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Part 1. Introduction 
 

Chapter 1. Route of Administration and Drug Delivery System 

 

Pharmaceutics (the science of dosage form design) is one of the four pharmacy’s disciplines 

of preparing new or old drugs into modern medicaments that can be safely used by patients. This field 

usually investigates chemical, physical, physiological, and formulation factors that can affect drug 

absorption, distribution, and elimination processes determining in-vivo performance  (Rowland Tozer; 

2005). Drug absorption indicated the journey of a drug from the site of administration to the auction 

site. The rate of drug absorption affects the onset of drug effect, therefore studying it, is essential to 

ensure that the amount of drug responsible for therapeutic effect reaches systemic circulation (Van 

de Waterbeemd et al.;2001). Regarding physical properties, drug solubility and permeability are of 

importance as the drug needs to be in solution to cross biological membranes. It has to possess 

balanced hydrophilicity and lipophilicity to diffuse and be absorbed  (Dahan et al.; 2009).  

Drug administration aims to exert either a local or a systemic effect. Local drug delivery implies 

that the drug’s impact is at the site of application, and no further distribution in another part of the 

body is needed. On the other hand, systemic administration requires that the drug is absorbed to 

reach systemic circulation and be transported to the effect site or sites (Brunton et al.;2013).  

Drugs are usually administered by enteral, parenteral, and topical application, and, with an 

exception for intravenous and arterial administration, once the drug is administered is had to be 

absorbed and then distributed in the systemic circle. Choice of the parenteral route depends on the 

emergency of initiating treatment or on physicochemical properties of the drug that might affect its 

absorption via gastrointestinal tract (Gulati and Gupta; 2011). 

The significant challenges in drug delivery include overcoming drug absorption barriers, such 

as biological membranes, and of drug transportation from the administration site to site of action. 

Overcoming drug absorption barriers is essential in the understanding of structure and function of 

membranes, epithelia, and tissues, which is necessary to improve the absorption process. The 

endothelial cell has a lipid bilayer that consists of amphipathic lipids, phospholipids, glucolipids, 

steroid and proteins, that creates cell membrane. This complex organisation allows permeation of 

lipophilic molecules; however, protein channels or complex could allow incorporation of hydrophilic 

molecules or generate a cascade of electrochemical steps that create a therapeutic response (Madani 

et al.;2011). The body surface is cover with epithelia that are layers of proteins which connect cell 

membranes of adjacent cells, leaving a small space (i.e. gap junction) between them filled with 
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extracellular fluid (Sperelakis and Kaneshiro; 2012). Passage of molecules through the membrane is 

selective for nutrients, vitamins, mineral and other functional compounds, and those can be absorbed 

with a different mechanism that is used by drugs as well. Main tools are passive diffusion, carrier-

mediated and para-cellular, and those were schematised in Figure 1 (Hedaya; 2012).  

 

 

Figure 1. Schematic representation of common mechanism for drug across membranes. Image is drawn via 
BioRender and adapted from Mohsen and co-workers  (Hedaya; 2012).  

 

Passive diffusion is a process that allows a molecule to move from a higher to lower 

concentration according to the concentration gradient. Passive diffusion does not require energy and 

the distribution through the membrane is described by Fick’s law; equation 1 (Le; 2019).  

 

𝑹𝒂𝒕𝒆 𝒐𝒇 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 =
𝒅𝑨

𝒅𝒕
= 𝑫𝑲𝑺/𝒉 (𝑪𝒂𝒃𝒔 − 𝑪𝒑)  Equation 1 

 

Where dA/dt is rate or diffusion across membrane, D is diffusion coefficient that is drug-specific, K is 

drug partition coefficient, S is membrane surface area, h thickness and (Cabs – Cp) is difference between 

the concentration of drug in absorption site and plasma.  

It is clear that the rate of absorption is proportional to drug lipophilicity and surface area 

available but decreases with the increase of membrane thickness. Therefore, when administrating a 

drug in the gastrointestinal tract, the leading absorption site is represented by the small intestine that 

possesses a large surface area (Thompson et al.;2014). From the other hand side, carrier-mediated 
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transport usually includes the transport system as a protein in which drug passage implies energy 

consumes, while the para-cellular route is the movement of small molecules through gap junction. 

 As mentioned above, most common administration routes are enteral, parenteral, and 

topical. Oral drug delivery is most common due to its high patient compliance and handles formulation 

strategies. Once the medication is taken, it undergoes different stage before being absorbed, and 

those are described in the next chapter of present work. Parenteral delivery is considered an 

emergency administration producing a fast onset of action and requires intervention by clinicians as 

it is highly invasive. However, it is the only route available for drugs, like insulin, lidocaine and fentanyl 

that degrades in the gastrointestinal tract  (Gavhane and Yadav; 2012). The most significant advantage 

is that drug directly reaches system circulation, by-passing physical or biological barriers. Such 

administration route has risks of injury, infection at the site of injection, phlebitis, and thrombosis  

(Homayun et al.;2019). 

Moreover, formulation administered by this route should not contain particles larger than five 

μm, must be water-miscible, sterile, isotonic, and pH. Sterility, isotonicity, and pH must be respected 

as a variation of one of these parameters could cause blood clots, infection, thrombosis and stroke 

(Smith and Mendel; 1920). Topical dosage forms present advantage of being applied on site of action, 

avoiding both systemic circulation and hepatic metabolism. The drug is absorbed through a thicker 

layer of skin; therefore, the absorption rate is lower and strongly influenced by drug lipophilicity. This 

route is used for drugs with low molecular weight (Mw), adequate lipophilicity and can be applied to 

a broader category of drugs if formulated with appropriate excipients named “enhancer” (Benson et 

al.;2019). Recent research was directed towards the alternative of both oral and parenteral route whit 

aim of by-passing hepatic metabolism and increases absorption rate to achieve an early therapeutic 

onset of action, named transmucosal delivery.  

 The concept of drug absorption and its delivery to the site of action to cause a therapeutic 

effect is defined as bioavailability and is calculated as “Area Under Curve” (AUC). Bioavailability of drug 

represents the quantity of a drug which reaches the systemic circulation, and when a drug is a delivery 

by the parenteral route, this reaches a theoretical value of 100%. At the same time, oral administration 

is influenced by absorption rate through membranes, as schematised in Figure 2.  
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Figure 2. Comparison of absorption rate of oral (in blue) and parenteral (in purple) route. 

 

1.The gastrointestinal tract  

 

The tradition oral route (i.e. drug delivery via the gastrointestinal tract) is the most commonly 

used in drug delivery due to high patient compliance, acceptability and ease of administration and 

formulation. Its efficacy depends on different factors such as drug solubility and intestinal 

permeability, that affects the quantity of the drug that permeate membranes to reach the systemic 

circulation. However, oral absorption is usually slow and does not ensure enough drug bioavailability 

as the drug is diluted into physiologic fluids through the gastrointestinal tract (Goodman et al.; 

Michael; 2007). The digestive tract includes four main anatomical areas: oral cavity, stomach, small 

and large intestine (Figure 3). Presence of villi increases the absorption surface of the small intestine 

to 200 m^2, representing drug and nutrients absorption site. 
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Figure 3. Gastrointestinal tract is composed of four regions: oral cavity, stomach, small and large intestine and 
designed via BioRender. 

 

The epithelial covering the intestine are four: mucosa, submucosa, muscularis propria and 

propria. Mucosa represents absorption site, and both physiological factors and drug physicochemical 

properties affect oral drug absorption, thus bioavailability. The physiological factors are 

gastrointestinal motility, metabolism, presence of food, pH, and individual variation (such as gender, 

age, race, and medical condition). Along with gastrointestinal tract pH varies from acid (stomach) and 

basic in the intestine; moreover, presence of food modified pH in the stomach where from typical 

values between 0.8 and 2, rises to 4-5. While intestine pH is between 6 and 7. Gastrointestinal pH 

influences drug dissolution, solubilisation, and absorption. Drug absorption is therefore influenced by 

drugs physicochemical properties such as partition coefficient, pKa, Mw, chemical stability, and 

solubility (Artursson et al.;2007). As described above, drugs can be administered via different 

administration routes which selection depends on physical drug properties such as permeability and 

solubility. In the following sections, those are described and discussed, as well as conventional solid 

dosage forms used for drug delivery through the oral route and oral cavity. 
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1.1 Drug solubility  

  

 Solubility is a physical property of molecules in a solvent that correlates with drug solid-state 

that could be either crystalline or amorphous, and its chemical structures. Chemicals can be acids or 

bases, and their solubility increase as their degree of ionisation increases. Therefore, their solubility 

could be predicted in a specific solvent applying the following equations. 

 

𝒑𝑲 − 𝒑𝑲𝒂 = 𝐥𝐨𝐠 (
𝑺−𝑺𝒐

𝑺𝒐
) 𝑭𝒐𝒓 𝒂𝒄𝒊𝒅𝒔  Equation 2 

 

𝒑𝑯 = 𝒑𝑲𝒂 − 𝐥𝐨𝐠  (
(𝑺𝒐)

(𝑺−𝑺𝒐)
) 𝒇𝒐𝒓 𝒃𝒂𝒔𝒊𝒔  Equation 3 

 

Where at a pH above pKa solubility of acids increases and pH values below pKa solubility of bases 

increases.  

  As described above, drug absorption through the membrane depends by different factors 

such as diffusion coefficient, partition coefficient, membrane surface and thickness. However, drugs 

have to be in solution to cross epithelial, and its absorption rate relates to how fast it dissolves in 

human fluids at the absorption site. Dissolution rate is, therefore, the controlling steps of all process 

and is strictly correlated with drug solubility. It is estimated that more than 40% of the drug is poorly 

soluble in water. Thus pharmaceutical research focuses on improving the solubility of poorly soluble 

drugs to ultimately increase dissolution rate, absorption and bioavailability  (Kalepu and Nekkanti; 

2015). Foundation of this line of research relates with Noyes-Whitney equation (equation 4) which 

explains that a drug dissolves more rapidly when it possesses a high surface area, achieved by reducing 

its particle size.  

 

   
𝒅𝒎

𝒅𝒕
= 𝒌𝑺 (𝑪𝒔 − 𝑪𝒕)  Equation 4 

 

Where dm/dt is dissolution rate, i.e. amount of drug dissolved per unit time, K is dissolution rate 

constant, S is the surface area of drug particles; Cs is saturation solubility of the drug; Ct is the 

concentration of dissolved solute (Martinez and Amidon; 2002).  

This equation indicates that reducing particle size results in an increase of dissolution rate, 

thus absorption. Once a drug is dissolved, it can cross the membrane, and the flux of absorption can 

be predicted and calculated through Fick’s law (equation 1). 
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 Drug solubility depends as well on its solid-state, which can be amorphous or crystalline. 

Amorphous materials possess short-range molecular order and high kinetic energy, and their weaker 

attractive intermolecular forces result in bonds which are easily broken. This allows molecules to be 

freed on the solid-state surface into a liquid medium resulting highly soluble and having a faster 

dissolution rate (Shah et al.;2006). From another hand side, in crystalline state molecules possess long-

range molecular order which defines a low energy state resulting in higher stability and allowing an 

adequate physical form control during formulation and storage processes (Sinko; 2011). Amorphous 

compounds are, therefore, characterised by a lack of long-range molecular order and it is an 

undercooled liquid, thermodynamically unstable. Disordered amorphous structure implies molecular 

spatial fluctuations. Such fluctuations cause bonds breaking and spatial reorganisation toward an 

equilibrium named stable equilibrium, which is typical of the crystalline compound. In fact, as per the 

second thermodynamic law, matter tends to minim energetic conformation; therefore, amorphous 

compound potentially mutates to crystal. However, this modification is time-dependant and could be 

improved or prevent by modifying condition such as temperature and pressure  (Franks et al.;2007). 

APIs are categorised based on their solubility and permeability through membranes in 

Biopharmaceutical Classification Systems (BCS). BCS is an experimental model design for oral drug 

delivery as 90% of the marketed dosage form are designed for oral delivery. According to BCS, drugs 

are organised in four classes, from I to IV, with almost 60% of them listed in II and IV classes, due to 

their high hydrophobicity, as schematised in Figure 4. A drug is considered highly soluble if the highest 

clinical dose is soluble in 250mL at a pH between 1 and 7.5 at 37oC  (Ku; 2008). 

 

 

Figure 4. BCS classification of drugs according to their solubility and permeability. In 2011, it was calculated 
that BCS class II represent 60% of marketed dosage forms, while class I just 20%. 
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Solving solubility related issue is considered a significant challenge in drug-delivery, 

considering that the majority of drugs have low solubility, but about 90% of marketed dosage forms 

are formulated for an oral dose. Therefore, several formulation strategies are employed, and they are 

discussed in the following section (Samie et al.;2017; Campardelli et al.;2017).  

 

1.2 Oral solid dosage forms 

 

  Approximately 90% of marketed drugs are administered by the oral route as a liquid or solid 

dosage forms. Liquid dosage forms are useful when required for rapid and efficient absorption, as 

molecules are already dispersed with a small surface area. Those formulations present the main 

problem that most of the drug is poorly soluble; therefore, their suspension or solution in a solvent 

requires used of several solvents and excipients to maintain stability. Moreover, liquid dosage forms 

are fewer patients acceptable as challenging to carry, and it is easy to mistake dose. From a 

pharmaceutical point of view, liquid formulation usually present sugars and water, representing a 

potential cause of bacterial growth once opened  (Haywood and Glass; 2013). Therefore, liquid dosage 

forms are not discussed in this work. 

 Most commonly, medicines for the oral route are in the form of tablets or capsules, which 

once reached the stomach, or intestine disintegrates in granules or small particle before being 

dissolved in human fluid to be absorbed. In solid dosage form, absorption is affected by particle size 

as well as by the presence of excipients or additives such as disintegrating, granulating agents, 

lubricants, and others (Michael; 2007). Tablets are usually obtained by compression of granules or 

powder containing drug and excipients which facilitate the manufacturing process. After oral tablet 

administration, drug dissolution is slow due to small surface area and once tablet starts to disintegrate 

in small granules or particle dissolution rate increases. Then absorption and diffusion mechanisms 

depend on physical drug properties, as described above. For example, many drugs are not stable in 

acidic pH of the stomach; therefore, coated tablets were developed to avoid disintegration of the 

tablet in the stomach allowing the release of drug in the intestine (Sinha and Kumria; 2003). Tablets 

formulation are the most used medicine both for immediate and prolonged release, as well as 

targeted and controlled release, to reduce systemic side effects. 

