] concerning the rigorous analysis
of the dynamics of a layer of uniform vorticity, proved the convergence, for a
short time, toward the BR dynamics.

We consider an incompressible 2D inviscid flow with initial vorticity con-
centrated on a layer of small thickness ε while, outside the layer, vorticity
rapidly decays. If one introduces the rescaled variable Y = (y − φ(x))/ε, we
assume the initial vorticity to be of the form

ω0(x, y) = ε−1f(x, Y ) (5.28)
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Fig. 10 In the upper figure the log-modulus in the complex plane (s(p), pim) of the Padé
approximants P100/100 of the curvature (shown in the lower figure) for α = 0.01 at t = 1.505.
Light/Yellow colors are relative to large values of the approximants. Singularities are placed
where the approximants have large values. The singularity closest to the real domain is placed
in (1.205,0.224) and it has a characterization of -0.41, in agreement with that predicted by
the BR case. Two other complex singularities are also placed in on the left and on the
right of the main one. These two secondary singularities correspond to points of increasing
curvature that forms later in the curvature (see Fig.11)

where f(x, Y ) has a rapid, for example exponential, decay in Y , and
∫
f(x, Y )dY

is finite. Clearly the curve y = φ(x) represents the center of the layer and, in
the limit of the thickness going to zero i.e. ε→ 0, the layer shrinks to a sheet.

The governing equations for the flow evolution are the Euler equations
that we shall solve using the vorticity-streamfunction formulation. The initial
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Fig. 11 In the upper figure the log-modulus in the complex plane (s(p), pim) of the Padé
approximants P500/500 of the curvature (shown in the lower figure) for α = 0.01 at t = 1.89.
Light/Yellow colors are relative to high values of the approximants. Singularities are placed
where the approximants have large values. The singularities are closer to the real axis with
respect the time t = 1.505. At this time, these singularities strictly correspond to points of
increasing curvature. Dashed lines mark the correspondences between the singularities and
the secondary maxima/minima already formed in the curvature.

datum we shall consider is of a vortex layer type:

∂tω + u∂xω + v∂yω = 0 (5.29)

∂2
xxψ + ∂2

yyψ = −ω, (5.30)

u = ∂yψ, v = −∂xψ, (5.31)

ω(x, y, t = 0) = ω0(x, y), (5.32)

φ(x) = sin(x)/2, (5.33)

f(x, Y ) = exp
(
−Y 2/2

)
/
√

2π. (5.34)
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Fig. 12 Same as Figs.10-11 for α = 0.01 at t = 1.95.

Equation (5.29) is the vorticity-transport equation, (5.30) is the Poisson equa-
tion for the streamfunction, and equations (5.31) relate the velocity compo-
nents to the streamfunction. The initial condition is given by (5.32), (5.33) and
(5.34), being ω0 defined in (5.28), and it expresses a positive vorticity highly
concentrated on a small sinusoidal layer having thickness of order ε along the
y-direction. The vorticity, in the layer, is distributed according to a gaussian
centered on the curve φ(x).

It is useful to recover the time evolution of the material curve C which
initially coincides with (x, φ(x)). In fact, in the limit of zero thickness, the C
is exactly the vortex sheet curve (3.16) used as initial configuration for the
BR equation. One expects that the time evolution of the curve C should be
predicted by the BR equation at least before the occurrence of the singularity,
i.e. for t < ts. Moreover the regularizing effect of the finite thickness of the
layer prevents the singularity formation in the Euler solution, and it is of
interest to analyze the time evolution of the layer for t > ts.
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The curve C is numerically approximated by placing, at t = 0, N + 1
fluid particles that are transported by the velocity field (u, v) obtained from
the Euler solutions. Namely, let (xj(0), yj(0)) for j = 0, · · ·N , the particles
initially placed at (jπ/N, φ(jπ/N)), j = 0, · · ·N . The Lagrangian evolution
of the generic particle (xj(t), yj(t)) is governed by

dxj
dt

= u(xj(t), yj(t)), (5.35)

dyj
dt

= v(xj(t), yj(t)), (5.36)

being (u, v) the velocity field obtained from the Euler solution.

