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Introduction 

 

Autoimmune Diseases (AD) are a range of pathologies characterized and determined by 

a common anomaly, an inexplicable reaction of the immune system, which instead of 

defending our body from external aggressions, damages some parts or tissues as it 

"mistakes" them for potentially harmful external agents. In short, the body’s immune 

system attacks its own antigens, a sort of self-aggression mechanism. 

These diseases can occur in patients of all ages and both sexes with a higher incidence 

among women of childbearing age. Autoimmune Diseases are collectively among the 

most prevalent diseases in the word, affecting at least 7% of the population. They are a 

family of more than 80 chronic illnesses and the third major pathological process after 

cardiovascular disease and cancer. Some examples of autoimmune diseases are type 1 

diabetes, rheumatoid arthritis, multiple sclerosis. 

Laboratory techniques, capable of indicating and confirming the diagnosis of 

autoimmune diseases, are based on the research and identification of autoantibodies, in 

the patient's serum, revealed by the presence of specific complex antigen-antibody 

reactions [1]. In particular, the recommended method to identify any autoimmune 

diseases in patients is the IIF (Indirect ImmunoFluorescence) test performed on the 

substrate of HEp-2 cells (Humane Epithelial cell line) [2][3][4][5][6]. 

The Humane Epithelial cell line test is carried out by the expert through the visual 

inspection of a slide, using a fluorescence microscope. The test is mainly based on two 

steps: 

1. estimating fluorescent intensity; this can be positive or negative; 

2. identification of the staining patterns; these can be numerous. 

 

Figure I shows some examples of HEp-2 images. 

 

 

Figure I: IIF images with different fluorescence intensity: on the left is a positive cyctoplasmatic 

image, in the center there is a positive nuclear image and, on the right, a negative image is shown. 
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This technique, used for many years as a screening test, offers correct predictive values, 

however, as for other methods, a serious drawback is the subjectivity in the 

interpretation of the results, highly dependent on the operator's experience. 

The introduction of new and modern approaches based on computer systems represents 

a cheaper support for the diagnosis of autoimmune diseases. In general, IT systems for 

diagnostic, prognostic and therapeutic support have increasingly become a necessity 

especially in hospital centers. The complexity and quantity of the data produced by 

medical imaging systems makes the use of Expert Information Systems more necessary 

for image analysis and for the management of increasing size databases. 

The development of a CAD system (Computer Aided Detection) can therefore represent 

a valid support for diagnosis [3][7][8]. A CAD expert in the field of indirect 

immunoflourescence can decrease the variability of the methodology, increasing the 

level of standardization and helping the specialist. 

This PhD thesis involves the design and implementation of a CAD system to support 

the diagnosis of autoimmune diseases. The first objective of an automatic system 

applied to the support of diagnosys of autoimmune diseases is to improve diagnostic 

accuracy, proposing itself as a "second reader". The design of a CAD to support the 

diagnosis of autoimmune diseases must conceptually follow the guidelines 

recommended by experts in the sector, in particular the two main requirements concern 

the identification of the fluorescence intensity and if this is positive, the identification of 

the staining patterns.  

For that reason, the realization of the CAD has been divided into three macro-areas: 

1. segmentation of ROIs (Regions Of Interest) that is cells and their cytoplasm; 

2. binary classification of the fluorescence intensity of HEp-2 images; 

3. multiclass classification of the fluorescence patterns in HEp-2 images. 

 

Referring to the state of the art it is clear that, the implementation and validation of 

CAD for the computerized support in IIF images analisys is not an easy problem. The 

main objective of this thesis work is the development and the implementation of a CAD 

that can be a valid diagnostic support for autoimmune diseases using the most 

innovative computer vision techniques and artificial intelligence algorithms. 

The goodness of the CAD produced was assessed using quantitative numerical merit 

measures such as AUC (Area Under the ROC Curve), Accuracy (ACC), etc and also 
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exploiting the public DataBase of HEp-2 images made available to the scientific 

community; this allows the reproducibility of the research shown and the scientific 

comparison with other international scientific publications. 

The content of this PhD thesis is articulated as follows: 

• Chapter 1 gives an overview on autoimmune diseases, the guidelines for the 

diagnosis, and discusses about the motivations to use an automatic system. 

Public databases of HEp-2 images available to the scientific community are also 

described; 

• Chapter 2 presents the components on which a CAD is based: the image 

processing, segmentation, feature extraction, classification and evaluation; 

• Chapter 3 presents the HEp-2 cells segmentation with different techniques and it 

discusses the goodness of the approaches used through figures of merit, such as 

the Dice index and the Jaccard index with the segmentation masks produced by 

experienced staff considered as the ground truth; 

• Chapter 4 discusses the binary classification in positive or negative fluorescence 

intensity. Various strategies are compared and evaluated with quantitative 

figures of merit such as AUC and ACC on a public database; 

• Chapter 5 presents the multiclass classification necessary for a correct 

association of the different types of patterns. Also, for this problem various 

strategies are highlighted, some of which are based on deep learning, by 

comparing them quantitatively on public databases. 
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Chapter 1 - Automatic system to support the diagnosis of 

autoimmune diseases 
 

The Antinuclear Antibody (ANA) test is widely used for screening, diagnosing, and 

monitoring of autoimmune diseases. The most common method to determine ANA is 

Indirect Immune Fluorescence (IIF), performed by Human Epithelial type 2 (HEp-2) 

cells, as substrate antigen. The evaluation of ANA consists in a visual analysis of 

fluorescence intensity and staining patterns. 

This chapter describe the Autoimmune Diseases (AD), the guidelines recommended for 

the diagnosis and the motivation to use a CAD system (Computer Aided Detection) to 

support the diagnosis of autoimmune diseases. Public databases of HEp-2 images 

available to the scientific community are also described. 

1.1 Autoimmune diseases and laboratory diagnosis 
 

Autoimmune diseases are due to reaction of the immune system to self antigens, 

occurring through tolerance breakage. The targeted antigens could be common to all 

kinds of cells or organ specific, and their recognition by humoral or cellular immune 

effectors could lead to diversified symptoms, depending on pathology [9][10][11]. 

Autoimmunity is the phenomenon for which the immune system activates its 

mechanisms towards molecules, cells, and structures of the same organism to which it 

belongs. The diseases caused by this phenomenon, which are defined as “autoimmune”, 

are becoming increasingly widespread and include some of the most serious and 

penalizing conditions for the quality of life of those affected [12]. 

AD are a family of more than 80 chronic, and often disabling, illnesses that develop 

when underlying defects in the immune system lead the body to attack its own organs, 

tissues, and cells. It is important to note that Autoimmune Diseases are collectively 

among the most prevalent diseases in the word, affecting at least 7% of the population. 

Because most AD are chronic and incurable, from a public health perspective they 

constitute a major health problem which, besides causing individual suffering, has high 

societal costs [12]. These diseases can affect people of all ages and both sexes, with a 

higher frequency in women of child-bearing age. A autoimmune diseases are 

multifactorial, and their risk factors are genetic and environmental. The combination of 

risk factors may vary from one population to another, generating different 

epidemiological profiles. AD includes celiac disease, Sjogren’s syndrome, systemic 

lupus erythematosus, multiple sclerosis, diabetes mellitus type 1, rheumatoid arthritis, 

etc. 

Diagnosis of autoimmune pathologies is based on research and identification of 

Antinuclear Antibodies. In effect, a variety of ANA are found in serum samples 

obtained from patients with autoimmune diseases. ANA are a group of antibodies 

produced by the immune system that can mistakenly recognize the structures of the 
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organism they belong to (autoantibodies). It is observed how ANA attack the cells in the 

nucleus’ structures and or in the cytoplasm. The ANA test identifies the presence of 

these autoantibodies in the blood. The search of autoantibodies in sera is based on a 

routine technique performed by immunologists and on Indirect ImmunoFluorescence 

method [13]. The IIF test is conducted on the HEp-2 (Humane Epithelial cell line) 

cultured cells used as a substrate [2][3][4]. The binding of ANA on HEp2 cells is 

revealed by fluorescent antibodies to human immunoglobulin. Highly qualified 

physicians identified the fluorescence and specific patterns that characterize ANA, 

through visual inspection of slides using a fluorescence microscope. The fluorescence 

pattern observed under microscope is characteristic of the nature of the self antigen and 

of its location in the cell. 

ANA are clinically useful markers and IIF which was described in 1958 has become the 

standard method for the detection of several autoantibodies including ANA [14]. 

Despite the development of several assays like ELISA or microarrays, IIF on HEp-2 

cells substrate, obtained from human laryngeal carcinoma, remains the “gold standard” 

for ANA screening [15]. HEp-2 cells show a very high nucleus/cytoplasm ratio and, by 

virtue of their neoplastic nature, present numerous mitotic figures allowing the operator 

to identify antibodies directed against the cellular antigens expressed during the mitotic 

phase. Presence of autoantibodies in patient sera has in itself a value of diagnosis, and 

the ascertaining of their titer and specificity helps to confirm the autoimmune disease 

and its follow-up.  

The IIF test is the gold standard for the diagnosis of autoimmune diseases. Indeed, this 

test has high sensitivity, but only analytical and not diagnostic specificity, since the 

positivity for ANA does not automatically confirm the presence of autoimmune disease. 

Furthermore, the quality of the response is strongly influenced by reader’s experience, 

by the quality of reagents used for testing (characteristics of the cell substrate or 

fluorochrome-labeled anti-human immunoglobulins used), and by other local factors. 

As regards the methods immunochemical alternatives, they have the major advantage of 

being more easily automated and do not require great expertise in interpretation of the 

results. By contrast, the number of antigenic specificities reportable in the test is 

certainly lower than that detectable on Hep-2 cells and also, the integrity of the 

antigenic epitopes theoretically detectable is not always preserved [16]. Hep-2 cells 

allow for recognition of over 30 different nuclear and cytoplasmic patterns, which are 

given by upwards of 100 different autoantibodies. 

IIF test is examined by the expert with a fluorescence microscope which allows the 

visual inspection of a slide, properly prepared in the laboratory. Generally, these types 

of microscopes are equipped with cameras that capture portions of the wells contained 

in the slides. These images are archived and analyzed by experts who, based on their 

experience, recognize the fluorescence patterns emitted by HEp-2 cells. In [5] and [6] 

the guidelines and recommendations for the standardized processing and interpretation 

of the HEp-2 images and for the diagnosis of autoimmune diseases are described. These 

publications provide requirements regarding the diagnostic tests used, instructions for 

laboratory procedures and evaluation, and recommendations for interpretation. 
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Laboratory techniques to diagnose autoimmune pathologiesis are based on two main 

parameters: fluorescence intensity and fluorescence staining pattern.  Fluorescence 

intensity analysis is very often complex, and depending on the capabilities of the 

operator, the association with incorrect classes is statistically easy. The type and the 

localization of fluorescence define the IIF pattern, indeed the pattern depends on the 

distribution of the antigen inside the nucleus [17]: antibodies against antigens in 

different location give different patterns of fluorescence and therefore allow the 

identification of the different diseases. 

Positivity to the ANA test, performed by analyzing patterns and fluorescence intensity 

[13], is associated with multiple autoimmune diseases. Some laboratories report the 

fluorescence intensity as numerical (0, 1, 2, 3, 4) or symbols (-, +, ++, +++, ++++) 

representing a semi-quantitative approximation of the fluorescence intensity. In the 

clinical practice, IIF samples are categorized into these aforementioned levels based on 

the visual assessment of their fluorescent intensity compared to a set of negative and 

positive controls. 

For the fluorescence intensity the “titer” must be taken into consideration. Titer testing 

employs serial dilution to evaluate positivity or negativity of the sera. The titer 

corresponds to the highest dilution factor that still yields a positive reading [18]. For 

economic and practical reasons, many laboratories dilute only up to a given dilution. In 

general, the fluorescence intensity is assessed by patient serum dilution from 1/40 to 

1/320, or fixed dilution 1/80. 

In summary, the IIF technique is performed on HEp2 cells, using sera from patients 

referred to immunology laboratories for the detection of autoantibodies. After 

incubation of serum dilution, generally at 1/80, the antibodies linked to human 

immunoglobulin are detected by fluorescent antibodies. The negativity or positivity the 

serum is established along with the fluorescence pattern that is indicative of 

autoantibodies specificity. Therefore, IIF diagnosis requires estimating fluorescent 

intensity and pattern description of the sample at the fluorescence microscope.  

 

1.2 ANA pattern classification tree 
 

Antinuclear antibodies are significant biomarkers in the diagnosis of autoimmune 

diseases which is done by mean of IIF test with HEp-2 cells. The evaluation of ANA 

consists in the analysis of the fluorescence intensity and the staining patterns. The 

International Consensum on ANA Patterns (ICAP) discusses and promotes consensus 

regarding the richness in nuances of morphological patterns observed in the indirect 

immunofluorescence assay on HEp-2 cells [19]. In the official web site 

(www.anapatterns.org) representative images of ANA patterns and accurate description 

are displayed, but also the nomenclature and the classification tree. Figure 1.1 shows the 

nomenclature and classification tree for Hep-2 patterns. 
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Figure 1.1: The nomenclature and classification tree for all HEp-2 cell [19]. 

 

All ICAP patterns (designated with alphanumeric AC codes from AC-1 to AC-28), 

about thirty, are shown in the classification tree. Boxes with amber background are 

recommended as “competent-level” reporting, whereas those with olive green 

background are considered for “expert-level” reporting. Competent-level patterns are 

those that should be readily recognized versus patterns that would be more challenging 

and distinguishable only when observers or technologists have attained the expert-level 

[19][20]. For each pattern it is possible to view the AC (Anti Cell) code, the name of the 

pattern, other common names in use (synonym), a general description, additional 

information on antigen association, disease association and two small IIF icons of full 

representative images [20].  

The first branching of the tree considers the negative and positive patterns, the latter are 

represented by nuclear, cytoplasmic and mitotic patterns. A pattern is considered 

negative if it is characterized by the absence of a clear-cut staining in any given 

subcellular structure. This definition is both subjective and semi-quantitative at best 

[21]. In the literature, the more relevant staining patterns are classified into one of the 

following groups: Homogeneous, Speckled, Nucleolar, Centromere, Discrete nuclear 

dots and Cytoplasmic. Table 1.1 shows a description and representative images from 

www.anapatterns.org for each of these main patterns. 
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Patterns Description and representative images 

Homogeneous Homogeneous and regular fluorescence across all nucleoplasm. The 

nucleoli may be stained or not stained depending on cell substrate. 

Mitotic cells (metaphase, anaphase, and telophase) have the 

chromatin mass intensely stained in a homogeneous hyaline fashion. 

Clinical relevance: SLE, chronic autoimmune hepatitis, juvenile 

idiopathic arthritis. 
 

 
 

Speckled It is divided into fine speckled, coarse speckled, dense fine speckled 

and topo I. The first three, generally more relevant, are shown below. 
 

Fine speckled: 

Fine tiny speckles across all nucleoplasm. The nucleoli may be 

stained or not stained. Mitotic cells (metaphase, anaphase, and 

telophase) have the chromatin mass not stained. 

Clinical relevance: present to a varying degree in distinct SARD. In 

particular, SjS, SLE, subacute cutaneous lupus erythematosus, 

neonatal lupus erythematosus, congenital heart block, DM, SSc, and 

SSc-AIM overlap syndrome [22]. 
 

 
 

Coarse speckled: 

Coarse speckles across all nucleoplasm. The nucleoli may be stained 

or not stained. Mitotic cells (metaphase, anaphase, and telophase) 

have the chromatin mass not stained. 

Clinical relevance: present to a varying degree in distinct SARD. In 

particular SLE, SSc, MCTD, SSc-AIM overlap syndrome, and 

UCTD [23]. 
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Dense fine speckled: 

Speckled pattern distributed throughout the interphase nucleus with 

characteristic heterogeneity in the size, brightness and distribution of 

the speckles. Throughout the interphase nucleus, there are some 

denser and looser areas of speckles (very characteristic feature). The 

metaphase plate depicts strong speckled pattern with some coarse 

speckles standing out. 

Clinical relevance: negative association with SARD. 
 

 
 

Nucleolar It is divided into three group: nucleolar homogeneous, nucleolar 

speckled e nucleolar clumpy. 
 

Nucleolar homogeneous: 

Diffuse fluorescence of the entire nucleolus, while the metaphase 

plate shows no staining.  

Clinical relevance: found in patients with SSc, SSc-AIM overlap 

syndrome, and patients with clinical manifestations of other SARD. 
 

 
 

Nucleolar clumpy: 

Irregular staining of the nucleoli and Cajal bodies with a peri-

chromosomal staining at the metaphase plates.  

Clinical relevance: found in patients with SSc. 
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Nucleolar speckled: 

Densely distributed but distinct grains seen in the nucleoli of 

interphase cells. In metaphase cells, up to 5 bright pairs of the 

nucleolar organizer regions can be seen within the chromatin body. 

The cytoplasm of mitotic cells may be slightly positive. 

Clinical relevance: SSc, Raynaud’s phenomenon, SjS, cancer [24]. 
 

 
 

Centromere Discrete coarse speckles (40-80/cell) scattered in interphase cells and 

aligned at the chromatin mass on mitotic cells.  

Clinical relevance: found in patients with limited cutaneous SSc and 

in a subset of patients with SjS. 
 

 
 

Discrete 

nuclear dots 

It is divided into multiple nuclear dots and few nuclear dots. 

 

Multiple nuclear dots: 

Countable discrete nuclear speckles (6 to 20 nuclear dots/cell). 

Clinical relevance: found in a broad spectrum of autoimmune 

diseases, including PBC, AIM (DM). 
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Few nuclear dots: 

Countable discrete speckles (1 to 6 nuclear dots/cell in most cells). 

These are known as Cajal bodies or coiled bodies. 

Clinical relevance: rarely in SLE, (localized linear) SSc, and SjS. 
  

 
 

Cytoplasmic It is divided into five categories: fibrillary, speckled, AMA, golgi, 

road & rings. Only the AMA and the golgi patterns are shown below 

to represent cytoplasmic, the reader is referred to the 

www.anapatterns.org site for the complete list. 
 

AMA: 

Coarse granular filamentous staining extending throughout the 

cytoplasm. 

Clinical relevance: found in PBC, but also detected in SSc, including 

PBC-SSc overlap syndrome and PBC-SjS overlap syndrome. 
 

 
 

Golgi: 

Discontinuous speckled or granular perinuclear ribbon-like staining 

with polar distribution in the cytoplasm. 

Clinical relevance: found in small numbers of patients with a variety 

of conditions, including SjS, SLE, RA, MCTD, GPA, idiopathic 

cerebellar ataxia, paraneoplastic cerebellar degeneration, adult Still’s 

disease, and viral infections including HIV and EBV. 
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Table 1.1: The following Table shows a description and representative images from 

www.anapatterns.org forHomogeneous, Speckled, Nucleolar, Centromere, Discrete nuclear dots and 

Cytoplasmic patterns. 

1.3 Motivation of a CAD system applied to AD 
 

 

Diagnosing autoimmune diseases can be particularly difficult because these disorders 

can affect any organ or tissue in the body, and produce highly diverse clinical 

manifestations, depending on the site of autoimmune attack. Moreover, disease 

symptoms are often not manifest until the disease has reached a quite advanced stage. 

Laboratory techniques, able to point out and confirm diagnosis of autoimmune 

pathologies, are based on research and identification of autoantibodies, revealed by the 

presence of specific antigen - antibody complexes. In particular, identification of ANA 

through IIF method is an important part of clinical medicine and clinical immunology. 

Although the IIF techniques have progressively increased since they were firstly used in 

1957 to demonstrate antinuclear antibodies, there are still various disadvantages in these 

techniques, among them the lack of an automatic procedure which could make easier, 

faster and more reliable the tests execution and hence lower the costs. The fluorescence 

pattern observed with the microscope (example: homogeneous, speckled, nucleolar, 

nentromere, etc.) is specific according to the nature of the self antigen and of its location 

in the cell. 

Following the recent statement made by the American College of Rheumatology that 

the IIF technique should be considered as the standard screening method for the 

detection of ANA, the biomedical industry has proposed technological solutions which 

significantly improve the automation of the procedure, mostly in the preparation of 

substrates and slides with robotic devices performing dilution, dispensation and washing 

operations. Furthermore, much has been done for the digitalisation of microscope 

fluoroscopic images. These systems are based on the use of automated microscopes, 

robotised slide trays, high-sensitivity video cameras, and software dedicated to the 

acquisition and analysis of digital images [25].  

Now what attracts most interest is the classification of patterns using standardised 

approaches: automated positive/negative screening and pattern interpretation. Such 

slides are typically examined by pathologists, however, due to the difficulty of the task, 

a CAD system is desirable [3][25]. It is in fact known that the interpretation of the IIF 

test is strongly influenced by reader's experience, by the quality of reagents used for 
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testing (characteristics of the cell substrate or fluorochrome-labeled 

antihumanimmunoglobulins used) and by other local factors.  

In general, CAD systems have been widely proposed in different areas of medicine and 

with different objectives, such as second-reading, improving the speed of the diagnostic 

processes, training physicians for special tasks, etc. 

The first objective of an expert system applied to the diagnosys of autoimmune diseases 

is to improve diagnostic accuracy, proposing itself as a "second reader". CAD systems 

may use several automatic classification techniques to recognize the type of IIF patterns 

contained into an image. A properly trained CAD system in the field of indirect 

immunoflourescence can decrease the variability of the methodology, increasing the 

level of standardization and helping the specialist. The design of a CAD to support the 

diagnosis of autoimmune diseases must conceptually follow the guidelines 

recommended by experts in the sector, in particular the two main requirements concern 

the identification of the fluorescence intensity and if this is positive, the identification of 

the staining patterns. The main reasons for the development of a CAD system applied to 

the diagnosis of autoimmune disease are derived from multiple considerations. These 

considerations are listed below: 

• the readings in IIF tests are subjected to interobserver variability that limits the 

reproducibility of the method and induces subjectivity to the results [7]; 

• the vast amount of image data that is generated by some imaging devices makes 

the detection of potential disease a burdensome task and may cause oversight 

errors [8]; 

• the lack of resources and adequately trained highly specialized personnel that are 

not always available [26]; 

• the low level of standardization intensifies the limitations of human ability to 

detect and diagnose a disease during image interpretation due to their non 

systematic search patterns, to the presence of noise and technical issues such as 

the photobleaching effect, which bleaches significantly the tissues in a few 

seconds [27][28]; 

• the fluorescence intensity and the fluorescence pattern analysis are particularly 

difficult, due to the similarity between different classes, and in any case is linked 

to the operator’s experience [16]. 

 

Besides, inter-laboratories and intra-laboratory discrepancies in terms of negative or 

positive aspects and in terms of pattern recognition depends on: 

• the variability inherent to the used kit of HEp-2 cells; 

• the reading system: microscope sensitivity, and the kind of the used lamp (HBO 

or LED); 

• the threshold of positivity and the pattern identification, in fact usually several 

patterns overlap. Therefore, the skill of the observer is a key point. 

 

The main disadvantage of IIF technique is its subjectivity in the interpretation of results, 

highly depending on the experience of the operator. For that reason, two Senior 
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Immunologists (double reading) with strong experience in fluorescent image 

interpretation are quite often needed. However, this condition is not respected in all 

immunology laboratories involved in diagnosis. 

As already mentioned, the definition of fluorescence positivity and negativity is both 

subjective and semi-quantitative at best [21]. There should be a discussion regarding 

how ANA-positive vs ANA-negative cut-off is determined. There is general consensus 

that such cut-offs should be determined experimentally and locally with normal 

population controls [19]. The cut-off is highly dependent on the HEp-2 substrates used 

by individual laboratories, including factors specific to HEp-2 slide manufacturers and 

lot-to-lot variations, fluorochrome conjugated secondary antibody reagents, microscope 

and camera settings, serum dilutions, and other variables. Each laboratory should have a 

working set of positive and negative human serum sample controls for this specific 

purpose to ensure that the microscope and camera settings, but also the preparation of 

substrates and slides, is appropriate. It is to be considered that the NC (Negative 

Control) and the PC (Positive Control) as well as being prepared, occupy at least two 

slide wells used in the microscope, that is to say that, these are a cost. Another point to 

be considered is the fluorescent conjugate. Considering the variability in the microscope 

settings worldwide it is unrealistic to assume that the ready-to-use conjugate provided 

with the HEp-2 slide kits will fit all customers. Moreover, HEp-2 cutoff should be 

determined within the local population using the specific reagents and microscope 

setting [19]. 

These considerations related to fluorescence intensity are also valid for the fluorescence 

pattern recognition. Many patterns have similarities that often lead to error. A typical 

example is the speckled pattern that may be reported as nuclear homogeneous. 

Furthermore, patterns can occur in multiple ways, making the recognition problem very 

complex. These observations clearly suggested developing an automatic analysis of 

HEp-2 patterns. The introduction of new modern systems is an economic and effective 

support for the diagnosis of autoimmune diseases [29]. 

The expected advantages of an automatic system are: 

• to minimise intra- and inter-laboratory variability;  

• to improve the performance of the positive/negative classification, that is the 

reduction in frequency of false negative and false positive results;  

• to minimize the use of positive and negative controls; 

• to enhance the correlation of staining patterns with corresponding autoantibody 

reactivity;  

• higher throughput in the laboratory workflow [25]. 

 

Referring to the state of the art it is clear that the implementation and validation of an 

Expert System CAD for the computerized support for the recognition of fluorescent 

patterns on IIF images is not an easy problem but at the same time the great and 

growing interest can also be inferred in being able to have a support that exploits the 

most innovative goals of computer vision and artificial intelligence. 
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1.4 Public HEp-2 database 

 

The need of the scientific community for a large database of IIF images reported out by 

medical experts is increasing. Its use could be related to various purposes: training of 

young immunologists, epidemiological studies, diagnosis, etc. 

The first public database of HEp-2 images is the "MIVIA" database or “ICPR 2012” 

[30]. MIVIA database is used during the first ‘Contest on HEp-2 Cells Classification’ at 

ICPR 2012 [31]. This database is the outcome of a research project jointly conducted by 

the Mivia Lab of the University of Salerno and the University Campus Biomedico of 

Rome with the financial support of ‘Regione Campania’ within the project 

‘Classification of Immunofluorescence Images for the Diagnosis of Autoimmune 

Diseases’. “MIVIA” is an annotated database of IIF images, acquired using slides of 

HEp-2 substrate at the fixed dilution of 1:80, as recommended by the guidelines. The 

composition of the database is described in Table 1.2 and in Figure 1.2 some 

representative images of the database are shown.  

 

PATTERN Number of images 

Centromere 6 

Homogeneous 5 

Fine speckled 4 

Coarse speckled 5 

Nucleolar 4 

Cytoplasmatic 4 
 

Table 1.2:  List of images of public database “MIVIA”. 

 

IIF slides are examined at the fluorescence microscope and belong to six patterns:  

homogeneous, fine speckled, coarse speckled, nucleolar, cytoplasmatic, centromere.  

In addition to the description of staining pattern, the estimation of fluorescence intensity 

in intermediate (positive) and positive is provided. There are no negative intensity 

images in this database. Specialists took HEp-2 images with an acquisition unit 

consisting of the fluorescence microscope (40-fold magnification) coupled with a 50W 

mercury vapor lamp and with a digital camera (SLIM system by Das srl). The camera 

has a CCD sensor with square pixel of side equal to 6.45 μm. The images have a 

resolution of 1388×1038 pixels, a colour depth of 24 bits and they are stored in bitmap 

format. Specialists manually segment and annotate each cell at a workstation monitor 

and report data on fluorescence intensity (only intermediate and positive), pattern 

(according to the six classes reported above) and mitosis phase.  Firstly, a biomedical 

engineer segmented the cells by the use of a tablet. Subsequently, each image was 

reviewed and annotated by an immunologist. 