Moreover, it is possible to modify the tablet surface to improve taste and swallowability. Even 

if tablets are convenient to use for patients, their manufacturing requires several formulation units 

and product loss during the process (Allen et al.; 2013), and those are not suitable for children and 

elderly demographic that usually have swallowing difficulties. Moreover, tablet efficiency is affected 



18 
 

by poor patient adherence, as they can be easily forgotten and confused (Jimmy and Jose; 2011). From 

a physical point of view, during tabletting process drugs undergo physicochemical alteration by water 

absorption on tablet surface that might lead to drug solubilisation and recrystallization.  

Globally, capsules are the second most common oral solid dosage forms and contain 

uncompressed drug and additives in a gelatine shell. Capsules dissolve faster in gastrointestinal, 

providing a faster absorption and onset of therapeutic response (Hedaya; 2012). They could contain 

solid, powder, semisolids, and liquid. Capsules offer the advantage of avoiding the compression 

process of tablet manufacturing, and they might contain liquid improving oral bioavailability. 

However, they could have problems associated with liquid fill as well as its weight, drug content and 

homogeneity (Jones; 2008). 

 Drug bioavailability is affected by both physical-chemical and physiological factors, related to 

the site of administration, which reduces it due to loss of drug during absorption and permeation 

process. It was also discussed how these properties are studied by pharmaceutical scientists to be 

overcome. For example, medicines which degrade into stomach could formulate such as enteric-

coated tablet and water solubility could be improved by reducing particle size increasing surface area. 

However, once a drug is administered by the oral route, it encounters two other causes of 

bioavailability reduction that could not be overcome with formulation strategies in pharmaceutical 

dosage forms, such as hepatic metabolism and gastrointestinal drug transporters which are efflux or 

influx system present on membrane surfaces which help to absorb nutrient and eliminate toxins. 

Mainly, those systems such as glycoprotein-P could reduce the absorption of drugs through the 

membrane (Hunter and Hirst 1997).  

 Once the drug is absorbed in gastrointestinal, it is delivered through the portal vein to the 

liver before it can reach systemic circulation and being directed to the site of action. Part of drug it is 

also lost due to degradation and metabolism by microbiota and enzymes and in part excretion in 

faeces (Gavhane and Yadav 2012). This effect is known as “first-pass metabolism”, which is 

summarised in Figure 5, and that can decrease the amount of drug needed for therapeutic effects. 

Once the drug reaches the liver, it passes through a metabolic reaction catalysed by cytochrome P450 

that hydrolyses, oxidases, reduces and conjugates drug creating metabolites. This effect could be small 

or large depending on drug chemical structure, affecting bioavailability (Pond and Tozer 1984).  
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Figure 5. Schematic illustration of causes of loss of drug after oral administration. Image is redrawn from 
"Basic Pharmacokinetics" via Bio Render (Hedaya 2012). 

 

 Conventional solid dosage forms represent the most common drug delivery system despite 

several issues. However, oral cavity represents a new administration site proposing to achieve a 

systemic delivery and improve absorption, thus bioavailability. Potential of this route is discussed in 

the following section. 

 

2. The oral cavity: An alternative route of administration for systemic drug delivery 

  

 The oral route is the most common administration route due to patient compliance and the 

several formulation strategies available. However, not all drugs are suitable for oral delivery due to 

discussed hepatic metabolism and loss in the gastrointestinal tract. Drug bioavailability depends on 

the absorption rate, which is influenced directly by surface area and indirectly by the thickness of the 

absorption site. The oral cavity includes lips, lining inside the cheeks, the front of the tongue, upper 

and lower gums, and floor of the mouth under the tongue. It presents advantages that suggest this 

route as a targeted site for drug delivery.  

Local drug delivery in the oral cavity is recognised as oral transmucosal delivery which aims to 

drug systemic delivery through the mucosal surface covering the oral cavity. There are different 

application sites such as sublingual floor and buccal mucosa that are the epithelia of cheeks, gums, 
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and upper/lower lips. Sublingual delivery is characterised by a permeable membrane which allows 

absorption of small and lipophilic molecules such as nimesulide, atenolol, and metoprolol (Goswami 

et al.;2017). This route is favourable for immediate onset of action, as the administration of fast 

dissolving tablet of betamethasone as first AID to tackle an allergic reaction. From the other hand side, 

the buccal route offers a controlled release profile, and it is usually dispensed as an adhesive patch 

(Martin 2003).  

 The oral mucosa presents three layers such as epithelium, lamina propria and submucosa, as 

represented in Figure 6, and the epithelium could be keratinised or not. Keratinisation protects from 

mechanical and chemical stress, while non-keratinised epithelium is more flexible and permeable. 

Therefore, recognised as pertinent for drug delivery purposes, such as sublingual and cheeks. Lamina 

propria is constituted by connective tissue and communicates with submucosa made prevalently by 

blood vessels. Blood is then collected by three veins that flow into jugular vein allowing the drug to 

pass into the systemic circulation (Gibson et al.;2001).  

 

 

Figure 6. The physiological structure of the oral cavity which presents three layers. From the oral cavity, there 
are epithelium, lamina propria and submucosa rich of blood vessels. The image was drawn via Bio Render. 

 

 Drug absorption through this route is affected by various physiological factors. Mucous film 

covering mucosa could represent the first barrier. However, this involves only drugs which bind mucin 

(the major component of mucous) and with a large Mw (>1 kDa). Main influencing factors are 

permeability and thickness of the epithelium, which permeability relates with both keratinisation and 

presence of intercellular lipids. Absence of keratinisation and existence of such fats increase 

permeability allowing the sublingual region to be more permeable than buccal. The buccal mucosa is 
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also thicker (500-800 µm) than sublingual (100-200 µm), confirming a faster absorption, 

bioavailability, thus onset of action for the sublingual route (Kraan et al.; 2014).  

 The most significant advantage of the oral cavity as administration route compared with 

conventional oral way is represented by avoidance of hepatic metabolism and high surface area 

available. Mainly, buccal mucosa presents a smooth surface which enables retention of dosage form, 

providing a site of administration for controlled release. Such retention could be allowed by the 

formulation of adhesive medicaments.  

 

2.1 Transmucosal drug delivery  

 

Pharmaceutical research and development of transmucosal drug delivery is growing due to 

potential offered by this route to improve drug bioavailability by avoiding first-pass metabolism and 

allow systemic delivery, thus the faster onset of action respect conventional oral route. Drug entering 

systemic circulation could be affected by several parameters of dosage forms itself which influence 

drug bioavailability. The buccal route is suitable for this scope at is permeable, does allow a fast 

absorption offering retention for controlled release dosage forms. Oral transmucosal drug delivery 

presents several advantages: high surface area of 100cm^2, it is accessible for drug delivery for 

application and removal and usually offers a simple design due to the space available. They are more 

accepted compared with other transmucosal drug delivery systems such as suppositories and 

intravaginal. 

Moreover, the buccal route presents an abundant blood supply which ensures rapid 

absorption and maintains sink condition. Sink condition is the ability to dissolve at least three times of 

drug respect amount in dosage forms. In the buccal cavity, this is allowed because once absorbed. The 

drug is immediately directed in circulation, creating a favourable gradient of concentration to be 

release from dosage forms (Hao and Heng 2003).  

Compared with the conventional oral route, buccal absorption is affected by less variability, 

such as the presence of food, intestinal motility, extreme pH variation. It is also more resistant to 

mechanical and chemical stress, therefore, less irritable. From a clinical point of view, this route is 

suitable for patient with a compromised gastrointestinal tract, patients with swallowing difficulties, 

nausea and vomiting (Zhang et al.;2002). In contrast, from a pharmaceutical point of view, it is useful 

when formulating drug which undergoes massive metabolism or that are unstable at gastrointestinal 

pH (Patel et al.;2011). Oral cavity pH is between 6.8 and 7.4. Finally, this route of administration 

presents a few disadvantages such as clearance from saliva, which could be overcome by using the 

adhesive system, and mucus layer could bind specific drugs (i.e. antimicrobial (Butnarasu et al.;2019)). 
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Moreover, there are still a few products (i.e. lofexidine (Al-ghananeem; 2009), fentanyl 

(Jobdevairakkam; 2005), detomidine (Huhtinenet; 1993)) on the market, delaying development and 

marketing of similar dosage forms. 

 

2.1.1 Oral Transmucosal patch as a buccal drug delivery system 

 

 As described above, oral transmucosal delivery systems have to provide a prolonged adhesion 

to buccal mucosa to allow a controlled release profile through the oral membrane. The oral 

transmucosal route will enable drugs to be released into the oral cavity into the buccal mucosa, 

composed of an epithelium layer (150–250 μm) and connective tissues (i.e., lamina propria and 

submucosa), as schematised in Figure 6. Just two formulation were discussed and produced so far, 

such as films and patches. 

Patches can allow a multi-directional release (Michael; 2007) and unidirectional (Hillery; 

2013), displayed in Figure 7. The multi-directional patch allows release both through the mucosa and, 

in saliva, which represents a disadvantage as the drug could be diluted and swallowed following 

conventional oral route bringing to a substantial drug loss. Unidirectional patches reduce release in 

saliva by application of an impermeable backing layer restricting absorption into the area of use. 

However, the implementation of the backing layer could reduce the flexibility of the patch leading to 

patient discomfort.  

 

 

Figure 7. Two types of patches available which differ for release that could be multi-directional (both mucosa 
and saliva) or unidirectional (through buccal mucosa). 

 

 Those patches could regulate the release of drug through the creation of a drug-polymer 

matrix that is easy to formulate or by using a reservoir system. In devices which release is matrix-

controlled, drug molecules are disposed on the device surface and available for release as particles 
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have to migrate along with the thickness of patch resulting in controlled-release over time (Hong et 

al.;2011). Dissolution rate is controlled by the dissolution of the drug within matrix according to first 

Fick’s Law, discussed previously.  

The drug is absorbed in the relation of surface area available, and usually, patches present a 

surface area between 1 and 5 cm^2 (Hong et al.;2011). The patch needs to be adhesive to ensure drug 

absorption, to the buccal mucosa and to allow drug permeation. Mechanism of adhesion depends on 

physical entanglement of adhesive polymer with glycoprotein chains of mucous and with the creation 

of chemical bonds (either electrostatic, hydrogen, hydrophobic) (Kumar et al.;2017). In the 

formulation of buccal transmucosal patches most used adhesive polymers are cellulose derivates such 

as poly (hydroxyethylcellulose), poly (sodium carboxymethylcellulose) (Cui et al.;2009), acrylic acid 

derivates such as poly (acrylic acid) and poly (methacrylic acid) (Laulicht et al.;2012), 

polyvinylpyrrolidone (PVP) (J. Lee 2005), polyvinylalcohol (PVA) (Peppas and Mongia; 1997), α,β-poly 

(N-2-hydroxyethyl)-D, L-aspartammide (PHEA) (Lo Monte Aet al.; 2012), Soluplus (SLP) (Salawi and 

Nazzal 2018). Polymer viscosity in media (saliva) affects adhesion time; moreover, presence of an 

impermeable backing layer provides higher adhesion time due to protection offered by this layer to 

solubilisation of matrix, usually composed of hydrophilic polymers such as PVA. 

 Different theories were explored to explain the mechanism of adhesion of polymers to 

membranes, and all are considered valuable. The process is based on the creation of electronic forces 

between the adhesive polymer and negative electric charge of mucus (Dodou et al.;2005), but also 

the formation of a physical bond. Lee and co-workers considered adhesion a diffusion-based process 

when polymer chains interact with a substrate which degree depends on cross-link, Mw, and 

temperature. Such a mechanism required that polymers present both hydrophilic and lipophilic 

groups to be able to interact at the molecular level with phospholipids of cell membranes (named 

interpenetration theory) (Lee et al.;2000). 

  

2.1.1.1 Assessment of patch mucosal adhesiveness  

 

 Mucosal adhesiveness is mainly influenced by polymers properties such as concentration, 

hydration, presence of the functional group, electrical charge, pH. For example, PVA possesses a 

concentration-dependent adhesion when formulates as a solid dispersion to create micro-particles 

reaching 18 nano Newton (nN) at a concentration of 20% w/w (Du et al.; 2011; Peppas and Mongia 

1997). According to interpenetration theory, polymer hydration promotes interpenetration and 

relaxation of polymeric chains, improving adhesiveness (Sigurdsson et al.;2006). Also, the presence of 

hydrophilic groups such as NH2, COOH, and OH increase creation of electrical bond, thus adhesion, 
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such as PHEA, PVA and SLP. These groups, also in an aqueous environment, as saliva and mucous of 

the oral cavity, are dissociated creating a charge that could improve the interaction between mucosa 

and polymer (Capra et al.; 2007). As acids and bases dissociation is influenced by pH, as demonstrated, 

and explained with equations 2 and 3, it is considered that polymers which pKa is higher than pH (7.4) 

are adhesive in the oral cavity (Sudhakar et al.;2006). 

When formulating patch for buccal drug delivery, it is fundamental to evaluate adhesiveness. 

Adhesion could be assessed both in-vitro and in-vivo, which is now in disuse. Main in-vitro techniques 

are the measurement of detachment force and adhesion strength. First one calculates the energy 

required to separate two slides covered with polymers and mucous, and it is, therefore, named pull-

out quantification (Beach et al.;2002). The second one analyses polymer and mucin interaction using 

polarised light. The newest technology that uses adhesion strength measurement is called Atomic 

Force Microscope (AFM) in quantitative mode (AFM-Qi) to evaluate forces in micro and nanometer 

size with a pN resolution. AFM uses spectroscopy to analyse surface topography by using a cantilever-

mounted tip and recreates an image which shows areas with significant interactions (Patel et al.;2000). 

 

2.1.1.2 Assessment of drug permeability through buccal mucosa 

  

 The drug can permeate membranes through paracellular route, favourite by hydrophilic 

drugs, and transcellular route, preferred by lipophilic drugs. Rate of drug permeability is often 

evaluated via in-vitro study in which drug passes from a donor compartment to a receiving chamber 

separated by a membrane layer that can be an animal specimen or a suitable membrane such as 

cellulose acetate (Borbás et al.;2015) and novel biomimetic PermeaPad (di Cagno et al.;2015). At every 

time point, a particular volume is withdrawn and characterised to quantify the amount of drug 

permeated. This experiment is often carried out once formulating transmucosal dosage forms to 

ensure formulation advantage of improving permeation, thus absorption. The research is conducted 

via vertical Franz Cell and permeability is calculated as apparent permeability (Papp) according to 

equation 5 and 6: the fractional amount of permeated drug (dQ) was calculated over a time interval 

(dt, expressed in seconds). Drug flux (J) through the barrier was normalised by the membrane surface 

area (A) (Di Cagno et al.;2015). 

 

𝐉 =
𝐝𝐐

𝐀∗𝐝𝐭
  Equation 5 

 

Papp was calculated by normalising flux over-concentration of the drug in the donor 

compartment (C0) as described by  
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Papp=J/C0 Equation 6 

 

3. Use of solid dispersion technology to improve solubility and permeability of BCS II and IV drugs 

 

Fick’s law describes that drug rate of diffusion through the membrane is proportional to its 

lipophilicity and the surface area available; however, it decreases by increasing membrane thickness. 