The problem is solved by imposing periodic boundary conditions for both
the tangential and normal variable, and a fully spectral numerical scheme is
used with a semi-implicit third order Runge-Kutta scheme as temporal dis-
cretization, see [70] for more details. At each time step, to solve Eqs.(5.35)–
(5.36), the velocity field (u, v) is spectrally interpolated in the position of the
particles (xj(t), yj(t)).

5.1 Roll-up process for the vortex layer

The vorticity and the corresponding material curve C are shown in Figs.13-14
for ε2 = 10−2, 10−3. In all cases the vorticity is advected toward the core of the
layer, with the consequent formation of a bulge in which the vorticity is mostly
concentrated. As time passes the typical roll-up into a spiral precess is visible,
with the formation of trailing arms that wrap around the core of the layer.
However, the different initial thickness of the layer leads to a different flow
motion. In fact for ε2 = 0.01 the two symmetric cores tend to collide forming
one big vorticity core; before this event, the material curve C has done only
one complete turn around the center of the core. For ε2 = 0.001, before the
two core eventually collapse, several trailing arms form. This is visible at times
t = 4.0 and t = 5.0, where we can also observe that the curve C has done three
and four complete turns around the center of the core, respectively.

We can also notice that for ε2 = 0.01, at t = 5.0, the shape of C resem-
bles quite well the shape of the vortex sheet curve for α = 0.1 at t = 4.9
in Fig.7a. Moreover the center of the core of the vortex-sheet for the BR-α
(the point with highest true vortex strength) is placed in (0.38,0.54), while
the center of the core of the vortex layer (the point with highest vorticity is
placed in(0.35,0.55). Hence, although the BR−α and the layer of small thick-
ness are different regularization of the BR model, it seems that they have a
similar evolution after the singularity time ts for the BR solution. This result is
reminiscent of the investigation presented in [67] where the authors compared
the motion a viscous layer of small thickness governed by the Navier-Stokes
equation with the motion predicted by the vortex blob regularization of the
BR equation (BR-δ regularization). By varying independently the viscosity ν
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(a) ε2 = 0.01, t = 2.5 (b) ε2 = 0.01, t = 5

(c) ε2 = 0.01, t = 7.5 (d) ε2 = 0.01, t = 10

Fig. 13 The vorticity distribution at various time for ε2 = 0.01. The black lines represent
the material curve C computed by (5.35)-(5.36). The roll up behavior predicted by the vortex
sheet motion is visible. The pair of vorticity cores that form during the roll-up process
eventually collapse on each other, forming a big core well visible at time t = 10.

of the flow and the thickness ε of the layer, in [67], it is shown that, in the
limit ν → 0 and ε→ 0, the time evolution of the material curve obtained from
Navier-Stokes calculation well approximates the vortex-sheet computed with
the BR-δ regularization.

6 Conclusions

We have analyzed the roll-up phenomenon for the BR-α equation in terms
of the complex singularities for an infinite array of vortex sheets. The non-
regularized BR equation (α = 0) develops a 3/2 branch singularity in the
components of the curve and a −1/2 singularity in the curvature. After the
singularity time the BR-α solution is characterized by the roll-up phenomenon
with spiral formation. A key result we have obtained is the detection, in the
BR-α solution, of several complex singularities. We have related these singu-
larities to the points having the highest curvature along the arms of the spiral.
The singularities of the regularized solution have the same characterization of
the BR singularity, that is 3/2 branch singularity for the curve components,
and −1/2 singularity for the curvature.