For each image, the database provided a description file containing: 

• image’s pattern and intensity; 

• objects seed points; 
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• objects class: cell, mitotic cell, artifact (due to slides preparation process); 

• objects pattern (if is a cell): homogeneous, fine speckled, coarse speckled, nucleolar, 

cytoplasmatic and centromere. 

 

 
Figure 1.2: Representative images of the MIVIA database: left to right, top-down, homogeneous, fine 

speckled, coarse speckled, centromere, nucleolar, cytoplasmic. 

 

The second public database is the “I3A” [32] provided for the participation to the 

‘competition on cells classification by fluorescent image analysis‘ held at ICIP 2013 

(International Conference on Image Processing) [33] and to the ‘Contest on 

Performance Evaluation on Indirect ImmunoFluorescence Image Analysis Systems‘ 

hosted by the 22th International Conference on Pattern Recognition (ICPR 2014) [34] 

and ICPR 2016 [35]. I3A database have two versions, “Task1” and “Task2”. Both are 

composed of a public part and a private part used exclusively to test the methods 

proposed for the competition. In the contest with Task1 the goal is the design and 

implementation of a IIF pattern recognition system able to classify the HEp-2 pre-

segmented cells belonging to HEp-2 images in one of the following six pattern classes: 

homogeneous, speckled, nucleolar, centromere, Golgi and nuclear membrane. The total 

number of pre-segmented cells was 13596 extracted from 83 specimens. Table 1.3 

shows the pattern distribution of the images provided for task-1. 

 

 Homogeneous Speckled Nucleolar Centromere Golgi 
Nuclear 

Membrane 

Cells 

number 
2494 2831 2598 2741 724 2208 

 

Table 1.3:  Staining patterns distribution in Task1 dataset. 

 

In task2, the goal is the classification of the entire well (specimen) in seven patterns: 

homogeneous, speckled, nucleolar, centromere, Golgi, nuclear membrane and mitotic 

spindle. Task2 has 252 wells where four images for well are captured with a total of 

1008 images. 
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The dataset task1 has been collected between 2011 and 2013 at Sullivan Nicolaides 

Pathology laboratory, Australia. It utilizes 419 patient positive sera, which were 

prepared on the 18-well slide of HEP-2000 IIF assay from Immuno Concepts N.A. Ltd. 

with screening 1:80 dilution. The specimens were then automatically photographed 

using a monochrome high dynamic range cooled microscopy camera which was fitted 

on a microscope with a plan-Apochromat 20x/0.8 objective lens and an LED 

illumination source. Approximately 100-200 cell images were extracted from each 

patient serum. The labelling process involved at least two scientists who read each 

patient specimen under a microscope. A third expert’s opinion was sought to adjudicate 

any discrepancy between the two opinions. It used each specimen label for the ground-

truth of cells extracted from it. Furthermore, all the labels were validated by using 

secondary tests such as ENA and anti-ds-DNA in order to confirm the presence 

and/absence of specific patterns. Each cell image contained in the database is annotated 

with the following information: cell pattern (one of the patterns above defined), cell 

intensity, cell mask, ID of the image which the cell belongs to. A characterization of the 

dataset is reported in Figure 1.3 and Figure 1.4. 

 

 
Figure 1.3: Representative cells images of the I3A Task1 database (left to right) centromere, golgi, 

homogeneous, nucleolar, nuclear membrane, speckled. In the second row the respective segmentation 

masks. 
 

 
Figure 1.4: Four centromere images from a well from I3A task2 database. 

 

The third public database is AIDA [36]. Started in November 2012, the AIDA project 

[37] (AutoImmunité, Diagnostic Assisté par ordinateur) is an international strategic 

project funded by the EU in the context of ENPI Italy-Tunisia cross-border cooperation 

in which one of the objectives was to collect a large database available to the scientific 

community. The project concerns particularly the application of ICTs for the diagnosis 

of autoimmune diseases, reading by computer the images of test IIF. Using a standard 
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approach, seven immunology services have collected images of the IIF test on HEp-2 

cells accompanied by the report of the senior immunologists. 

The database acquired during the AIDA project consisted of two parts: one part was 

public, the other was private. The public AIDA database was a subset of the full AIDA 

database, where three physician experts (independently) have expressed a unanimous 

opinion when reporting. This is available to the scientific community and, it is the 

largest HEp-2 images public database that is most representative of real cases, including 

a variety of single and multiple patterns. The AIDA public database consists of 2080 

images relating to 998 patients (261 males e 737 females); of these images 582 are 

negative while 1498 show a positive fluorescence intensity. The total number of wells 

are 1000: 530 positive wells and 470 negative wells. Table 1.4 summarizes the database 

numbers. The AIDA database is the public HEp-2 image database containing both 

images with positive fluorescence intensity and negative images; the other public 

databases are essentially composed of positive and weak positive fluorescence images, 

but not negative cases. Besides being “numerous”, the database is extremely varied, 

containing fluorescence positive sera with a variety of more than twenty staining 

patterns. In each image a single or multiple pattern can be present. The patterns 

terminology is in accordance with the “International Consensus on ANA Patterns” 

(ICAP) (http://www.anapatterns.org) [19] (see subsection 1.2 “ANA pattern 

classification tree”). Moreover, manufacturers of kits and instruments employed for the 

ANA testing were different site-to-site, as well as, different automated systems 

solutions for the processing of Indirect Immunofluorescence tests have been used: IF 

Sprinter Euroimmun, NOVA from INOVA diagnostic, and Helios from Aesku.  HEp-2 

images have been acquired, after incubation of the 1/80 serum dilution, by means of a 

unit consisting of a fluorescence microscope (40-fold magnification) coupled with a 

50W mercury vapor lamp and a digital camera. The camera has a CCD sensor equipped 

with pixel size that equals 3.2 𝜇m. The images have 24 bits color-depth and were stored 

in different common image file formats, as "jpg", "png", "bmp" and "tif". The public 

database can be downloaded, after registration, from the download section of the site 

(http://www.aidaproject.net/downloads). The dataset consists of 1000 wells records and 

for each of them are reported the following information: image/s from well were patient 

sera was prepared; the negativity or positivity fluorescence intensity of the patient sera; 

the staining pattern (single or multiple) for the patient positive sera; the age and sex of 

patient (if available); the image acquisition instrument. The private part of the AIDA 

database is structured in the same way as the public part, and it has about 20,000 

positive and negative images. However, among all these images only about 3000 have 

triple concordance of reports. This part of the AIDA database is only accessible to the 

partners who participated in the project. 

 

Positive fluorescence 

intensity wells 

Negative fluorescence 

intensity wells 
Total wells Total images 

530 470 1000 2080 
 

Table 1.4:  Wells distribution in AIDA dataset. 
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Some representative images of the AIDA database are shown in the Figure 1.5. 

 

 
Figure 1.5: Examples of fluorescent patterns (from left to right and for up to down: homogeneous, 

speckled, nucleolar, centromere, golgi and nuclear membrane). 
 

Table 1.5 summarizes the information characterizing the public databases described. 

 

Database 
Fluorescence 

Intensity 

List of 

patterns 

Pattern 

number 

Cell 

number 

Image 

number 

Well 

number 

MIVIA 
Intermediate 

positive and 

positive 

{homogeneous, 
coarse speckled, 

fine speckled, 

centromere, 
nucleolar, 

cytoplasmic} 

6 1455 28 28 

I3A task1 
Intermediate 

positive and 

positive 

{homogeneous, 

speckled, 

centromere, 

nucleolar, nuclear 

membrane, golgi} 

6 13596 83 83 

I3A task2 
Intermediate 

positive and 

positive 

{homogeneous, 

speckled, 

centromere, 

nucleolar, nuclear 

membrane, golgi, 

mitotic spindle} 

7 - 1008 252 

AIDA Negative and 

positive 

More than twenty 

single patterns and 

various multiple 

patterns 

22 - 2080 1000 

 

Table 1.5:  Salient data from public databases. 
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Chapter 2 - The CAD system 
 

The main objective of this thesis work is the implementation of a CAD that can be a 

valid diagnostic support for autoimmune diseases. This goal has been achieved by using 

the most innovative computer vision techniques and artificial intelligence algorithms. 

In this Chapter is shows the distinctive peculiarity of a CAD system applied to the 

diagnosis of autoimmune disease, and the two fundamental pillars on which it is based: 

image processing and machine learning. 

 

2.1 CAD system peculiarities 
 

The design and implementation of an expert CAD system to support the diagnosis of 

autoimmune diseases must conceptually follow the guidelines recommended by experts 

in the sector, in particular the two main requirements concern the identification of the 

fluorescence intensity and if this is positive, the identification of the staining patterns. 

In general, a CAD is a system that assists physicians in the interpretation of medical 

images. The main functionality of a CAD regards the automatic classification of the 

images. These systems have become increasingly widespread as a result of the growing 

development of digital imaging systems for medical imaging. Just think of digital 

mammography, X-ray tomography (CT), nuclear magnetic resonance imaging (MRI), 

and so on. Furthermore, the growing amount of data and medical images that the 

radiologist or other medical professional has to analyze and evaluate comprehensively 

in a short time, has certainly stimulated the development of these automatic CAD 

systems. 

In general, CAD systems process digital images for typical appearances and to highlight 

conspicuous sections, such as possible diseases, in order to offer input to support a 

decision taken by the professional. The first CAD systems used flow-charts, statistical 

pattern-matching, probability theory or knowledge bases to drive their decision-making 

process [38]. Historically, the first CAD systems were developed in the field of 

mammography and in the detection of lung cancer in radiographic images of the chest. 

The importance of the development of CAD systems for the detection of breast and lung 

tumors is mainly due to two factors: breast and lung cancer are the cancer forms with 

the highest mortality rate; moreover, CAD systems can be a valid support for 

radiologists engaged in population screening programs. Subsequently, the CAD systems 

spread to the most varied areas of medical imaging, not least the digital pathology 

derived from the possibility of acquiring digital images from the microscope. Glass 

slides are converted into digital slides that can be analyzed with the CAD system.  

The development of a CAD is an interdisciplinary activity that combines medical 

knowledge and innovative computer vision and artificial intelligence techniques. It 

should be emphasized that the CAD does not substitute the physician or other 

professional, but rather plays a supporting role. The professional is generally 
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responsible for the final interpretation of a medical image. The role of the CAD is to 

help in the interpretation, highlighting possible suspicious areas, and above all, often 

takes the role of second reader. 

In literature there is a distinction between Computer-aided detection (CADe) systems 

that are usually confined to marking conspicuous structures and sections and Computer-

aided diagnosis (CADx) systems evaluate the conspicuous structures. As will be shown 

in this thesis, the CAD developed and applied to autoimmune diseases, is oriented to 

detection, in fact the segmentation and recognition of the patterns of Hep-2 cells is a 

detection activity. 

In the field of CAD system development, a large number of techniques (more or less 

standard) can be used, however, it is possible to group them, based on the objective they 

set, in the following families: 

• image acquisition: it is the process of acquiring images through sensors of any 

nature (for example: electron microscopes, digital mammograms, digital 

radiographic equipment, CT scanners, etc.); 

• preprocessing: it is a preliminary treatment of the images and has the purpose of 

preparing the images for subsequent manipulations. Examples of preprocessing 

are: the reduction of the noise introduced during the acquisition process and 

dependent on its modalities, the elimination of artifacts such as the "plates" in a 

mammographic image, the improvement of the image quality and the image 

filtering; 

• segmentation: it has the task of dividing the image into its constituent parts.It 

can be carried out at various levels in order to identify different structures in the 

image generally called regions of interest, such as cells, potentially pathological 

lesions, and so on according to the specific field; 

• feature extraction: the techniques for the extraction of characteristic parameters, 

features, have the purpose of obtaining analytical quantities in order to 

characterize the visual information of the ROIs; 

• classification: it is the procedure used for the treatment of the regions identified 

in the segmentation phase that will allow the association of a generic ROI to a 

class, for example "positive" and "negative". 

 

The research proposed here is the implementation, training and optimization of a CAD 

that can be a valid diagnostic support for autoimmune diseases. Being the diagnosis of 

autoimmune diseases based on the recognition of fluoroscopic patterns on the HEp-2 

images acquired under the microscope, it is clear that the realization of the aforesaid 

CAD must exploit the most innovative computer vision techniques and artificial 

intelligence algorithms. 

The main role of computer vision is the “image preprocessing” through advanced digital 

image processing techniques in the space and frequency domain. The medical images 

preprocessing has the goal of reducing noice and artifacts, improving image quality for 

example through contrast normalization, and filter the images to emphasize certain 

characteristics. The segmentation phase, where the Regions of Interest are extracted, 
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and feature extraction from these ROI are of great importance. Image segmentation is 

defined as a partitioning of an image into regions that are meaningful for a specific task. 

A segmented ROI may be characterized by different type of attributes that make up the 

feature space. These features must be sufficiently discriminative and appropriately 

chosen for the application since they fundamentally impact the resulting quality of the 

classifier [39].  

Artificial intelligence algorithms have the main role in the last phase: once ROI are 

obtained, discrimination between various patterns will be addressed. The ROI 

evaluation and classification belong to the field of pattern recognition and all modern 

approaches are based on machine learning. In recent years, the world of pattern 

recognition has been overtaken by deep learning, thanks to which machine learning has 

achieved impressive results. 

 

2.2 Medical images processing and segmentation 
 

Medical image processing deals with the development of problem-specific approaches 

to the enhancement of raw medical image data for the purposes of selective 

visualization as well as further analysis. Automatic medical imaging analysis techniques 

have been in continuous development since their inception with the discovery of X-rays 

over a hundred years ago. Through bioimaging, the physician extends the functionality 

of his sense organs by being able to explore the anatomy and function of internal 

organs, in search of the initial signs of disease. Images are not self-explanatory. Their 

interpretation requires professional skill that has to grow with the number of different 

imaging techniques [40]. However, both objective and subjective factors heavily 

condition the correct interpretation of biomedical images and consequently reduce their 

diagnostic accuracy.  

There are many advantages of digital medical imaging. Unlike analog images, which 

can only be examined on the support and in the format in which they are produced, the 

digital images, being in electronic form, can be viewed on various devices, stored on 

electronic storage media and easily transferred also via the network. The type of 

management is certainly simpler, safer and less expensive: a digital image can be sent 

remotely both inside and outside the laboratory or in general in the hospital, even to 

several health professionals at the same time, without being physically moved from the 

electronic archive that contains it. But the most important characteristic of digital 

images is, without doubt, the possibility of modifying their characteristics, according to 

the needs, by means of processing algorithms. 

These algorithms, developed to enhance certain components of an image, can 

significantly improve the visualization capabilities of the human eye and allow the 

identification of details that might otherwise be lost. Image processing is generally 

referred to as the discipline in which both the input and the output of the processing is 

an image, main purpose is to reduce noise, increase contrast, etc. The image analysis 
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takes a further step in the complexity of the processing, as it concerns the extraction of 

characteristics and their analysis. Typical operations are the division of an image into 

regions or objects (segmentation) and the subsequent description for further processing. 

The preprocessing methods can be varied, and it is important to point out that in a CAD 

system it is not said that a single preprocessing phase is sufficient, for example 

segmentation can take advantage of a preprocessing methodology different from that 

used to extract the features from ROI. In this research it will see the use of different 

preprocessing techniques will be applied to the segmentation phase, binary 

classification and multi pattern classification. 

If preprocessing has the goal of reducing noice and artifacts, improving image quality 

and filtering the images to emphasize certain characteristics, segmentation is the process 

of dividing an image into distinct regions and in particular to find the ROIs in which the 

features will be extracted. The segmentation process is a fundamental step in the area of 

image analysis and pattern recognition, the purpose of which is to break down an image 

into parts that are significant with respect to a particular application. 

Segmentation is a critical phase in the analysis of the image: the precision and quality of 

the result of the segmentation can very heavily influence the subsequent phases. Many 

segmentation techniques are known, as regards both grayscale images and as regards 

color images. These techniques differ in defining the homogeneity criterion between 

regions and in the algorithm used to build these regions. The approaches for segmenting 

monochromatic images are based on measures of discontinuity or homogeneity in the 

gray levels of the image. 

Methods based on discontinuity detection partition the image by detecting isolated 

points, edges, lines and contours, while homogeneity-based approaches include 

histogram thresholding, clustering, region splitting and merging and region growing. 

The latter can be further divided into grouping techniques with respect only to the 

characteristics of the pixels (which only take into account the values of the individual 

pixels) and techniques based on the detection of regions (and therefore combining 

information on the values of the pixels with information space). 

In this work, the segmentation was addressed with different techniques and considering 

both methods proposed in the literature and their appropriate variants, and ad-hoc 

methods. The evaluation of this objective has been carried out through measures of 

merit such as the "Dice index" and the "Jaccard index" aimed at evaluating the 

segmentation process both in terms of foreground and background, by overlapping with 

masks of segmentation produced by experienced staff consider the ground truth. 

After the ROI segmentation, the characteristics are extracted on which the classification 

is based. The feature extraction procedure provides for the representation of the object 

under study by means of a numerical vector whose components are derived from the 

object itself and as it will see later, the classification is strictly linked to the choice of 

these measures. 
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2.3 Machine learning classifiers 
 

Classifier systems are divided into binary or multi-class and are generally made with 

machine learning techniques. For the problem of discrimination between positive and 

negative fluorescence intensity, the most appropriate classifier is obviously the binary 

one, while for the classification of the patterns it is necessary to use multiclassification. 

The classification scheme is usually based on the availability of a set of examples 

already classified. This set of patterns is called a training set and the consequent 

learning strategy is called supervised. Learning can also be unsupervised, in the sense 

that to the system is not provided a priori patterns whose correct classification is known 

and therefore the system establishes classes basing on the statistical regularity of the 

patterns. Generally, where examples with relative labels can be used, it is advisable to 

use supervised systems since they achieve performances that are clearly superior to 

unsupervised systems. 

In supervised training mode, classifiers are trained using a set of examples already 

classified by experts. All supervised learning algorithms start from the assumption that, 

if a set of representative and complete examples of the problem to be classified is 

provided, the resulting classifier will be able to distinguish the new specimens correctly. 

To train the classifiers, it is necessary to extract appropriate features from the image 

dataset, therefore the choice of features is a fundamental requirement as they must 

possess the information necessary to allow discrimination between the various patterns 

to be recognized. 

Among the most used classifiers are the Support Vector Machines (SVM), the Artificial 

Neural Networks (ANN) and in particular its modern descendant, namely the 

Convolutional Neural Network (CNN). These classifiers are detailed in Appendix A. 

Even if compared to Linear Discrimination Analysis (LDA), support vector machines 

and Neural Networks are more complex to implement, however, they offer a greater 

degree of precision in classification. A linear classifier makes a classification decision 

based on the value of a linear combination of the extracted features. The characteristics 

are presented to the classifier system through an n-dimensional vector, called feature 

vector. For a binary classification problem, the operation of the classifier can be 

represented by dividing an n-dimensional space with a hyperplane. In this space, the 

feature vectors of the various elements to be discriminated are projected in the form of 

points. Given a hyperplane, the points on one side are classified belonging to a category, 

the other points that lie on the other side of the hyperplane are associated with the other 

category. Training consists in optimizing the position of the hyperplane so that the 

dispersion in the class is reduced to a minimum, while the dispersion between classes is 

maximized. In other words, the classifier look for the surface that better separates the 

two classes to be discriminated. This implies that only a few examples near the 

hyperplane are important for learning, the so-called support vectors. The others can be 

ignored. The substantial difference between the methods indicated lies in the fact that 

the linear discriminants use a linear hyperplane in the space where the characteristics 

are projected, while the SVM and the Neural Networks allow a more flexible and non-
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linear classification surface. Figure 2.1 shows a graphic example of a linear and non-

linear separation hypersurface. 

 

 
Figure 2.1: Example of binary classification using linear (left) and non-linear (right) hypersurface. 

 

When using methods that are capable of developing a non-linear classification surface, 

even if the results are usually better than methods with linear hyperplanes, in addition to 

the greater computational complexity, so-called overfitting must be taken into account. 

This phenomenon occurs when an over-adaptation of the classifier separation surface 

with respect to the data used for training is achieved. Especially in cases where learning 

has been carried out too long or where there is a small number of examples of training, 

the model could adapt to characteristics that are specific only to the training set, but 

which are not reflected in the rest of the cases. In this circumstance, even a wrong and 

absurd model exactly classifies the training set, but it will not generalize correctly on 

the new specimens. To avoid overfitting, therefore, the law of Occam's razor and 

technical details such as cross-validation and early arrest must be kept in mind. 

In recent years, the methods of deep learning have overcome the other machine learning 

techniques in their effectiveness and robustness, and now they prevail in artificial 

intelligence studies. In this context, CNNs have played a significant role especially in 

the biomedical field.  Several CNN have been proposed in various fields of application 

obtaining new state-of-the-art performances. The main reason behind this success is that 

effective task-dependent image features can be directly or intrinsically learned through 

the hierarchy of convolutional kernels inside CNN [41].  

While the traditional classification was based on the chain "ROIs segmentation → 

feature extraction → classification", the use of CNN allows to overcome the problem of 

searching for performing features by shortening the chain in "ROI segmentation → 

CNN classification". With CNN, the concept of finding the most suitable features for 

the problem being analyzed is skipped, the search for the so-called hand-crafted features 

of the traditional classification pipeline is replaced by CNN's architecture research. 

Given millions of parameters to fit during model training (much more than previous 

traditional pipelines), CNN representation empowers and enables computerized image 

recognition models, with a good possibility to be able to handle more challenging 
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imaging problems [41]. There are currently three major techniques that successfully 

employ CNNs to medical image classification: training the CNN from scratch, using 

off-the-shelf pretrained CNN features, and transfer learning, i.e., fine-tuning CNN 

models pretrained from natural image dataset (such as large-scale annotated natural 

image database: ImageNet) to medical image tasks [42]. 

In this work for the classification of Hep-2 images, both the traditional classification 

pipeline and the recent CNN-based classification chain will be compared. 

2.4 CAD system evaluation 
 

The goodness of the CAD produced was assessed using quantitative numerical 

measures of merit such as sensitivity and specificity, AUC (Area Under the ROC 

Curve), Accuracy, etc. In addition, the public databases available to the scientific 

community were used and allowed comparison with other publications. 

If a HEp-2 image with positive fluorescence intensity is classified as positive, a true 

positive (TP) occurs, while if it is classified as negative, a false negative (FN) occurs. 

On the contrary, if a Hep-2 image with negative fluorescence intensity is classified as 

such, then it is a true negative (TN), while if it is classified as positive there is a false 

positive (FP). The total number of these four categories must be 100% of the dataset. It 

is possible to represent this type of situation using a 2x2 contingency table (see Table 

2.1), where the columns represent the distinction between positive and negative images; 

the rows instead represent the result of the classifier on the examples. 

 

  
Reference  value 

 
 

  

 

Positive 

 

Negative  

Predicted 

value 

 

Positive 

 

True positive False positive Total positive 

 

Negative 

 
False negative True negative Total negative 

  
 

Total  positive 

 

Total negative 
 

 

Table 2.1:  Contingency table for a two class prediction problem. 

 

Starting from these elements, specificity or true negative rate (TNR) can be defined as 

the percentage of negatives found by the classifier, exactly TN among all the classified 

negatives (TN + FP). Sensitivity or true positive rate (TPR), on the other hand, is the 

percentage of positive images (TP) among all images classified as real (TP + FN). 
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The two cases incorrectly classified are false negative and false positive, the most 

serious one is the false negative, because it causes a delay in the diagnosis and treatment 

of the disease that could irreparably compromise the patient's health. 

The evaluation of the performance of a diagnostic system is generally expressed by the 

aforementioned pair of indices: sensitivity and specificity. 

 

Sensitivity = TP / (TP + FN)        (1) 

 

Specificity = TN / (TN + FP)        (2) 

 

Another commonly used measure is the Accuracy (ACC) and the Balanced Accuracy 

(BAC) defined in the following equations: 

 

Accuracy = ACC = (TP + TN) / (TP + TN + FP + FN)    (3) 

 

Balanced Accuracy = BAC = (TPR + TNR) / 2     (4) 

 

The BAC is an index that is used in place of the ACC especially in the presence of 

imbalanced data. In fact, considering an example with an extremely unbalanced dataset, 

it can be seen that a wrong classifier who always classifies the class with the highest 

number of presences obtains a high ACC. The BAC metric does not suffer from this 

problem by averaging the correct identification results of both classes. 

The classifier performance can be studied and displayed graphically using the ROC 

(Receiver Operating Characteristic) curve. The coordinates of each point of the curve 

are, respectively, the true positive rate (sensitivity) and the false positive rate (1-

specificity), in correspondence with a certain cut-off (threshold value on which the class 

is decided). 

The main problem that generates uncertainty in the interpretation of a test lies in the fact 

that, in the vast majority of cases, there is an area of overlap between the distributions of 

the results of the test applied in positive and negative populations respectively. In fact, if 

the two populations returned separate values then it would be easy to identify the cut off 

value on the abscissa axis capable of discriminating with absolute precision the two 

populations. Unfortunately, however, in practice there is always a wider overlap of the 

two distributions and it is therefore impossible to identify on the abscissa axis a cut off 

value that allows a perfect classification, that is such as to reset both the false positives 

than false negatives. 

Referring to Figure 2.2, when the chosen threshold value changes, different values will 

be obtained for sensitivity and for specificity. The pairs of values false positive rate 

(FPR), true positive rate (TPR), obtained at the various thresholds (XC), give rise to a 

ROC curve [43].  



      

 

 
30 

 

 
 

Figure 2.2: Explanatory model of the construction of the ROC curve; as the threshold Xc changes, the 

TNR and FPR indices vary. 

 

A ROC curve of a binary classifier is usually between two limit curves: the first cuts the 

graph at 45° passing through the origin, the other is represented by the set of segments 

that rises from the origin to the point (0,1) and from that which joins point (0,1) to (1,1). 

The first line represents the case of the random classifier with an underlying area equal 

to 0.5. The second curve has an underlying area equal to 1, which is the perfect 

classifier. In consideration of this, another measure normally used, to describe the 

performance of a system, is the area below the ROC curve, generally indicated by Az 

[44]. 

If the above measures are the most recognized for evaluating a binary classifier, to 

evaluate a multiclass classification a known measure is the Mean Class Accuracy.  

Let CCRk be the correct classification rate for class k determined as follows: 

 

CCRk = Tk / Nk          (5) 

 

where Tk is the number of correct identifications of class k, while Nk is the total number 

of elements of class k. The Mean Class Accuracy is determined by: 

 

MCA = (1/k) ∑k CCRk         (6) 
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Chapter 3 - Hep-2 image segmentation 
 

This chapter exposes the segmentation of HEp-2 cells which is a fundamental step of 

the development of CAD applied to AD diagnosis. It describes the strategies taken into 

consideration and finally the results obtained. 

3.1 Introduction and related work 
 

The image segmentation is defined as a partitioning of an image into regions that are 

meaningful for a specific task. These regions are called regions of interest. In the case of 

Hep-2 images, the regions of interest that contain the salient information on which to 

carry out the recognition of the fluoroscopic patterns are obviously the cells and their 

cytoplasm.  