Drug absorption through the layer it is possible just if the drug is dissolved or molecularly dispersed 

from the dosage form. Dissolution performance is described by Noyes and Whitney equation, which 

explains that the dissolution rate is directly proportional to the drug surface area, which increased by 

decreasing drug particle size (Goldberg et al.;1966). Once the drug is dissolved in human fluids, it can 

diffuse through the membrane, be absorbed, and reach it action site generating therapeutic effect. As 

described in chapter 1, the amount of drug that goes systemic circulation is named bioavailability, and 

it is affected both by physiological and drug physical parameter. Once physiological parameters could 

be studied to analyse, which is the best administration route; the significant role of the pharmaceutical 

scientists is to modify drug and dosage form physical properties to improve bioavailability. Noyes and 

Whitney's equation suggests that a substantial part is played by drug solubility, as described in section 

1.1 (Dahan et al.;2015). Drugs with low solubility, BCS class II and IV, represent a significant challenge 

in the drug-delivery formulation, and several pre-formulation strategies being employed to overcome 

this issue, such as salt formation (Samie et al.;2017), micronisation (Campardelli et al.;2017), and most 

commonly solid dispersion (Modica de Mohac et al.;2017).  

Solid dispersions are described as a solid product containing a hydrophilic matrix and a 

hydrophobic drug (Modica de Mohac et al.;2018). Their first definition in literature is dated back to 

1961 when Sekiguchi and Obi, described them as presenting the medicine in a microcrystalline state 

(Sekiguchi and Obi; 1961). Later, Goldberg and co-workers (Goldberg et al.;1966), described it as a 

system where the drug is dispersed in a polymer possessing high aqueous solubility. Advantage of a 

solid dispersion relates with is drug release mechanism as once exposed to an aqueous media, 

hydrophilic carrier dissolves, releasing drug as fine particles. Most recently, a stable dispersion was 

described as a delivery system whereby the drug is dispersed in a biologically inert matrix, adding to 

the definition that polymers must be biocompatible and not be toxic (Craig; 2002; Serajuddln; 1999).  

Solid dispersion is widely used pharmaceutics due to a high number of advantages. In 

particular, if they are produced in the form of particles with minimal dimensions, this increases the 

specific surface of solid and consequently, causing a higher dissolution rate (Kamalakkannan et 

al.;2010). The suitability of solid dispersion manufacturing is proved through years by approbation by 
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the Food and Drug Administration agency (FDA). Many products available on the market, such as 

Kaletra® (containing lopinavir/ritonavir and produced by Abbott), Intelence® (containing etravirine 

and produced Tibotec), Certican® (containing everolimus and produced Novartis), and Rezulin® 

(containing troglitazone and produced Sankyo) (Zhong et al.;2018).  

Solid dispersions are classified into four different generations according to drug and carrier 

morphology, and the fifth generation of multicomponent solid dispersion (multi component solid 

dispersion) was proposed by Modica de Mohac and co-workers, in 2020 (Modica de Mohac et 

al.;2020). Identification of this generation is based on the physical state of drug, thus if it is in the 

amorphous or crystalline state. Such information is fundamental in pharmaceutics as solid-state drug 

influence it solubility, hence dissolution, thus bioavailability, as discussed in section 1.1. Composition 

of each generation is described in Table 1.  

The term multi component solid dispersion was first used in 1987 by Shadrina and co-workers 

but is definition was proposed just in 2006 by Yoo and co-workers and Pongpeerapat. They defined 

multi component solid dispersion as a “ternary solid dispersion”, prepared with more than two 

polymers in carrier matrix (Pongpeerapat et al.;2006; Yoo et al.;2009) Singh and Van den Mooter, in 

2013, described multi component solid dispersion as a system with a third or even fourth excipient, 

which would improve solid dispersion performance (Singh and Van den Mooter; 2016). In 2016, 

Haneef and Chadha described that multi component solid dispersion formulation implicates a 

therapeutic advantage as a drug-drug cocrystal compacted in the supramolecular complex where two 

or more compounds possessing a therapeutic effect. The complex represents a solid method to 

improve the physicochemical properties of drug delivery systems to achieve therapeutic advantages[55, 

56]. However, this definition included just formulation where both drugs and polymers are in the 

crystalline state. This condition is not represented in most common drug delivery systems, in which 

amorphous polymers and drugs are used. Furthermore, this definition implied that physical complex 

between drug and polymer achieves a therapeutic advantage. Still, no scientific evidence 

demonstrated the effect of polymers in enhancing system potential.  

 

Table 1. Classification of solid dispersions according to the latest report from Modica de Mohac  and co-
workers 2020(L. M. Modica de Mohac; 2020) 

Generation Composition 

First Eutectic, in which both drug and carrier are in the crystalline state 

(Haneef and Chadha; 2017). 

Second Both drugs and carriers in the amorphous state with prescription 

supersaturated in the molten matrix  (van Drooge et al.;2006).  
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They defined an multi component solid dispersion as “solid system in which one or more drugs 

are dispersed in a carrier matrix composed by at least two compounds whose possess properties 

capable of modifying or enhancing drug delivery system in term of improving drug release, improving 

drug permeability through membrane or increase system adhesivity to mucosa”. Those represent an 

evolution of solid dispersion that has as main aim increasing of drug release profile suggesting a 

therapeutic effect of polymer or biologically active compounds forming solid dispersion matrix. 

Solid dispersion advantage of improving drug solubility and dissolution profile depends on 

polymer selection and the release mechanism. 

 

3.1 Polymers commonly used in solid dispersion technology 

In preparation of novel dosage forms, polymers are selected during pre-formulation studies, 

in which potential effects are evaluated such as the ability to increase the dissolution rate of drug, 

stabilizer or dispersing agent for formulation itself (Poozesh et al.;2017). Different polymers are used 

in solid dispersion manufacturing, and example on their use is reported below in alphabetic order. 

 

3.1.1 PHEA 

 

PHEA is a polymer with a protein-like structure, high water solubility, non-toxicity, and 

biocompatible, chemical structure reported in Figure 8. It is suitable to formulate drug systems with a 

prolonged, controlled, and targeted release. It was successfully used to prepared solid dispersion of 

hydrophobic drugs such as beclomethasone dipropionate and flutamide and coat gold nanoparticles 

Third System of multiple carriers that present self-emulsifying properties 

which let to improve drug solubility and system stability (Pouton; 2006).  

Fourth 

 

Solid dispersion prepared using the amphiphilic chemical structure of 

SLP (Shamma and Basha; 2013). 

Fifth A solid system in which one or more drugs are dispersed in a carrier 

matrix composed by at least two compounds whose possess properties 

capable of modifying or enhancing drug delivery system. This system 

improves drug release and permeability through membrane or increase 

system adhesivity to the mucosa. The latest definition of the fifth 

generation of solid dispersion as an multi component solid dispersion 

was provided early in 2020 by Modica de Mohac and co-workers. 
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(Licciardi et al.;2012; Cavallaro et al.;2015). PHEA unique advantage is a combination of a lipophilic 

structure with a hydrophilic group; this amphiphilic structure allows micelles formation within a 

diameter of 10-100nm which achieve high solubility enhancement effect. PHEA can be derivatised and 

complexed with many polymers such as PLA and PVA. Such derivates were used to produce both 

nanoparticle and micro-particles, increasing solubility of α-tocopherol and beclomethasone (Buscemi 

et al.;2017; Lo Monte A. et al.;2012).  

 

Figure 8. Chemical structure of polymer PHEA. 

 

3.1.2 Cellulose acetate phthalate (CAP) 

 

CAP is used as a tablet-coating material employed to produce enteric films. It presents a 

chemical structure which resists to gastric fluid pH but dissolves in intestinal environment pH five or 

pH 5.5. Derivatives of cellulose are most common and widely used polymers for controlled drug 

release, which are introduced into a dosage form as a coating agent, viscosity modifier, and 

mucoadhesive agent (Paudel et al.;2013). Moreover, CAP is used to formulate controlled-release 

dosage form (Modica De Mohac et al.;2019). I was employed at 75% w/w to prepare solid dispersion 

of itraconazole increasing its solubility in the intestine by avoiding drug release in the stomach 

(DiNunzio et al.;2008). 
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Figure 9. Chemical structure of polymer CAP. 

 

3.1.3 Inulin 

 

Inulin is a polysaccharide which targets intestinal tract where shows a protective effect on the 

intestinal mucosa. Inulin possesses several applications in food and pharmaceutics and its chemical 

structure, with β 1,2 links, is not hydrolysable by human digestive enzymes but just from intestinal 

microbiota (Petrovsky; 2010; Mensink et al.;2015). Due to its hydrolysis in the intestine, inulin is used 

as prebiotic and colon targeting material in controlled drug delivery system (van der Beek et al.;2018; 

Oliveira et al.;2011). It also presents protective properties against diarrhoea, the most common side 

effect of several drugs. Inulin was firstly used for solid dispersion preparation by Visser and co-

workers, which improved permeability and absorption of HIV protease inhibitor TMC20. Such 

increment is due by high solubility that inulin shows when in the formulation at more than 2.5% w/w 

(Visser et al.;2010). 

 

 

Figure 10. Chemical structure of polysaccharide Inulin. 

 

3.1.4 Maltodextrin 

 

 Maltodextrin is a polysaccharide produced from starch by enzymatic hydrolysis of starch, 

constituted by amylose and amylopectin. It presents glucose bonds α (1→4) and α (1→6) every 24 to 30 

glucose units. Maltodextrins are a coating agent and highly soluble in water up to 35.5% w/w. 
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Maltodextrins are used in direct compression of tablet and have hygroscopic properties. They were 

employed in further research to improve the solubility and dissolution rate of the drug such as 

glimepiride meloxicam, and artemisinin. In each example, particle obtained presented high-water 

content due to hygroscopicity of this polysaccharide. It is also suitable for different formulation 

strategies, such as spray-drying and freeze-drying (Surin et al.;2018; Ainurofiq et al.;2016; Meliana et 

al.;2020). 

 

 

Figure 11. Chemical structure of maltodextrin. 

 

3.1.5 Poly (methyl methacrylate-co-methacrylic) acid (PMMA) 

 

PMMA is methacrylic acid, used as a coating agent to protect the drug from the acidic 

environment of the stomach. It is often used to modify release as it dissolves at a pH higher than 5. 

PMMA was used to increase the dissolution of griseofulvin and spironolactone at a pH value of 6.8 

(Kawakami et al.; 2020; Balogh et al.; 2017). PMMA is suitable for different formulation strategies such 

as hot-melt extrusion, freeze-drying and electrospinning for fibres formation.  

 

 

Figure 12. Chemical structure of PMMA. 
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3.1.7 Poly-lactic acid filament (PLA) 

 

PLA is a biodegradable polymer, considered as a smart polymer used as a controlled delivery 

system and as a polymer for implant generation as it is non-toxic and biocompatible. Smart polymers 

use to respond to external stimuli such as the human environment to modify their properties and 

improved drug release profile. PLA is more commonly used as a filament for three-dimensional (3D) 

printing of solid dispersion of diclofenac or as nanoparticle of docetaxel. Nanoparticle had a particle 

size between 100 and 200 nm, with a controlled release over ten days (Surini et al.;2018; Arias et 

al.;1994). It presents a melting point of 150-160oC. 

 

 

Figure 13. Chemical structure of PLA. 

 

3.1.8 PVA 

 

PVA is a water-soluble polymer which is widely used in film preparation by solvent casting 

method and electrospinning. It is high biocompatible as it was used for different in-vivo studies for 

soft contact lens material, artificial heart linings, artificial cartilages, and pancreas membrane. Because 

of its biocompatibility, drug compatibility, water-solubility, film-forming, excellent mechanical and 

swelling properties, PVA was deeply studied in the literature (Kumar et al.; 2017). Moreover, it 

possesses mucoadhesive properties (Peppas and Mongia; 1997; Shalini et al.;2012). It was used to 

prepare the buccal transmucosal patch to modify the release of simvastatin. It was also used as 

solubility enhancer in the formulation of itraconazole, ibuprofen and indomethacin (Mishra and 

Kumar 2012; Jaipakdee et al.;2018). Chew and co-workers, and Goyanes and co-workers, recently used 

PVA as a filament for 3D printing, which effects in controlling drug release was proved (Goyanes et 

al.;2015; Chew et al.;2019). 
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Figure 14. Chemical structure of PVA. 

 

3.1.9 SLP 

 

SLP, was introduced to the market due to its influence on the enhancement of drug 

bioavailability and dissolution rate of drug with low aqueous solubility (Basf; 2010; Kolter;2012; 

Reintjes; 2011). It is a polyvinyl caprolactam-polyvinyl acetate-polyethene glycol graft copolymer with 

amphiphilic structure, and it is suitable to solid dispersion production through spray-drying. SLP is a 

water-soluble polymer; its addition in stable dispersion formulation always led to a solubility 

enhancement of drug's solid dispersion such as carvedilol, increasing its dissolution rate (Shamma and 

Basha; 2013). Most recently, in 2017, many authors used this polymer to reach the goal of increased 

drug bioavailability and solubilities, such as nifedipine and sulfamethoxazole (Altamimi and Neau; 

2017), indomethacin (Ogawa et al.;2018), and itraconazole (Davis et al.;2017). 

 

 

Figure 15. Chemical structure of SLP. 
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3.2 Solid dispersion drug release mechanism  

 

The main advantage of solid dispersions is an improvement in dissolution rate, with 

concomitant implications for improving the bioavailability of poorly water-soluble drugs. Such 

improvements in dissolution rate are often considerable, with increases of up to four hundred-fold 

were reported (Craig; 2002). 

There are several hypotheses regarding the mechanism of drug release from solid dispersion. 

Most relates with different characteristics of the final product such as particle size and carrier. Particle 

size reduction causes an increase of particle surface area, causing an accumulation of dissolution rate, 

according to Noyse and Whitney equation. Carrier, as described above, could influence product water 

content, hygroscopicity and release profile. However, the most argued question relates to the 

hypothesis of two different mechanisms of drug release, carrier-controlled or drug-controlled (Figure 

16).  

This hypothesis is based on critical findings by Corrigan and co-workers. They found that the 

dissolution rate of the drug in polymer and polymer alone were identical, leading to the suggestion of 

carrier-controlled dissolution in phenobarbitone- (poly)ethylene glycol (PEG) solid dispersion 

(Corrigan et al.;1985). The same carried-controlled mechanism was identified by a different author 

who used PEG as a carrier (Dokoumetzidis and Macheras; 2006). This hypothesis suggested that 

interfacial layer between dissolution surface and the aqueous environment is depleted in more rapidly 

dissolving component (the carrier), leading to the creation of a surface layer rich in one element 

through which other must diffuse before releasing into bulk phase, Figure 16a. Moreover, Craig 

suggested that, if a system underwent carrier-controlled dissolution, then physical properties such as 

the initial particle size of drug or crystallinity should be mostly irrelevant (Craig; 2002).  