We have also seen how the BR-α model gives an excellent approximation
of the motion of a vortex layer or, to be more precise, of the lagrangian motion
of the center of the layer. The vorticity concentration we have observed might
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(a) ε2 = 0.001, t = 2.5 (b) ε2 = 0.001, t = 3

(c) ε2 = 0.001, t = 4 (d) ε2 = 0.001, t = 5

Fig. 14 The vorticity distribution at various time for ε2 = 0.001. The black lines represent
the material curve C computed by (5.35)-(5.36). With respect to the case ε2 = 0.01 the roll
up behavior leads to a spiral having several arms. At t = 5 one big core of vorticity (and its
symmetry in the third quadrant) is formed with two thin braids of vorticity around it.

suggest a relationship with the Di Perna and Majda theory [29,30], as pointed
out in [6]. Notice also how, when α→ 0, all the detected complex singularities
seem to coalesce.

There are many possible regularization procedure that allows the continu-
ation of the vortex-sheet motion beyond the singularity time: the vortex blob
methods, as numerical tool, has been employed since the first stages of the
investigation on vortex-sheets, see e.g. [46,45,18]; the approximation with vis-
cous layers has a fundamental importance because it is what one might think
to be the best approximation of the physical reality. It would be interesting to
see whether these regularized models show the appearance of complex singu-
larities as for the BR-α model and, in case, compare the singularity behavior
deriving from the different regularizations. This topic is under current inves-
tigation [16] and will appear elsewhere.

A Singularity tracking methods

The singularity tracking method based on the asymptotic ansatz (3.17) has the advantage
to be of easy implementation, but it has the relevant drawback that it gives information only
on the complex singularity closest to the real axis. To retrieve information on the possible
other singularities outside the width of the analyticity strip, one can use two other methods
which, as we shall explain in this appendix, should be used together to obtain more robust
results.



Regularized Euler-α motion of an infinite array of vortex sheets 29

The first method used is the so called BPH (Borel-Polya-Van der Hoeven) method, orig-
inally proposed in [58] to characterize all the complex singularities for the Burgers equation.
It is based on an asymptotic ansatz given by Polya ([60]) for a Borel series obtained from a

Taylor series. In particular, given the inverse Taylor series f(z) =
∑N
k=0 fk/z

k+1 that has

n complex singularities cj = |cj |e−iρj for j = 1, 2, . . . , n, its Borel transform is given by

UB(ζ) =
∑N
k=0 fkζ

k/k!. Evaluating the modulus of the Borel series G(r) = |UB(reiφ)| along
the rays reiφ, one obtains, through a steepest descent argument, the following asymptotic
behaviour

G(r) ≈ C(φ)r−(µ(φ)+1)eh(φ)r for r →∞. (A.37)

The indicatrix function h(φ) is the piecewise cosine function

h(φ) = |cj | cos(φ− ρj) for φj−1 < φ < φj , (A.38)

where the angular intervals (φj−1, φj) depend on the complex positions of the singularities
(we refer to [58] for a deeper explanation on how the set φj , j = 1, 2, . . . , n is determined).
Therefore, through numerical interpolation we can determine the parameters |cj | and ρj
that give the locations of the complex singularities cj . In practice, for each direction φ
we need to determine the exponential rate of (A.37) that allows for construction of the
indicatrix function h. Moreover, an estimate of µ(ρj) in (A.37) returns the characterization
of the singularity cj . The BPH method can be easily applied to Fourier series u(z) =∑k=K/2
k=−K/2 ukeikz by writing u as a Taylor series. This is accomplished by introducing the

complex variables Z+ = eiz , Z− = e−iz so that

u(z) =

K/2∑
k=0

uke
ikz +

K/2∑
k=1

uke
−ikz =

K/2∑
k=0

uk/Z
k
+ +

K/2∑
k=1

uk/Z
k
− (A.39)

The advantage of this methodology with respect to the singularity tracking method lies in
the fact that it is possible to capture information on all the singularities located in the
convex hull outside the radius of convergence of a Taylor series (or the strip of analyticity
of a Fourier series). However some drawbacks are present. In fact singularities close to each
other could be difficult to distinguish, and the various cosine function in (A.38) can be
numerically determined along different range of r.