Segmentation is a critical phase in the analysis of the image: the precision and quality of 

the result of the segmentation can very heavily influence the subsequent phases. Such 

task is one of the most challenging of automated IIF analysis, it is not an easy problem 

because the segmentation algorithm has to cope with a large heterogeneity of shapes 

and textures due to various types of patterns that can be found in HEp-2 images. 

Some methods of image segmentation have been proposed in the literature, however 

due to the great variety with which cell patterns can be presented, there is consensus that 

the problem of HEp-2 image segmentation is not easy to solve [39]. For this reason, in 

this thesis, numerous techniques and their combinations have been evaluated, in a 

process aimed at maximizing figures of merit such as the Dice and Jaccard index. In 

order to address this optimization strategy, the automatic segmentation is compared with 

a segmentation mask produced by experienced staff and considered the ground truth. 

There are not many publications of articles that address the segmentation of HEp-2 cells 

in IIF images, probably due to the large number of patterns and the great diversity in 

which they appear within the IIF images. One of the first significant advances in the 

field of IIF images was proposed by Perner et al. [45][46] who presented an early 

attempt on developing an automated HEp-2 cell classification system. With reference to 

segmentation, the cells are localized by applying a global threshold using the Otsu 

algorithm. The authors argue that with the Otsu algorithm it is possible to localize cells 

with their cytoplasmic structure, but not the nuclear membrane itself. To overcome 

these limitations, they use morphological filters and the overlapping cells have been 

eliminated by a simple size-based heuristic. In particular, in [46] before thresholding the 

equalization of the histogram is used to eliminate the influence of the different patterns. 

Also in [47] no pre-filter is used and the authors segmented the cells using a histogram-

based mixture model threshold algorithm, which models the background intensity, in 

conjunction with the watershed transform. The watershed is done on the binary image 

(background objects) and resulted in the segmentation of the round objects, the cells in 

the image. Defective cells are eliminated based on knowledge on the specific cell type, 

expressed as of holes, size of nucleus (8-15 um), core shape (round / oval). 
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In [48] a specialization of the segmentation is carried out through a pre-classification of 

the image. The pre-classification is make on the number of segmented objects with the 

Otsu method: based on a given threshold, the image is classified as "sparse region cells" 

or "mass region cells". In the first case, the segmentation process applies an Anisotropic 

diffusion filter on channel B of the HSB model, applies Canny edge detection and 

dilation morphological filters (3x3 diamond). In the second case the Canny method is 

replaced with the Otsu method and the morphological dilation filters are of size (17x17 

diamond). 

In [49] the authors propose two stage watershed segmentation. In the first stage, a 

median filter (3x3) is applied to the G channel of the RGB model to reduce noise and 

the contrast is increased. Subsequently, the watershed transform is used, and the number 

of regions is counted which allow to determine whether the image must follow the 

second segmentation stage or not. In the second stage, channel C of the CMY color 

model is used, and the anisotropic filter is used as pre-processing. Then Otsu 

thresholding is used and watershed on the binary image. The performance results of 

these methods were not satisfactory because they could not detect two staining patterns 

(centromere and cytoplasmic). 

Also in [50] a segmentation based on the watershed transform is proposed. In particular, 

they use the Otsu method to extract the ROI in order to pre-classify and apply methods 

to reduce noise. Then they transform the image based on the gradient and implement the 

segmentation with watershed with parameters tailored to the pre-classification. 

In [51] the authors propose a variant of the adaptive and iterative OTSU method as 

segmentation: they divide the image into 16 blocks and apply the OTSU thresholding. 

After selecting the ROIs, the Otsu method is applied to each ROI increased by two 

pixels at each iteration, the iteration ends when the new segmented pixels are less than 

1% compared to the previous iteration. 

In some works, to reduce its complexity, it has been decided to identify the 

autoantibody patterns that are simpler from a visual point of view and in a very limited 

number. Roy et al [52] addressed the problem of HEp-2 image segmentation using a 

rough-fuzzy clustering algorithm which, using spatial information, assigns labels to the 

pixels. 

Cheng et al [53] proposed a system adopting foreground watershed, background 

watershed, and foreground marker-controlled watershed for the segmentation of cells. 

Percanella et al [54] proposed a method which adopts image reconstruction for a 

preliminary image segmentation and, then, it employs a sort of classifier-controlled 

dilation for better determining the structure of the cells. 

Tonti et al [55] presented an adaptive marker-controlled watershed approach. The main 

feature of this algorithm is an improved pipeline for the watershed marker selection, 

which takes advantage of domain-specific knowledge about the textural and geometrical 

characteristics. 
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3.2 The methods implemented  
  

Some segmentation techniques are known in the literature, both as regards grayscale 

images and as regards color images. In this thesis the Hep-2 image segmentation is 

carried out on grayscale. In fact, despite the fact that the images of the AIDA and 

MIVIA datasets are in RGB color, the channel on which the information is concentrated 

is the green G since the fluorescence is concentrated on this length wave. Figure 3.1 

shows the histograms of the three RGB components of a HEp-2 image. It is evident that 

the red and blue channels, with respect to the green channel, lose part of the information 

referring mostly to the cells as visible in the histogram of the green channel in the hill 

following the first peak. The first peak, on the other hand, is mostly due to the 

background. Furthermore, by analyzing the patches extracted in the background, a 

greater presence of noise in the red and blue channels is noted. 

 

 
Figure 3.1: Comparison of RGB channel histograms of a color HEp-2 image. 

 

Despite these considerations, the blue and red channels of the RGB model have been 

analized. The results obtained using the blue and red channels were significantly worse 

than the green channel. A conversion of the RGB channel into a gray channel was also 

experimented. In particular a weighted sum of the R, G and B components defined 

below was used (from “Recommendation ITU-R BT.601-7”): 

 

Gray = 0.2989 * R + 0,5879 * G + 0,1140 * B     (7) 

 

This unbalanced conversion on the green channel has given results comparable to (but 

still not better than) the exclusive use of the green channel. 

The approaches for segmenting monochrome images are generally based on measures 

of discontinuity or homogeneity in the gray levels of the image. The methods based on 

the detection of discontinuities apply preprocessing that allow to identify edges as for 
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example the well-known Sobel filter does. Starting from the edges found, techniques are 

used to form the contours. Given the variety of patterns present on HEp-2 images, the 

application of discontinuity-based techniques does not produce performing results. The 

same can be said for other renowned techniques such as the watershed. As will be seen 

in the following, starting from a first coarse segmentation it is possible to use contour 

completion techniques in a refinement process. 

The approach based on homogeneity measures sees the histogram threshold as one of 

the main techniques. This approach assumes that the image is composed of regions that 

differ from each other in the range of values of the pixels that compose them, so that the 

histogram of an image has peaks corresponding to these values. The values that 

correspond to valleys in the histogram are used as thresholds to distinguish the regions 

from each other. 

In this thesis two main automated methods for the segmentation of HEp-2 IIF images 

were developed. The first method is based on a classic segmentation pipeline consisting 

of three main phases: 

1 image pre-processing; 

2 application of binarization method; 

3 post-processing of the binary mask. 

 

The second method also consists of three main phases: 

1 image pre-segmentation (derived from the first method); 

2 Hough trasform for ellipse; 

3 active contour model. 

 

This method uses an adaptive threshold segmentation process, derived from the first 

segmentation method, followed by the randomized Hough transform and a phase of 

active contours to achieve a robust and performing segmentation of cells. The first 

binarization step can be defined as a pre-segmentation to identify the cells, the last two 

steps refined the contour of the cells. This refinement allows to better follow the 

contours of the cells but also to avoid the problem of partial cell overlap that can occur. 

It should be emphasized that the pre-segmentation method is derived from the results 

obtained from the first segmentation method. Figure 3.2 shows the flowcharts of the two 

methods. 

 

 
Figure 3.2: Flowchart of two segmentation methods implemented. 
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Both segmentation methods have as final output a binary mask, that allows the 

extraction of the ROIs on which the classification phase will be carried out. Since the 

ROIs will subsequently be used for the extraction of the features, it should be 

emphasized that these can be extracted with the binary mask from the HEp-2 image 

preprocessed in a different way than the pre-processing used for segmentation. Binary 

masks are also used for the evaluation of the segmentation process, both in terms of 

foreground and background, by overlapping with masks of segmentation produced by 

experienced staff considered the ground truth. 

As a measure of the goodness of segmentation, the Dice index [56] has been chosen. 

The Dice index, also called the overlap index, is the most used metric in validating 

image segmentations, this index was used for a direct comparison between ground truth 

and automatic segmentations. More generally, the Dice measures the spatial overlap 

between two segmentations, A and B target regions, and is defined as: 

 

Dice(A, B) = 2(A ∩ B) / [(A ∪ B) + (A ∩ B)]     (8) 

 

where the symbol ∩ represents the intersection, and the symbol ∪ is the union. 

The Dice index is calculated considering for A and B the two segmentation masks: the 

one produced automatically by the method and the one produced manually by 

Specialists in the sector (the latter is considered the ground truth).  

Another widely used index is the Jaccard index defined below: 

 

Jaccard(A, B) = (A ∩ B) / (A ∪ B)       (9) 

 

Both indices measure the similarity between finite sample sets, in this case between the 

segmentation mask considered ground truth and the segmentation mask obtained from 

the automatic process. The value of these indices is between zero and one, where one 

represents the exact overlap of the two masks.  

The segmentation methods were tested using the Mivia [30] and the AIDA [36] datasets 

(see subsection 1.4 “Public HEp-2 database”). MIVIA have 28 Hep-2 images and for 

each of them specialists manually segmented each cell. The public AIDA database does 

not provide segmentation masks, but on a subset of 95 images of the private database 

the ground truth segmentation was obtained with manual segmentation performed by an 

expert in the field. Their distribution is shown below: 

• 15 homogeneous; 

• 16 speckled (of which 8 fine speckled and 8 coarse speckled); 

• 19 nucleolar (of which 9 nucleolar clampy, 7 nucleolar homogeneous and 3 

nucleolar speckled); 

• 15 centromere; 

• 23 nuclear dots (of which 14 few nuclear dots and 9 multi nuclear dots); 

• 7 nuclear membrane. 
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3.3 Automatic method for identifying the best segmentation 

configuration 
  

Starting from monochrome images, a classic segmentation pipeline consists of a first 

phase of image pre-processing followed by binarization techniques and finally a third 

phase of post-processing. The pre-processing aims to improve the signal-to-noise ratio, 

even excluding, from the image regions that are not of interest for the subsequent CAD 

phases. Coupling a type of pre-processing to a binarization technique can significantly 

increase the goodness of segmentation. Furthermore, the post-processing of binarization 

can refined the overall segmentation. Due to the variety of HEp-2 patterns, a 

segmentation technique that works well on a given pattern often does not perform well 

on other patterns. Figure 3.3 shows an example of a segmentation result, obtained with 

the standard method, on two types of patterns; as it is easy to see, the method has a good 

homogeneous pattern segmentation capability, but a poor centromeric pattern 

segmentation capability. 

 

    
Figure 3.3: From left to right, the first image is a pattern homogeneous, the second image is the 

segmentation mask of the first image obtained with adaptive Otsu threshold, the third image is a 

centromere pattern and the fourth image is the segmentation mask relative to the third image obtained 

with the same segmentation technique. 
 

In this work, to find a good segmentation process, various combinations of pre-

processing, binarization techniques and post-processing were analyzed. The idea was to 

perform an automatic search for the best segmentation configuration based on the three 

phases of pre-processing, binarization and post-processing by optimizing the indexes of 

Dice and Jaccard. The analysis is conducted considering three lists of functions: 

• the first list contains pre-processing methods (the list is shown in Table 3.1); 

• the second list refers to the binarization methods (the list is shown in Table 3.2); 

• the third list contains post processing methods (the list is shown in Table 3.3); 

 

Conceptually, the more diversified techniques are present in the three lists, the higher 

the possibility of finding the sequence of operations that maximizes the performance of 

segmentation in terms of Dice and Jaccard indexes. Obviously, the more techniques are 

present in the lists, the more combinations to be analyzed and the calculation times 

could make an exhaustive search impractical. 

With regard to pre-processing, the best known techniques have been considered, both 

those that operate on the modification of the histogram, and techniques that operate on 

the spatial domain locally with the application of convolution masks. See Appendix B 
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for more detailed descriptions of the digital image processing used. The Table 3.1 

summarizes the types of pre-processing functions. 

 

Pre-

processing 

Abbreviation Description 

Nothing Nt It does not apply any image processing. 

Contrast 

normalization 

Cn Operates on histogram, linearly remapping the intensity 

values so that 1% of data is saturated at low and high 

intensities. 

Equalization Eq Operates on histogram, remapping the intensity values to 

increase the global contrast by distributing the pixel 

values uniformly over the entire range of possible 

values. 

CLAHE Ch Contrast Limited Adaptive Histogram Equalization, 

operate on small regions histograms rather than on the 

entire image, each processed region is combined with 

adjacents ones using bilinear interpolation. 

Gaussian filter Gs Applies convolution filtering with Gaussian kernel. 

Median filter Md Applies convolution filtering with Median kernel. 

Morphological 

filters 

Dl / Er / Op / 

Cl / Fs 

Applies a morphological operation of dilation / erosion / 

opening / closing / FAS (Filter Alternate Sequential) on 

the grayscale images with a chosen structuring element.  

Anisotropic 

diffusion filter 

An Applies the anisotropic diffusion filter which, based on 

the local image content, reduces image noise without 

blurring the edges. 

Bilateral filter Bl Applies the bilateral filter which, based on the local 

image content, reduces image noise without blurring the 

edges. 
 

Table 3.1:  Preprocessing functions analyzed. 

 

Three types of operations at the histogram level were chosen to enhance contrast. Two 

of these are the well-known operations of contrast normalization and equalization of the 

histogram. The third, CLAHE (Contrast Limited Adaptive Histogram Equalization) is a 

block-based processing, and it can overcome the over amplification of the noise 

problem in the homogeneous region of the image with standard histogram equalization. 

It operates on small regions in the image, called tiles, rather than on the entire image. 

Each tile contrast is enhanced, the neighbouring tiles are then combined using bilinear 

interpolation to eliminate artificially induced boundaries.  

As to the filters, the common Gaussian filters and the median type were chosen, known 

above all as means for reducing noise. Since the latter filters can lead to smoothing 

problems, advanced filters such as the anisotropic diffusion filter and the bilateral filter 

have also been considered which manage to decrease noise without blurring the edges. 

Finally, the group of morphological filters on grayscale were also evaluated. 

Many of the functions in the Table 3.1, have been analyzed using several parameters 

(e.g., median kernel of size 3x3, 5x5, and 7x7 have been analyzed), and furthermore 

pre-processing pairs were evaluated. Obviously, considering all the possible pairs, 

computational analysis becomes unsustainable, while it is possible (and reasonable) to 

couple a contrast normalization technique with a filtering type.  
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Binarization Abbreviation Description 
Otsu 

thresholding 

Ot Histogram thresholding using the well-known Otsu 

algorithm. 

Max entropy 

thresholding 

Me Histogram thresholding using the max entropy method. 

Adaptive Otsu 

thresholding 

Ao Adaptive histogram thresholding using the Otsu 

algorithm. The algorithm works on small regions and 

gives different thresholds. 
 

Table 3.2:  Binarization functions analyzed. 

 

Table 3.2 summarizes the binarization methods used. These are based on the histogram 

threshold which are well suited for a preliminary identification of HEp-2 cells. In 

addition to the two well known methods such as the Otsu threshold [57] and the 

threshold based on max entropy [58], the adaptive variant of the Otsu algorithm was 

considered. This algorithm determines the threshold for a pixel based on a small region 

around it. So, it gets different thresholds for different regions of the same image which 

gives better results for images with varying illumination. See Appendix B for more 

details. 

 

Post-processing Abbreviation Description 
Remove boundary 

cells 

Rb Eliminate the ROIs that are in the boundary of the 

image. 

Filling Fl Fill ROIs where holes are present. 

Morphological 

filters 

Dl / Er / Op / Cl Applies a morphological operation of dilation / 

erosion / opening / closing on the binary image with 

a chosen structuring element.  
 

Table 3.3:  Post-processing functions analyzed. 

 

Table 3.3 lists the post-processing functions and their brief description. The post-

processing phase is carried out on the binary image obtained in the binarization with the 

aim of perfecting it. In HEp-2 images, for example, there may be cells partially visible 

on the edge, these must be discarded because they carry little information or, depending 

on the features that will be extracted from the ROIs, they could penalize the 

classification phase. Furthermore, it may happen that the segmentation of some cells 

have holes, these in the post-pocessing phase are filled with the filling technique based 

on morphological filtering. The application of other morphological filters can make it 

possible to refined the segmentation. In particular, the four common morphological 

filters (dilation, erosion, opening and closing) were coupled to the remove boundary and 

the filling. The Figure 3.4 shows an example of segmentation highlighting the three 

phases of the segmentation process. 
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Figure 3.4: Segmentation based on the three phases: pre-processing (equalization and median filter), 

binarization (max entropy threshold) and post-processing (remove boudary cells and filling). 
 

The automatic search of the segmentation process consists in carrying out an intensive 

analysis of pre-processing coupled to binarization and post-processing on image 

datasets provided by manual segmentation masks considered as ground true. Each 

combination (or pipeline of segmentation) is performed on the images to obtain the 

relative automatic segmentation masks. Finally, the Dice and Jaccard indexes are 

calculated for each image thanks to the reference mask obtained manually. As a result, 

the combination with the maximum index will be the one chosen. In order to analyze the 

results of the various combinations of segmentation, the indices are maximized both on 

the entire dataset but also on subsets relating to HEp-2 patterns. Figure 3.5 shows the 

flowchart of the iterative automatic search of the best segmentation pipeline. 

 
 

 
 

Figure 3.5: Flowchart of the iterative automatic search of best segmentation pipeline. 
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3.4 Segmentation with Hough trasfom and Active countourn 
 

Very often, within HEp-2 images the cells are partially overlapped resulting in a 

separation problem that a threshold-based segmentation cannot overcome. To overcome 

this problem, a refined segmentation method based on the identification of cell contours 

was implemented. Furthermore, this method can better define the contours of a cell than 

a threshold-based method. This refined segmentation was carried out by developing the 

following three phases: 

1 pre-segmentation: aimed at identifying regions of interest (derived from the first 

method of threshold-based segmentation); 

2 randomized Hough transform for ellipse detection: aimed at identifying the ellipse 

that best characterizes the generic cell; 

3 active contour model: starting from an elliptic curve, evolve expanding towards the 

cellular contour. 

 

Table 3.4 shows some examples of this segmentation process. 

The proposed method, for a greater definition of cellular contours, uses the active 

contours in the last phase of the process. The purpose of the active contours, within the 

segmentation process, is to allow the separation of connected regions, such as two 

overlapping cells, in order to obtain a better definition of the the cells to be analyzed. 

The initial conditions, center position and initial curve of the active contour, were 

obtained using the pre-segmentation and the randomized Hough transform for ellipses. 

The pre–segmentation method (see Table 3.4 second row) is composed of the following 

operations: 

1 selection of the green channel; 

2 anisotropic filter; 

3 adaptive Otsu thresholding; 

4 removal of boudary and small ROIs. 

 

The foreground regions identified in the pre-segmentation may either contain one 

individual cell or multiple touching cells. The identification of the equivalent ellipse 

allows the definition of the center and dimensions for the generic cell. Many methods 

have been developed for the identification of geometric figures, certainly among the 

most performing is the Hough transform. Hough transforms are techniques commonly 

used to detect lines, circles, ellipses, etc. The basic idea of the Hough transform is to 

implement a voting procedure for all potential lines or curves in the image, and at the 

termination of the algorithm, curves that do exist in the image will have relatively high 

voting scores. Due to the many parameters involved in the detection of ellipses, the 

various methods developed often limit their recognition dimensions, or search for sub-

images. A complete search would be computationally not feasible. The traditional 

approach for ellipse detection using the Hough technique is similar to a line or circle 

detection. This approach is not only memory expensive but also computationally 

intensive. 
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In this thesis, for an ellipse detection, the randomized Hough Transform with result 

clustering is used [59]; the method uses only a one dimensional accumulator for ellipse 

voting, and reducing algorithm complexity. Specifically, the Randomized Hough 

transform is a probabilistic variant of classical Hough transform and it takes advantage 

of the fact that some analytical curves can be fully determined by a certain number of 

points on the curve. For example, a straight line can be determined by two points, and 

an ellipse (or a circle) can be determined by three points.   

Conceptually, for each ROI, a dilated boundary box is cut out and the contour of the 

related pre-segmentation mask is extracted. The randomized Hough transform for 

ellipse is applied to this (see Table 3.4 third row).  

 
Step1: 

Dilated boundary 

box of the related 

pre-segmentation 

mask 

 

 
 

 

 

 

 
Step2: 

Contour of the pre-

segmentation mask 

 

 
 

 

 

 

 
Step3: 

Randomized 

Hough Transform 

for ellipse 

detection 

 

 
 

 

 

 

 
Step4: 

Initialization of the 

active contour 

with reduced 

ellipse 

 

 
 

 

 

 

 
Step5: 

Evolution of  

active contour 

 

 
 

 

 

 

 
Step6: 

Final contour of 

the new ROI/s  

 

 

 

 

 

 
 

 

Table 3.4:  Schematic procedure of refined segmentation based on the pre-segmentation, randomized 

Hough transform for ellipses, and active contours. 
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The problem of the identification of the contours for patterns that are visually very 

different and need to be separated from overlapping cells inside the Hep-2 image, has 

been addressed using an active contour model. This family of algorithms has the 

advantage that, if properly initialized, they can converge on the correct contour of 

objects and since the evolution involves a non-punctual analysis of the image, they 

allow the separation of contiguous but visually distinct objects. The characteristics of 

the active contour model algorithms allow to address the problem of cells overlapping. 

In particular, the method used is a model of active contours based on techniques of 

curve evolution, Mumford–Shah functional for segmentation and level sets [60]. This 

model can detect objects whose boundaries are not necessarily defined by gradient. The 

method evolves minimizing an energetic functional which can be seen as a particular 

case of the minimal partition problem; the method is not based on an edge-function to 

stop the evolving curve on the desired boundary. In the level set formulation, the 

problem becomes a “mean curvature flow” like evolving the active contour, which will 

stop on the desired boundary. However, the stopping term does not depend on the 

gradient of the image, as in the classical active contour models, but is instead related to 

a particular segmentation of the image. The method is particularly stable and allows 

good convergence even if the initial conditions are not optimal. Also, this model does 

not require image smoothing and in this way, the locations of boundaries are very well 

detected and preserved.  

The result of the Hough transform was used to initialize the active contour. In particular, 

the ellipse identified on the generic cell has been reduced in size, halving the axle 

shafts, in order to obtain an evolution of contour, which in expansion tends to the 

desired cell boundary. Figure 3.6 shows some examples of initialization and evolution 

of the active contour obtained on a pattern which is particularly difficult to segment: the 

cytoplasmic pattern. The average iterations number for convergence of proposed 

method is around 80, while The max numbere of iteration is set to 100 but the process 

also stops the evolution if the contour position in the current iteration is the same as the 

contour position in one of the most recent five iterations. When the final contour is 

obtained, the filling is done and the refined segmentation mask is returned.  

 

  

  
Figure 3.6: Two examples of cytoplasmic cell and the respective active contour evolution (with a step 

of 25 iterations). 
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Figure 3.7 and Figure 3.8 emphasize the difference between the manual segmentation 

mask (ground truth) and the two automatic segmentation masks obtained with pre-

segmentation and with refined segmentation based on the active contours. 

 

     
 

     
 

Figure 3.7: From left to right, the first row shows two homogeneous cells attached and their associate 

pre-segmentation and refined segmentation contour; the second row shows the manual segmentation 

mask and the difference with the pre-segmentation and refined mask.   

 

         
 

Figure 3.8: From left to right, a single HEp-2 cell, its manual segmentation mask and the difference 

with the pre-segmentation and the refined segmentation mask. 

 

For both the ellipses and the contours a simple check on the size and overlap with the 

pre-segmented mask is carried out in order to avoid errors. In this case, the process is 

iterated again and if the error is not exceeded, the presegmentation mask is chosen. 

3.5 Experimental results 
 

This section shows the results obtained. For the first segmentation method based on pre-

processing, binarization and post-processing 13 different types of pre-processing (see 

Table 3.1), 3 types of binarization (see Table 3.2) and 6 types of post-processing (see 

Table 3.3) were considered. Several different configurations where evaluated since 

some functions can be used with different parameters (e.g. for the median filter the 

convolution masks, sized 3x3, 5x5 and 7x7 were analyzed). Furthermore, some pre-

processing pairs were evaluated. 

Therefore, the automatic segmentation search analyzed 60 different pre-processing, 7 

different binarizations and 14 different post-processing for a total of 5040 segmentation 

processes. Four PC with a 3,4 GHz Intel i7 CPU were used for the analysis. Each 
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segmentation process was conducted on the 95 images of the AIDA dataset and on the 

28 images MIVIA. The execution time on an image varies significantly with the 

variation of the segmentation process and in part with the variation of the image size. To 

optimize the execution time, the implementation was performed in C/C++ code with the 

IDE visual Studio 2010 and using high-performance libraries such as OpenCV 

(http://opencv.org). The execution was also parallelized by considering four executions 

for each computer. The choice of splitting into 4 executions is due to the fact that most 

of the image processing functions used are implemented using the OpenCV library 

which exploits optimized algorithms and which implicitly use parallelization. As 

evidence of this, the median filtering is given as an example, which for each 

convolution of the mask must order the elements and take the median. The 

implementation in C/C++ language of the classic algorithm without parallelization takes 

on average 7.7 sec. on an image compared to 2.3 sec. using the median filter of the 

OpenCV library. The average calculation time of the 5040 segmentation processes on 

an image is about 9 seconds. The overall computation time is about: 

 

computation time = 123 images * 9 sec. * 5040 processes = 5579280 sec. = ~ 65 days 

 

Regarding the second method of refined segmentation based on the pre-segmentation, 

randomized Hough transform for ellipse, and active contour, the implementation was 

done with Matlab 2017 (MathWorks, Natick, Massachusetts, USA). In this case the 

parameterization of the randomized Hough transform for ellipse function and of the 

active contours function was heuristically carried out on a small subset of images to find 

consistent parameters. In this way, only 12 processes (with different parameters) were 

iterated over the datasets. The average calculation time for a whole image is about 137 

sec. The main parameters are included in the Table 3.5. 

 

Functions Parameters & description Values used 

Hough 

trasform 

Initialization pre-segmented contour 

Minimal length of ellipse major axis 50 (in pixel) 

Maximal length of ellipse major axis 150 (in pixel) 

Range angle of the major axis in degrees no restrictions 

Minimal aspect ratio of an ellipse 0.5  

Randomize subsampling of all possible point 

pairs. Instead of examining all N*N pairs, runs 

only on N*randomize 

[1, 2] in the range [0, N] 

{2 is the best value used} 

Active 

contour 

Initial contour eroded Hough ellipse  

Maximum iterations 100 

Degree of smoothness 
Higher values produce smoother region 

boundaries but can also smooth out finer details. 