The second scenario is that release is drug-controlled, where drug diffusion into the polymer 

is comparatively slow, and the drug is released as solid particles. Therefore, dissolution does not relate 

with polymer but with drug characteristic such as size, and physical form. Therefore, other features 

are fundamental such as wettability and zeta potential. Understating this process would lead to a 

better possibility of solid dispersion to enhance drug dissolution rate through a preferential selection 

of appropriate carrier (in this case polymer) or a combination of carrier and carrier types (Yan et 

al.;2016). 
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Figure 16. Schematic representation (a) Carrier-controlled dissolution and (b) drug-controlled dissolution 
(Adapted with permission from (Craig; 2002)).  

 

3.2.1 Dissolution studies 

 

The determination of the release profile is described in pharmacopoeias which describe test 

apparatuses for different dosage forms. A typical dissolution test includes paddle apparatus and time 

limits are established according to part of the body aimed to be mimicked. Dissolution studies are 

considered as a pharmaceutical quality test, ensuring that dosage form provides a reproducible and 

predictable behaviour in-vitro (Hillery; 2013). The study has to be relevant. Therefore, appropriate 

dissolution media and conditions have to be created. Analysis, mimicking gastrointestinal 

environment presents a pH of 1-2 (obtained by a chloride acid HCl solution 0.1N), while intestine 

requires a phosphate base solution with pH 6.8. From the other hand side, oral cavity environment 

requires a neutral pH of 7.4 (Talukder et al.;2011; Dressman et al.;1998; Marroum; 2012). 

 

3.3 Solid dispersion manufacturing  

 

The most significant advantage of solid dispersion manufacturing relates to a variety of 

formulation strategies that can be employed for their products such as by melting (fusion), solvent-

based, or melting-solvent method. This work focused on the solvent-based process such as spray-

drying (Lavra et al.;2017), freeze-drying (Nireesha et al.;2013), solvent-casting method et al.;2016), 

electrospinning (Brako et al.; 2018), and fusion method of 3D printing (Chew et al.;2019). Those 

techniques were widely used to prepare solid dispersion as reported in the literature. In the following 

section, each method is critically discussed. 
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3.3.1 Spray-drying 

 

Spray-drying is a formulation technique where a mixture of excipients, commonly a polymers 

dispersion, containing a drug, is atomised, sprayed and dried in a chamber by a heated gas stream 

(generally air) (Encina et al.; 2018). Schematic of mechanism in Figure 17. This technique offers several 

advantages as it is suitable for thermolabile compounds because heat inlet gas gets in touch with inlet 

sample, which possesses high humidity, allowing rapid solvent evaporation and, consequently, cooling 

down of chamber temperature. Spray-drying influences final product characteristic calibrating 

different parameters such as inlet and outlet temperatures, pump velocity and aspiration percentage 

and solvent selection, as recently Reviewed by Paudel and co-workers (in 2013) (Paudel et al.;2013) 

and Singh and Van den Mooter (in 2016) (Paudel et al.; 2013; Singh and Van den Mooter; 2016). 

Parameters' effects on spray-dried particles are summarised in Table 2. 

 

 

Table 2. Spray-drying parameters effects on particles 

 

Spray-dried solid dispersions were widely studied in the last decades as an option to improve 

dissolution rate and in turn bioavailability of poorly water-soluble drugs such as one classified as BCS 

class II and IV. This technique is useful to obtain spherical particles whit small size and narrow 

distribution. Those characteristics are not only due to the spray-drying procedure itself but are also 

affected by polymers ratios and properties (Wlodarski et al.;2015; Takeuchi et al.;2018; Ogawa et 

al.;2018). Spray-drying was used by several researchers, such as Beak and co-workers (2012) who 

produced amorphous solid dispersions containing dutasteride and various excipients including CAP, 

cyclodextrin, hydroxypropyl-methylcellulose (HPMC) and PVA (Beak and Kim; 2012). Mahmah and co-

Temperature effects  Higher inlet temperatures and a low difference between inlet and 

outlet temperatures allow obtaining dried particles. Increase of this 

difference might affect particle water content with high humidity 

resulting (Singh and Van den Mooter; 2016). 

Pump and Aspiration Increase in pump velocity decreases outlet temperature; this 

enhances the difference between inlet and outlet temperature so 

increase the humidity of the product. 

Low aspiration reduced particle water content (Baysan et al.;2019). 

Solvents Solvents with a low boiling point are easy to evaporate and allow to 

obtain dried particles (Encina et al.;2018). 
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workers demonstrated enhancement of felodipine's dissolution rate by using spray-drying and both 

PVP and HPMC as polymeric carriers (Beak and Kim 2012; Mahmah et al.; 2014).  

In last two decades, researchers studied the use of spray-drying to obtain pharmaceutical 

products and formulated a drug delivery system as solid dispersion for inhalation (Porzio et al.;2017), 

stabilize insulin (Porzio et al.;2017) and thermolabile vaccine (Peabody et al.;2017), incorporate 

additives for drug control release (Palmieri et al.;2001).  

 

 

Figure 17. Schematic representation of solid dispersion manufacturing via spray-drying. Parameter effect on 
particle physical-chemical characteristic was described in Table 2. 

 

The use of spray-drying to produce solid dispersion presents several advantages. As it is just a 

single step manufacturing, it possesses the capacity to incorporate, at a molecular level, multiple 

components (i.e. drugs, polymers, excipients) into a particle. Particle characteristics could be easily 

modified in terms of dimension, wettability, and density by adjusting different parameters of the 

production process, as described in Table 2 (Zhu et al.;2019; Mondal et al.;2019; de Melo Ramos et 

al.;2019; Arrighi et al.;2019). Moreover, the spray-drying method is, as well, suitable for thermolabile 

products, either drugs or excipients, by optimizing inlet and outlet temperatures. In particular, by 

modifying inlet temperatures, although outlet was found to affect several physical properties such as 

solubility and to decrease in bulk density, moisture content, and water activity (Maas et al.; 2011). 

Results are manufacturing of a solid product with suitable particle size (to targeted administration 

route), excellent dispersibility and solid-state properties. Spray-drying also gives a great advantage to 
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obtain particle wholly dried. Preparation of stable dosage forms as a solid dispersion requires to be 

carried with suitable solvents (organic or not) that evaporate allowing the formation of dried powders. 

The preferred solution used for spray-drying is water (Paudel and Van Den Mooter; 2012; Wu et 

al.;2011). 

 

3.3.2 Freeze-drying 

 

In this process, the solvent (commonly water) is frozen and then removed by sublimation and 

desorption, resulting in the creation of porous materials (Nireesha et al.; 2013). Pharmaceutical 

companies often use freeze-drying to increase the shelf life of products, increasing sample stability 

(Shivanand Mukhopadhayaya; 2017; Emami et al.; 2018).  

More than 150 FDA approved biopharmaceutical products available on the market are made 

by freeze-drying (Zhong et al.; 2018). It presents different advantages as the process is usually 

performed at low temperatures which protect drugs, can be completed in sterile conditions, and the 

final product can be rapidly rehydrated due to its porous characteristics. Freeze-drying is often used 

to produce solid dispersions, to increase both drug solubility and stability, using drugs such as 

lovastatin, Δ9-tetrahydrocannabinol, and glyburide (Naik and Mokale 2014; van Drooge et al.; 2005; 

Allen et al.; 2013). However, this technique is expensive due to the amount of energy needed to 

freeze, sublimate, and maintain shelf temperature at the same value along the process. The freeze-

drying process is driven by ice nucleation and crystal growth rates in a supersaturated drug solution, 

and the method may result in both crystalline or amorphous solids (Felix; 2007).  

In previous work, Eddleston and co-workers highlighted the advantage of freeze-drying to 

avoid problems caused by differences in solubilities. They utilised it to prepare cocrystal containing 

two or more pharmaceutical compounds, with the final aim to create a novel mixture of caffeine and 

theophylline (Eddleston et al.; 2013). Such formulation, if brought to market, could bring to 

combination therapy of two molecules in the treatment of bronchoconstriction.  

 

3.3.3 Solvent-casting method. 

 

It is the oldest solvent-based technology used in solid dispersion formulation and was 

developed over a century ago, driven by needs in the emerging photography industry (Collins; 1990). 

First reported use of the solvent method for pharmaceutical applications was in 1951, by Wolff and 

co-workers who produced pharmaceutical films of amylose (Wolff et al.; 1951). Later, Saldanha and 

Kyu, studied use of this technique using polycarbonate and PMMA (Saldanha and Kyu; 1987). Lee and 
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co-workers used solvent-casting to formulate heparin derivatives for medical devices (i.e. 

cardiopulmonary bypass circuits, heart-lung oxygenators, and kidney dialysers) (Lee et al.; 1998). This 

is a manageable and easy technique where the drug can be dissolved or dispersed in a polymer 

solution, and the solvent evaporated overnight leading to film formation. Another advantage of this 

technique is that experiment could be conducted at room temperature under a fume hood. Therefore, 

it is convenient while using thermo-liable drugs. It offers a big surface area, thus high dissolution 

performance; however, drug particle size could not be directly affected during process as 

sedimentation and aggregation could occur during evaporation (Taylor et al. 2017; Saldanha and Kyu 

1987). 

The solvent casting method is often used to prepare pharmaceutical films which offer 

advantages when administered in the oral cavity. When in contact with saliva, they dissolve, releasing 

the drug. Drug-loaded pharmaceutical films are known to be accepted by patients who cannot swallow 

or have absorption diseases of the gastrointestinal tract (Kianfar et al.; 2011). This method was used 

to prepare different poorly water-soluble drugs such as gliclazide and tromethamine, promoting 

dissolution behaviour by improving drug wettability and hydrophilicity (Bruni et al.; 2018). Its 

advantage in increase solubility and bioavailability was also proved by Chadha and co-workers, who 

prepared felodipine solid dispersion as a pharmaceutical film (Haneef and Chadha 2017). 

 

3.3.4 Electrospinning 

 

Electrospinning is a versatile but straightforward process that utilises electrostatic forces to 

generate polymeric fibers and was used for over 100 years to create synthetic fibers (Teo et al.; 2011; 

Zelkó et al.; 2020). Electrospinning involves pushing a viscous polymer or polymer/drug solution 

through a spinneret (narrow gauge syringe needle) at a constant flow rate. A voltage is applied to the 

polymer solution, creating repulsive forces between like charges in solution and attractive forces 

between charged solution and grounded collector. When electrostatic forces are equal to the surface 

tension of the liquid, a Taylor cone is formed (Li and Xia 2004). As fiber jet accelerates towards the 

collector, it undergoes chaotic whipping instability which increases transit time and path length to the 

collector, allowing the solvent to evaporate leaving solid, thin fibers. Electrospinning mechanism is 

schematised in Figure 18. Cheng and co-workers presented electrospinning as a novel processing 

method to generate functional nanomaterials with many applications ranging from wound healing 

and medical textiles, to production of oral-dispersible film solid dispersion and controlled delivery 

systems (Cheng et al.; 2018).  
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Figure 18. Schematic representation of an electrospinning device which consists of a pump to set up flow rate; 
a syringe which needle is charged by high voltage and a collector. 

 

There are different types of electrospinning. In mono-axial setup, polymer and drug in solution 

or suspension are dispensed through a single needle resulting in a monolithic product, with 

medication and polymer typically evenly and homogeneously blended throughout fibers 

(Williams;2018). In Verreck and co-workers’ study, nanofibrous solid dispersion of Itraconazole-HPMC 

was prepared, and the release mechanism was assessed as drug-controlled (Verreck et al.; 2003). PVP-

acetaminophen solid dispersion developed by electrospinning were compared to traditional solid 

dispersion prepared by freeze-drying. It was showed an advantage of electrospinning process over the 

conventional method being unique microstructural characteristics of electrospun nanofibres 

generated.  

Coaxial and Multi-Axial Electrospinning involves the use of a two-needle spinneret, with one 

needle concentrically nested inside another. Fires generated tend to have greater versatility in terms 

of the range of materials used, therapeutic agents incorporated (ranging from small molecules to 

biological molecules), size (e.g., from 100nm to 300µm), and can offer complete drug encapsulation 

and higher drug stability compared to mono-axial fibres (Shen et al.; 2011; Qi and Craig; 2016). Coaxial 

and multi-axial electrospinning approaches were applied in drug delivery with great success to 

generate targeted release (Yu et al.; 2013) and multifunctional materials (Lin et al.; 2018). 

Electrospinning was used to create nanofibrous ferulic acid-cellulose acetate as a depot system  (Ji et 

al.; 2010). Tri-axial electrospinning has also been successfully used to fabricate nanofibres of lecithin 

(known to be un-spinnable), diclofenac sodium with CAP as carrier matrix for oral colon targeting 

(Williams et al.; 2013). 
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3.3.5 3D printing - Fused Deposition Modelling 

 

 3D printing is a manufacturing method where the 3D product is produced by deposition of 

material in successive layer. Nowadays, the use of 3D in pharmaceutics has become of interest after 

the FDA approved the use of 3D printed fast dissolving tablet of levetiracetam (Spritam®). This 

technique presents several advantages as freedom in design geometries, shapes, the amount of 

product printable (by selecting the respective infill). The 3D printer works by printing a design 

previously developed as a Computer-aided Design (CAD) and extracting it as a Stereolithography (STL) 

file. Two leading different 3D printing technology is used in pharmaceutics: inkjet printing, was a liquid 

is divided into droplets; and fused deposition modelling (FDM), which deposits solidifying material in 

layers of the desired form. The most significant disadvantage of inkjet printing relates to the need to 

use solvents to create the printable liquid. Therefore, solvent boiling point, explosion temperature 

and toxicity have to be taken into account as well as solubility of both drug and polymers in the mixture 

(Prasad and Smyth 2016).  

In FDM, the material is molten inside a heating extruder and then deposited layer-by-layer on 

a platform where solidifies, schematic representation in Figure 19. The main parameters to take into 

consideration once using 3D printing, are the physical characteristics such as melting point (Tm) and 

glass transition (Tg) and the infill density. The term “infill”, indicates the amount of volume that is 

printed in the designed product and could chance from 0% (where just the external wall is built) to 

100 % (where the printing material fills all the volume) (Mohanty et al.; 2015). 