As already done in [37] to detect the complex singularities of the wall shear of Navier-
Stokes equation, it is strongly suggested to obtain preliminary information on the position
of the complex singularities, so that one can search for the specific cosine functions forming
the indicatrix function. This is accomplished with the second method we have used, the
Padé approximation . We recall that the Padé approximant

PL/M =

∑L
i=0 aiz

i

1 +
∑M
j=1 bjz

j
(A.40)

is a rational function which approximates a complex function f(z) as

f(z)− PL/M (z) = O(zL+M+1). (A.41)

If f(z) =
∑∞
k=0 fiz

k, the M unknown denominator coefficients bj , j = 1 . . . ,M and the
L + 1 unknown numerator coefficients ai, i = 0, . . . , L are determined uniquely by (A.41).
This means that the following set of linear equations must be solved

min(α,M)∑
i=0

bicα−i = aα α = 0, . . . , L;

M∑
i=0

bicL+β−i = 0, β = 1, . . . ,M.

Padé approximants are easy compute for Fourier series: given u(x) =
∑K
k=−K ûke

ikx, then
its Padé approximants can be derived considering the Fourier series as the sum of two power
series in the complex variables z+ = eix and z− = e−ix, i.e.

u(z) ≈ PL/M (z+) +QL/M (z−)− û0, (A.42)
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with L+M+1 = N , and PL/M (z+) and QL/M (z−) are respectively the Padé approximants

of
∑N
k=0 ûkz

k
+ and

∑N
k=0 ûkz

k
−, see [7,68]. The main drawbacks of the Padé approximation

is that it gives no information about the characterizations of the singularities. Moreover it
is unable to distinguish between poles and branch singularities, as branch cut are approxi-
mated by a sequence of poles where the cut should be. However, for our purpose, we need
only to detect the position of the singularities, and this can be done by simply extrapolate
the zeros of the denominator in (A.40).
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47. G. Lebeau, Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d,
ESAIM Control Optim. Calc. Var. 8 (2002), 801–825 (electronic), A tribute to J. L.
Lions.

48. M.C. Lopes Filho, J. Lowengrub, H.J. Nussenzveig Lopes, and Y. Zheng, Numerical
evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Math. Mod. and
Num. Anal. 40 (2006), no. 2, 225–237.

49. C. Marchioro, Euler evolution for singular initial data and vortex theory: a global so-
lution, Comm. Math. Phys. 116 (1988), no. 1, 45–55.

50. , On the inviscid limit for a fluid with a concentrated vorticity, Comm. Math.
Phys. 196 (1998), no. 1, 53–65.

51. C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous
fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994.

52. T. Matsumoto, J. Bec, and U. Frisch, The Analytic Structure of 2D Euler Flow at Short
Times, Fluid Dyn. Res. 36 (2005), no. 4-6, 221–237.

53. D.W. Moore, The equation of motion of a vortex layer of small thickness, Studies in
Appl. Math. 58 (1978), no. 2, 119–140.

54. , The spontaneous appearance of a singularity in the shape of an evolving vortex
sheet, Proc. Roy. Soc. London Ser. A 365 (1979), no. 1720, 105–119.

55. D.W. Moore, Numerical and analytical aspects of Helmholtz instability, Proceedings of
the Sixteenth International Congress of Theoretical and Applied Mechanics, Lyngby,
Denmark, 1985, pp. 263–274.

56. M. Nitsche, Singularity formation in a cylindrical and a spherical vortex sheet, J. Comp.
Phys. 173 (2001), no. 1, 208 – 230.

57. M. Oliver and S. Shkoller, The vortex blob method as a second-grade non-Newtonian
fluid, Comm. Partial Differential Equations 26 (2001), no. 1-2, 295–314. MR 1842434

58. W. Pauls and U. Frisch, A Borel transform method for locating singularities of Taylor
and Fourier series, J. Stat. Phys. 127 (2007), no. 6, 1095–1119.

59. W. Pauls, T. Matsumoto, U. Frisch, and J. Bec, Nature of Complex Singularities for
the 2D Euler Equation, Physica D 219 (2006), no. 1, 40–59.
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