[0.2, 0.3] in the range [0, 1] 

{0.2 is the best value used} 

Contraction bias  

negative values bias the contour to grow 

outwards (expand) while positive to shrink 

inwards (contract) 

[-0.3, -0.5, -0.8] in the range 

[-1, 1] 

{-0.5 is the best value used} 

 

Table 3.5: Description of main parameters and values used for randomized Hough transform and active 

contours. 
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The performance of the two segmentation methods differentiated for each patterns is 

shown in Table 3.6 for the MIVIA dataset and in Table 3.7 for AIDA dataset.  

 

MIVIA 

Patterns 

Pre-segmentation  
(pre-processing/binarization/post-processing) 

Pre-segmentation 

Dice & Jaccard 

Refine-segmentation 

Dice & Jaccard 

Homogenous Nt  Ao Fl+Rb 0,88 / 0,78 0,93 / 0,84 

Fine speckled An Ao Fl+Rb 0,79 / 0,67 0,89 / 0,78 

Coarse speckled Eq Me Fl+Rb 0,76 / 0,63 0,87 / 0,74 

Nucleolar St+Md Ao Fl+Rb 0,73 / 0,58 0,86 / 0,74 

Centromere An Ao Dl+Fl+Rb 0,82 / 0,70 0,84 / 0,71 

Cytoplasmic St+Md Ot Er+Fl+Rb 0,72 / 0,56 0,80 / 0,68 

ALL (28 images) St+Md Ao Fl+Rb 0,74 / 0,59 0,87 / 0,73 
 

Table 3.6: Performance of the pre-segmentation abbreviation and refined segmentation based on active 

contours on MIVIA dataset. Abbreviations from tables 3.1-3.3 are used to indicate the algorithms. 
 

AIDA 

Patterns 

Pre-segmentation  
(pre-processing/binarization/post-processing) 

Pre-segmentation 

Dice & Jaccard 

Refine-segmentation 

Dice & Jaccard 

Homogenous Nt  Ao Fl+Rb 0,85 / 0,75 0,89 / 0,77 

Fine speckled St Me Fl+Rb 0,86 / 0,76 0,91 / 0,80 

Coarse speckled St+Md Ao Fl+Rb 0,85 / 0,75 0,87 / 0,76 

Nucleolar hom. Md Ao Fl+Rb 0,85 / 0,75 0,88 / 0,77 

Nucleolar cl. Er Ao Dl+Fl+Rb 0,75 / 0,60 0,81/ 0,70 

Nucleolar sp. Md Ao Fl+Rb 0,70 / 0,54 0,79 / 0,68 

Centromere An Ao Dl+Fl+Rb 0,80 / 0,68 0,84 / 0,74 

Few nuclear dots St+Md Ot Fl+Rb 0,84 / 0,73 0,86 / 0,75 

Multiple n. dots An Ao Fl+Rb 0,87 / 0,77 0,88 / 0,78 

Membranous Md Ao Dl+Fl+Rb 0,85 / 0,74 0,91 / 0,79 

ALL (95 images) An Ao Fl+Rb 0,83 / 0,72 0,85 / 0,74 
 

Table 3.7: Performance of the pre-segmentation abbreviation and refined segmentation based on active 

contours on AIDA dataset. Abbreviations from tables 3.1-3.3 are used to indicate the algorithms. 
 

It can be seen how different types of pre-segmentation adapt to various types of 

patterns, but this presupposes knowing the belonging of a given class. From the pre-

segmentation performance Table it is easy to deduce that, some patterns, such as the 

homogeneous one, are more easily segmentable than others that have many 

irregularities. However, this difference remains limited. Considering the pre-processing 

it can be seen that only in the homogeneous case using preprocessing (Nt) does not 

bring improvements. In all other cases, pre-processing is present and the two most 

useful are the median and the anisotropic. The median filter is often coupled with 

contrast normalization and its presence is probably due to its ability to lower noise while 

avoiding major smoothing problems. The anisotropic filter in its complexity is also able 

to reduce noise while preserving the edges. Although the bilateral filter does not appear 

among the highest results, it achieves excellent results in a similar way to the 

anisotropic filter. Among the binarization methods the dominant one is the adaptive 

Otsu threshold. This is due to the fact that, on small portions of the HE-p2 image it is 
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easier to find an optimal separation threshold. As for the post-processing what is done 

by default is the remove boundary cells and the filling. Only a few times a 

morphological filter is coupled. 

It is evident that the refined segmentation, based on randomized Hough transform and 

active contours, improves the goodness of segmentation of all analyzed patterns. It can 

be noted that, the improvement is limited for the homogeneous pattern and for the 

patterns that have intense luminous dots inside the nucleus, such as the centromeric 

pattern and the two nuclear dosts patterns. In the homogeneous case, the slight 

improvement is due to the fact that the pattern has a homogeneous aspect inside the 

nucleus and this allows a good segmentation even with the pre-segmentation technique 

based on histogram thresholding, therefore the refinement does not produce an 

important improvement. However, for the centromeric and nuclear dots patterns the 

refinement remains conditioned by these intensity peaks. On the other hand, among the 

patterns that take the most advantage there is the cytoplasmic one characterized by an 

irregular shape and the membranous whose contour is better identified by the increasing 

progression of the active contour. Another pattern that is difficult to segment is the 

nucleolar one, this is due to the presence of more intense masses present within the 

nucleus whose contours are more marked than the contour of the cell. In spite of the 

remarkable diversity of the patterns analyzed, the refined segmentation achieves very 

similar segmentation results for the different patterns, demonstrating a good robustness. 

The cell segmentation method presented in this thesis has been compared with other 

segmentation methods of HEp-2 images that have been proposed in recent years. The 

performance comparison with other state-of-the-art methods, in terms of the Dice index, 

is shown in Table 3.8. It was possible to make a comparison with those studies that 

presented the Dice index as a figure of merit, or for which it was possible, from the data 

presented, to obtain the aforementioned index. 

 

 Images Images dataset Dice index 

Percannella et al [54] 28  MIVIA 56,8% 

Tonti et al [55] 28 MIVIA 62,1% 

Roy et al [52] 22 
MIVIA  

(Less centromere and 

cytoplasmic patterns) 

86,8% 

Cheng et al [53] 196 Private 88,9% 

Proposed method 
28 MIVIA 87,0% 

95 AIDA 85,2% 
 

Table 3.8: Comparative performance of segmentation methods. 

 

Table 3.8 shows how many works have been developed using a particularly small 

number of images. The performance comparison presented in the Table clearly shows 

the quality of the proposed system.  
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Chapter 4 - Fluorescence intensity classification 
 

This chapter exposes the classification of HEp-2 images in positive or negative 

fluorescence. The fluorescence intensity classification is the first step in the diagnostic 

workflow. In this chapter the different classification methods developed and compared 

are presented. Finally, the results obtained are compared with other methods at the state 

of the art. 

4.1 Introduction and related work 
 

The classification of HEp-2 images, conducted through Indirect Immuno Fluorescence 

gold standard method, in the positive / negative classes, is the first step in the diagnosis 

of autoimmune diseases. This binary classification determines (in case of positive 

output) whether the analysis will be performed to identify the staining patterns present 

in the image. Since the test is often difficult to interpret, it is subjective and highly 

dependent of many factors as Hep-2 slide manufacturers, fluorochrome conjugated, 

microscope, camera settings and other variables, the research world has been looking 

for technological solutions to this problem.  

Figure 4.1 highlights the difficulty of interpretation between positive and negative Hep-

2 images. 

 

  

  
Figure 4.1: IIF images with different fluorescence intensity: at the top two positive examples, below 

two negative examples. 
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Since deep learning and in particular CNNs (see appendix A) have overcome the 

traditional machine learning methods, in this thesis it was decided to tackle the 

classification in positive and negative intensity both with the traditional classification 

method and with CNNs. Performance analysis was conducted in terms of ROC 

(Receiver Operating Characteristic) curve using the public database AIDA. 

The problem of identifying the fluorescence intensity is still little addressed in the 

literature. The reason is probably due to the lack of public databases containing both 

positive and negative images; to date, it seems that the only public database of HEp-2 

images with these characteristics is AIDA [36]. 

In Merone et al [61] the problem of fluorescence intensity analysis is addressed but the 

authors do not make a classification between positive and negative, rather between 

positive, negative and weak positive. The authors extracted features through an 

Invariant Scattering Convolutional Network and used SVM classifiers with a Gaussian 

kernel. The network was based on multiple wavelet module operators and was used as a 

texture description. To classify the three-class the authors applied the one-on-one 

approach and trained the tree binary classifier (negative vs positive / negative vs weak 

positive / negative vs weak positive). Their method was trained on a private database of 

570 wells for a total of 1771 images in which the fluorescence intensity was blindly 

classified by two physicians. The accuracy reported in the private database was 89.5%. 

A classification of fluorescence intensity into positive vs. weak positive was also carried 

out by Di Cataldo et al. [62]. The authors used local contrast features at multiple scales 

and a KNN classifier to characterize the image, thereby achieving an accuracy of 85% 

in fluorescent intensity discrimination. 

In Benammar Elgaaied et al [36] the authors have implemented a method based on 

SVM to classify the HEp-2 images in positive or negative intensity. They get an 

accuracy of 85.5% using traditional features based on intensity, geometry and shape. 

The same set of tests was analyzed by two young immunologists verifying a greater 

ability of the automatic system (85.5% vs 66%). 

Other authors addressed the classification in positive / negative intensity on private 

database. Iannello et al [63] used a private database with 914 images to train a classifier 

able to discriminate between positive and negative intensity. Some areas of interest 

called patches were extracted from the training set with the aid of the SIFT algorithm, 

then 19 features were extracted from these. The features were extracted from first and 

second order gray level histograms. Two feature reduction methods were applied, the 

PCA (principal component analysis) and LDA (linear discriminant analysis). Finally, 

the classification was based on the Gaussian mixture model and reached an accuracy of 

89.49%. 

In the work of Zhou et al [64] the authors presented a fluorescence intensity 

classification method in which private databases are analyzed. The method makes use of 

the fusion of global and local type features. For simple cases they use the SVM 

classifier with global features, while for doubtful cases they propose a further 

classification based on local features combined with another SVM. The results show an 
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accuracy of 98.68%. However, as the analysis was conducted on a private database, the 

work does not allow easy performance comparison. 

 

4.2 The methods implemented 
  

Historically, the binary classification with supervised modality has been widely 

discussed in the literature in the field of biomedical images and beyond. The widely 

used pipeline includes a pre-processing phase of the images, a possible process of 

segmentation of the ROI, the extraction of features, a possible features selection and 

finally the use of a classifier. Image processing, in addition to any noise reduction, 

allows it to modify the image to extract some peculiar characteristics. The choice of 

features is a fundamental requirement as they must possess the information necessary to 

allow discrimination between the various patterns to be recognized. In fact, only if the 

characteristics are able to extrapolate the discriminating traits, it is possible to classify 

the two categories with appreciable results. Feature selection is the process of selecting 

an optimum subset of features from a set of potentially available features in a given 

problem domain. Generally, only some features contain significant information, features 

that have an insignificant contribution to classification can be eliminated to reduce the 

dimensionality of the feature vector and to maximize the performance of the classifier. 

After the determination of the characteristics, the classifier is trained on the basis of a 

dataset of images already classified by experts. All supervised learning algorithms start 

from the assumption that, if a number of representative and complete examples of the 

problem to be classified is provided, the resulting classifier will be able to distinguish 

the new specimens correctly. 

Traditionally, the feature extractor has been manually designed by experts of specific 

areas. Therefore, it required a significant amount of cost and time. In recent years CNNs 

have moved beyond the traditional pipeline, they include the feature extractor in the 

training process rather than designing it manually. The CNNs feature extractor is 

composed of special kinds of neural networks, of which the weights are determined via 

the training process. The fact that CNN turned the manual feature extraction design into 

the automated process is its primary feature and advantage.  

In this thesis both the traditional classification pipeline and the recent CNNs are 

developed and compared for the classification of the fluorescence intensity of HEp-2 

images. 

To train the classifier, the traditional method is consisting of five phases: 

1 image pre-processing; 

2 ROIs extraction; 

3 feature extraction; 

4 feature reduction; 

5 classifier training. 
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The method with CNNs uses the most popular "pre-trained" CNNs such as "AlexNet", 

"Squeezenet", "Resnet18", "Googlenet" rather than creating ad-hoc networks. The pre-

trained networks have aroused great interest in the scientific community thanks to the 

"ImageNet" competition, classifying 1000 classes of objects and the possibility of 

performing transfer learning. In fact, pre-trained CNNs are well suited to the fine-tuning 

strategy, where they can be re-trained for a specific classification problem using an 

appropriate database. The pre-trained CNNs were used in the following two ways: 

1 train a new classifier with the features extracted from the pre-trained CNN layers; 

CNNs, being trained on databases containing millions of images, are able to model 

very performing generic features sets; 

2 perform pre-trained CNN transfer learning; in this case the last layer must be 

suitably replaced according to the classes to be discriminated and a fine-tuning 

carried out using the image database to be classified. 

 

These methods have been quantitatively assessed considering AUC and Accuracy as the 

main figure of merit (see subsection 2.4 “CAD system evaluation”). The assessments of 

the binary classification has been carried out considering the AIDA public dataset [36]. 

This database is the only one to have both positive and negative cases, it consists of 

2080 images, composed as follows: 998 patients (261 males, 737 females), 1498 images 

show positive fluorescence intensity, 582 show negative intensity. 

In the training–tuning phase, in order to make the best use of the data, the leave-one-

specimen-out (LOSO) cross-validation technique avoids bias problems. This method 

consists of leaving out one specimen, rather than leaving out a single image (or a single 

cell) for the construction of the training set; images of the same specimen, belonging to 

the same patient, are similar (in terms of the average intensity and contrast) and 

introduce bias. The specimen left out is used for validation. A variant of the LOSO is 

the k-fold validation considering the specimens. A k = 5 have been used, so the DB was 

divided into 5 folds. With this strategy, 5 trainings and related tests are performed. The 

Figure 4.2 shows the concept of 5-fold cross-validation. Approximately at each iteration 

20% of the dataset was used for the test, the remaining 80% divided into training and 

validation to the extent of approximately 64% and 16% of the dataset.  

 

 
 

Figure 4.2: In 5-fold cross-validation the dataset is divided into 5 subsets. Sequentially 

a subset is used as a test, while the remaining 4 subsets are used as a training set. 

 

As discussed for the segmentation phase in Chapter 3, the observation of the spatial 

distribution of the three components of the RGB images allows to verify that the 



      

 

 
51 

 

information about the fluorescence intensity is mainly contained in the Green 

component, therefore the methods developed make use of this channel only. 

 

4.3 Intensity classification with traditional approach 
  

Considering the classic pipeline, the Hep-2 images classification in positive and 

negative fluorescence was conducted through the analysis of image preprocessing 

techniques both to reduce noise and to highlight certain features. Subsequently, the 

feature extraction phase considered both sets proposed in the literature and sets of 

features proposed ad-hoc.  

A first classification analysis with the features extracted from the whole image did not 

give the very performing results compared to using a segmentation and extracting the 

features from the ROIs.  The classification strategy, however, concerns the full slide and 

not the individual HEp-2 cells, the segmentation of the ROIs allows to exclude the 

background which is obviously not discriminating for assessing the positivity or 

negativity of the image. Considering all the ROIs, a significant number of features was 

extracted, and used by an SVM classifier (see appendix A) in order to associate the 

generic image with the positive / negative classes. SVM has been widely used in 

biomedical research and this is certainly linked to the results of the classification, but 

also to the advantage that this type of classifier depends on a few parameters. To select 

the best features and reduce the complexity of the classification problem, LDA (Linear 

Discriminant Analysis) technique for selecting the features was considered. 

The classifier training uses a set of images with the relative label, these undergo the pre-

processing and segmentation of the ROIs, then feature extraction and reduction, finally 

the tuning of the classifier parameters. Once the configuration that has optimized the 

results has been chosen, then the model built can be used on unknown images. In the 

test phase obviously only the subset of features selected in the training phase are 

extracted and these are submitted to the classifier. Figure 4.3 highlights the training 

phases of the classifier and the use phase of the tuned classifier. 

For the segmentation, in a preliminary phase both the segmentation based on traditional 

pipeline, and the one based on active contours were used (see chapter 3). The 

comparison led to the conclusion that a particularly accurate segmentation did not bring 

particular benefits. This can be explained by the fact that the classification on intensity 

concerns the rough appearance of the foreground (cells and their cytoplasm), not in 

particular the structure of a single cell. For this reason, in order to decrease the 

calculation time, the method consisting of anisotropic filtering, binarization with 

adaptive otsu and post processing with filling and removal of the cells present at the 

edges of the image was chosen. 
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Figure 4.3: In the first row, scheme of the classifier training process. In the second row, the operating 

scheme of a classification system for fluorescence intensity (after classifier training). 

 

As regards the pre-processing, it is emphasized that this does not necessarily coincide 

with that used for the segmentation phase, on the contrary a pre-processing that helps 

segmentation could be very different from the pre-processing used for the classification 

able to highlight peculiar characteristics. Therefore, the image is pre-processed, then the 

segmentation mask (obtained with anisotropic filtering) is applied to the pre-processed 

image. The features are then extracted on these ROIs. 

An intensive analysis of the pre-processing function combinations was conducted, 

aimed at maximizing training performance. In this case, only the techniques that operate 

on the spatial domain locally with the application of convolution masks were taken into 

consideration. The techniques that operate on the modification of the histogram were 

discarded after a preliminary analysis because the results worsened. For example, the 

simple contrast normalization can invalidate the features based on the intensity of the 

pixels. Table 4.1 summarizes the types of pre-processing functions used in the training. 

See Appendix B for more detailed descriptions. 

 

Pre-

processing 

Abbreviation Description 

Nothing Nt It does not apply any image processing. 

 

Gaussian filter Gs Applies convolution filtering with Gaussian kernel. 

 

Median filter Md Applies convolution filtering with Median kernel. 

 

Morphological 

filters 

Dl / Er / Op / 

Cl / Fs 

Applies a morphological operation of dilation / erosion / 

opening / closing / FAS (Filter Alternate Sequential) on 

the grayscale images with a chosen structuring element.  

 

Anisotropic 

diffusion filter 

An Applies the anisotropic diffusion filter which, based on 

the local image content, reduces image noise without 

blurring the edges. 

 

Bilateral filter Bl Applies the bilateral filter which, based on the local 

image content, reduces image noise without blurring the 

edges. 
 

Table 4.1:  Pre-processing functions analyzed in the training of intensity classification. 
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The characteristics chosen in this work for the classification of fluorescence intensity 

(the same features have also been used for the classification of the fluorescence patterns 

as will be discussed in the next chapter) belong to three families of characteristics based 

on the analysis of the intensity of pixels, ROI geometry and texture (see appendix C for 

the list of features). Table 4.2 lists the 27 features considered in this thesis. 

 

Features type Features 

number 

Features name 

Intensity  6 mean value, standard deviation, ratio of the standard 

deviation to the mean value, entropy, skewness, and 

kurtosis 

 

Shape  12 Area, perimeter, convex area, mean radius, standard 

deviation of radius, ratio of the standard deviation to the 

mean value, maximum radius, anisotropy, entropy of the 

contours gradient, fractal index, eccentricity, and circularity 

 

Texture 9 Contrast, convex deficiency, roundness, compactness, 

solidity, inertia of co-occurrence matrix, entropy of 

histogram of oriented gradients (HOG), entropy of 

histogram of amplitude gradients (HAG), and Euler’s 

number 

 
 

Table 4.2: List of features divided by type. 

 

Specifically, four different quantization intensity levels were analyzed. The 

quantizations explored were: 256, 128, 64, and 32 gray levels. The intensity 

quantization, as is known, affects the quality of the representation of the image. 

Reducing the number of bits to represent intensity, compresses the storage space, but 

causes the image quality to deteriorate. The different quantizations aim to highlight the 

different aspects of ROIs; those with more bits have more details, while those with 

fewer bits show the shapes more clearly. Overall, the twenty-seven features obtained at 

four different quantization levels, form a total of one hundred and eight features. 

Since not all features fit discrimination in positive and negative, feature reduction is 

performed to eliminate redundant features and features having poor discriminative 

power. The main idea of feature subset selection is to remove redundant or irrelevant 

features, as they can negatively influence the classification accuracy and lead to an 

unnecessary increase of computational cost. There are many methods proposed in the 

literature for the decrease in dimensionality, used in supervised or unsupervised 

classification problems, such as sequential forward search, random forest algorithm, 

ecc. Discriminant analysis algorithms have been used for dimensionality reduction and 

feature extraction in many applications of computer vision. Linear Discriminant 

Analysis (LDA) is probably the most well-known discriminant analysis technique. This 

method assumes that the C classes to which the data belong, are homoscedastic, that is, 

their underlying distributions are Gaussian with common variance and different means. 

The LDA method provides the (C-1)-dimensional subspace that maximizes the 
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between-class variance and minimizes the within-class variance, in any particular data 

set. In other words, it guarantees maximal class separability and, possibly, optimizes the 

accuracy in later classifications. 

The feature selection is then used by the SVM classifier with a Gaussian RBF (Radial 

Basic Function) kernel. The two parameters for tuning the RBF SVM are C and γ and 

were obtained with the “grid-search” method. A practical method to identify good 

parameters makes use of the exponentially growing sequences. The analyzed values for 

the C e γ were: 

 

C = 2-5, 2-4, … , 2-10         γ = 2-10, 2-9, … , 2-2          

 

the analyzed grid had sizes equal to 16 * 13, for a total of 208 grid-points.  

In order to identify the optimal functions and parameters an iterative method of 

configuration analysis was implemented, aimed at maximizing the AUC figure of merit. 

In Figure 4.4, the flow chart of the iterative method used is shown.  

The procedure is iterated on the various pre-processing functions listed in Table 4.1. 

After the pre-processing phase, the ROIs are extracted with the segmentation method set 

a priori. The features are extracted from the ROIs and then selected via LDA. Finally, 

the SVM is tuned through grid seach and the evaluation of the classification is 

performed with the AUC. 

 

 
Figure 4.4: Flow chart of the iterative method used for the optimization of  binary classification. 
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4.4 Intensity classification with CNNs 
  

Convolutional Neural Networks (CNNs), have demonstrated their effectiveness in the 

classification of biomedical images, so the efficacy of the CNN fine-tuning method 

applied to the classification of fluorescence intensity was investigated. For this purpose, 

four of the best known pre-trained networks were analyzed: AlexNet, SqueezeNet, 

ResNet18, GoogLeNet (see appendix A for details). Thanks to ImageNet competition, 

these CNNs have been trained on over a million images to model generic feature rich 

representations. In this work therefore, the classifying power of pre-trained CNN was 

investigated with the two scientifically recognized strategies: feature extraction in 

combination with linear SVM and fine-tuning with different training modalities. The 

advantage of the feature extraction strategy is the simplicity of implementation (no 

retraining of the pre-trained networks must be carried out), the disadvantage is usually 

relatively lower performances than those obtained from the pre-trained networks with 

the fine-tuning method 

For both strategies, a preliminary analysis of the intensity classification via CNN, 

showed much higher performance if the entire image is used compared to using 

segmented ROIs. Furthermore, no pre-processing analysis was necessary, as this does 

not bring any improvement since CNNs implicitly have different types of convolution. 

The analized pre-trained CNNs need RGB images in input, but since in the case of HEp-

2 images the main information is contained in the green channel, this has also been 

duplicated in the red and blue channel. In the latter case, the performance exceeds those 

using the original RGB image. 

Feature extraction can be the fastest way to use CNNs pre-trained. Since, as is known, 

the problem of finding the best set of discriminating features for a given classification 

problem is very complex, CNNs eliminate the need to identify good features used for 

image classification. In fact, it is possible to use the power of the pre-trained networks, 

without investing time and effort in training, to implement the extraction phase of the 

features. A CNN accepts an image directly as input and applies a hierarchy of different 

convolution kernels to it. Figure 4.5 shows the general scheme of a CNN. The first 

layers allow extraction of elementary visual features, such as oriented edges, end-points, 

and corners, and are gradually combined with subsequent layers in order to detect 

higher-order features.  

 

 

Figure 4.5: General scheme of the architecture of a Convolutional Neural Network. 
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The effectiveness of the feature extracted from the different CNNs has been used in 

order to associate the generic image with positive/negative classes. For each CNN 

different layers were analyzed as feature extractor, each of these vectors was then input 

to an SVM with linear kernel. As the size of the feature vector is large, it has chosen a 

linear SVM with only one parameter to tune: the penalty parameter “C” of the error 

term. The search for linear kernel parameter is carried out in the range [10-6, 10-2.5] 

where twenty equidistant values on a logarithmic scale were analyzed. The linear SVM 

training phase was carried out by extracting the features, for the various layers, from all 

the training images. The SVM parameter C has been optimized on the validation set. 

The validated model was subsequently used for the test. 

The classifier training uses a set of images with the relative label, these are processed in 

the CNNs and the feature vectors are extracted from different layers. The parameters of 

the classifier are set up for each vector. Once the configuration that has optimized the 

results has been chosen, then the model built can be used on unknown images.  

Fine-tuning is a transfer learning technique that focuses on storing knowledge gained 

while solving one problem and applying it to a different problem. This method consists 

in the possibility of using an Artificial Neural Network, pre-trained on a large database, 

through a further training phase with another database, even a small one. The output 

level is replaced with a new softmax output level, adjusting the number of classes to the 

classification problem being faced. The initial values of the weights used are those of 

the pre-trained network, except for the connections between the penultimate and last 

level whose weights are randomly initialized.  

New training iterations are performed to optimize the weights with respect to the 

peculiarities of the new dataset (it does not need to be large). Fine-tuning can be done in 

two ways. One way is to freeze the weights of some layers and carry out new training 

cycles to modify the weights of the remaining layers. The concept of fixing the weights 

of the layers is defined as freezing of the layers. Generally, they are the first layers to be 

frozen as the first layers capture low level features. The greater the number of frozen 

layers, the smaller the required fine-tuning effort in terms of time and resources. In this 

case, the weights of the first CNN levels are frozen and the remaining 

parameters/weights are trained. The other way is to have the architecture re-train 

entirely on the new database. This method is called training from scratch. It is intuitive 

that the greater the number of frozen layers the lower the computational cost of training, 

so training from scratch is the most expensive form of computational training. 

The pre-trained CNNs have a consolidated and optimized architecture for the database 

for which they were originally trained. Usually, the many values to be optimized are 

referred to as hyperparameter optimization. The process of optimizing the parameters 

during the training phase is certainly not trivial. Among the most recognized methods, 

there is the Stochastic Gradient Descent with Momentum (SGDM) that minimizes the 

loss function at each iteration considering the gradient of the loss function on the entire 

training dataset. The momentum term reduces the oscillations of the SGDM algorithm 

along the path of steepest descent towards the optimum. The momentum is responsible 

for reducing some noise and oscillations in the high curvature regions of the loss 
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function generated by the SGD. A variant of the SGD uses training subsets called mini-

batches, in this case a different mini-batch is used at each iteration. Simply put, the 

mini-batch specifies how many images to use in each iteration. The full pass of the 

training algorithm over the entire training set using mini-batches is one epoch. SGDM 

with mini-batch was used in this thesis. Another fundamental parameter of the training 

process is the learning rate that allows to set the learning speed of the training process 

with the level of improvement of the network weights. Conceptually, a high learning 

rate increases the speed of training execution by sacrificing the performance of the 

trained network, while a low learning rate will increase training times by optimizing the 

network weights with an increase in performance.. This parameter defines the level of 

adjustments of weight connections and network topology applied at each training cycle. 