 

 

Figure 19. Schematic representation of an FDM 3D printer. 
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 Two main polymers are used in 3D printing of pharmaceuticals PVA and PLA, which are both 

available for FDM printing process as filaments. The filament usually is impregnated with a drug 

saturated solution overnight, and the influence of different solvent polarity on the drug loading was 

recent, 2019, investigated by Chew and co-workers showing that methanol produced higher drug 

loading compared with ethanol (Chew et al.; 2019). Once the filaments are soaked with the drug, they 

can be printed through the 3D printer device and design accordingly with the CAD characteristic. The 

impregnation method was successfully used by Goyanes and co-workers, who produced tablet 

impregnated by fluorescein and aminosalicylic acid. The study also evaluated the effect of the infill on 

the dissolution rate, proving that increasing the infill could be of advantage for prolonged-release 

(Goyanes et al.; 2015). Moreover, it was found a relation between shapes and dissolution profile, 

which suggested that shapes as sphere and pyramids provide the slowest and most controlled release 

(Goyanes et al.; 2015). This technique allows the customisation of products representing a new trend 

for patient-centric dosage form manufacturing.  

 

3.3.5.1 Developing Patient-centric Formulations Using 3D printing  

 

 Patient-centric medications are personalised dosage forms where the product provides the 

benefits for the individual patient’s need. Customisation of dosage form comes to a hand as the 

patient is the final user of the medication and as it proved that parameters of the most conventional 

dosage forms, such as shape and size, affect medication acceptability. The problem of medication 

acceptability and related dosage forms issues are discussed in chapter 4.1.  

A recent example of the patient-centric 3D printed tablet was reported in early, 2020 when 

tablet with braille signs was successfully printed for visually impaired patients. While Khaled and co-

workers in 2015, produced a fixed-dose combination of five drugs (ramipril, pravastatin, atenolol, 

aspirin, and hydrochlorothiazide) a polypill with both immediate and controlled release profile. This 

novelty pill suggested an improvement in the quality of life of patients affected by hypertension, who 

usually use multi-therapy to manage symptoms (Khaled et al.; 2015). From the other hand side, Awad 

and co-workers printed miniprintlets, to both provide multi-drug controlled release and to manage 

size-related non-compliance toward medication (Awad et al.; 2019). In 2017, capsules were printed in 

the nano-size range to produce solid dosage forms of deflazacort using 50% of infill to maximise drug 

loading (Awad et al.; 2019). This novel methodology also allows the manufacturing of transdermal 

patch for wound dressing purposes, as proved by Muwaffak and co-workers (Muwaffak et al.; 2017).  
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3D printing flexibility in modification and customisation of the dosage form is now understudy 

in a Central London hospital to design patient-centric shape and size (FabRx; 2019).  

The following chapters discuss the pharmaceutical issues towards schizophrenia medication, 

highlighting the area of further improvement. 
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Chapter 2. Pharmaceutical Challenges in Schizophrenia 

 

1. Schizophrenia: demographic and physiopathology  

 

Schizophrenia definitions are discussed since years varying in specify its characteristics. In 

1998 National Institute of Mental Health Schizophrenia (United States of America, USA) defined it as 

a chronic and severe mental disorder that affects how a person behaves, feels, and thinks. People with 

schizophrenia may seem like they have lost touch with reality (National Health Report; 1998). In 2009 

it was described as a dimensional spectrum disorder within a broader psychosis umbrella that includes 

bipolar affective disorders, with positive, negative and cognitive symptoms (Howes and Kapur; 2009). 

It is usually defined also as a significant psychiatric disorder (or cluster of diseases) that affects an 

individual's perception, thoughts, affect and behaviour (Gaebel; 2014). Recently, in 2016, 

schizophrenia was described, by National Health Society (United Kingdom, UK), as a severe long-term 

mental health condition that causes a range of different psychological symptoms, and this definition 

is one that I refer to in this manuscript (NHS; 2016).  

Schizophrenia is undoubtedly the most common form of psychotic disorder and its mean 

incidence, reported in the latest epidemiological study published in Lancet in 2017, is 0.11 per 1000 

(Gaebel; 2014; James et al.; 2018). It affects 1% of the population, and 10% of them are children and 

adolescents (McGrath et al.; 2008). This study was based on geographical demography that includes 

195 countries and territories grouped into 21 regions and seven super-regions (James et al.; 2018). 

Evidence suggested that incidence peak both genders is between 15–24 years old; while a second 

peak is observed in male between 55 and 64 (John McGrath et al.; 2004). It was also found a trend 

showing that males have 30-40% higher risk to develop schizophrenia (Aleman et al.; 2003). 

Schizophrenia is considered a global burden as in 2016 were registered 20.9 million cases and between 

30 and 50% of patients affected attempt to commit suicide, and more than 10% of them die of suicide 

(Charlson et al.; 2018). World Health Organization (WHO) estimated that 2% of world death relates to 

schizophrenia-related suicide (Lu et al.; 2020; Ventriglio et al.; 2016). The principal cause for such high 

suicidal risk depends on low medication adherence and compliance, and those will be discussed along 

with text (Hawton et al.; 2005). 

Schizophrenia is characterised by positive, negative and cognitive symptoms that are thought 

to occur relative to varied dopamine levels in mesolimbic and mesocortical circuits (Goodman and 

Gilman; 2013). Positive symptoms could include: hallucinations in any of five senses (vision, hearing, 

smell, taste, or touch); delusions which persist even if there is evidence that beliefs are not valid or 

logical; disorganised thinking as an incapacity to connect thoughts logically; movements disorder with 
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repetition of motions over and over till patients become catatonic. From the other hand side, negative 

symptoms could be confused with depression as they are associated with disruptions to normal 

emotions and behaviour as reduced feelings of pleasure and speaking, difficulty in the beginning and 

controlling activities. For some patients, cognitive symptoms might occur as well, such as low ability 

to understand information and use it to make decisions, trouble on focus or keep the attention and 

short memory (Andreasen; 1982; Liddle; 1987). Those symptoms are related to neurotransmitters (NT) 

abnormal function.  

There is a significant hypothesis on schizophrenia pathophysiology based on different NT: 

dopamine, serotonin, amino-gamma-butyric acid (GABA), glutamate and acetylcholine (ACh). 

Dopamine hypothesis is more accredited and relates to the increase of dopaminergic activity and a 

high number of dopamine receptors, as demonstrated in basal ganglia of deceased schizophrenic 

patients (Owen et al.; 1980). Figure 20 illustrates a schematic representation of the dopamine 

hypothesis.  

 

 

Figure 20. Schematic representation of dopamine mechanism of schizophrenia. The image was drawn via Bio 
Render. 

 

The increase of dopamine causes hyperactivation of subcortical projection on mesolimbic 

(resulting in hyperstimulation of D2 receptors and positive symptoms) and hypoactivation of 

mesocortical projections to the prefrontal cortex (resulting in hypo stimulation of D1 receptors, 

negative symptoms, and cognitive impairment). From another hand side, an increase in serotonin 
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receptors, in particular, was also found in the majority of post-mortem prefrontal cortex of patients 

affected by schizophrenia (5HT1a, 5HT2a, and c) (Carlsson et al.; 2001; Reynolds and Beasley; 2001). 

It is, then, possible to understand that physiopathology of schizophrenia could not be just related to 

the dopamine hypothesis as dopamine itself is regulated or regulate other NT pathways. For example, 

it was found that a reduction in functionality of N-methyl-D-aspartate (NMDA) receptor results in a 

decrease in inhibition of GABA interneurons that means an over-activation of dopamine neurons 

projecting to the striatum (Cohen et al.; 2015). As a result of the increase of dopamine activity, a state 

of aberrant salience occurred, and patients develop delusions. 

Meanwhile, a lack of top-down control pathway from prefrontal cortex might contribute to 

the maintenance of psychotic symptoms (Friston; 1995). Recently, schizophrenia has also been linked 

to changes in muscarinic Acetyl-choline system. At that systems-level, schizophrenia can be viewed as 

disconnection syndrome, with first striatal interactions specifically postulated to be crucial in 

symptoms formation (Lowe et al.; 2018). However, schizophrenia mechanism is not well understood, 

and both prefrontal and temporal-limbic cortexes seemed to be involved in the neurobiology of 

disease as well as abnormal brain development (Beerpoot et al.; 1996). Causes and risk factors of this 

disease are still under investigations such as birth complication (i.e. hypoxia) (Zornberg; 2000), 

parental age (Zammit et al.; 2003), infection and immune system alteration (Yolken and Torrey; 1995), 

autoimmune disease, and use of drugs (Messias et al.; 2007). While 70% of patients who experienced 

schizophrenia responded to therapy, approximately 20-30% of patients do not respond to an initial 

antipsychotic trial. (Dold and Leucht; 2014) This condition is known as treatment-resistant 

schizophrenia and will be discussed in following sections. 

 

2. Pharmacological interventions in Schizophrenia: First- and second-generation antipsychotics 

 

Since initial evidence that dopamine brain level alteration was the leading cause of 

schizophrenia, first-generation of antipsychotics were used to the antagonist D2 receptor. Such an 

effect was presented from drugs like haloperidol, chlorpromazine, promazine, perphenazine, and 

flupentixol (Chakos et al.; 2004). While the impact on D2 receptor does calm down positive symptoms, 

a misregulation of dopamine in other pathways (tuberoinfundibular, mesocortical and nigrostriatal) 

causes a lot of side effects such as extrapyramidal syndromes, hypotension, a decrease of secretions 

and weight gain (Landry et al.; 2010). Nevertheless, first-generation antipsychotics represent first-line 

treatment in all different stages of schizophrenia, even when the new generation of antipsychotics 

(amisulpride, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone) is 

available, with a most complex pharmacological profile. They are, in fact, not just able to block D2 
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receptor but also to block different NT pathways such as serotonin receptors, involved, as discussed, 

in schizophrenia physiopathology. Thanks to their profile, second-generation antipsychotics can 

control negative symptoms reducing as well many side effects (Tandon et al.; 2008; Chakos et al.; 

2004). Despite this evidence, World Psychiatric Association Pharmacopsychiatry in 2008 declared to 

be skeptical and stated: "an inconsistent superiority for treatment of negative, cognitive, and 

depressive symptoms was revealed for second-generation in comparison to first-generation" (Tandon 

et al.; 2008). 

Consequently, the choice of an antipsychotic for administration has to take into a 

consideration side effect of each drug, and specific and personal vulnerability. Different 

pharmacological approaches are now used to overcome such interpersonal differences in drug 

administration and drug effectiveness. According to Conley and co-workers (R. R. Conley and 

Buchanan 1997), first-generation antipsychotic resulted in fewer than 5% of patients achieving a 

satisfying therapeutic response. Clinical strategies in treat schizophrenia centered on either modifying 

doses of conventional antipsychotics or using adjunctive agents (combination or augmentation), such 

as lithium, beta-blocking drugs, anticonvulsants, and benzodiazepines (Barnes et al.; 1991). However, 

when symptoms do not usually regress a high-dose of treatment is used, this increases antipsychotic 

dose above officially approved dose range (off-label prescription, dose-escalation) and cannot be 

recommended as an available treatment option for management of patients that are resistant to 

therapy. To treat such patients, clinicians also used polypharmacy strategies such as a combination of 

drugs (two drugs of the same group such as two antipsychotics) or augmentation (two drugs of 

different classes). In a meta-analysis comprising 14 double-blind, randomised, placebo-controlled 

clozapine combination studies with second-generation antipsychotics, Taylor, and co-workers found 

a statistically significant superiority of combination treatment compared to placebo (Taylor et al.; 

2012). However, in both cases of combination or augmentation, it is registered an increase in side 

effects caused by antipsychotics such as comorbid depressive or obsessive-compulsive syndromes. A 

study conducted by Waddington and co-workers in 1998 also showed an increase of death associated 

with polypharmacy (Waddington et al.; 1998). Therefore, such strategies are not covered by 

pharmacological guidelines which strongly suggest antipsychotic monotherapy (Zink and Englisch; 

2012). However, some patients appear to benefit from a switch of medication (Hatta et al.; 2018; Agid 

et al.; 2013). 

The standard treatment for patients, who seem to resist to medication, is, as described, to 

increase dosage or number of drugs administrated per day, a one-drug therapy should be first 

consideration after the failure of conventional drug therapy. When clozapine was introduced in the 

market, in 1972, it showed its superiority in reducing psychotic symptoms respect other drugs as well 
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reported from Kane and co-workers (1988) and Leucht and co-workers (2013) (Leucht et al.; 2009; 

Kane; 1988). Clozapine advantage, to manage both positive and negative symptoms, has elevated it 

to be described as gold-standard to treat schizophrenia. Due to clozapine side effects such as 

neutropenia and agranulocytosis, its use in clinical practice it always delayed and reserved to patients 

who are classified from suffering on treatment-resistant schizophrenia . Definition of this condition 

was controversial and would be discussed later in the manuscript that has as main issues use of 

clozapine in clinical practice. 

 

3. Use of Clozapine in Clinical Practice 

 

Lieberman and co-workers (2003) carried out a flexible-dose study in which compared the use 

of clozapine and chlorpromazine in treatment-naive first-episode patients. This study showed that 

patients treated with clozapine remitted faster than patients receiving chlorpromazine (Lieberman et 

al.; 2003). Girgis and co-workers conducted a similar survey in 2011, and their findings support 

comparability in effectiveness between clozapine and chlorpromazine. Still, clozapine had more 

excellent tolerability in the treatment of first-episode psychosis (Girgis et al.; 2011). But from both 

studies, it is not possible to understand the effectiveness of clozapine as first-line treatment against 

schizophrenia because, at the start of treatment, it is challenging to identify refractory patients. While 

clozapine is suggested as a 1st-line treatment in treatment-resistant schizophrenia , in clinical practice 

and from World Federation Society it was reported that "clozapine should not be used as a 1st-line 

treatment in first-episode schizophrenia patients". It is usually used just as a secondary option after 

haloperidol, risperidone, and olanzapine (Siskind et al.; 2016; Šagud; 2015; Okhuijsen-Pfeifer et al.; 

2018; Hasan et al.; 2012). 

Usually, as 2nd-line treatment for schizophrenia two possibilities are chosen from clinical 

practitioners: a first-generation antipsychotic such as haloperidol is administered or a long-acting 

injectable medication (risperidone/paliperidone/aripiprazole) is offered to patients (Jones et al.; 

2018). There is limited reported  evidence on the  use of clozapine as 2nd-line(Buckley et al.; 2007). A 

most recent study, in 2018, showed that remission of symptoms could be achieved using sequential 

administration of amisulpride and clozapine and concluded after patients should be introduced to 

clozapine when a single-antipsychotic trial failed and not more (Kahn et al.; 2018). As 3rd-line usually 

a first- or second-generation (as lurasidone or aripiprazole) antipsychotic is suggested and if those 

would not be effective, clozapine is prescribed (NHS; 2008). It was reported that clozapine is used as 

a 3rd-line treatment in two studies, one from 1990 and one from Canadian compendium, such choice 

was explained by fair of agranulocytosis effects of the drug (Tiihonen et al.; 2009). Underutilisation of 
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clozapine was also reported in UK literature since its use was recommended as 3rd-line treatment in 

schizophrenia in national and local guidelines (S. Gee et al.; 2014). 