A small learning rate permits a surgical fine-tune of the model to the training data, at the 

cost of a greater number of training cycles and longer processing times. A high learning 

rate permits the model to learn more quickly, but may sacrifice its accuracy caused by 

the lack of precision over the adjustments. This parameter is generally set to 0.01, but in 

some cases, it is interesting to be fine-tuned, especially when it is necessary to improve 

the runtime when using SGD. Table 4.3 shows the search space analyzed for the 

optimization of the parameters. 

 

Parameter Configurations 

Training mode  Stocastic Gradient Descent with Momentum with mini-batch 

Mini-batch size  {4, 8, 16, 32, 64, 128, 256} 

Learning Rate {0.01, 0.001, 0.0001} 

Momentum coefficient 0.9 

Epoch 
Max 10 epoch if freeze some layers max 30 epoch if training 

CNN from scratch 
 

Table 4.3: Hyperparameters grid search. 

 

The fine-tuning approach was analyzed for each CNN network, according to which, 

starting from the generic pre-trained CNN, the parameters are optimized by carrying out 

a training using the new database. In general, to implement fine-tuning, the last layer 

must be replaced to correctly define the number of classes to be discriminated. In this 

case the problem analyzed turns out to be binary. The four CNNs AlexNet, SqueezeNet, 

ResNet18 and GoogleNet, have been analyzed, training them both in scratch mode and 

with fine-tuning considering three different depths of freeze. Table 4.4 shows the three 

freeze levels chosen for each CNN. 

 

CNN name Total Layers Low Frozen Medium Frozen High Frozen 

AlexNet  25 9 16 19 

SqueezeNet  68 11 34 62 

ResNet18 72 12 52 67 

GoogleNet 144 11 110 139 
 

Table 4.4: Number of frozen layers at different levels and for the CNN analyzed. 
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As an example, Figure 4.6 shows the 25 layers that make up the AlexNet CNN with the 

graphic overlay of the three frozen levels chosen to perform the fine-tuning. The first 

level called low frozen indicates that the weights of the first nine layers of CNN 

AlexNet are fixed with the values of the network pre-trained on the original ImageNet 

database. The fine-tuning in this case consists in applying training cycles to CNN by 

changing the weights of the remaining layers at each iteration, i.e., from layer 10 to the 

last. In a very similar way to the first level, the medium frozen and high frozen levels 

were taken into consideration, which, respectively, fix the weights of the pre-trained 

AlexNet network up to layer 16 and layer 19; the fine-tuning in these two cases is 

carried out by modifying the weights of the last 9 layers and 6 layers. As described, the 

three selected fine-tuning levels are analyzed by iterating on the learning rate values 

{0.01, 0.001, 0.0001} and on the various batch sizes considering a maximum of 10 

epochs. 

 

 
Figure 4.6: Example diagram of the three levels of freezing of the weights referred to the AlexNet 

layers. 
 

4.5 Experimental results 
  

This section reports the results obtained for the classification of fluorescence intensity in 

the positive/negative classes of the HEp-2 images. The traditional binary classification 

strategy is pitted against recent pre-trained CNNs. 

The binary classification with traditional pipeline analyzed different pre-processing (see 

Table 4.1) in order to emphasize the feature extracted (see Table 4.2). The latter were 

chosen from three families (intensity, shape, texture) and considering four different 

quantization levels for a total of 108 features. The LDA technique allowed to select the 

most suitable features for the problem of discrimination between positive and negative 

HEp-2 images. The intensive analysis of the preprocessing functions was conducted, 

aimed at maximizing the AUC performance. Several different configurations have been 

evaluated since some functions can be used with different parameters (e.g. for the 

median filter the convolution mask, sized 5x5, 7x7, 9x9, 11x11 have been analyzed). 

Furthermore some pre-processing pairs were evaluated. Therefore, the process analyzed 

40 different pre-processing. The classification is done by SVM with a Gaussian kernel 

tuned by "grid-search" with 208 grid-points. The division of the images was carried out 
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with a 5-fold cross validation and for each of the 5 iterations, training, validation, and 

testing were performed. As mentioned, images belonging to a specific well cannot 

appear in training and in test for each iteration, in order to avoid bias problems.  

Four PC with a 3,4 GHz Intel i7 CPU were used for the analysis; the overall 

computation time is about 13 days. To optimize the execution time, the implementation 

was performed in C/C++ code with the IDE visual Studio 2010 and using high-

performance libraries such as OpenCV (http://opencv.org) and LibSVM 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/).  

In terms of performance, the system showed a sensitivity in the recognition of positive 

images equal to 92.9%, while with regard to the ability to identify the negatives, the 

system showed a specificity of 70.5%. The area under the curve value obtained was 

0.914 and the accuracy value obtained was 87%. These results are compared with the 

CNN-based strategy and with other methods developed in the literature in the Table 

4.10. The best performance with the traditional pipeline was obtained with the median 

filtering with 7x7 kernel among the forty preprocessing while the selected features were 

twelve and are listed in Table 4.5. The best SVM parameters are C = 64 and γ = 0.25. 

 

# Features name Quantization 

1 - 2 Entropy of HOG   256 & 128 

3 - 4 Ratio of the standard deviation to the mean value 64 & 32 

5 - 6 Entropy 256 & 128 

7 Compactness 256 

8 – 9 - 10 Mean value  128 & 64 & 32 

11 - 12 Inertia of co-occurrence matrix 256 & 128 
 

Table 4.5: List of selected features with indication of the quantization of gray levels. 

 

As expected, the selected feaures are mostly based on intensity, no feature is of the 

"shape" type precisely because the discrimination does not occur between the different 

patterns but between positives and negatives. 

Regarding the second method the classifying power of pre-trained CNNs was 

investigated with different training modalities; three levels of freezing weights and 

scratch. Additionally, the use of pre-trained CNNs layers to extract features coupled 

with a linear SVM classifier was also evaluated. The strategy used for the training-

validation-test chain was the 5-fold validation considering the specimens. In this way, as 

mentioned before, performance bias problems are avoided. To increase the number of 

training examples, data augmentation was applied. In particular, an increase for image 

rotation at angles of 20°was achieved; overall, a multiplication of the data by a factor of 

18 was obtained. Data augmentation is a very effective practice in deep learning 

optimization. The effect of this data augmentation was valued quantitatively in terms of 

performance. 

The training phase was optimized considering the AUC as a measure of merit. HEp-2 

images have been resized to 227 x 227 (for AlexNet and SqueezeNet networks) and 224 

x 224 (for GoogLeNet and ResNet18 networks) to be provided as input to CNN; no 



      

 

 
60 

 

preprocessing has been applied to the image. CNN networks want a 3-channel image 

input, for this reason, it has evaluated the results using both RGB IIF images and only 

the green channel and replicating it on R and B channels. The results favored the second 

choice, in this configuration all the analyses reported below were carried out.  

The training that provided the best performances required a calculation time of 

approximately 28 h for all 5-folds (using a 3.4 GHz Intel i7 CPU). The implementation 

for both CNNs and linear SVM) was performed in Matlab 2019 and Matlab 2020 

(MathWorks, Natick, Massachusetts, USA). Table 4.6 shows the calculation times, in 

terms of intervals obtained by varying the configuration hyperparameters (mini-batch, 

learning rate, epoch, etc.) necessary for the training of the various CNNs. The 

configurations in which the CNNs were analyzed as feature extractors coupled with the 

SVM classifier required training times within the interval (0.57–13.6) hours. 

 

 Training time in hours (min – max) 

CNN name High frozen Medium frozen Low frozen Scratch 
AlexNet 

 
(3.42 – 9.57) (4.33 – 12.58) (4.69 – 17.24) (5.65 – 26.3) 

SqueezeNet 

 
(6.26 – 10.22) (7.43 – 14.15) (11.93 – 27.96) (12.56 – 36.57) 

ResNet18 

 
(4.28 – 9.94) (4.51 – 10.51) (4.91 – 11.52) (5.86 – 18.12) 

GoogleNet 

 
(4.02 – 8.26) (4.13 – 16.32) (4.27 – 18.54) (5.37 – 24.4) 

 

Table 4.6: CNNs trainings times. 

 

Table 4.7 shows the best results obtained, in terms of AUC, from the four CNNs 

analyzed. The results are shown, considering the three levels of freeze of the pre-trained 

networks’ weights and considering the retraining from scratch. The last two columns of 

Table 4.7 show the results obtained by performing a data augmentation, respectively, 

with the low frozen and with the scratch. 

 

CNN name High 

frozen 

Medium 

frozen 

Low 

frozen 

Scratch Low frozen + 

Data Augm. 

Scratch + 

Data Augm. 
AlexNet 

 
97.20% 97.93% 97.82% 98.00% 98.08% 98.02% 

SqueezeNet 

 
97.96% 98.39% 98.55% 98.38% 98.63% 98.46% 

ResNet18 

 
97.27% 97.88% 98.11% 98.24% 98.33% 98.32% 

GoogleNet 

 
96.30% 96.78% 98.00% 97.96% 98.37% 98.20% 

 

Table 4.7: Best AUC results of fine-tuning of pre-trained CNNs. 

 

As expected, the training with less freezing allows a better adaptation of the CNN to the 

classification problem. As for the data augmentation procedure, the results show that the 

application of this procedure leads, in all cases, to a slight improvement in performance. 

For each of the four CNN networks, Table 4.8 shows the parametric configuration that 

obtained the best result. Figure 4.7 shows the ROC curve relating to the best 
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configuration obtained, that is SqueezeNet with low frozen level and with data 

augmentation. 

 

CNN name AUC Learning rate Mini-batch Epoch 

AlexNet 98.08% 0.001 16 4 

SqueezeNet 98.63% 0.001 16 6 

ResNet18 98.33% 0.001 16 8 

GoogleNet 98.37% 0.01 32 7 
 

Table 4.8: Best Hyperparameters. 

 
Figure 4.7: ROC curve obtained from the best fine-tuning configuration. 

 

The method that uses the pre-trained CNNs to extract features and a linear SVM were 

evaluated. The linear SVM training phase was carried out by extracting the features, for 

the various layers, from all the training images. The SVM parameter C has been 

optimized on the validation set. The validated model was subsequently used for the test. 

Table 4.9 shows the best results obtained, in terms of AUC, for each pre-trained 

network analyzed and reports the layers that provided the best results. 

 

CNN name AUC Best Layers 

AlexNet 95.52% ‘Conv 5’ 

SqueezeNet 95.50% ‘Pool 10’ 

ResNet18 97.80% ‘Fc 1000’ 

GoogleNet 95.76% ‘Inception 3a output’ 
 

Table 4.9: Best AUC results obtained by CNN used as feature extractors. 
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The best result obtained with the CNNs used as a feature extractor coupled to the SVM 

classifier reached an AUC equal to 97.8%. This result was obtained with the ResNet18 

CNN. The SVM parameter C associated with the best configuration was C = 0.0298. 

The results in Table 4.8, when compared with those of Table 4.6, show that, with the 

same CNN used, the fine-tuning method achieves better performances than the other 

method. Moreover, the results obtained with the various strategies were compared with 

other state-of-the-art works in Table 4.10. 

 

Method Images Dataset Accuracy AUC 

Iannello [63] 914 89.5% - 

Bennamar [36] 1006 85.5% - 

Zhou [64] 1290 98.7% - 

Traditional strategy 

proposed 
2080 87,0% 91,4% 

CNN as feature extractor 

(best configuration) 
2080 92.5% 97.8% 

CNN with fine tuning  

(best configuration) 
2080 93.9% 98.6% 

 

Table 4.10: Performance comparison for HEp-2 intensity classification. 

 

Unfortunately, not all of the authors of these works in Table 4.9 calculated the AUC 

value. While, from the comparison in accuracy it is verified that the pre-trained CNN 

fine-tuning method proposed turns out to be the second best. However, it should be 

noted that while Zhou et al. [64] aimed to maximize accuracy, the AUC was maximized 

in this thesis. For a more direct comparison with other methods that based their 

optimization on accuracy, it repeated the analysis using the latter index as a figure of 

merit, obtaining for the best configuration (also, this time with the SqueezeNet 

network), the result of 94.32% accuracy and an AUC equal to 98.34%. It should also be 

noted that the AIDA database used in this work is varied, both in terms of patterns 

contained (more than 20, both in single and multiple forms) and in terms of instruments 

and methods of acquisition (manufacturers of kits and instruments employed were 

different site-to-site); this makes it particularly difficult to classify. It must be said that 

the AIDA database used here is public while the other authors use a private database, so 

a more direct comparison on the same data is not possible.  

The effectiveness of the fine-tuning technique was verified by comparing the 

performance of the same CNNs used as feature extractors (and coupled to SVM-type 

classifiers). With the same CNN used, fine-tuning has always given better results than 

the other method. The best performing network for the classification of fluorescence 

intensity in HEp-2 images was SqueezeNet. 

It should be noted that the CNNs tested in the various configurations obtained 

performances all contained in a very small range (about 3% of AUC). This denotes very 

similar classifying abilities (at least on the specific problem) of the CNN analyzed. 
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Chapter 5 - ANA Pattern recognition 
 

This Chapter presents the multiclass classification of the different staining patterns in 

HEp-2 images. The multiclass classification has been carried out on the positive Hep-2 

images using public HEp-2 databases reported by expert personnel. The different 

methods developed are compared and then the best results are presented. 

5.1 Introduction and related work 
 

The second step in IIF image analysis is represented by the classification of the staining 

patterns (see subsection 1.2 “ANA pattern classification tree”). This second 

classification is multiclass type since different staining patterns can be found.  

In accordance with what was presented in the previous chapter, both the traditional 

classification chain (with the analysis of preprocessing techniques, the extraction and 

selection of features, and supervised classification) and the CNNs were compared. In 

addition, for this multiclass classification, the aggregation techniques of multiple 

classifiers were also analyzed. The figure of merit used to evaluate the result was the 

Mean Class Accuracy. The results were analyzed on three available public databases 

and compared with the works published by the scientific community. Figure 5.1 shows 

some examples of staining patterns. 

 

 
Figure 5.1: IIF images with different staining patterns (from left to right and from up to down: 

homogeneous, speckled, nucleolar, centromere, nuclear dots and nuclear membrane). 
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The problem of pattern classification attracted major attention among researchers with 

the contests ICPR 2012 [31] and I3A contest [34][35]. Ensafi et al [65] proposed a 

classification method where the SIFT and SURF features are extracted as the input 

features to learn a dictionary followed by Spatial Pyramid Matching (SPM) to provide 

the sparse representation of the input cell images. Then a Support Vector Machine 

(SVM) has been trained to classify the test images.  

Manivann et al [66] presented a system to recognize such patterns, at cellular and 

specimen levels, in images of HEp-2 cells. The authors extracted sets of local features 

that are aggregated through sparse encoding. They used a pyramidal decomposition of 

the cell that consists in the central part and in the crown that contains the cell 

membrane. Linear SVMs are the classifiers used on the learned dictionary; specifically, 

they used 4 SVM the first trained on the orientation of the original images and the 

remaining three on the images rotated 90, 180 and 270 degrees respectively. Mean class 

accuracies for cell classification obtained on used test data sets were 87.1%. These were 

the highest achieved in the competition hosted by ICPR2014.  

Nosaka et al [67] proposed Co-occurrence of Adjacent Local Binary Patterns 

(CoALBP) to extract textural features. Using linear Support Vector Machine (SVM), 

their method won the first prize in the contest ICPR2012. 

One of the first researchers to use CNN in the classification of HEp-2 images was GAO 

[68]. The authors used a CNN with data augmentation. In particular, the network used 

had eight layers. Among them, the first six layers are convolutional layers alternated 

with pooling layers, and the remaining two are fully-connected layers for classification. 

They compared the method with traditional methods such as BoF and FV fisher vector. 

The DB used for the test is I3A Task 1 and MIVIA. The authors obtained 96.76% of 

mean class accuracy and 97.24% of accuracy.  

Also, in the work of Li et al [69] the authors proposed CNNs for the solution of the 

classification problem. The method consists in the use of a CNN to construct a 

Histogram Pattern and through this a linear SVM is trained. CNN used was composed 

of 10 layers of which the first seven are convolutional layers while the last is a softamax 

layer for classification. The system has been trained and tested on data from the i3A 

Task-2 public database. In their work the authors showed that the strategy that uses 

SVM outperforms that of cell prevalence. Oraibi et al [70] used the well-known pre-

trained CNN VGG-19 network to extract features and combined them with local 

features such as RIC-LBP (Rotation Invariant Cooccurence Local Binary Pattern) and 

JML (Joint Motif Labels). The combination of features was used to train RF classifiers 

(random forest). 

Xu et al. [71] presented a method based on linear local distance coding in which, 

starting from local features, a local distance vector transformation was used by 

Euclidean distance. Finally, linear coding and max pooling were used, both on the local 

distance vector and on the local features. The concatenations were provided as examples 

to a linear SVM. 
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5.2 The methods implemented 
 

The classification of Hep-2 patterns is faced with the classic classification chain and 

with the use of CNNs. In both cases, the classification is performed on the cells and not 

on the entire image. The whole image approach was experimentally tried with CNNs, 

but the results were unsatisfactory compared to the classification based on single cells. 

The cells are extracted thanks to the segmentation process seen in Chapter 3. In the case 

of the I3A task1 database, the entire images are not provided but only the boundary 

boxes of the cells. The classification of the entire image is therefore carried out by 

prevalence of the classified cells. 

In line with the scientific community, the classification is conducted on six or seven 

patterns and evaluated with the Mean Class Accuracy (see subsection 2.4 “CAD system 

evaluation”) using the public databases described in Chapter 1.  

The leave-one-specimen-out (LOSO) cell cross-validation technique is used to exploit 

the highest possible number of patterns during the training phase, without invalidate the 

results. The method consists in leaving out all cells belonging to the same specimen, 

rather than leaving out a single cell for the construction of the training set; cells of the 

same specimen are similar in terms of the average intensity and contrast, and introduce 

bias. 

The classification of each segmented cell is analyzed with the traditional pipeline based 

on five phases: 

1 Image pre-processing; 

2 feature extraction; 

3 feature reduction; 

4 classifier training. 

 

Similarly to the analysis conducted in the previous Chapter, the traditional process is 

compared with the use of recent CNNs. In particular, the method with CNNs uses the 

most popular "pre-trained" CNNs such as "AlexNet", "Squeezenet", "Resnet18", 

"Googlenet” applying the feature extraction strategy from the pre-trained CNN layers. 

In this way the classification pipeline is made up of two phases: 

1 feature extraction from CNN layer; 

2 classifier training. 

 

The fine-tuning strategy is not explored as there is not enough data for some classes. 

The green component of the RGB is the one that makes the most sense to use, in the 

case of pre-trained CNNs, the green channel is duplicated in the R and B channels. 

The conventional way to deal with a multi-class problem is to decompose an N-class 

problem into a series of two-class problems: binary approach [72][73]. The two 

approaches commonly used are the One-Against-One (OAO) and One-Against-All 

(OAA) techniques. Figures 5.2 and 5.3 show the diagrams of the two approaches OAA 

and OAO. The OAA approach represents the earliest and most commonly used 

multiclass approach and involves the division of an N class dataset into N two-class 
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cases; OAA uses N classifiers with the i-th one separating class i from all the remaining 

classes. In order to assign a class to a new sample, it is necessary to evaluate the output 

for all binary classifiers and, usually, choosing the pattern relative to the classifier that 

returned the highest classification value. The problem with the participating to the 

decision is assumed to be equally reliable, which is rarely the case. The OAO approach 

on the other hand involves constructing a classifier for each pair of classes resulting in 

N(N-1)/2 classifier; the OAO approach is more computationally intensive. When 

applied to a test point, each classification gives one vote to the winning class and the 

point is labeled with the class having most votes. One drawback of OAO method, 

however, arises is that when the results from the multiple classifiers are counted for the 

final decision without considering the competence of the classifiers. 

To overcome the limitation of OAA and OAO schemes, a third approach concerns the 

use of a K-Nearest-Neighbords (KNN) classifier that exploits all the output of binary 

classifiers developed in OAA and OAO. In KNN classification, an object is classified 

by a majority vote of its neighbors, with the object being assigned to the most voted 

class among its K nearest neighbors (K is a positive integer). Obviously the K parameter 

can not be greater than the number of examples M of a class. The best choice of K 

depends upon the data; generally, larger values of K reduce the effect of noise on the 

classification, but make boundaries between classes less distinct. Usually the order of 

magnitude to be assigned to K is M1/2.  

 
Figure 5.2: Diagram of the OAA approach classification with N binary classifiers. This approach 

associates the pattern with the class whose classifier returned the highest value. 

 
Figure 5.3: Diagram of the OAO approach classification with N(N-1)/2 binary classifiers. This 

approach associates the pattern with the class that got the most votes. 
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Figures 5.4 shows the diagrams of the KNN approach. 

 

 
Figure 5.4: Diagram of the KNN classifier using the output of both the OAA and OAO approaches.  

 

Summarize, three different strategies for multiclass classification are implemented and 

compared: 

1 One-Against-All (OAA); 

2 One-Against-One (OAO); 

3 K-Nearest-Neighbords (KNN) classifier using OAA and OAO schemes. 

 

5.3 Pattern classification with traditional approach 
 

The classification of six or seven Hep-2 staining patterns is faced with the 

decomposition into six or seven dichotomous classifiers in the case of the OAA 

strategy, and in fifteen or twenty-one binary classifiers in OAO. For each of these 

binary classifiers, in a similar way to the intensity classification seen in section (4.3), 

the traditional classification chain is implemented. All set of processes consists of pre-

processing, segmentation of the ROIs (except for I3A task1 dataset), feature extraction 

and reduction, and classification.  

The segmentation process is the one implemented with the Hough transform and active 

countourn. In the case of the I3A task1 database, the segmentation is not necessary as 

the cells are provided via boundary box. 

The preprocessing phase in a pattern recognition task is very important, and surely 

affects the next phase of feature extraction. In this thesis the preprocessing phase has 

been differentiated for each dichotomous classifier implemented. For this purpose, 

starting from a set of functions, analyzed and reported in Table 5.1, many combinations 

of different types of pre-processing have been analysed. The pre-processing functions 

analyzed are the same as those proposed in the automatic search of the segmentation 

seen in paragraph 3.3. Sixty different pre-processing have been evaluated since some 
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functions can be used with different parameters (e.g. for the median filter the 

convolution mask, sized 3x3, 5x5 and 7x7 have been analyzed) and some pre-

processing pairs were evaluated. 

 

Pre-

processing 

Abbreviation Description 

Nothing Nt It does not apply any image processing. 

Contrast 

normalization 

Cn Operate on histogram, linearly remapping the intensity 

values so that 1% of data is saturated at low and high 

intensities. 

Equalization Eq Operate on histogram, remapping the intensity values to 

increase the global contrast by distributing the pixel 

values uniformly over the entire range of possible 

values. 

CLAHE Ch Contrast Limited Adaptive Histogram Equalization, 

operate on small regions histograms rather than on the 

entire image, each processed region is combined with 

adjacents ones using bilinear interpolation. 

Gaussian filter Gs Applies convolution filtering with Gaussian kernel. 

Median filter Md Applies convolution filtering with Median kernel. 

Morphological 

filters 

Dl / Er / Op / 

Cl / Fs 

Applies a morphological operation of dilation / erosion / 

opening / closing / FAS (Filter Alternate Sequential) on 

the grayscale images with a chosen structuring element.  

Anisotropic 

diffusion filter 

An Applies the anisotropic diffusion filter which, based on 

the local image content, reduces image noise without 

blurring the edges. 

Bilateral filter Bl Applies the bilateral filter which, based on the local 

image content, reduces image noise without blurring the 

edges. 
 

Table 5.1:  Preprocessing functions analyzed. 

 

The feature extracted were chosen from intensity, shape and texture families (see 

appendix C for the features list) and considering four different quantization levels for a 

total of 108 features. This feature vector is the same as described in section 4.3 obtained 

with intensity quantizations at 256, 128, 64 and 32 gray levels. Table 5.2 lists the 27 

features divided by category. To reduce the dimesion of features vector and to choose 

the subset of features that most discriminate certain patterns, the Linear Discriminant 

Analysis (LDA) is used. In fact by analyzing the cells patterns, it appears clearly that 

differences between classes are mainly based on the presence and distribution of 

bright/dark structures. Therefore, some feature sets may be more discriminating for 

some patterns than others. 

The subset of selected features is then used with the SVM classifier with Gaussian 

kernel. The two parameters for tuning the RBF SVM are C and γ and were obtained 

with the “grid-search” method. The analyzed values for the C e γ were: 

 

C = 2-5, 2-4, … , 2-10         γ = 2-10, 2-9, … , 2-2          

 

the analyzed grid had sizes equal to 16 * 13, for a total of 208 grid-points.  
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Features type Features 

number 

Features name 

Intensity  6 mean value, standard deviation, ratio of the standard 

deviation to the mean value, entropy, skewness, and 

kurtosis 

 

Shape  12 Area, perimeter, convex area, mean radius, standard 

deviation of radius, ratio of the standard deviation to the 

mean value, maximum radius, anisotropy, entropy of the 

contours gradient, fractal index, eccentricity, and circularity 

 

Texture 9 Contrast, convex deficiency, roundness, compactness, 

solidity, inertia of co-occurrence matrix, entropy of 

histogram of oriented gradients (HOG), entropy of 

histogram of amplitude gradients (HAG), and Euler’s 

number 

 
 

Table 5.2: List of features divided by type. 

 

For all pipelines (six or seven for OAA and fifteen or twenty-one for OAO) of binary 

classification, the choice of pre-processing, features and SVM parameters was 

performed automatically, using the AUC as a figure of merit. 

The basic intuition behind this decomposition approach is that, instead of using a single 

pre-processing and a set of features to discriminate each class, it is better to combine a 

set of different and complementary processes. Each pipeline can have a pre-processing 

and a set of specialized features different from the other pipelines. 

Once all the binary classification chains are trained, the generic ROI of the specimen to 

be tested is simultaneously processed by six/seven (OAA) or fifteen/twenty-one (OAO) 

classification pipeline obtaining as many outputs. Figure 5.5 shows the flow of 

operation in OAA strategies with six patterns to classify. Each pipeline can conceptually 

have a different pre-processing, a different set of features and different values of the 

SVM parameters from the other pipelines. 

 

 
Figure 5.5: Flow of operations in OAA strategie with six patterns to classify. 
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5.4 Pattern classification with CNNs 
 

In this work, the classification of Hep-2 cells is also addressed with the use of pre-

trained CNNs (see appendix A for details). It has been demonstrated that pre-trained 

CNN architectures can play an important role as feature extractors and allow high 

classification performance. As explained in Chapter 4, the classification of fluorescence 

intensity using CNNs as feature extractors has achieved excellent results and the 

difference with the fine-tuning strategy in terms of AUC was just under one percentage 

point.  

The effectiveness of feature extraction both from the segmented cells (internal) and 

from the boundary boxes containing the cells was evaluated. Performance improvement 

in using the segmentation mask rather than the bounding box has been verified. 

In oder to increase the number of training examples, a data augmentation was made. In 

particular, an increase for image rotation at angles of 20° was achieved; overall, a 

multiplication of the data by a factor of 18 was obtained. 

In order to reduce the intensity variability of the ROIs a contrast normalization was 

performed. Then, the sub-images containing the cells have been appropriately rescaled 

to acquire the correct dimensionality for the network entrance (227 x 227 for AlexNet 

and SqueezeNet CNNs and 224 x 224 for GoogLeNet and ResNet18). The vector of 

feature extracted from the pre-trained CNN are used in the training of linear support 

vector machine. It has chosen linear SVM, that has only one parameter to tune, because 

the size of the feature vector is large. The search for the penalty parameter “C” of the 

error term is carried out in the range [10-6, 10-2.5] where twenty equidistant values on a 

logarithmic scale were analyzed.  