A study on 200 patients by Grover and co-workers showed that usually three antipsychotic 

drugs are given to patients before considering clozapine, and 27.5% of patients receive polypharmacy 

before clozapine. In particular, it was found that the majority (93.5%) of patients fulfilled criteria for 

treatment-resistant schizophrenia, but clozapine was started with 1.5 years delay (Grover et al.; 2015). 

A study from Texas University showed that only 5–25% of patients who should be initiated on 

clozapine were on treatment (Buckley et al.; 2007). Even more, delays were highlighted from Taylor 

and co-workers in 2003, where 112 patients retrospective analysis showed that use of clozapine was 

delayed for up to 5 years and those patients received more than five antipsychotics or polypharmacy, 

on average, before being prescribed clozapine, that then achieved remission in 6 months (Taylor et 

al.; 2003). Similar findings were reported from different authors (Paton et al.; 2008; Howes et al.; 2012; 

Elkis; 2007). Another retrospective-chart from Alessi-Severini (Alessi-Severini et al.; 2013), in 2003, 

said that 68% of patients received at least three antipsychotics before starting with clozapine; while 

Wheeler and co-workers reported that 37% of patients received at least five antipsychotics before 

being prescribed with clozapine (Wheeler et al.; 2014). A most recent study (2015) from 243 

consultant psychiatrists registered with Royal College of Psychiatrists in the UK showed that 40.5% 

preferred to use several other antipsychotics before considering clozapine, rest felt it was not safe to 

start clozapine. Such misuse was assessed to concerns about side effects, patients not wanting to have 

blood tests, lack of experience or knowledge were reported, and 20% were not aware of its benefit in 

reducing suicidal risk (Tungaraza and Farooq 2015; Gee et al.; 2014). Siobhan and co-workers 

investigated patients-related excuse for underused of clozapine in 2017. They found that patients 

would be more likely to accept clozapine if they might have the opportunity to start treatment at 

home and blood tests do not appear as a barrier against clozapine initiation (Gee et al.; 2017). Some 

patients also found it helpful to speak with other patients who used clozapine (Tiihonen et al.; 2009).  

 

4. Treatment-Resistant Schizophrenia 

 

Patients affected by schizophrenia who do not respond to treatment are considered 

refractory, and their pathology has defined as treatment-resistant schizophrenia . Definition of 

treatment-resistant schizophrenia was challenging till consideration made by Kane and co-workers in 

1988 who described it as failure to respond to at least three periods of antipsychotic treatment in 

preceding five years with a dose of 1g per day of chlorpromazine. This definition, known as "Kane 

criteria" was then modified by Suzuki and co-workers in 2011 who accepted such criteria but for six 
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weeks non-responding to at least to antipsychotic trials (Suzuki et al.; 2011). NICE guidelines now 

define treatment-resistant schizophrenia as a disease in which patients with schizophrenia who, 

“despite at least two adequate trials of classical neuroleptic drugs, have persistent moderate to severe 

positive, or disorganisation, or negative symptoms together with poor social and work function over 

a prolonged period” (Raedler et al.; 2007; Berman et al.; 2007). In the majority of clinical trials, this 

condition is prolonged for at least six weeks (Kane; 1988). 

Moreover, it was reported from Lownamn and co-workers that patients who have not 

responded to initial neuroleptic therapy have a 9% chance of returning to another classic neuroleptic 

drug (Lowman and Montgomery; 1998). treatment-resistant schizophrenia represents one of the most 

important clinical challenges in the pharmacological management of schizophrenia (Taylor and 

Duncan-McConnell; 2000). Chronicity frequently is taken as a synonym of refractoriness, and some 

authors use parameters such as the number of patient hospitalisations or chronic hospitalisations or 

an increase cortical atrophy compared with responder's patients to define treatment-resistant 

schizophrenia  (Conley and Kelly; 2001; Steen et al.; 2006). Even if its pathology of schizophrenia, and 

so of treatment-resistant schizophrenia , is not well understood, it was suggested that its neurobiology 

involved dopaminergic pathways. Over the years scientists have noticed some distinct tracts from 

patients affected by treatment-resistant schizophrenia such as birth complications, motor, and 

language retardation, use of recreative drugs or alcohol, high intellective quotient and brain 

abnormalities (Weinberger; 1987; Elkis; 2007). In particular, Mitelman and Buchsbaum notice 

ventricular enlargement and decrease in grey matter, corpus callosum, internal capsule, and putamen 

(Mitelman et al.; 2007). Another discussed parameter is a plasma or cerebrospinal fluid level of one 

dopamine metabolite, homovanillic acid that was found to be at a lower level in non-responsive 

patients respect to responsive (Ottong and Garver; 1997). Recently, it has also been possible to 

conduct a meta-analysis on D2 receptor occupancy after two weeks of treatments using brain single-

photon emission tomography. This analysis showed, not only that more than 65% receptor occupancy 

reflected patients that responded to therapy but also that a higher occupancy is just related to an 

increase of side effects (Yilmaz et al.; 2012). So, much effort should be involved in a better 

understanding of such tracts, thus achieving faster identification of refractory patients, and 

developing the right regiment.  

 

4.1 Use of clozapine in patients with treatment-resistant schizophrenia  

 

The introduction of clozapine was a significant step forward in the treatment of refractory 

schizophrenia, making it "gold standard" for this group of patients. In a trial by Rosenheck and co-
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workers (1997), clozapine-treated patients showed to be significantly more compliance than were 

haloperidol-treated patients to continue their assigned treatment for a full year (Rosenheck et al.; 

1997). More than 20 years ago, a randomised trial by Kane and co-workers investigated the effects of 

clozapine compared with chlorpromazine in patients with treatment-resistant schizophrenia  (Chakos 

et al.; 2004). Nevertheless, antipsychotic clozapine is effective even in patients who failed to respond 

to conventional antipsychotics (Taylor et al.; 2000). Clozapine is still the only drug with proven efficacy 

in treatment-resistant schizophrenia , and it also reduces violent behaviour  (Frogley et al.; 2012), 

tardive dyskinesia and risk of suicide (Meltzer; 2003). Effect of clozapine in lowering suicide rate made 

it only medication approved from United States FDA as capable of preventing suicide (Buchanan et al.; 

2010). Spivak and co-workers, in 2003, also demonstrated that the reduction of suicide index is related 

to the removal of aggression and impulsiveness (Buchanan et al.; 2010). Even if exact mechanism with 

which clozapine acts against suicidality, this could be linked with its unique pharmacological profile 

that blocks 5HT2a causing an increase of dopamine and serotonin in limbic regions and prefrontal 

cortex counterbalancing rise of dopamine in sub-cortex and nucleus-accumbens observed in 

schizophrenic patients (Shiloh et al.; 1999; Brisch et al.; 2014). It is recommended as first-line 

treatment for treatment-resistant schizophrenia in many guidelines such as Maudsley Prescribing 

Guidelines in Psychiatry. According to this guideline, initial clozapine dose should be started at 12.5 

mg once per day and then the dose is increased to 112.5 twice a day, and then 25-30mg per day until 

reach 300mg dosage, further increase of 50-100 mg could be achieved if necessary. Plasma level 

should be aimed to be 350 µg/L (Taylor et al.; 2018). Such plasma levels found agreement in the 

literature (Bell et al.; 1998; Spina et al.; 2000). Despite clozapine numerous advantages, it has lower 

tolerability compared to other drugs. Patients could commonly experience sedation, constipation, 

sialorrhea, weight gain, metabolic syndrome, sinus-tachycardia, as well as uncommonly, but seriously 

agranulocytosis, seizures, myocarditis, ketoacidosis adverse events (Trevor; 2015). Kane and co-

workers reported that those side effects caused patients to discontinue clozapine treatment even 

before it has reached target plasma concentration. But it is now known that almost all patients 

receiving clozapine demonstrate less rate of side effects than reported by Kane(Kane; 1988). Despite 

recommendations in clinical guidelines, and probably due to safety concerns, clozapine remains 

underutilised in patients with schizophrenia (Warnez and Alessi-Severini; 2014) and its use is often 

substantially delayed (Howes et al.; 2012). So, the overall question "is clozapine gold standard?" 

remains debated. Still, it shouldn't be due to its unique capacity to reverse years of illness, as shown 

by Wilson and co-workers (1995) (Wilson; 1995; Volavka 2012). Even today, based on current and still 

growing evidence, clozapine remains gold standard (Dold and Leucht 2014; Taylor et al.; 2017) and 
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first-line treatment in patients with treatment-resistant schizophrenia . (Hasan et al.; 2012) But it 

should be introduced sooner in practice. 

In schizophrenia treatment, clozapine represented a step forward in reducing patients' risk of 

suicide. Due to its complex pharmacology, its mechanism is not understood, but clozapine effects on 

the clinical issue of treatment-resistant schizophrenia have lifted it as the gold standard. Although it 

is underused in clinical practice as its first use is delayed, such delay was related to clinicians' fears 

about compliance or medical complications. While patients seem to be more likely to accept this 

treatment due to therapeutic advantages and low need to introduce other medications during the 

treatment reduction of suicidality and absence of extrapyramidal syndrome should be taken in high 

considerations. Evidence that clozapine is started with such delay in clinical practice for refractory 

patients seems more and more related to a lack of interpretation of main tracts that usually 

characterised treatment-resistance.  

 

4.2 Available Clozapine Dosage Forms: Licensed and Unlicensed used 

 

 Clozapine is available in the market as a tablet, oral disintegrating tablets and oral suspension 

under most common targeted names of Clozaril®, FazaClo®, and Versacloz®. Patients affected by 

treatment-resistant schizophrenia and that refuse to start an oral therapy can receive an off label 

intramuscular injection that is now just offered by Sussex Partnership under a protocol established by 

South London and Maudsley NHS Trust (Ray 2016). Clozapine bioavailability via the oral route is 50%, 

for this reason, administration of clozapine as systemic immediate (i.e. injection) release is considered 

dangerous and to be prescribed just on individual circumstances (Professional Practice; 2017). More 

commonly, when present patient difficulties or aversion in swallowing a tablet, an off label used of 

clozapine is authorised. Mainly, tablets are crushed and dispersed in water for administration. This 

scenario is usually monitored at hospital level as reported from different guidelines. However, high 

vigilance must be sought as clozapine is not soluble in water, therefore desired concentration of drug 

could not be achieved (Horne 2018; The National Institute for Health and Care Excellence; 2019). 

Crushing tablets is not just believed dangerous for patients, but health care professional deputed to 

breaking. In 2012, it was reported that a pharmacy team member (location nondisclosed) was 

diagnosed with a chronic pneumonitis due to both active ingredient and excipients of powdered 

medicine (Lewis et al.; 2012). It is well-established that clozapine is the only medication available in 

treatment-resistant schizophrenia , and it is well-know that medication discontinuation is the leading 

cause of therapy inefficacy. Therefore, in 2019, Till and co-workers, proposed “assertive approach to 

clozapine” suggesting administration of drug via the use of nasogastric tubes. This method is, however, 
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enforced, and patients described it as a cruel and unnecessary alternative (Till et al.; 2019). The 

introduction of Denzapine® oral suspension reduced the disadvantage connected with crushing the 

tablet and improved taste (Oloyede et al.; 2019).  

 

5. Pharmaceutical challenges in treatment-resistant schizophrenia  

 

70% of patients affected by treatment-resistant schizophrenia are usually classified, at first, 

as non-adherent to medication, if they do not take their medications correctly, or stop taking them 

(Haddad et al.; 2014). This behaviour is controversially described both as non-adherence or poor 

compliance (Chakrabarti; 2014). However, both terms, adherence, and compliance are often misused 

and confused. WHO, in 2003, offered a definitive definition of adherence as “the extent to which a 

person’s behaviour, taking medication, following a diet, and executing lifestyle changes, corresponds 

with agreed recommendations from a health care provider” (Hsu et al.; 2013). Therefore, patients 

may be nonadherent during different stages of their treatment and may decide not to fill their 

prescriptions in pharmacy and not start their treatment. While compliance definition is dated back in 

1997 as “the extent to which patient’s behaviour matches prescriber’s recommendations” (Fenton et 

al.; 1997). Though the term “compliance” is frequently employed to describe medication-taking 

behaviour, considering patient playing a passive role. However, there are many barriers to 

compliance, such as lack of comprehension of treatment benefits and low health literacy (Miller; 

2016). More generally, adherence reflects the decision of the patient to do not take medication even 

if understood the reason for prescription while compliance indicates that patient does not accept 

medication for lack of comprehension of treatment or not acceptance of dosage from (Tilson; 2004). 

Both terms could be considered equivalent in term of outcome as both attitudes indicate a medicine-

taking behaviour that leads to medication discontinuation as prescribed and agreed with clinicians 

(Horne et al.; 2005). Therefore, in this thesis I refer to term “medication discontinuation” as result of 

non-adherence and low compliance. 

Medication discontinuation with antipsychotic is a frequent problem in the management of 

schizophrenia and was reported to be intentional or unintentional (Campbell; 2005). Intention or no 

in adhering to medication was said to be usual in response to day-by-day challenges of ordinary living, 

such as the need to reduce side effects or to forgot medicines (S. Gibson et al.; 2013). It leads to poorer 

patient outcomes, including an increased risk of relapse and reduced quality of life. This usually 

occurred because patients are not motivated, and this was found to be related mainly to side effects 

of drugs, multidrug administration and fear of relapse or that drugs would not have effects (Wroe; 

2002). Medication discontinuation contributes to significant cost-effectiveness in treatment of 
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schizophrenia due to fact 53% of non-adherent patients experience a relapse of an acute psychotic 

episode and this cause 153,000 deaths per year (Gilmer et al.; 2004; Taylor et al.; 2009). It also has an 

impact on the health economy with a cost for medication non-adherence ranged from $2512 to 

$25 920 as reported in different studies (Robinson et al.; 2006; Jiang and Ni; 2015). As non-adherence 

depends on patients behaviour (even if unintentional), it is usually confused with treatment-resistant 

schizophrenia condition, that possesses, instead, biological, and physiological background. 

In treatment-resistant schizophrenia cause of medication discontinuation has been widely 

investigated and described as a result of two main barriers: clinical-related and patients-drug related 

(Farooq et al.; 2019). Pai and co-workers, in 2012, told clinical-related barriers as a combination of 

patient decision and medical complication, inadequate response. A review of currently available 

literature revealed that patient-drug related barriers are side effect for 28% of case and about 19% 

with dose and duration of treatment (Pai and Vella; 2012). A schematic representation of medication 

discontinuation in treatment-resistant schizophrenia is reported in Figure 21.  