Different layers of the CNNs have been evaluated as feature extractors and the best 

configuration has been identified using AUC figure of merit for each binary classifier.  

In accordance with the OAA and OAO strategy six or seven and fifteen or twenty-one 

binary SVMs are trained with the feature extracted from the different layers (belonging 

to the four pre-trained CNNs). 

Figure 5.6 shows the flow of training adopted for cellular classification in the 

explanatory case OAA. The generic segmented cell is decomposed by the multilayer 

neural network to obtain the features used as inputs of the six linear SVMs. Figure 5.7 

highlights the iterative strategy of the training-tuning phase. The procedure is iterated 

on the various CNNs and related layers, then on the all binary classifiers derived from 

strategies OAA and OAO. Finally, the SVM is tuned through grid seach and the 

evaluation of the classification is performed with the AUC. 

Once all the binary classification chains are trained, the generic ROI of the specimen to 

be tested is simultaneously processed by six/seven (OAA) or fifteen/twenty-one (OAO) 

classification pipeline obtaining as many outputs. Each pipeline can conceptually have a 

different set of features (from different layers or pre-trained CNN) and different values 

of the SVM parameters from the other pipelines. 
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Figure 5.6: Flow of operations in OAA strategie with six patterns to classify. 

 

 

Figure 5.7: Flow chart of the iterative method used for the training-tuning phase in CNN feature 

extraction strategie. 
 

5.5 Experimental results 
 

In this section the experimental results of the discussed approaches for the automatic 

classification of staining patterns in Hep-2 images are presented. The image 
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classification is achieved by means of the cell classification. The rate of presence of the 

individual patterns, within the image, is evaluated and the generic image is associated 

with the pattern that has a higher rate. The segmentation applied is the one based on 

active contours discussed in Chapter 3. The LOSO procedure was used in this work. In 

the LOSO strategy, each time all cell images (and the relative images obtained by data 

augmentation) from one of the specimens available are used for testing, the rest are used 

for training. Since cells belonging to the same image/specimen have a very similar 

informative contribution, in order not to distort the performance result on the test, if 

cells of an image are used in training, no cell of the same image should be present in the 

test. The multi-pattern classification has been faced with the decomposition in 

dichotomous processes and in particular with the OAA and OAO strategies. A third 

approach concerns the use of a K-NN classifier that has both the outputs of the OAA 

and OAO as inputs.  

All binary classifiers are training with two approaches. The first approach mirrors the 

classical supervised classification chain in which a pre-processing and a set of features 

is searched and finally the classifier is tuned. Each classification pipeline is optimized 

by looking for the best pre-processing (among sixty taken into consideration), selecting 

a sub-set of features (among one hundred and eight extracted) with the LDA features 

selection, and tuning an SVM with RBF kernel with the grid-search. The optimization 

takes place using the AUC as a figure of merit and the final result of all the pipelines is 

a differentiated system both in terms of pre-processing and features for each binary 

classifiers (resulting from the OAA and OAO strategies). 

The second approach investigated the use of pre-trained CNNs layers to extract features 

coupled with a linear SVM classifier. Here too, the optimization is carried out for each 

binary process by maximizing the AUC and the result is a differentiated system in terms 

of set of features (chosen from different layers of different CNNs) for each binary 

classifier (resulting from the OAA and OAO strategies). 

Four PC with a 3,4 GHz Intel i7 CPU were used for the analysis. In the first approach, 

to optimize the execution time, the implementation was performed in C/C++ code with 

the IDE visual Studio 2010 and using high-performance libraries such as OpenCV 

(http://opencv.org) and LibSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/). In the 

second, the implementation for both CNNs and linear SVM was performed in Matlab 

2019 and Matlab 2020 (MathWorks, Natick, Massachusetts, USA). Table 5.3 

summarizes the data of image database used.  

Regarding the use of the AIDA database, a subset of HEp-2 images was taken, 

considering six patterns: homogeneous, speackled, centromere, nucleolar, nuclear dots 

and nuclear membrane. The total number of images in the sub-set are 220 from 71 

wells. The patterns chosen are in line with those proposed in the other databases, 

furthermore the nuclear dots pattern has been taken into consideration to complete the 

list of patterns of relevant nuclear types (see subsection 1.2). 
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Database 
List of patterns Pattern 

number 

Image 

number 

Well 

number 

OAA 

classifiers 

OAO 

classifiers 

MIVIA 

{homogeneous, coarse 
speckled, fine speckled, 

centromere, nucleolar, 

cytoplasmic} 

6 28 28 6 15 

I3A task1 

{homogeneous, 

speckled, centromere, 

nucleolar, nuclear 
membrane, golgi} 

6 83 83 6 15 

I3A task2 

{homogeneous, 

speckled, centromere, 

nucleolar, nuclear 
membrane, golgi, mitotic 

spindle} 

7 1008 252 7 21 

AIDA 

(sub-set) 

{homogeneous, 
speckled, centromere, 

nucleolar, nuclear dots, 

nuclear membrane} 

6 220 71 6 15 

 

Table 5.3:  Salient data from public databases. 

 

The sixty pre-processing and related segmentations are conducted for the MIVIA 

database, I3A task2 and AIDA (sub-set). The results of these sixty operations are the 

ROI extracted and saved with the boudary box. In the case of the I3A task1 dataset it is 

not necessary to perform the segmentation because the dataset is made up directly of the 

ROIs in the form of boundary boxes. In this case, a cell segmentation mask is applied to 

segment the cell with respect to the boudary box. 

The average segmentation time for MIVIA, AIDA and I3A task2 images is just over 2 

minutes, while the average pre-processing time for an image is about 3-4 seconds. 

This involves an overall time to extract the ROIs: 

 

computation time to extract all ROIs = 1256 (28 + 220 + 1008) images * 2,2 min. = 

                                                           =~ 2763 min. =~ 46 hours 

 

For all sixty pre-processing each database is subjected to the LOSO strategy to train and 

test the twenty-one/twenty-eight classification pipelines (six or seven OAA and fifteen 

or twenty-one OAO). The time to search for the parameters of the SVM with the grid 

search (208 points) is more expensive for the binary classifiers of the OAA method than 

those of the OAO method because the number of examples are greater considering that 

each pattern must be discriminated with all the others. But in the OAO case the binary 

classifiers to train are many more. With the LOSO method, for each of the sixty pre-

processing, 28 training cycles are performed for the MIVIA database, 71 in the AIDA 

case, 83 for I3A task1 and 252 for I3A task2. Calculation times are shown in Table 5. 4, 

the optimization flow with the LOSO strategy, considering the sixty pre-processing, the 

LDA features selection and the SVM tuning with grid search is very expensive 

especially for the two databases with the highest number of images. In the case of I3A 

task2, to lower the computational calculation in each of the 252 training cycles only one 

image of the 4 available in the well was taken into consideration (the 252 tests instead 

consider the 4 images of the well). 
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Database 
LOSO training time for traditional pipeline approach (in days) 

Average time Min time Max time 

MIVIA 2 2 3 

I3A task1 11 6 15 

I3A task2 79 52 83 

AIDA  

(sub-set) 
23 18 27 

 

Table 5.4: Computation time for the traditional pipeline training with LOSO strategy. 

 

The computation time for the second method based on linear SVM and feature 

extraction from pre-trained CNNs layers is shows in Table 5.5. The considerations 

already made for the first method they are also valid for the second, except that the 

layers of the four pre-trained CNNs are iterated instead of the preprocessing iterations. 

The iterations are in this case fourty, having chosen ten layers for each CNNs. The 

reduction of the computation time is mainly due to the fact that the chosen classifier is a 

linear SVM in this case with only the C parametron to search. SVM with a Gaussian 

kernel would cause the computation time to become excessive. 

 

Database 
LOSO training time for pipeline with CNN layer as feature extractor (in days) 

Average time Min time Max time 

MIVIA 1 0.5 2 

I3A task1 4 3 6 

I3A task2 14 12 17 

AIDA  

(sub-set) 
9 8 11 

 

Table 5.5: Computation time for the pipeline training with CNN layer as feature extractor and LOSO 

strategy. 
 

Parallelization is done explicitly by running the twenty-one or twenty-eight 

classification pipelines divided for the 4 PCs. 

For each test resulting from the LOSO strategy, each cell is classified with the three 

strategies OAA, OAO e KNN. In the OAA scheme the classifier that produced the 

maximum output value is identified and the final association of the generic ROI is 

assigned to the relative class. The OAO approach chooses the most voted pattern. While 

the classifier KNN has been chosen, as it allows a simple multi-class implementation; 

this classifier, using examples belonging to the classes to be analyzed, associates the 

generic element with the class having the most examples close to it. The concept is to 

use all the outputs produced by the OAA and OAO strategies and transform them into a 

new feature vector for the KNN. 
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Tables 5.6 and 5.7 show the comparative performance obtained in terms of ACC and 

MCA. The first Table refers to the results obtained with the traditional process and the 

results are divided for each database analyzed for the three strategies OAA, OAO and 

KNN. Despite the high number of classificators used, the OAO strategy always has a 

lower performance than the OAA and KNN strategies. Another important observation is 

that the OAA method generally achieves the highest performances in terms of ACC, 

while the KNN method obtains the best performances in terms of MCA on three of four 

databases. This is an important point, in fact the ACC can be affected by the distribution 

of the various patterns while the MCA is more stable as it calculates the accuracy of 

each pattern and averages it. In this way, even if the classes are numerically unbalanced, 

the MCA gives a good estimate considering all the classes involved. Therefore, the 

method with the KNN is to be preferred over the OAA method. It must be said that the 

difference between the two OAA and KNN methods is however contained within a few 

percentage points. The database on which the OAA method has the highest performance 

is MIVIA, this database is the one with the fewest images available and therefore a 

mistake in the classification of an image results in a considerable leap in performance. 

 

Database 
Performance at image level for traditional pipeline approach (ACC / MCA) 

OAA OAO KNN 

MIVIA 82.1% / 82.8% 78.6% / 77.2% 78.6% / 79.4% 

I3A task1 80.4% / 78.9% 78.2% / 77.1% 79.1% / 79.5% 

I3A task2 73.8% / 70.5% 71.5% / 67.4% 79.4% / 71.9% 

AIDA  

(sub-set) 
72.4% / 71.8% 69.4% / 67.2% 71.2% / 74.7% 

 

Table 5.6: Comparative performance at image level for traditional pipeline approach for OAA, OAO 

and KNN strategies. 

 

Database 
Performance at image level for CNN layer as feature extractor approach (ACC / MCA) 

OAA OAO KNN 

MIVIA 85.7% / 86.4% 82.1% / 82.2% 89.3% / 89.7% 

I3A task1 94.0% / 91.5% 92.8% / 87.5% 96.4% / 93.8%  

I3A task2 85.0% / 82.4% 85.4% / 78.3% 86.1% / 80.9% 

AIDA  

(sub-set) 
89.1% / 88.3% 87.7% / 86.6% 90.5% / 90.2% 

 

Table 5.7:  Comparative performance at image level for traditional pipeline approach for OAA, OAO 

and KNN strategies. 
 

Considering the second method based on the extraction of features through the layers of 

pre-trained CNNs, it can be noted that the OAO method did not achieve good results 

compared to the OAA and KNN strategies. It is the KNN method that almost alway 
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achieves the greatest results in terms of ACC than MCA. Certainly to note is the high 

difference between ACC and MCA which is found in the I3A task2 database in both 

Table 5.6 and 5.7. This is due to one of the seven patterns to be classified: the mitotic 

pattern. This pattern is characterized by a fluorescence in the cells in mitosis and not in 

the other phases of the cell. Therefore, only a small percentage of all cells in an image 

are in the mitotic phase. This reason does not allow to identify a good classifier with the 

classification at the cell level. For this pattern, an approach based on the identification 

of cells in mitosis or an approach based on large regions of a Hep-2 image should be 

developed. 

The comparison between the traditional method and the method based on the extraction 

of features with CNN is very much in favor of the second method, with performances 

that go beyond 10% improvement. 

Table 5.8 shows the confusion matrices referred to each database, taking into 

consideration the best classification strategy (CNN as feature extractor and KNN). 

 

Database Confusion matrix  ACC MCA 

MIVIA 

 HO FS CS CE NU CY  

HO 4 1 0 0 0 0 80% 

FS 0 4 0 0 0 0 100% 

CS 0 0 5 0 0 0 100% 

CE 0 0 1 5 0 0 83,3% 

NU 0 0 0 0 4 0 100% 

CY 1 0 0 0 0 3 75% 
 

89.3% 89.7% 

I3A task1 

 HO SP NU CE GO ME  

HO 16 0 0 0 0 0 100% 

SP 0 15 0 1 0 0 93.7% 

NU 0 0 16 0 0 0 100% 

CE 0 1 0 15 0 0 93.7% 

GO 0 0 0 0 3 1 75% 

ME 0 0 0 0 0 15 100% 
 

96.4% 93.8% 

I3A task2 

 HO SP NU CE GO ME MI  

HO 47 2 0 0 0 2 2 88.7% 

SP 2 46 0 2 0 0 2 88.5% 

NU 0 0 45 0 4 0 1 90% 

CE 0 5 0 46 0 0 0 90.2% 

GO 0 1 2 0 7 0 0 70% 

ME 2 0 0 0 0 18 1 85.7% 

MI 5 1 0 0 0 1 8 53.3% 
 

86.1% 80.9% 

AIDA  

(sub-set) 

 HO SP CE NU DO ME  

HO 19 1 0 0 0 1 90.5% 

SP 0 38 2 2 0 0 90.5% 

CE 0 1 24 0 1 0 92.3% 

NU 0 4 1 58 0 0 92.1% 

DO 0 2 3 0 40 0 88.9% 

ME 2 1 0 0 0 20 87.0% 
 

90.5% 90.2% 

 

Table 5.8:  Confusion matrices for each database with the best classification strategy. 
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Continuing the analysis of the results shown in Table 5.8, it sees that the highest 

performance values are achieved for the I3A task1 database. This is probably due to the 

fact that the segmentation is not performed as the cells are already supplied with the 

boundary box. In the other three databases, on the other hand, the segmentation is 

operated automatically and could lower the classification effectiveness compared to 

manual segmentations. Looking at the two databases MIVIA and AIDA, the 

effectiveness of the proposed method can be estimated at around 90% in both ACC and 

MCA. Even the I3A task2 database without considering the mitotic pattern would be 

close to 90%. 

As for the patterns, it is clear from the confusion matrices that the homogeneous pattern 

is sometimes classified as speckled and membranous. In fact, especially for the fine 

speckled, the cells appear in a similar way to the homogeneous as happens for the 

membranous. Again, the speckled and in particular the coarse speckled have traits that 

resemble centromeric and nuclear dots. 

The Table 5.9 shows the MCA values of the proposed method by comparing it with 

other methods proposed in the literature. 

 

Database 
Image 

number 
Method  Training split MCA 

MIVIA 28 

Nosaka [67] Leave-One-Out 85.7% 

Best proposed method LOSO 89.7% 

I3A task1 83 

Xu [71] 
Train from 42 img. 

Test from 41 img. 
85.4% 

Li [69] LOSO 85.6% 

Best proposed method LOSO 93.8% 

I3A task2 1008 

Oraibi [70] LOSO 92.1% 

Manivann [66] LOSO 89.9% 

Best proposed method LOSO 80.9% 

AIDA  

(sub-set) 
220 Best proposed method LOSO 90.2% 

 

Table 5.9:  Performance comparison for HEp-2 staining pattern classification. 

 

As already explained, the proposed method is not competitive in the analysis of the I3A 

task2 database compared to other methods that address the problem not from the point 

of view of the single cell but considering regions of the image to identify cells in 

mitosis. For the MIVIA and I3A task1 database, on the other hand, the method proposed 

achieves excellent performance compared to the other state-of-art works. Finally, on the 

AIDA database there are no methods for comparison, but the performance remains in 

line with that obtained for MIVIA and I3A task1.   
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Conclusions 
 

In recent years, the need to automate the analysis of IIF HEp-2 specimens has been 

established, in order to obtain a fundamental tool for the diagnosis of autoimmune 

diseases, and to avoid the subjectivity of human interpretation. For this purpose, in this 

thesis a complete and fully automatic CAD system has been implemented, which is able 

to classify the IIF images, in terms of fluorescent intensity and fluorescent pattern. 

The system combines the following steps: 

1 fluorescence intensity classification: this phase performs a categorization of the 

fluorescent intensity into positive/negative classes; 

2 cells segmentation: this phase decomposes the input image, looking for the cells 

contained in it, without any a-priori knowledge about its intensity level or pattern; 

3 pattern classification: this phase classifies the regions of interest identified in the 

segmentation phase by associating them with a class of autoantibody patterns. 

 

In particular, the analysis of fluorescence intensity, for the positive/negative detection, 

is carried out using two main approaches:  

1 traditional based on the supervised classification chain with pre-processing, 

extraction and selection of features and an SVM classifier with Gaussian kernel; 

2 based on the performing pre-trained CNNs, both exploiting transfer learning with 

fine-tuning and using them as extractors of robust features coupled with linear 

SVM classifier. 

 

The experimental results showed how the second approach has achieved excellent 

results, exceeding the best performance of the other approach by eight percentage 

points. In terms of AUC, the result obtained on the public AIDA database, by 

performing the fine-tuning with CNN “SqueezeNet”, was 98.6%. 

In order to address the segmentation, two other approaches were compared, the first 

took into consideration different pre-processing strategies, different thresholding 

techniques, and some post-processing operations. The second approach consists of three 

steps: the first step performs a pre-segmentation, the second uses the randomized Hough 

transform to find ellipses around the pre-segmented ROI, and finally the third step 

applies the active contours algorithm.  

The performance of the proposed methods is analyzed with the DICE index, thanks to 

the use of manual segmentation masks provided for the MIVIA database and a subset of 

the AIDA database. In spite of the remarkable diversity of the patterns analyzed, the 

method based on the active contours achieves very similar segmentation results for the 

different patterns, demonstrating a good robustness. In AIDA the best result achieves an 

average index of 85.2%, while in MIVIA 87% one of the highest measures among the 

methods proposed in the literature. 

Finally, the third step of the CAD developed concerns the pattern classification. This is 

a multiclassification problem, and involved the classification of six or seven patterns 

with the use of public databases (MIVIA, I3A task1, I3A task2, AIDA). In many 
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multiclass problems, it is more efficient to use a binary approach, implementing a 

classifier for each class for the discrimination process. In this thesis the binary 

decompositions with OAA and OAO strategies have been analyzed. Moreover a third 

approach based on the KNN classifier has been developed to act as a collector of all the 

outputs of the OAA and OAO strategies. For each binary classifier, in a similar way to 

what was done for the classification of fluorescence intensity, both the traditional 

classification chain (with pre-processing, extraction and selection of the characteristics 

and classification with SVM with Gaussian kernel), and CNNs pre-trained as feature 

extractors coupled to a linear SVM, have been implemented. In this classification 

process, the method based on pre-trained CNN has exceeded the traditional method by 

about 10% in terms of MCA. The best results were obtained with the KNN which 

synthesized all the outputs produced by the binary SVMs built with the OAA and OAO 

strategies.  

The performances obtained on the four public databases were compared with other 

works in the literature. On the MIVIA database an MCA of 89.7% was reached, in I3A 

task1 of 93.8%, in I3A task2 of 80.9% and finally on AIDA 90.2%. while the highest 

result was achieved in the I3A task1 database where it was not necessary to implement 

the segmentation, the lowest result was found in I3A task2. In this database, a particular 

mitotic pattern challenges the strategy based on the predominance of cells in an image. 

In fact, the mitotic pattern in question occurs only in cells in the mitotic phase and 

therefore only on a small subset of the cells that constitute an image. For this reason, a 

strategy that differentiates cells in mitosis or that takes into account large frames of the 

entire image should be investigated. In the other three databases the MCA values 

obtained are certainly comparable with the state of the art. 

The high performance obtained from the various phases of the CAD developed in this 

thesis allow to state that this system can effectively support the diagnosis of 

autoimmune diseases, for example as a "second reader" or by applying it to the 

"screening of autoimmune diseases".  
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Appendix A - Classifiers 
 

A.1  Support Vector Machine 
 

One of the classification systems used in this work is the SVM (Support Vector 

Machine) classifier proposed in the 90s by the authors cortes and Vapnik [74]. SVM is 

one of the most used methods in supervised machine learning, the algorithm has been 

widely used in the literature for both classification and regression, representing one of 

the most robust prediction method [75] [76] [77]. 

In binary classification, the goal is the automatic differentiation between two classes of 

belonging, in this context the problem mainly consists in finding a criterion to 

distinguish the elements of two disjoint sets of sample points, defined as patterns or 

training data, in the space of the features. 

Since the patterns are generally represented by points in the space Rn, the problem 

becomes discriminating between two finite sets of points, A and B, in the n-dimensional 

space, Rn, through a hyperplane or a non-linear separating surface. In the case of using a 

hyperplane, the problem is defined as linear separability and can be summarized as 

follows: 

are the set A consisting of m points, ai 𝜖 Rn, i = 1, … m and represented by the matrix A 

𝜖Rnm, with Ai = ai
T  i-th row; the set B consisting of k points, bl 𝜖 Rn , l = 1, … k and 

represented by the matrix B 𝜖 Rkn, con Bl =  bl
T l-th row; with A ∩ B = ∅. 

The hyperplane 

P ≜ {x 𝜖Rn |  wT x = ξ }  

represents a separation hyperplane between sets A and B if: 

• Aiw >  ξ    ∀ i = 1, … m;  

• Blw <  ξ     ∀ l = 1, … k.  

 

 

Figure A.1: Example graph of a linear separability problem. 



      

 

 
82 

 

For non-linearly separable problems, the classifier must look for that linear surface that 

separates the two classes as best as possible, or the possibility of exploiting non-linear 

surfaces allows for better results. There are different formulations of SVMs: binary or 

multi-class classification, or regressions, the so-called one-class SVMs etc; for the 

purpose of the discussion the SVM for binary classification is taken into consideration. 

In binary classification, a linear SVM classifier looks for a hyperplane that separates the 

training data into two classes with the largest classification margin, which allows for a 

good degree of generalization. When the data set is not separable through a linear 

hyperplane, the SVM finds that hyperplane that represents a good compromise between 

the classification error and the ability to generalize. However, the real potential of SVM 

lies in its non-linear extension, in which it can find a non-linear classification surface to 

separate classes. 

 

Linear SVM and linearly separable sets 
 

Taking up the linear separability problem from the point of view of the SVM, starting 

from the points {ai }, i = 1, … m, of A e {bl }, l = 1, … k, of B, these can be represented 

as follows: 

{xi, yi},   i = 1, … m + k with       xi𝜖Rn   and   yi𝜖{-1,1} 

 

Such that 

 {
𝑥i 𝜖 A        if      𝑦i = 1    
 𝑥i 𝜖 B       if      𝑦i = −1

  

A separation hyperplane vTx– γ = 0 for such data satisfies the conditions 

{
vT𝑥i –  γ ≥  1          if        𝑦i = 1

vT𝑥i –  γ ≤  −1       if      𝑦i = −1
  

Which can still be written as 

𝑦i [vT𝑥i –  γ]  ≥  1       i = 1, … 𝑚 + 𝑘  

This separation hyperplane, however, may not be the best, in the sense that some points 

of A and / or B may be very close to the hyperplane itself. It is therefore preferable to 

find a hyperplane with a large separation margin or even with the largest possible 

margin. The hyperplane with the maximum margin is known as the optimal separation 

hyperplane. 

Given the sets A and B, linearly separable, represented by the samples {xi, yi}, i = 1, … 

m + k with xi 𝜖 Rn  and yi 𝜖 {-1,1}, suppose to be able to identify a separation hyperplane  

vTx– γ = 0 
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where v 𝜖 Rn is normal with respect to the hyperplane, |y|/||v|| is the perpendicular 

distance from the hyperplane to the origin and ||.|| is the Euclidean norm.  

Indicate with d+ and d- the smallest distance from the hyperplane of separation of the 

points of A and B, respectively, closest to it. 

For the case of linearly separable sets, the SVM approach simply looks for the 

separation hyperplane with the largest margin, where the margin is given by the sum of 

d+ and d- and is equal to 2/||v||. 

The goal is, therefore, to find the pair of hyperplanes that give the maximum margin and 

therefore minimize  ||v||2 

 

 min
𝑣,γ

1

2
||𝑣||2 

under the constraints  𝑦i [vT𝑥i –  γ] − 1 ≥  0∀ i = 1, … 𝑚 + 𝑘 

The points for which the constraints are satisfied by equality, the removal of which 

would change the solution found, are called support vectors. 

A Lagrangian formulation of the problem is now given so that the above constraints will 

be replaced by constraints on Lagrange multipliers which are easier to deal with, and 

since in the Lagrangian reformulation of the problem the data will appear only in the 

form of scalar products between vectors. The latter is an important property that allows 

the generalization of the proposed procedure to the non-linear case. 

It then introduces the Lagrange multipliers (not negative):   αi   for i = 1, … m+k 

it gets the Lagrangian function: 

 LP≡ ½ ||v||2 – ∑ αiyi(vT𝑚+𝑘
𝑙=1 xi −  𝛾) +  ∑ αi

𝑚+𝑘
𝑙=1  

being the problem min
𝑣,γ

1

2
||𝑣||2  a convex quadratic programming problem, it is possible 

to solve equivalently the following dual problem: to maximize LP subject to the 

constraints that the gradient of LP with respect to v and γ is equal to the null vector 

v = ∑ αiyixi
𝑚+𝑘
𝑖=1 ∑ αiyi = 0𝑚+𝑘

𝑙=1  

and that the multipliers αi are non-negative (αi ≥0). 

By replacing the equality constraints just written in the expression of the objective LP, 

the following problem is obtained: 

 max
𝛼

LD = ∑ αi
𝑚+𝑘
𝑖=1 − 

1

2
∑ ∑ αiαjyi yjxi

Txj
𝑚+𝑘
𝑗=1

𝑚+𝑘
𝑖=1   

Under the constraints     ∑ αiyi = 0𝑚+𝑘
𝑙=1     and     αi ≥0.  

For linearly separable sets, therefore, the training in terms of SVM consists in solving 

the above problem with solution v obtained from the equality constraint v = 

∑ αiyixi
𝑚+𝑘
𝑖=1 . 
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Those sample points for which αi >0 in the solution are called support vectors. To all 

the other points correspond multipliers αi = 0 which do not contribute to the 

determination of v. For these machines (SVM) the support vectors are the critical 

elements of the training set, they are, in fact, the points closest to the decision boundary 

and are those that determine the optimal separation hyperplane. 