 

 

Figure 21. Schematic representation of medication discontinuation causes. The chart was redrawn from Pai 
and co-workers (Pai and Vella 2012), while the table is comprehensive of the leading cause of medication 
acceptability from the literature evidence. 

 

The most common side effects are sedation, neutropenia, tachycardia, dizziness, sedation, 

nausea, hypersalivation and weight gain (Legge et al.; 2016; Davis et al.; 2014). A significant impact on 

medication acceptability relates to dose and duration of therapy (Taylor et al.; 2009). Usually, in 

psychiatry, treatments are chronic and life-long. In the case of clozapine, maintaining therapeutic drug 

level is not tolerated as many tablets per day must be taken. Clozapine is a low soluble drug with 50% 

of bioavailability. Therefore, it is administered with several doses along day to ensure that therapy 

efficacy, however, it was noticed that effectiveness relates to side effects. An example of medicine 

intake is reported below Table 3 from Maudsley Hospital guideline to initiate patient to clozapine.  



54 
 

 

Table 3. Clozapine initiation protocol provided by Maudsley Hospital in South West London (David M. Taylor; 
Barnes; 2018). 

Day Morning (mg) Evening (mg) 

1 - 12.5 

2 12.5 12.5 

3 25 25 

4 25 25 

5 25 50 

6 25 50 

7 50 50 

8 50 75 

9 75 75 

10 75 100 

11 100 100 

12 100 125 

13 125 125 

14 125 150 

15 125 150 

16 125 150 

17 125 200 

18 150 200 

19 150 200 

20 150 200 

21 200 200 

22 200 200 

23 200 200 

24 200 200 

25 200 200 

26 200 200 

27 200 200 

28 200 250 
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 The issue related to patient non-adherence is well-recognised and different solutions have 

been proposed so far as electronic monitoring, control pharmacy records, and controlling blood 

plasma level (Sajatovic et al.; 2010). While from a clinical point of view adherence level could be 

monitored during a consultation with patients and their carer, from a pharmaceutical point of view a 

lot could be done to modify administration route and let it be more suitable for the patient 

requirement. Lately, British Journal of Psychiatry suggested formulation of the controlled release 

dosage form to both improve patient acceptability and enforce achievement of therapeutic window 

(Mortimer; 2011). Other studies demonstrated that maintaining treatment with a long-acting 

antipsychotic is useful, and only 1 of 10 reviews reported case of discontinuation. However, no dosage 

forms for prolonged and controlled release of clozapine is available, and no study has been undertaken 

to propose such a novel system. 

 

5.1. General Background on Medication Acceptability 

 

Even if the cause of medication discontinuation has been studied, a clear understanding of 

patient-drug barrier in treatment-resistant schizophrenia has not been achieved. WHO suggests that 

medication acceptability of formulation itself could influence patient compliance and treatment 

efficacy and safety (Lallemant; 2018). Mainly, European Medicines Agency (EMA) defines medication 

acceptability as ‘the overall ability and willingness of the patient to use and its caregiver to administer 

medicine as intended’, and it is considered related to characteristics of a medicinal product 

(Klingmann et al.; 2013). As well, FDA reported, in 2015, that a percentage of drug discontinuation 

relates with the pharmaceutical composition of a dosage form such as taste and shape, size, and a 

dose of medicament (U.S. Department of Health and Human Services Food and Drug Administration 

(CDER); 2013). 

 

5.1.1 Dose, size, and shape 

  

In patients that consume large amounts of medicines, their acceptability is crucial to avoid 

adverse side effects and life-threatening incidents caused by overdoses or low doses. However, the 

quantity of solid dosage forms administered in patients under chronic treatment is reported as the 

main problem (Mistry and Batchelor; 2017). WHO said that patient could experience sight 

aversiveness based on the external characteristic of dosage form, causing non-compliance and low 

medication acceptability. Mainly, a study from Adams and co-workers, conducted in Tanzania, showed 

that patients would prefer to assume one tablet per day than multiple (Adams et al.; 2013). 
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Size and shape can both affect patient acceptability of medication as it is estimated that about 

3% of the population worldwide is affected by swallowing difficulties and 4% of those (~ seven million 

people) have discontinued therapy because tablets and capsules were challenging to take  (Cho et al.; 

2015). Both size and shape. Size and shape influence transit of medication through pharynx and 

oesophagus and directly affecting the patient’s ability to swallow the drug. A study conducted at the 

University of Copenhagen demonstrated that patients prefer the smallest size of tablet or capsules, 

indicating an overall preference for oblong/oval, and coated tablet (Overgaard et al.; 2001). Moreover, 

the large tablet could transit slowly in the first gastrointestinal tract (i.e. oesophagus) improving the 

chance of starting in the advance disintegration process of a tablet with release of a drug that may be 

toxic or create injuries. Smaller and oval tablets were proved to transit faster in oesophagus compared 

their larger counterparts (Channer and Virjee; 1986).  

In recent years, technology as 3D printing is investigated for its advantage to customise 

products shape and size. Many studies are, in fact researching acceptability of different shapes on 

patient acceptability. FDA, moreover, reports that different shapes present different release profile 

and therefore useful to tailor dosage form with the patient requirement. For examples, Goyanes and 

co-workers, in 2015, proved that 3D object printed as a cube, cylinder, torus and sphere present 

different release profile (Goyanes et al.; 2015). Dosage forms shape and size are easily manageable 

towards most common formulation strategies.  

 

5.1.2 Taste 

 

Taste is one of five senses stimulated in the mouth by the compound's chemical characteristic 

and identified in brain-based on information provided by taste receptors (Bradbury; 2004). This sense 

reception is constituted by a group of 50-100 epithelial cell with express a specific kind of receptors, 

namely G-protein-coupled receptors (T2R). Once the receptor is stimulated, it triggers a cascade of 

signals that leads to neurotransmitter release, which transmits a message to the brain (Mennella et 

al.; 2013). Individually, when a compound binds a T2R expressed in the buccal membrane of receptor 

cells, that is activated. Figure 22 presents the taste receptor representation and taste signal. Once the 

receptor is activated an electrochemical signal is transduced by intermediaries such as α-gustducin 

creating a response that phosphorylates adenosine diphosphate in adenosine triphosphate (ATP) that 

drives serotonin release transmitting the message to gustatory nerves, thus to the brain (Oka; 2018). 
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Figure 22. Taste receptor cells on tongue and taste signal. Image modified from Oka and co-workers, 2018 
(Oka 2018). 

 

 So far were recognised five different taste where bitter is one of the underlying feelings, along 

with sweet, sour, salty and umami (Mullan; 2000). Signal transduction of flavours bitter, sweet, and 

umami depends on T2R, while salt and acid are transduced via ion channels (Oka 2018; Nolden and 

Feeney; 2020). Receptor family (TAS2Rs) is a family of 25 receptors in which it was demonstrated that 

difference in gene expression for one or all receptor creates an individual perception of taste and 

affects perception of different compounds (Shaw et al.; 2018; Soares et al.; 2013). Moreover, it has to 

be acknowledged that even patient personality and experience play a role in taste perception. It was 

recognised that when people talk about “taste”, they are referring to “flavour” that is the perception 

of a taste and the consecutive behavioural and physiological reaction in the oral cavity (Rozin; 1982). 

Therefore, the formulation of the drug for a therapeutic purpose considered taste perception as a 

critical point to understand medication acceptability. 

 

4.1.2.1 Challenges in drug development: Formulation Taste 

 

In pharmaceutics, over 350 drugs from different categories were identified to be bitter 

(Wiener et al.; 2012; Schiffman; 2018), such as antihypertensive, antipsychotics, endocrine and 

diabetes drugs as well as vitamins, minerals, nutrients and related compounds (Schiffman; 2015). 

Taste plays a critical role in medication palatability, and aversive taste often results in patient 
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avoidance of medication itself. For example, in the pediatric population was reported that more than 

90% of non-compliance depends on drug's taste (Milne and Bruss; 2008).  

The WHO considers the lousy taste of medication as one of the leading causes of non-

compliance and, therefore, low therapeutic efficacy (Hsu et al.; 2013). The infield of low compliance 

towards clozapine medication, it was suggested that drug aversive taste is one on significant issues 

(Reddy et al.; 2011). Information about clozapine taste is provided by Netherlands Clozapine 

Collaboration Group in "the guideline for the use of clozapine" in 2013 (Abeelen; 2013) and from 

Ramuth and co-workers in 1996 (Ramuth and Flanagan 1996). Clozapine marketed dosage forms 

described above has listed “bitter taste" as a side effect of the dosage form. However, data about a 

quantitative and solid assessment of clozapine taste or its formulation counterpart are missing. 

Nonetheless, literature presents quite a few pieces of work that refer to it as an aversive drug or to 

cause taste impairment.  

Even though many solid oral dosage forms could encapsulate or mask the taste of drugs using 

coating agents, this cause increase in the size of a tablet that could not be swallow easily. Therefore, 

different methods are used to assess both drugs and dosage forms taste, as discussed in the following 

chapter. 

 

4.1.2.2 Dosage forms taste assessment 

 

Drug taste assessment it is a trending topic in the last decades, and nowadays, there are a few 

methods available to establish drug bitterness both in-vitro (Podrażka et al.; 2017) and in-vivo (Keeley 

et al.; 2019). Those strategies could be used to determine the taste threshold, which is the minimum 

drug amount causing an aversive taste perception (Dale et al.; 2001). Identifying the taste threshold 

leads to an understanding of drug aversiveness or bitterness in comparison with two well-known bitter 

compounds quinine and strychnine. Both present a threshold of, respectively 0.008 mM, and 0.0001 

mM (Martin; 2013). 

 

In-vitro analytical methods for taste assessment 

  

In-vitro strategies include a biochemical assay of α-gustducin carry on artificial saliva (Anand 

et al.; 2007). Assay studies activation of α-gustducin,t that is one of the primary transmitter involved 

in taste signal. Its activation relates to most bitter compounds but not all such as glycine, monosodium 

glutamate, citric acid or potassium chloride (Ruiz-Avila; 2000). Therefore, it is not considered a precise 

method. 
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The newest invention in sensory pharmaceutics is an electronic tongue that consists of a 

sensor array and a detector known as a sensor chip (Anand et al.; 2007). The latest version of this 

machine is Astree electronic tongue system equipped with seven sensors to quantitative and 

qualitative assess compounds taste thresholds. Taste is identified based on sensor physical properties 

which generate a voltage potential when meeting an Ag/AgCl reference electrode (Latha; 2012). The 

system can also be combined with a dissolution bath to evaluate the taste of substance once dissolved. 

Even if this innovation would address problem relates with the in-vivo characterisation (which is 

discussed below), its results are still questionable as it does not take int consideration individuals’ 

variation on taste perception (Mennella et al.; 2013). Moreover, sensor array systems present 

limitations concerning compatibility to sample solutions and sensor damage can occur (Woertz et al.; 

2011a; Latha; 2012). 

Lately, sensory pharmaceutics shifted in predicting taste of compounds and drugs by using a 

database BitterBD. This was introduced in 2011 by Wiener and co-workers (Wiener et al.; 2011) and 

included about 500 compounds for which provides information regarding molecular properties that 

use to predict bitterness. BitterDB also possesses data on 25 aversive taste receptors, and it relates to 

the genome browser to improve its efficacy. Overall, the system considers molecules as aversive if 

they have a molecular weight (MW) < = 700 and hydrophobicity (AlogP) range −3 < = AlogP < = 7 

(Wiener et al.; 2012; Dagan-Wiener et al.; 2017; Wiener et al.; 2011), indicating compound with a taste 

higher than 0 as bitter and more elevated than three as very bitter. It then, compared results obtained 

with available literature.  

 

In-vivo taste assessment methods 

 

In-vivo taste assessment could be animal or human-based. Animal preference tests are used 

to determine a preference in taste dose-related by animals such as rats and mice (Tordoff; 2003). 

Some studies have studied the capability of those animals to detect weak bittern compound dissolved 

with a low concentration in sucrose solution, demonstrating rats possess a high sensitivity (Contreras 

et al.; 1995). A newest and more precise in-vivo model was recently developed by Boughter and co-

workers named brief-access taste aversion (BATA) model, which reduce intake of the sample by 

reducing volumes and measuring behaviour response as licking rate. By presenting small amounts of 

taste samples and measuring immediate behavioural reactions. Quantification is allowed by 

evaluating licking rate of aversive compound solution through a lickometer (Woertz et al.; 2011b; Soto 

et al.; 2016). This method is usually correlated with a modified dissolution apparatus which mimic the 

oral cavity. Even if animal models are becoming more accurate showing a good correlation with human 
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taste data, human studies are considered the more precise assessment technique (Mohamed-Ahmed 

et al.; 2016; Ali et al.; 2020) 

 Human taste panel study investigates the taste of chemicals and drugs by analysing the 

response of healthy human volunteers in standardised ethically approved operation. This kind of 

research is sensitive in measurement and are designed to reduce bias by recruiting volunteers of 

difference gender, age, and race. Volunteers assess taste intensity from different solutions or dosage 

by using an adjective scale, rating taste perception. The study is not meant to influence candidate 

psychologically; therefore, patient usually can type a comment to improve their rating. Rate is 

generally from zero that indicates no flavour at all, to 100 that represents the maximum intensity of 

taste perception that they are asked to identify (Schiffman 2018; 2015). Human taste panel studies 

are considered extremely accurate because they take into account interpersonal variability connected 

with both physiological and psychological preferences. 

The WHO considers that any medication causing undesirable inpatient behaviour or 

unpleasant experience should be suppressed. The organisation recognises taste, and sight as the 

leading cause of medication discontinuation and non-compliance. Due to high effect that drug taste 

has on patient behaviour towards medication and due to availability of different methods of taste 

assessment, those should be used more widely as a tool to improve patient acceptability towards the 

drug. 
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Part 2. Aim and Objectives of PhD 
 

 In the Introduction of this thesis, two significant pharmaceutical challenges were identified   in 

treatment-resistant schizophrenia namely the daily dose requirement and palatability of clozapine 

(the gold-standardin the UK, US and Italy).   Clozapine in treatment-resistant schizophrenia offers the 

advantage of reducing the risk of suicide as well as improving symptoms. Clozapine is categorised as 

BCS class II (i.e. with low solubility and high permeability) and is marketed as an oral dosage form.  

 The aim of this PhD is to generate and characterise patient-centric formulations to reduce 

daily dose requirements and overall improve palatability and patient acceptance. Therefore, it seeks 

to apply different formulation strategies to produce a novel patient-centric formulation as solid 

dispersions which reduces dosing per day by providing a controlled-release formulation of clozapine. 

The aim is two-fold: the reduction of clozapine dose per day and the investigation of clozapine 

palatability, as concerns about drug taste are considered affecting medication acceptability. 