The Karush-Kuhn-Tucker (KKT) conditions for the primal problem min
𝑣,γ

1

2
||𝑣||2 under 

the constraints 𝑦i [vT𝑥i –  γ] − 1 ≥  0  ∀ i = 1, … 𝑚 + 𝑘   are: 

 𝜕

𝜕𝑣𝑗
 LP = 𝑣𝑗  - ∑ αiyi xij = 0𝑚+𝑘

𝑖=1     j  = 1, … n  

 
𝜕

𝜕𝑣𝑗
 LP =  ∑ αiyi = 0𝑚+𝑘

𝑖=1   

yi(v
Txi – γ) – 1 ≥ 0      i = 1, … m+k  

 αi ≥0     i = 1, … m+k  

These conditions in the case under analysis are necessary and sufficient for v, γ and α to 

be the solution of the SVM problem. Solving, therefore, the SVM problem is equivalent 

to finding a solution to the KKT conditions. As an immediate application it is possible 

to explicitly determine v from the training procedure (v = ∑ αiyixi
𝑚+𝑘
𝑖=1 ), while the 

threshold γ can be easily calculated from the complementarity KKT condition by 

choosing some point xi for which αi >0 (it would be, however, numerically safer to take 

the mean value of γ resulting from all these equations). 

Once the SVM has been trained, given a new test point x, it is determined on which side 

of the decision boundary the point itself lies and the label of the corresponding class is 

assigned, i.e. the class of x will be: 

 sgm(vTx – γ).  

 

Figure A.2: The examples closest to the separation plane are called support vectors and are the most 

important vectors for maximizing the separation margin between classes. 
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Linear SVM and non-linearly separable sets 
 

One way to extend the above ideas to the non-separable case could be to relax the 

separability constraints 

{
vT𝑥i –  γ ≥  1         if        𝑦i = 1

vT𝑥i –  γ ≤  −1       if      𝑦i = −1
  

but only when necessary, thus adding an additional cost to the objective function 

min
𝑣,γ

1

2
||𝑣||2. This can be done by introducing positive slack variables ξi, i = 1, … m+k, 

the constraints then become: 

{
vT𝑥i –  γ ≥  1 − ξi        if         𝑦i = 1

vT𝑥i –  γ ≤  −1 + ξi      if      𝑦i = −1
  

ξi≥ 0        ∀  i = 1, … m+k. 

 
Figure A.3: If the training set is not linearly separable, the slack variables are introduced that allow the 

wrong classification of some points. 

 

When there is an error (badly classified point), ξi is greater than or equal to one and, 

thus, ∑ ξi𝑚+𝑘
𝑖=1  represents an upper bound on the number of badly classified points. A 

natural way to assign additional cost to the errors made by a separation hyperplane is to 

transform the objective function to be minimized from ½ ||v||2 in  

½ ||v||2 + C (∑ ξi𝑚+𝑘
𝑖=1 )q  

Where C is a positive parameter to be fixed (the larger C the greater the penalty 

assigned to classification errors). For any choice of q positive integer, the problem  

 min
𝑣,γ,ξ

1

2
||𝑣||2 + C (∑ ξi𝑚+𝑘

𝑖=1 )q  

under the constraints 
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𝑦i [vT𝑥i –  γ] − 1 + ξi ≥  0∀ i = 1, … 𝑚 + 𝑘  

  ξi≥ 0       ∀  i = 1, … m+k. 

It is convex and, for q = 2 and q = 1, it is also quadratic. The choice of q = 1 has as a 

further advantage the fact that neither the variables ξi nor their Lagrange multipliers 

appear in the dual problem which becomes: 

max
𝛼

LD = ∑ αi
𝑚+𝑘
𝑖=1 − 

1

2
∑ ∑ αiαjyi yjxi

Txj
𝑚+𝑘
𝑗=1

𝑚+𝑘
𝑖=1   

under the constraints  ∑ αiyi = 0𝑚+𝑘
𝑙=1     and        C ≥ αi ≥0.  

with    v = ∑ αiyixi
𝑚+𝑘
𝑖=1  

The only difference in the linearly separable case is therefore the upper bound C on the 

multipliers αi. The Lagrangian of the primal problem turns out to be 

LP =½ ||v||2 + C∑ ξi𝑚+𝑘
𝑖=1 – ∑ αi[yi(vT𝑚+𝑘

𝑙=1 xi − 𝛾) − 1 + ξi] − ∑ μi
𝑚+𝑘
𝑖=1  ξi  

where the μi are the Lagrange multipliers introduced to reinforce the positivity of the 

variables ξi. KKT's conditions for the primal problem are: 

 

 𝜕

𝜕𝑣𝑗
 LP = 𝑣𝑗  - ∑ αiyi xij = 0𝑚+𝑘

𝑖=1  j = 1, … n 

 
𝜕

𝜕𝑣𝑗
 LP =  ∑ αiyi = 0𝑚+𝑘

𝑖=1  

𝜕

𝜕𝑣𝑗
 LP = C - αi - μi = 0   i = 1, … m+k 

yi(v
Txi – γ) – 1 + ξi ≥ 0      i = 1, … m+k 

 αi ≥0;   ξi ≥0; μi ≥0   i = 1, … m+k 

αi [yi(v
Txi – γ) – 1 + ξi] = 0       i = 1, … m+k 

μiξi =0     i = 1, … m+k 

As for the separable case, the complementarity conditions can be used to determine the 

γ threshold. From the conditions of KKT just described, in fact, it has 

 ξi =0  when   αi< C 

It follows, therefore, that the computation of γ can be obtained from the 

complementarity relation relative to any sample point for which it results 0 < αi < C (as 

in the previous case it would be numerically safer to take the mean value of γ resulting 

from all these equations). 
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Non-linear SVM and non-linearly separable sets 
 

The linear separation methods based on the SVM theory, which aim to determine an 

optimal separation hyperplane, can be generalized to the case of non-linear separation as 

follows: a transformation of the input space into a dimensionally larger space is carried 

out through a non-linear function, optimal separation hyperplanes are constructed in the 

augmented space, which correspond to non-linear surfaces in the original input space. 

Returning to the linear case, it is possible to note that in the training problem the data 

comes into play only in the form of scalar products, xi
Txj: 

 

max
𝛼

∑ αi
𝑚+𝑘
𝑖=1 − 

1

2
∑ ∑ αiαjyi yjxi

Txj
𝑚+𝑘
𝑗=1

𝑚+𝑘
𝑖=1   

under the constraints  ∑ αiyi = 0𝑚+𝑘
𝑙=1     and        C ≥ αi ≥0. 

Now supposing to transform the input space Rn into a generic Euclidean space H, 

through the transformation Φ : 

Φ: Rn
→H, 

the training algorithm will depend only on the scalar products of the data in H (the 

transforms of the sample points), i.e. on functions of the form Φ(xi)
TΦ(xj). If there exists 

a "kernel" function K, such that 

K(xi, xj) = Φ(xi)
T Φ(xj), 

the training algorithm will only use K without ever having the need to know explicitly 

Φ. Of course, all the considerations made for the linear case continue to hold true, as it 

still continues to make a linear separation, but in a new space: 

 max
𝛼

∑ αi
𝑚+𝑘
𝑖=1 − 

1

2
∑ ∑ αiαjyi yj𝐾(xi

Txj)
𝑚+𝑘
𝑗=1

𝑚+𝑘
𝑖=1  

under the constraints  ∑ αiyi = 0𝑚+𝑘
𝑙=1     and        C ≥ αi ≥0. 

As for the vector v, which characterizes the separation hyperplane, it will belong to the 

space H and for its calculation it must be explicitly known Φ: 

 v =∑ αiyi 
𝑁𝑠
𝑖=1 Φ(xi). 

However, it can be observed that in the test phase it is only necessary to calculate the 

scalar products of a given test point x with v, or more specifically to calculate the sign of  

(vTΦ(x) – γ), it is thus obtained: 

sgn(∑ αiyi 
𝑚+𝑘
𝑖=1 Φ(xi)

T Φ(x) – γ) = sgn(∑ αiyi 
𝑁𝑠
𝑖=1 𝐾(xi,x) – γ), 

Avoiding, again, the calculation of Φ(x) and using the kernel function instead.  
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Among the most popular Kernel functions are: 

• Polynomial:    K(x, y) = (γxTy + 1)P,  γ> 0. 

• Radial Basis Function (RBF): K(x, y) = exp (-γ ||xi – xj||
2),  γ> 0. 

• Sigmoid:    K(x, y) = tanh (γxi
Txj + r). 

 

Figure A.4: Exemplary example of projecting the problem into a larger space. 

 

In order to train an SVM, therefore, one must solve a quadratic optimization problem 

with bound constraints and a linear equality constraint. This problem put in the form of 

minimization becomes: 

 min
𝛼

− ∑ αi
𝑚+𝑘
𝑖=1 + 

1

2
∑ ∑ αiαjyi yj𝐾(xi, xj)

𝑚+𝑘
𝑗=1

𝑚+𝑘
𝑖=1  

under the constraints  ∑ αiyi = 0𝑚+𝑘
𝑙=1 ;  C ≥ αi ≥0;  ∀ i = 1, … m+k 

Where it is recalled that with m + k are the number of sample points, which are used for 

training, and with α a vector with m + k components, one for each point (xi, yi). 

By defining the Q matrix as 

            (Q)ij = yiyjK(xi, xj) 

The problem then can be equivalently written as: 

 min
𝛼

− 𝑒𝑇α + 
1

2
α𝑇Qα  

under the constraints   α𝑇𝑦 = 0;    Ce≥ α≥0. 

The size of this optimization problem depends on the number of samples, m + k. If this 

number is very large, since the size of the matrix Q is equal to (m+k)2, it will be 

impossible to keep Q in memory. 
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A.2 Neural Network 
 

Neural networks are made up of simple elements called artificial neurons that operate in 

parallel. These elements, as the name suggests, are inspired by the biological nervous 

system in which multiple neurons are activated or not depending on the intensity and 

activation of their synaptic connections [78].  

In the human nervous system there are 1011 neurons (nerve cells) of different types each 

consisting of a cell body and many branched extensions, called dendrites, through which 

the neuron receives electrical signals from other neurons. Each neuron also has a 

filamentous extension called axon which branches out at its extremity, forming 

terminals through which electrical signals are transmitted to other cells (for example the 

dendrites of other neurons). Between a terminal of an axon and the receiving cell there 

is a space that signals pass through by means of chemicals called neurotransmitters; the 

point of connection between terminal and dendrite is called synapse. 

A neuron "activates", that is, it transmits an electrical impulse along its axon, when 

there is an electrical potential difference between the inside and the outside of the cell 

and this electrical impulse causes the release of a neurotransmitter from the synaptic 

terminals of the cell. The impulse from the Axon can for example affect other neurons. 

Biological neurons are 5 to 6 orders of magnitude slower than conventional electronic 

components: an event in a chip occurs in a few nanoseconds while a neural event occurs 

in a few milliseconds. Nevertheless the human brain, despite being made up of very 

simple processing elements (the neurons), is able to perform complex computations 

(such as recognition, perception and control of movement), many times faster than the 

fastest of current computers and is also able to modify the connections between neurons 

based on experience: it is able to learn. Finally, the brain is fault tolerant, that is, 

whether a neuron or one of its connections are damaged, it continues to work, albeit 

with slightly performance minors that gradually degrade as more and more neurons are 

destroyed (graceful degradation). Therefore, in order to artificially reproduce the human 

brain, it is necessary to create a network of very simple elements that is distributed, 

strongly parallelized, capable of learning and therefore of generalizing (that is, 

producing outputs at inputs not encountered during training). 

As in nature, the function of the artificial neural network is largely determined by the 

connections between the elements. One is able to train a neural network to perform a 

particular function by adjusting the values or weights of the connections between 

elements. Commonly, neural networks are trained so that a particular input 

configuration produces an output that satisfies a given objective. This situation is 

schematized in the Figure A.5. 
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Figure A.5: Neural network training scheme: given the inputs to the network, the output is compared 

with a target and the weights between the neuronal interconnections are changed until the target is 

satisfied [79]. 

 

The field of neural networks has a history that dates back to more than half a century 

ago, and in recent years has found solid applications thanks to deep neural networks and 

CNNs. The fields of application have developed rapidly and neural networks have been 

trained to perform complex functions in various disciplines, including pattern 

recognition, identification, classification, speech, vision, control systems, etc. The 

supervised training method is commonly used, but unsupervised techniques can also be 

used, for example, for identifying data groups. 

The neuron model and the architecture of a neural network describe how a neural 

network transforms inputs into outputs, and represent the limitation on what a particular 

neural network can calculate. 

 

Artificial neuron model 
 

A simple neuron model with a single input is shown in the Figure A.6. 

 

Figure A.6: Graphic example of an artificial neuron with a single input (left) and with sum of the bias 

(right) [79]. 



      

 

 
91 

 

The scalar input is transmitted through a connection that multiplies its strength by the 

weight w also scalar, to form the product wp. This product is subjected to the transfer 

function f which produces a scalar output. As an alternative to the simplified model 

described, it is also possible to add a scalar bias b to the product pw. The bias is very 

similar to a weight, except for the fact that it has a constant input equal to 1. In this case 

the input n of the transfer function f is the sum of the weighted input with w plus the 

bias b. 

The transfer function is typically a step function or a sigmoid which, taken as an 

argument, produces the output a; w and b therefore represent adjustable parameters of 

the neuron. The central idea of neural networks is that these parameters can be adjusted 

so that the network exhibits a desired behavior. Then it can train the network to do a 

particular job by adjusting the weight and bias to achieve a desired end. The transfer 

functions can be of different types, four of the most used are shown in the Figure A.7. 

 

 

Figure A.7: Examples of transfer functions [79]. 

 

For example, the "hard-limit" shows that the neuron's output can be zero, if the input 

argument n is less than zero, or one, if n greater than zero. 

Expanding the discussion, a neuron with an input vector with R elements is shown in 

Figure A.8. 
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Figure A.8: Graph of an artificial neuron with R inputs [79]. 

 

The R input elements are represented by the vector  p = p1, p2, … pR 

and are multiplied by the weight vector  W = w1, w2, … wR 

this time the argument n in input to f is:           n = Wp + b = w1p1+ w2p2+.. wRpR+b 

If the neuron has the “hardlim” as a transfer function, shown above, it takes the name of 

perceptor or adaline (adaptive linear element). A perceptron is a threshold logic unit 

(ULS) that computes a weighted sum of the inputs and returns one or zero based on the 

threshold or transfer function [80].  

A ULS separates the space of the input vectors that produce a response beyond the 

threshold from those that produce a response below the threshold through a linear 

surface called an R-dimensional hyperplane. For this reason the functions that can be 

implemented by a perceptron are called linearly separable functions. Learning is 

achieved by adapting the weights until performance is acceptable given a certain goal. 

One method of approaching the problem of training a perceptor, to ensure that it 

responds appropriately to the training vectors, is to define an error function that can be 

minimized by changing the values of the weights [80]. A commonly used function is the 

quadratic error: 

ε = ∑ (𝑃𝑘
dk– fk)

2 

where fk is the ULS response for the input vector Pk, and dk is the desired output. The 

summation is calculated on all vectors Pk = p1, p2, … pk of the training set.  

If the set of data is linearly separable, the error can be canceled, otherwise, in the case of 

non-linearly separable sets, it can be minimized. The error depends on the weights, once 

the training set and the desired values have been fixed. A minimum of the error can then 

be found by carrying out a descent process along the gradient. 

A first problem in calculating the gradient is represented by the definition of the 

quadratic error which depends on all the k input vectors of the training set. An 

incremental approach is preferable, that is to modify the weights for each vector of the 

training set, the results can only approach those of the version that uses all the vectors 
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together but it is a rather effective approximation. For a single input vector p the 

quadratic error is given by ε = (d - f)2 and the gradient with respect to the weights is: 

 
𝜕ε

𝜕𝑊
≜ [

𝜕ε

𝜕𝑤1
, 

𝜕ε

𝜕𝑤2
, … 

𝜕ε

𝜕𝑤𝑅
]  

If the transfer function is of the step type (non-differentiable) it is clear that the gradient 

calculation must be faced with particular procedures such as the Widrow-Hoff 

procedure and the generalized delta procedure. 

A perceptron has many limitations, first the output can be only 0 or 1, second, it can 

classify only linearly separable vector sets. To overcome these problems, more neurons 

can be aggregated to form an interconnected network. Neural networks can learn the 

appropriate behavior through training sets even for unseen inputs.  

Learning is generally obtained by adapting the net weights until its performance in 

calculating the action is not acceptable. In the training phase, the network is adjusted on 

the basis of a comparison between the output and the target until the network output 

matches or resembles the target. Usually many input / objective pairs are used for 

training. 

 

Neural network architecture 
 

Many stimulus-responsive behaviors cannot be learned from a single ULS. This is the 

case where non-linearly separable sets come into play. In such a situation, correct 

answers can be obtained from a network of neurons. Several neurons connected in a 

certain way constitute an architecture of neurons. 

Specifically, two or more neurons can be combined into one neuron layer, and multiple 

neuron layers can be combined to form a given neural network. 

The function implemented by a network of neurons depends on its topology as well as 

on the weights of the individual neurons. Networks with forward connections (feed-

forward) do not have cycles, that is no input to a neuron depends on its own output 

(even if the output passes through several intermediate neurons). Networks that do not 

have only forward connections are called feed-back networks. 

If the neurons of a network with forward connections are organized in layers, with 

elements of the j-th layer receiving inputs only from the neurons of the j-1 layer, then 

the network is defined as multilayer with forward connections [80]. 

Considering a single layer consisting of S neurons it must specify: 

the vector p containing the R inputs of the network:  p = p1, p2, … pR,   

the bias vector b:      b = b1, b2, … bS, 

the vector f oft he transfer functions:    f = f1, f2, … fS, 

and the matrix W of the weights: 



      

 

 
94 

 

 

Each of the R inputs is connected to each neuron and is weighted appropriately by the 

corresponding weight of the matrix W of dimensions SxR. The indices of the row of the 

W matrix indicate the neuron (from one to S) to which the weights are associated, the 

index inherent in the column indicates the input (from one to R). 

The i-th neuron among the total S, provides its transfer function with the scalar ni given 

by the sum of the products of the inputs for the relative weights and the i-th bias. This 

time the argument ni in input to the fi is: 

ni= wi,1p1 + wi,2p2 + … wi,RpR + bi      

The output is a vector composed of the i elements that is the outputs generated by the S 

neurons: 

a = a1, a2, … aS        

 

Figure A.9: Layer of S artificial neurons with R inputs and S outputs [79]. 

 

To talk about multilayer networks it is necessary to extend the notation used previously 

and distinguish between the weights related to the inputs and the weights associated 

with the connections between the layers. In this regard, with a network consisting of j 

layers, it has for each j-th layer an input vector pj, a bias vector bj, a vector of transfer 
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functions fj, an output vector aj and a matrix Wj that is a matrix for each layer similar to 

the one discussed for the case of a single layer. 

In essence, the index j serves to associate the corresponding layer of the network to 

which they are used between all the j weight matrices and between all the input vectors, 

biases, transfer and output functions. 

Thus, p1 and S1 will respectively indicate the inputs and the number of neurons of the 

first layer, p2 and S2 those of the second layer and so on. It is common to have different 

quantities of neurons per layer, moreover, the outputs of a given layer represent the 

inputs of the next layer that is 

aj = pj+1 

So the input to layer 2 is a1. Having made these observations, for each layer j the same 

considerations made for a single layer apply. 

The layer that produces the final outputs is called an output layer, the others are called 

hidden layers. 

 

 

Figure A.10: Multi-layer neural network [79]. 
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The design of a network architecture consists of a description of how many layers a 

network has, the number of neurons in each layer, the transfer functions of each layer 

and how the layers are connected to each other. The architecture depends on the type of 

problem and the inputs to the network can be presented in parallel or rarely sequentially. 

Using an arbitrarily large number of neurons, any finite function in a finite domain can 

be approximated, but in general there is no a priori rule to determine the number of 

neurons for a given problem. 

The training, that is the modification of the weights of the networks, can be carried out 

with the method of descent along the gradient as seen for the single perceptor using a 

procedure called backpropagation. 

 

Backpropagation and generalization 
 

The learning algorithm of a neural network with backpropagation is based on the 

gradient descent method that allows to find a local minimum of a function even in a 

large space. The weights associated with the connections between the layers of neurons 

are initialized to small and random values, then the learning rule is applied by 

presenting sample patterns to the network. 

The training of a network with the backpropagation method takes place in two different 

stages: forward-pass and backward-pass. In the first phase, the input vectors are applied 

to the input neurons with forward propagation of the signals through each level of the 

network until the output is obtained. During this phase all the weights are fixed. In the 

second phase, the response of the network is compared with the desired output obtaining 

an error. The calculated error is propagated in the reverse direction with respect to the 

connections and the weights are modified in order to minimize the error or the 

difference between the current output and the desired output. A forward-pass backward-

pass loop is called a learning epoch. 

Well trained backpropagation networks tend to give reasonable answers even on unseen 

inputs. This generalization property allows to train a network starting from input output 

pairs and obtain good results even on data never seen before. 

An error function that can be used is the quadratic error seen above. In this case the 

weight vector against which the gradient is calculated should include all the weights of 

the network. However, it is advisable to calculate the partial derivatives with respect to 

the weights of the individual neurons. 

 
𝜕ε

𝜕𝑊
𝑖
𝑗 ≜ [

𝜕ε

𝜕𝑊
1,𝑖
𝑗 , 

𝜕ε

𝜕𝑊
2,𝑖
𝑗 , … 

𝜕ε

𝜕𝑊
𝐿,𝑖
𝑗 ]     

where 𝑊𝑖
𝑗
 represents the matrix of the weights of the i-th neuron of the J layer, and has 

L weights one for each output of the previous layer or R weights in the case of the first 

layer. In back propagation it is very important to be able to calculate the derivative of 

each transfer function. 
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The modification of the weights occurs recursively starting from the neurons of the last 

layer up to those of the first. For this reason the method takes the name of back 

propagation. The backward propagation algorithm, trying to minimize the difference 

between each desired output and the output actually calculated by the network, 

distributes the contribution of the error on each weight. 

The number of inputs to a network is usually large and the complexity becomes so 

exponential that it is not possible to provide a training set that considers all the possible 

cases of a given function. A network is said to be able to generalize when it 

appropriately responds or classifies vectors not included in the training set. 

The concept of generalization of a neural network is similar to the adaptation of 

geometric curves [80]. When trying to fit a straight line or polynomial curve to some 

data, it captures some underlying relationship to the data. If the fit to the data is very 

good and if there is a lot of data, the fit line or curve can then be used to determine (with 

reasonable reliability) the values for the new data not used before in the adaptation 

process. The same can be said for neural networks that compute a complex and non-

linear function of their inputs. The adaptation of a trained network with a non-small set 

of data and representative of the domain of the problem being treated, results in a good 

chance of calculating the correct behavior even for never seen inputs. Behind this, there 

is the assumption that training data adeguately reflects the characteristics of the field 

data. 

A problem that can occur in the training phase is called overfitting. This happens when 

the trained network over-adapts to the training set and doesn't generalize properly to 

new data. In this sense, the error on the training set tends to cancel itself out, but when 

the new data is presented to the network, a high error occurs. To avoid this problem, it is 

common practice to use a validation dataset separate from the training set on which to 

estimate the degree of generalization. A further set of tests is used to estimate the 

accuracy of a neural network in achieving the given objective for which it was designed. 

The use of validation set to stop training when the network begins to overfit the data is 

called early stopping.  

To improve generalization, another solution is the regularization that modifies the 

network’s performance function (the measure of error that the training process 

minimizes). By including the sizes of the weights and biases, regularization produces a 

network that performs well with the training data and exhibits smoother behavior when 

presented with new data. Regularization attemps to construct a model structure as 

simple as possible. In keeping with Occam’s razor principle, the simplified model can 

avoid the effects of overfitting while a complex model tends to be overfitting. 

Finally, to avoid overfitting in deep networks with many hidden layers the solution is 

the dropout, which trains only some of the randomly selected nodes rather than the 

entire network. Some node are randomly selected at a certain percentage and their 

outputs are set to be zero to deactivate the nodes. The dropout effectively prevents 

overfitting as it continuously alters the nodes and weights in the training process. 
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A.3  Convolutional Neural Network 
 

Over the past decade, the popularity of methods that exploit deep learning techniques 

has considerably increased, evidently as deep learning has improved the state of the art 

in research fields such as speech recognition and computer vision [81]. Although neural 

networks had their scientific boom already in the 80s, their recent success can be 

attributed to an increased availability of data, improvements in hardware / software [82] 

and it is also due to new algorithms capable of both speeding up learning in the training 

phase and improving the generalization of new data [83]. 

In the field of computer vision, deep learning has expressed its potential in image 

processing thanks to Convolutional Neural Networks (CNNs). CNN is an old technique, 

which was developed in the 1980s and 1990s [84]. Conceptually CNNs are inspired by 

the visual system as proposed in the works of Hubel and Wiesel on cat and monkey 

visual cortex [85]. A CNN accepts an image directly as input and applies a hierarchy of 

different convolution kernels to it. The first layers allow to extract elementary visual 

features such as oriented edges, end-points, corners and are gradually combined with 

subsequent layers in order to detect higher-order features [86]. 

The success of the CNNs is certainly due, in addition to the high classification 

performance demonstrated by these classification methods, also by the ease of carrying 

out a classification process using these tools. In fact, the traditional chain composed of 

preprocessing, feature extraction, training model, is entirely replaced by CNNs which in 

their training process include feature extraction. CNNs are networks specialized in data 

processing which have the form of multiple vectors with a known grid-form topology. 

An example of this type of data can be a time series, which can be seen as a grid at a 

size sampled from regular intervals, or an image, which can be seen as a two-

dimensional grid of pixels containing the intensity value for the three color channels 

(RGB). 

Convolutional neural networks (CNNs) enable learning trainable, highly representative 

and hierarchical image feature from sufficient training data which makes rapid progress 

in computer vision possible [87].  

In the field of image classification in general, CNNs can be used, proposing an ad-hoc 

architecture and proceeding with its training, or using a pre-trained architecture. In the 

latter case, the training on specific data to the problem can be carried out from scratch, 

or through the fine-tuning of a part of the parameters / weights of the pre-trained 

network. 

Fine-tuning is known as transfer learning as the knowledge of another problem is 

exploited to solve the object of the study. Furthermore, a pre-trained CNN architecture 

can be modified in its architecture before carrying out training or fine-tuning.  

Another way to use a pre-trained CNN is to extract features in combination with a 

classifier, for example a Support Vector Machine (SVM) classifier. The advantage of 

this type of work is the simplicity of implementation (no retraining of the pre-trained 

networks must be carried out), the disadvantage is usually relatively lower performances 

than those obtained from the pre-trained networks with the fine-tuning method. 
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CNN architecture 

 

The CNN architecture consists of a neural network that extracts features of the input 

image and another neural network that classifies the feature image. The input image 

enters into the feature extraction network, the extracted feature signals enter the 

classification neural network, and the classification neural network then operates based 

on the features of the image and generates the output. [88]. 

The second part of the CNN is a neural network or fully connected layers that take in 

input the features extracted from the first part of CNN. The architecture of the first part, 

the convolutional layers, is structured as a series of representations made up of two 

types of layers: the convolution layers and the pooling layers (see Figure A.11).  

 

 
Figure A.11: General scheme of the architecture of a CNN. 

 

The convolutional layers take their name from the convolution operations that are 

applied to the images in input to CNN while the pooling layers combine the neighboring 

pixels into a single pixel to progressively reduce the size of the image. 

The units in the convolution layers are organized into feature maps, in which each unit 

is connected to a local portion of the map of the next layer through a set of weights 

called a filter bank. The result of this local weighted average is then passed through a 

nonlinear function such as ReLU (RectifiedLinear Unit). All units in a feature map 

share the same filter bank. The ReLU function produces zero for negative inputs and 

conveys the input for positive intput. It is known to better transmit the error than the 

sigmoid function and it is the solution to the vanishing gradient. The vanishing gradient 

in the training process of a deep neural network with the back-propagation algorithm 

occurs when the output error is more likely to fail to reach the farther nodes. The back-

propagation algorithm trains the neural network as it propagates the output error 

backward to the hidden layers. However, as the error hardly reaches the first hidden 

layer, the weight cannot be adjusted. Therefore, the hidden layers that are close to the 

input layer are not properly trained.  

The convolutional layers apply convolutional filters to produce feature maps, the 

number of  feature maps in output from a convolutional layer is equal to the number of 

filters applied. These filters or kernels, are two-dimensional matrices of chosen size 

(1x1, 3x3, 5x5 and so on) and the matrices values are determined through the training 

process. 
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Consider briefly the concept of convolution, in general H is an operator Si consideri 

brevemente il concetto di convoluzione, in generale given H an operator which, applied 

to an input image f(x,y), provides an output image g(x,y):  

 

H[f(x,y)] = g(x,y) 

 

Chosen, for example, a 3x3 kernel, this is progressively applied to all the pixels of the 

image, and changes its value as follows: 

 

R = w1z1 + w2z2 + … + w9z9 = ∑  9
𝑖=1  wizi  

 

where R is the pixel value calculated thanks to the application of the convolution mask. 

If  f  have size m x n then: 

 

g(x,y) = ∑  𝑎
𝑠=−𝑎 ∑  𝑏

𝑡=−𝑏 w(s,t) f(x+s, y+t)    with  a = (m-1)/2  and  b = (n-1)/2 

 

in this case it is assuming that a and b are positive integers and the filter is supposed to 

have odd dimensions, at least 3x3. The center coefficient of the filter, w (0, 0), is 

aligned with the pixel at position (x, y):  

 
 

f(x-1,y-1) f(x-1,y) f(x-1,y+1) 

f(x-1,y-1) f(x,y) f(x-1,y+1) 

f(x+1,y-1) f(x+1,y) f(x+1,y+1) 

 
 

w(-1,-1) w(-1,0) w(-1,1) 

w(0,-1) w(0,0) w(0,-1) 

w(1,-1) w(1,0) w(1,1) 

 

The operation is repeated for all pixels of the image (sliding of the mask: at each step 

the origin of the filter advances to the next pixel). Let's consider a small example: 

 

consider an image of 4x4 and a kernel 3x3: 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1 2 
 

 

 

 

1 0 0 

0 1 1 

1 1 1 
 

 

the first step performs the following operations: 

(1*1) + (2*0) + (3*0) + (0*0) + (2*1) + (0*1) + (10*1) + (9*1) + (0*1) = 22 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

 

 

* 

1 0 0 

0 1 1 

1 1 1 
 

 

 

= 

 

22  

  
 

 

the second step performs the following operations: 
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 (2*1) + (3*0) + (4*0) + (2*0) + (0*1) + (2*1) + (9*1) + (0*1) + (1*1) = 14 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

 

 

* 

1 0 0 

0 1 1 

1 1 1 
 

 

 

= 

 

22 14 

  
 

 

the third step performs the following operations: 

(0*1) + (2*0) + (0*0) + (10*0) + (9*1) + (0*1) + (1*1) + (10*1) + (1*1) = 21 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

 

 

* 

1 0 0 

0 1 1 

1 1 1 
 

 

 

= 

 

22 14 

21  
 

 

the fourth step performs the following operations: 

(2*1) + (0*0) + (2*0) + (9*0) + (0*1) + (1*1) + (10*1) + (1*1) + (2*1) = 16 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

 

 

* 

1 0 0 

0 1 1 

1 1 1 
 

 

 

= 

 

22 14 

21 16 
 

 

A convolutional layer can be followed by an activation function like the ReLU function 

but also sigmoid or other. Subsequently a pooling layer is applied to reduce the size of 

the image: it binds neighboring pixels and replaces them with a representative value 

such as the maximum or mean value of the pixels.  

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

Max-pooling 

 

2 4 

10 2 
 

 

 

 

1 2 3 4 

0 2 0 2 

10 9 0 1 

1 10 1  2 
 

Average-pooling 

 

1 2 

8 1 
 

 

The max-pooling layer takes a pool size as a parameter, usually 2 by 2. It then processes 

its input image in the following way: divide the image in 2 by 2 areas (like a grid), and 

take from each four-pixel pool the pixel with the maximal value. Compose these pixels 

into a new image, with the same order as the original image. A 2 by 2 max-pooling 
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layer produces an image that is half the size of the original. The idea behind max-

pooling is that important information in a picture is seldom contained in adjacent pixels. 

The capacity of a convolutional neural network can vary based on the number of layers 

it has. In addition to having different types of layers, a CNN can have multiple layers of 

the same type. In fact, there is rarely a single convolutional level, unless the network in 

question is extremely simple. Usually a CNN has a series of convolutional levels, the 

first of these, starting from the input level and going towards the output level, is used to 

obtain low-level characteristics, such as horizontal or vertical lines, angles, various 

contours, etc. The levels closest to the output level produce high-level characteristics, 

i.e. they represent rather complex figures such as faces, specific objects, a scene, etc. 

 

Pre-trained CNNs 

 

The design and training of a CNN is an extremely complex problem, both for the 

necessary data but also for the useful computing power. One way to overcome the 

problem in the literature is to use pre-trained CNN networks. Thanks also to 

competition like ImageNet, extremely performing CNN networks have been created and 

published that are able to classify images in 1000 object categories.  

The most known architectures are described below: 

- AlexNet [83]: the AlexNet network is one of the first convolutional neural networks 

that has achieved great classification successes. Winner of the 2012 ILSVRC (Image-

Net Large-Scale Visual Recognition Challenge) competition, this network was the first 

to obtain more than good results on a very complex dataset such as ImageNet. This 

network consists of 25 layers, the part relating to convolutional layers sees 5 levels of 

convolution with the use of ReLU and (only for the first two levels of convolution and 

for the fifth) the maxpooling technique. The second part of CNN is composed of full 

connected layers with the use of ReLU and Dropout techniques and finally by softmax 

for a 1000-d output. The AlexNet architecture is show in the Figure A.12. 

 
Figure A.12: Scheme of the AlexNet architecture. 
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- SqueezeNet [89]: in 2016 the architecture of this CNN was designed to have 

performances comparable to AlexNet, but smaller with fewer parameters, so as to have 

advantage in distributed training, in export new model from the cloud, and in deploy on 

FPGA with limited memory. Specifically, this network consists of 68 layers with the 

aim of producing large activation maps. The filters used instead of being 3x3 are 1x1 

precisely to reduce the computation by 1/9. CNN is made up of blocks called "fire 

modules", which contain a squeeze convolution layer with 1x1 filters and a expand 

layer with a mix of 1x1 and 3x3 convolution filters. This CNN has an initial and a final 

convolution layer, while the central part of the CNN is composed of 8 fire module 

blocks. No fully connected layers are used but an average pooling before the final 

softmax. 

 

Figure A.12: Scheme of fire module [89]. 

 

- ResNet18 [90]: this CNN, introduced in 2015 inspired by the connection between 

neurons in the cerebral cortex, uses a residual connection or skip connections which 

jumps over some layers. With this method it is possible to counteract the problem of 

degradation of performance as the depth of the net increases, in particular the 

"vanishing gradient". CNN is made up of 72 layers, the various convolutions are 

followed by batch normalization and ReLU, while the residual connection exploits an 

additional layer of two inputs. The last layers consist of an average pooling, a fully 

connected layer and softmax. 

 

Figure A.13: Scheme of residual learning [90]. 
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- GoogLeNet [91]: this architecture is based on the use of "inception modules", each of 

which includes different convolutional sub-networks subsequently chained at the end of 

the module. This network is made up of 144 layers, the inception blocks are made up of 

four branches, the first three with 1x1, 3x3 and 5x5 convolutions, the fourth with 3x3 

max pooling. After that, all feature maps at different paths are concatenated together as 

the input of the next module. The last layers are composed of an average pooling and a 

fully connected layers and the softmax for the final output. 

 

Figure A.14: Scheme of the Inception module [91]. 

 

 

Transfer learning 

 

Since the design and training of a CNN is a complex problem, where exhaustive 

research cannot be used and training requires large and accurate databases for training 

and a computing power that is not always accessible to researchers, a well-established 

way in the literature is to use pre-trained CNN networks. Thanks to ImageNet 

competition, extremely CNN networks have emerged [92]. These networks have been 

trained on over a million images for this reason the network has modeled generic rich 

feature representations. 

Pre-trained CNNs can be used considering the following two strategies:  

- as feature extractors and coupled to a traditional classifier such as the 

appropriately trained SVM;  

- performing pre-trained CNN transfer learning; in this case, by appropriately 

replacing the last layer based on the classes to be discriminated, fine-tuning is 

performed using the database of data to be classified in the training. 

Fine-tuning is a transfer learning technique that focuses on storing knowledge gained 

while solving one problem and applying it to a different but related problem [93]. Since 

CNNs are composed of numerous layers and a huge number of parameters, e.g. AlexNet 

has 650K neurons and 60M parameters, the network training phase should benefit from 

the use of databases rich in examples that allow to avoid the problem of overfitting. 

Unfortunately, it is not always possible to take advantage of such large databases. 
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Furthermore, training a CNN well on a large database is demanding both in terms of 

computation time and the computational resources required. 

Fine-tuning arises from the need to make up for these deficiencies. This method consists 

in the possibility of using a Neural Network, pre-trained on a large database, through a 

further training phase with another database, even a small one. The output level is 

replaced with a new softmax output level, adjusting the number of classes to the 

classification problem being faced. The initial values of the weights are used those of 

the pre-trained network, except for the connections between the penultimate and last 

level whose weights are randomly initialized. New training iterations are performed to 

optimize the weights with respect to the peculiarities of the new dataset (it does not 

need to be large). Fine-tuning can be done in two ways. One way is to freeze the 

weights of some layers and carry out new training cycles to modify the weights of the 

remaining layers. The concept of fixing the weights of the layers is defined as freeze of 

the layers. Generally, they are the first layers to be freeze as the first layers capture low 

level features. The greater the number of freezed layers, the less the fine-tuning effort in 

terms of time and resources. 

In this case, the weights of the first CNN levels are frozen and the remaining parameters 

/ weights are trained. The other way is to have the architecture re-train entirely on the 

new database. This method is called training from scratch. It is intuitive that the greater 

the number of frozen layers the lower the computational cost of training, so training 

from scratch is the most expensive form of computational training. 
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Appendix B – Image processing 
 

This paragraph presents, in general, some theories and techniques of image processing, 

many of which were used in this thesis work. 

 

Spatial domain techniques 

 

 

Spatial domain techniques directly deal with the image pixels. The pixel values are 

manipulated to achieve desired enhancement. The processing in the spatial domain can 

be expressed as: 

 

g(x, y) = T[f(x, y)] 

 

where f is the input image to processing, g that of output and T an operator on f defined 

in a neighborhood of (x, y). In some cases T acts on a set of input images, as in the case 

of processing image sequences or, more simply, in the case of pixel-by-pixel operations 

(sums, etc.). The size of the neighborhood of (x, y) defines the character of the 

processing: 

• punctual: the neighborhood coincides with the pixel itself; 

• local: in the most common cases the neighborhood is a small square region 

centered on the pixel; 

• global: the neighborhood coincides with the whole image f. 

 

The result of a homogeneous punctual processing depends only on the value of the pixel 

to which it is applied, so these processing are also called manipulations of the gray 

scale. If, on the other hand, the result of the processing also depends on the position of 

the pixel, it is talking about non-homogeneous point processing. 

The homogeneous point processing is carried out by applying a specific operation to 

each pixel of the starting image, thus a new image is obtained in which each pixel takes 

on a value that is the result of the operation itself. The homogeneous punctual 

processing can therefore be represented by a transformation or mapping of the gray 

levels. A trivial example of a punctual (invertible) operation is the inversion of the gray 

scale (or negation of the image). 

The contrast normalization and the equalization of the histogram are also included 

among the punctual operations. Given a grayscale image, its histogram consists of the 

histogram of its gray levels; that is, a graph indicating the number of times each gray 

level occurs in the image. The (normalized) histogram of the gray levels of a digital 

image is the discrete function: 

 

P(rk) = nk / n    for    k = 0, 1, …, L-1 
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where nk is the number of pixels of the image with gray level k, n is the total number of 

pixels and L is the number of gray tones available. Therefore, this is a posteriori 

estimate of the probability of occurrence of the gray levels of the image, useful because 

it provides a global description of the image. The information given by the histogram 

can give a general idea of the possibility of image improvement, especially in terms of 

contrast manipulation, but are also applied in other processing (compression, 

segmentation). In a dark image, the gray levels would be clustered at the lower end; in a 

uniformly bright image, the gray levels would be clustered at the upper end, in a well 

contrasted image, the gray levels would be well spread out over much of the range.  

The contrast normalization enhance the histogram contrast by spreading out its 

histogram. Normalization is sometimes called histogram stretching and changes the 

range of pixel intensity values applying a piecewise linear function. If a given histogram 

has a range between a value a and b both greater than zero and with b > a, the linear 

function to stretch in the new range c and d both greater than zero and d > c, operates 

on each i-th pixel producing the new j-th value according to the equation: 

 

j = (c - d) / (b – a) * (i – a) + c 

 

with the condiction that a < c and d > b. 

Pixel values less than c are all converted to c, and pixel values greater than d are all 

converted to d. Generally, a kective information, for this reason a small percentage of 

the pixels with higher values and those with lower values are discarded. In this thesis, 

for example, the contrast normalization function has been implemented such that, 

linearly remapping the intensity values so that 1% of data is saturated at low and high 

intensities. 

Another renowned technique for modifying the histogram is the equalization. This 

consists in transforming the histogram of gray tones in such a way as to make it as 

uniform as possible (each level of gray features almost the same number of pixels in the 

image); a perfectly uniform distribution of gray levels cannot be obtained due to the 

discrete nature of the quantities involved. The function to be used for the equalization of 

the histogram in the discrete case is the following: 

 

sk = T(rk) = ∑ 𝑝𝑘
𝑗=0 r (rj) = ∑ 𝑛𝑘

𝑗=0 j/n   0 ≤ rk ≤ 1   and   k = 0, 1, …, L-1 

 

The transformation from each pixel of intensity rk into a pixel of sk value occurs through 

the function T(rk) which is calculated directly from the histogram of the starting image. 

An adaptive variant of histogram equalization is the CLAHE (Contrast Limited 

Adaptive Histogram Equalization). It is a block-based processing, and it can overcome 

the over amplification of the noise problem in the homogeneous region of the image 

with standard histogram equalization. It operates on small regions in the image, called 

tiles, rather than on the entire image. Each tile's contrast is enhanced, the neighbouring 

tiles are then combined using bilinear interpolation to eliminate artificially induced 

boundaries.  
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Local processing 

 

 

Local processing has been the most used techniques since the dawn of imaging [94], 

they are the procedures that somehow emphasize or attenuate certain characteristics of 

the images, leaving their format unchanged. The objectives can be different, to reduce 

noise, eliminate cyclic perturbations, increase and intensify the characteristics of the 

contours present in the image. These techniques are generally achieved through the 

convolution of a kernel (or spatial filter), that is an m × n matrix used in convolutions. 

If f(i, j) represents an image, with (i, j) ∈ ({1, Ni} × {1, Nj}), the convolution of f with a 

kernel K is given by: 

 

fC(i, j) = ∑ ∑ 𝑓𝑛
𝑙=1

𝑚
𝑘=1 (i + k – 1, j + l – 1) K(k, l) 

 

The convolution mask generally has a rectangular shape (usually with sides of odd 

length). Spatial filtering requires 3 steps: position the mask over the current pixel, form 

all products of filter elements with the corresponding elements of the neighborhood, and 

add up all the products. This must be repeated for every pixel in the image. 

It speaks of spatial filtering as the operation takes place directly in the pixel domain or 

spatial domain, while the concept of filtering has its roots in the use of the Fourier 

transform, in the frequency domain. 

Among the most used spatial filters are smoothing ones. Smoothing filters are used for 

image blurring and for noise reduction. The blurring operation is normally used in the 

pre-processing phase, in order to eliminate small unnecessary or even harmful details 

for subsequent processing. A simple example of a smoothing filter is the average filter: 

it replaces the average of the pixel values in the neighborhood defined by the Kernel for 

each pixel; in this way the extent of the gray tone differences between neighboring 

points is reduced. It can be accomplished using the following Kernel: 

 

k = 1/9 *  

 1 1 1   

 1 1 1   

 1 1 1   

  

Among the most used smoothing filters is the Gaussian filter. Gaussian filters are a class 

of low-pass filters, all based on the Gaussian probability distribution function. To build 

the kernel you need to specify the σ which is the standard deviation: a large value of σ 

produces a flatter curve, and a small value σ leads to a more “pointed” curve. Gaussian 

blurring is highly effective in removing Gaussian noise from an image. 

Another filter widely used to remove noise from images and especially the salt and 

pepper type, is the median filtering. The function takes the median of all the pixels 

under the kernel area and the central element is replaced with this median value. 

Interestingly, in the gaussian filters, the central element is a newly calculated value 

which may be a pixel value in the image or a new value. But in median blurring, the 

central element is always replaced by some pixel value in the image. The median filter 
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is not one of the fastest filters due to the search for the median between a series of 

values. Therefore it is important to use efficient algorithms that exploit the overlapping 

convolutions. 

Another type of filtering used in this thesis is bilateral filtering [95]. The Bilateral 

filtering is highly effective in noise removal while keeping edges sharp. But the 

operation is slower compared to other filters. It already saw that a Gaussian filter takes 

the neighbourhood around the pixel and finds its Gaussian weighted average. This 

Gaussian filter is a function of space alone, that is, nearby pixels are considered while 

filtering. It doesn't consider whether pixels have almost the same intensity. It doesn't 

consider whether a pixel is an edge pixel or not. So it blurs the edges also, which it 

doesn't want to do. Bilateral filtering also takes a Gaussian filter in space, but one more 

Gaussian filter which is a function of pixel difference. The Gaussian function of space 

makes sure that only nearby pixels are considered for blurring, while the Gaussian 

function of intensity difference makes sure that only those pixels with similar intensities 

to the central pixel are considered for blurring. So it preserves the edges since pixels at 

edges will have large intensity variation. 

Similar to the bilateral filter, another filter that allows noise reduction without 

smoothing the edges is the anisotropic diffusion filter, also called Perona-Malik 

diffusion [96].  

 

 

Morphological filters 

 

 

Another approach to filtering is adapted from the mathematical morphology. 

Morphological processing is a type of processing that changes the shape or structure 

space of the objects in the image. Although morphologic operators can also be defined 

for gray scale images, morphologic filtering is principally performed on binary input 

images [97]. According to a general convention, the white pixels in the binary image 

indicate relevant segments and the black pixels indicate the background.  

Typical morphological operations are: dilation, erosion, skeletonization. 

Before defining the morphological operators it is necessary to define the type of 

connectivity of the objects on a discrete grid. Given a pixel p of coordinates (x, y), the 

four neighbors (horizontally and vertically) have coordinates: 

 

(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1) 

 

and constitute the set N4 (p) of the 4-neighbors of p. 

The four diagonal neighbors of p have coordinates: 

 

(x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1), (x − 1, y − 1) 
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and form the set ND (p).  

The set of 8-neighbors of p is given by N8 (p) = N4 (p) ∪ ND (p). 

On the basis of the spatial adjacency relationship used, the type of connectivity is 

defined (see Figure B.1):  

 

Morphological operators of erosion and dilation: these two operators are fundamental in 

the morphological analysis of images; in fact, most of the morphological analysis 

techniques are obtained starting from these. Erosion and expansion are carried out 

through a structural element B (a n × m matrix) and, given an object A, are defined as 

follows: 

 

• Erosion of A: the set of points included in all possible translations of B that are 

completely internal to A (see Figure B.2); 

• Dilation of A: the set of points included in all possible translations of B for 

which at least one point of B is included in A (see Figure B.2). 

 

 

 
Figure B.1: 4-connectivity (left) 8-connectivity (right). The arrows identify the neighboring pixels 

starting from the central pixel. 

 

 
Figure B.2: Erosion and Dilation. On the left, the application of a dilation; on the right the application 

of an erosion. A is the original object, and B the structural elements used. 
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• Opening of A: the combination of erosion followed by dilation is called opening, 

in reference to its ability to separate shapes that touch each other (see Figure 

B.3); this operator is widely used to remove noise pixels from binary images. 

• Closure of A: the opposite combination, dilation followed by erosion, is called 

closure in reference to its ability to unite neighboring forms; this operator is 

widely used to remove isolated background pixels from binary images. 

• Thinning and Skeletonization: these techniques consist in reducing a region to a 

minimal set of points representing an invariant of its geometric form. It is called 

skeleton [98]. The strict definition of skeleton is due to Blum [99], who 

introduced the Medial Axis Tranform (MAT) defining the skeleton in the 

following way: if A is an object in an image, the skeleton of A is the subset I of A 

such that, if x ∈ I then there exist at least two points on the edge of A equidistant 

from x. 

 

 

 

Figure B.3: Opening example. 4-connectivity, one cycle (one erosion + one dilation). 

 

 

The erosion reduces the size of a segment, and the dilation leads to its enlargement. The 

opening removes small details on the outline of segments or the background, without 

affecting the total size of relevant regions. The closing is able to remove holes in the 

interior of a region and smooth its contour. 

Il filtro FAS (Filter Alternating Sequential) is obtained by the iterative subsequent 

application of morphological opening and closing transformations and process an image 

by filtering both bright and dark structures. FAS is widely used for achieving a 

simplification of a scene and for the removal of noisy structures. 

Binary morphology is applied frequently in medical image processing, for instance to 

clean up shapes after pixel-based segmentation.  

Gray scale morphology is simply a generalization from 1 bit (binary) images to images 

with multiple bits per pixel, where MIN and MAX operations replace the AND and OR 

operations of binary morphology, respectively. 
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Thresholding 

 

 

The histogram thresholding assumes that the image is composed of regions that differ 

from each other in the range of values of the pixels that compose them, so that the 

histogram of an image has peaks corresponding to these values. The values that 

correspond to valleys in the histogram are used as thresholds to distinguish the regions 

from each other. Thresholding can be used to create binary images, indeed, the method 

replace each pixel in an image with a black pixel if the image intensity is less than some 

fixed constant T (the threshold value), or a white pixel if the image intensity is greater 

than that constant. To make thresholding completely automated, it is necessary for the 

computer to automatically select the threshold T. Among the most known algorithms to 

automatically find the T value there are the Otsu threshold [57] and the threshold based 

on max entropy [58]. The Otsu algorithm returns a single intensity threshold that 

separate pixels into two classes, foreground and background. This threshold is 

determined by minimizing intra-class intensity variance, or equivalently, by maximizing 

inter-class variance. 

The Max entropy thresholding is very similar to Otsu’s method, rather than maximising 

the inter-class variance, it maximises the inter-class entropy. Entropy is a measure of the 

uncertainity of an event taking place. Let hi be value of normalized histogram  

 

Entropy of black pixels:     HB(t) = -∑  [ℎ𝑖
𝑡
𝑖=0  / ∑ ℎ𝑗

𝑡
𝑗=0 ] log  [ℎ𝑖  / ∑ ℎ𝑗

𝑡
𝑗=0 ] 

 

Entropy of white pixels:     HW(t) = -∑  [ℎ𝑖
𝑖_𝑚𝑎𝑥
𝑖=𝑡+1  / ∑ ℎ𝑗

𝑖_𝑚𝑎𝑥
𝑗=𝑡+1 ] log  [ℎ𝑖  / ∑ ℎ𝑗

𝑖_𝑚𝑎𝑥
𝑗=𝑡+1 ] 

 

Optimal threshold can be selected by maximizing the entropy of black and white pixels: 

 

T = Arg Max t=0…i_max HB(t) + HW(t) 

 

A global threshold on the histogram of the whole image might not be good in all cases, 

e.g. if an image has different lighting conditions in different areas. In that case, adaptive 

thresholding can help. In this thesis is considered the adaptive variant of the Otsu 

algorithm. The algorithm determines the threshold for a pixel based on a small region 

around it. So it gets different thresholds for different regions of the same image which 

gives better results for images with varying illumination. 
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Used processes list 

 

 

Table B.1 lists the processes used in this thesis work. 

 

Processes Abbreviation Reference 

Nothing Nt - 

Contrast normalization Cn implemented 

Equalization Eq http://docs.opencv.org 

CLAHE Ch http://docs.opencv.org 

Gaussian filter Gs http://docs.opencv.org 

Median filter Md http://docs.opencv.org 

Morphological filters Dl / Er / Op / Cl http://docs.opencv.org 

Morphological FAS Fs http://www.pkuwwt.tk/ofeli/doc/index.html 

Anisotropic diffusion 

filter 

An http://www.pkuwwt.tk/ofeli/doc/index.html 

Bilateral filter Bl http://docs.opencv.org 

Otsu thresholding Ot http://docs.opencv.org 

Max entropy thresholding Me implemented 

Adaptive Otsu 

thresholding 
Ao http://docs.opencv.org 

Remove boundary cells Rb implemented 

Filling Fl implemented 

Table B.1: Processing functions used. 
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Appendix C – Features 
 

Used features list 

 

Table C.1 lists of the features used in this thesis work. 

Features  Short description  

Mean value  Calculate the average value of the pixels intensity 

Standard deviation Calculate the standard deviation of the pixels intensity 

Ratio of the standard 

deviation to the mean value 

(intensity) 

Calculate the value of the ratio between the sigma and the mean of 

the intensity 

Entropy  Calculate the value of the mean entropy of the pixels intensity 

Skewness  Evaluate the asymmetry index (Skewness) of the pixels intensity 

distribution 

Kurtosis  Evaluate the Kurtosis value associated with the pixels intensity 

distribution 

Area Evaluate the ROI area 

Perimeter  Evaluate the ROI perimeter 

Convex area  Evaluate the convex hull area of the ROI 

Mean radius  Calculate the average value of the radius 

Standard deviation of radius Calculate the standard deviation of the radius 

Ratio of the standard 

deviation to the mean value 

(radius) 

Calculate the value of the ratio between the sigma and the mean of 

the radius 

Maximum radius Calculate the maximum value of the radius 

Anisotropy Calculate the anisotropy value 

Entropy of the contours 

gradient 

Calculate the entropy of the contours gradient 

Fractal index Evaluate the fractal index to be associated with the ROI 

Eccentricity  Evaluate the eccentricity of the ROI to get a measure of the 

elongation of the region 

Circularity  Calculate the circularity of the ROI 

(4*π*area / perimeter^2) 

Contrast Calculate the contrast of the ROI 

Convex deficiency Evaluate the convex deficiency area of the ROI 

Roundness  Evaluate the roundness of the ROI 

(4*π*area / perimeter) 

Compactness Evaluate the compactness of the ROI 

(4*π*area / perimeter^2) 

Solidity  Evaluate the solidity of the ROI 

(area / convex_area) 

Inertia of co-occurrence 

matrix 

Calculates the inertia of the co-occurrence matrix of the gray levels 

Entropy of HOG Calculate the entropy value of the HOG descriptor (Histogram of 

Oriented Gradients)  

Entropy of HAG Calculate the entropy value of the HAG descriptor (Histogram of 

Amplitude Gradients) 

Euler’s number Evaluate the euler number of the ROI  

(object number – holes number) 
 

Table C.1: List of the features used. 
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