 

Obtaining an optimised dosage form requires the evaluation of different formulation 

methods. In the present Thesis, different formulation strategies and polymers combinations were 

investigated to optimise a patient-centric clozapine dosage form.  

To reach the PhD aim, each year was organised in objective as follow. 

1. Investigation of the use of spray-drying due to good advantage in term high solubility and 

permeability. In this study, irinotecan is used as model drugs due to its low solubility and permeability 

(BCS class II). The focus of this investigation is to evaluate the effect of spray-drying parameters on 

drug dissolution and permeation. Obtaining this information is crucial to develop an optimised 

patient-centric formulation. 

2. Dosage form optimisation requires the comparison of the most common formulation 

methods for solid dispersion manufacturing in term of both obtained particle size, homogeneity, and 

dissolution performances. Therefore, an objective of this work is to compare solid dispersions 

formulation strategies such as spray-drying, using parameter optimised in term of pump efficacy and 

temperature, freeze-drying and solvent cast method. The study produces reliable data by using three 

model drugs, all classified as BCS class II such as dexamethasone, triamcinolone, and olanzapine. This 

step establishes which method is the most suitable to produce a patient-centric dosage form for 

clozapine prolonged release.  

3. Oral transmucosal delivery system, as discusses, is of benefit in buccal absorption. This 

system is prepared by using biocompatible polymers in the formulation. Therefore, this crucial step 

has the objective to investigate two polymers, PVA and PHEA as biocompatible polymers for patches 
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generation. These polymers present both solubilising and adhesive properties, and this work seeks to 

examine the effect of the different polymeric combination in producing and optimising the creation 

of an oral transmucosal delivery system for controlled clozapine release. The oral transmucosal 

delivery system is usually prepared as a solvent cast film and fibres, manufactured through the 

electrospinning. The advantage of this novel dosage form is currently under study, as described in the 

Introduction, as an administration site for controlled dosage forms. Fibres offer higher surface area 

compared with solvent cast film, therefore high dissolution performances. As one of the main features 

of the transmucosal patch relates to its adhesiveness and the generation of adhesive forces, this 

section hypothesises that different polymers combinations create various adhesive forces. AFM-Qi 

possesses potential in obtaining high-quality data and topographic analysis of surfaces to assess 

adhesiveness. Then, clozapine dissolution performances are analysed to identify which polymer 

combinations and formulation strategies provide a controlled release dosage form. 

4. A transmucosal patch can provide a multi-directional release of drug in both buccal 

mucosa and oral cavity or unidirectional, preferring drug permeation through buccal mucosa and 

avoiding drug clearance in the oral cavity. Manufacturing of unidirectional patch with electrospinning 

is considered challenging as well as customisation in term of patch size and thickness. The last part of 

the present work has as objective the use of 3D printing technology to produce unidirectional 

transmucosal patches provided with a hydrophobic backing layer of PLA. 3D printing presents an 

advantage to create intricate design allowing customisation and size management. PVA, which 

solubilising and adhesive properties are going to be assessed at point 3, aims to be used as a primary 

polymer of the 3D printed product. As described in the Introduction, different printing infills can 

modify the drug release profile. Therefore, it is hypothesised the effect of varying infill percentages 

on clozapine dissolution profile as dissolution mechanism could be a carrier- or drug-mediated as 

discussed in the Introduction, this part of the thesis objective to establish which mechanism drives 

clozapine release by loading in the patch different drug strengths. The optimised patches, loaded with 

a dose of 10 mg, aim to produce a controlled release profile of clozapine from the unidirectional 

transmucosal patch. In-vivo absorption is mediated by two mechanisms, dissolution in the media, 

which represents the first limiting step and permeation through membranes. Therefore, as the final 

objective of the present work, permeability studies provide information on in-vivo-in-vitro correlation, 

and such data can be provided by using both a combination of cellulose acetate membrane and the 

biomimetic membrane PermeapadTM.  

5.  The final objective of the PhD present thesis has the objective to investigate clozapine 

taste perception due to the discussed impact of aversive drug tastes on medication acceptability. This 

analysis seeks to conduct a structured literature review estimating the extension of the role of 
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clozapine taste in non-compliance. Confirmation of the structured literature review is intended to be 

validated based on the described advantage of human taste studies in assessing drug aversive taste 

threshold. This method allows volunteers to rate taste according to an adjective scale and to comment 

supporting their rating. This research required ethical approval by the University College of London 

Ethical Committee.  
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Part 3. PhD Laboratory Experimental 
Chapter  
Chapter 1. Physical-chemical characterisation of raw material 

 

1. Background 

 

In the Introduction Chapter, different types of solid dispersions were highlighted where the 

difference between them was solid-state of the polymer matrix, and drug, i.e. both drug and polymer 

could be in the crystalline or amorphous state. It is well-known that amorphous materials possess 

short-range molecular order and high kinetic energy. Amorphous materials are generally more soluble 

and have a faster dissolution rate (Shah et al.; 2014) compared to their crystalline counterparts which 

possess a low energy state resulting in low solubility and longer stability  (Michael; 2007; Sinko; 2011). 

Despite amorphous benefit, it possesses limited stability, which relates to factors such as 

thermodynamic and kinetic energy. Thermodynamic studies solids since 1930 when the thermal 

analysis was suggested as a method to predict solid-state solubility. Due to high kinetic energy 

possessed by amorphous solids, once heated they liquefy in a long thermal range named Tg; while 

lower energy state causes sudden melting process recognised as Tm (Bhugra and Pikal; 2008). 

 The present thesis aims to produce a controlled-release formulation of drug clozapine. 

Optimisation of final dosage forms included different studies which were conducted using poorly-

water soluble drugs as a model drugs such as irinotecan, dexamethasone, triamcinolone, and 

olanzapine. In present work, dexamethasone and triamcinolone were used as a model drug due to 

their poor solubility and solid crystalline state. Triamcinolone differs in its chemical structure from 

dexamethasone just for an OH group. This chemical similarity was used as an advantage in present 

work to produce consistent data. Irinotecan is a poorly water-soluble drug classified as BCS class II and 

in this study is used as a model drug to verify spray-drying potential in improving drug dissolution 

profile and permeability rate. Therefore, olanzapine was used due to its chemical similarity with 

clozapine. It was used as a model drug while collecting preliminary data on suitable solid dosage forms 

manufacturing to obtain a controlled release formulation (Modica de Mohac et al.; 2016).  

This first experimental Chapter aims to physical-chemically characterise drugs and polymers, 

used as unformulated compounds in this thesis, through differential scanning calorimetry (DSC) and 

Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Such characterisation 

is fundamental to evaluate the solids state of raw materials used in present work. Compounds solid-
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state affects solubility and dissolution behaviour. Thus, final dosage forms response once in the human 

body, as explained in Introduction. Therefore, thermal analysis via DSC was performed to identify solid 

drug state to assess that all drugs used in present work were crystalline, as target drug clozapine.  

Most of the analytical techniques used to characterise materials in solid-state provides 

information about the state of material (i.e. amorphous, crystalline or a mixture of both) and rely upon 

thermal analysis via DSC, dynamic mechanical analysis and thermogravimetric analysis (TGA). DSC is 

used to characterise pharmaceutical solids and builds upon change solid-state of a material as it is 

heated; while TGA calculates water content of each material to evaluate component hygroscopicity 

(Groenewoud; 2001). Solids are also characterised investigating hydrogen bonding formation via ATR-

FTIR (Storey; 2011). This technique allows a molecular-level analysis which provides information by 

probing molecular-level interactions within each component of the system, dosage form (De Lima and 

Filho; 2016). ATR- FTIR is extensively used for characterisation of pharmaceuticals in solid-state to 

identify hydrogen bond formations between components of a formulation such as a drug and a carrier 

and to identify any specific functional groups that might cause physical or chemical interaction  

(Minnes et al.; 2017). 

 In following section physical-chemical characteristics of unformulated drug and polymers are 

discussed to establish both materials solid-state, which could affect drug dissolution performances 

and presence of functional group which could determine hydrogen bond formation between drug and 

polymer during formulation strategies applied as explained in Chapters 2 to 6. 

 

2. Materials and Methods 

 

In present work, different drugs to both carry pre-formulation studies and to improve dosage 

forms for treatment-resistant schizophrenia , using clozapine. Model studies were conducted on BCS 

class II drug such as Irinotecan (Irn), Olanzapine (Olz), Dexamethasone (Dsm), Triamcinolone (Trm), 

were purchased from Sigma-Aldrich.  

Different polymers were used and investigated to obtain different properties in each 

formulation. CAP, Mw 2534.12g/mol, Mannitol Mw 182.172g/mol, MDX, Mw 34,000 g/mol, inulin 

from chicory Mw 522.453g/mol, PMMA Mw 34000g/mol, PVA, Mw 44.053 g/mol were purchased, 

from Merck KGaA (Darmstadt, Germany). PLA Mw 60.000 g/mol was purchased as a filament by RS. 

PHEA (Mw 85000 g/mol) was synthesised by the Department of Biological, Chemical, and 

Pharmaceutical Sciences and Technologies (STEBICEF). SLP, Mw 344.536 g/mol was kindly provided 

from BASF USA.  
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2.1 Infrared- analysis  

 

 Conventional FTIR studies carried out to identify any molecular chemical group of drugs Irn, 

Dsm, Trm and Olz and polymers CAP, inulin, MDX, mannitol, and PMMA. Samples were prepared by 

compression of a thin circular tablet using as 1:99 drug: KBr ratio. Samples were placed on the holder, 

and nitrogen gas was used to reduce carbon dioxide peak and spectra were collected using a JASCO 

FTIR-6000 spectrometer, from 4000 to 300cm−1 with 264 scans (same as background) at the resolution 

of 2cm−1 for each sample. Experiments were carried out in triplicate. 

 ATR-FTIR studies were conducted to identify the molecular structure of drug Clozapine and 

polymers PHEA, PVA and SLP. Samples were placed on ATR crystal, sufficient pressure was applied to 

sample to enable proper contact with ATR crystal, and spectra were collected using a Bruker Vertex 

90 spectrometer, from 4000 to 550 cm -1 with 264 scans (same as background) at a resolution of 2 cm-

1 for each sample. Experiments were conducted under ambient conditions, and each sample was 

examined in triplicate. 

 

2.2 DSC 

 
 Thermal analysis was conducted using a DSC 2920 Modulated DSC machine (TA instruments). 

Modulated DSC was predilected as it uses two simultaneous heating rates, a linear heating rate and a 

modulated heating rate allowing to plot a time-based derivative of temperature per minute, which is 

more accurate. DSC analysis was conducted at a rate of 5°C/min, and samples were heated from 20 

to 300°C. nitrogen purge gas used had a flow rate of 130mL/min. Samples were also held isothermally 

for 5 minutes. Aluminium hermetically sealed pans used were from TA Instruments. Each sample was 

analysed in triplicate. Data analysis was conducted using a TA Universal Analysis software (version 

5.1.0).  

 

3. Results and Discussion 

 

3.1 Characterisation of drugs as unformulated compounds 

 

At first, chemical groups were investigated, and FTIR spectra were recorded to analyse 

functional groups which could lead to chemical bonds during formulation. Then, DSC analysis was 

performed to examine both drug and polymers solid-state, which allows identification of solid 

dispersion generation generated. Creation of a chemical bond between drug and polymer would cause 
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the creation of new chemical entities that was not intended in this project. Drugs are discussed in 

order of subsequent experimental Chapters’ explanation. All drugs spectra were reported in Figure 

23, while detailed peak assignation was provided in Table 4. 

At first, Irn spectra showed most significant peaks at 3511cm−1, assigned to OH vibration, 

2940cm−1 assigned to CH2 symmetric stretching vibration, 2876cm−1, due to CH stretching, 1747, 

1686, 1661, 1611 and 1417cm−1 well-known as Irn C=O and C-C vibration. Then peaks at 1452 and 

1435 were assigned to methyl groups; peaks at 1216 and 1160cm−1 were assigned to CH in-plane 

bending vibration. As it is known, peaks from 1200 to 1000cm−1 refer to aromatic’s groups 1106, 1065 

and 1007cm−1 were assigned to stretching ring vibrations of group C-C and C-N. Aromatic CH in-plane 

bending modes of benzene and derivatives are observed in region 1300–1000cm−1 Irn shows such 

peaks at 1334, 1313, 1260 and 1192cm -1. Peak 2940cm -1 is reported to be an acceptor group of Irn 

and therefore considered capable of interacting with the donor group when in the formulation 

(Thomas et al.; 2004). Each peak was correspondent to existing literature (Chinna-Babu et al.; 2012).  

Dsm and Trm are corticosteroid molecules with the chemical difference that Trm presents two 

hydroxides on two nearer carbons in the aromatic ring. Both Dsm and Trm offer the vibration of 

alcohol vibration at 3400 cm -1, where Trm gives a double-peaks referring to two OH groups. They both 

perform a CO stretching of carbonyl between 1700 and 1674cm -1. Dsm shows a peak at 1268 cm -1 

related CF stretching while it does appear at 1057-1080cm -1 CF stretching for Trm. Those findings 

were confirmed in the literature (Rodrigues et al.; 2009; Shin et al.; 2000). FTIR spectra of Olz, showed 

characteristics peaks (Silverstein et al.; 2005) at 3239 cm -1 referring to NH and OH stretching vibration 

and, 2929 cm-1 to CH stretching. Different peaks identified olz aromatic structure in the region of 1550-

1580 cm -1 as well as at 1450cm -1.  

 Clozapine analysis was performed by using ATR-FTIR for further precision required in the 

formulation of dosage forms intended for systemic delivery. In spectra were observed peaks at 774 

cm -1 (C-Cl bond), 1025cm -1 and 1357cm -1 (C-N stretching vibration) and 1545 cm -1 (C=N stretching 

vibration) were identified (Ali et al.; 2015). In Figure 24, a zoomed-in section of relevant peaks.  
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Figure 23. FTIR spectra for Irn, Dsm, Trm and Olz. 

 

 
Figure 24. ATR-FTIR spectra of clozapine, on the, left full spectra presenting; on the right, most relevant peaks 
were zoomed in and highlighted. 
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Table 4. each drug peaks assignation and definition. From the top, Irn, Dsm, Trm and Olz which peaks were 
identified by using conventional FTIR method; at end Clozapine which peaks were studied through ATR-FTIR. 

Infrared peaks assignation 

Irn cm -1 

3511 OH alcohol vibration H bond 

2940 CH2 symmetric stretching vibration 

2876 CH Stretching 

1747 and 1686 CO stretching carbonyl 

1661, 1611 and 1417 C=C stretching aromatic ring 

1452 and 1435 methyl groups 

1216 and 1166 CH in-plane bending vibration 

1334, 1313, 1260 and 1192 aromatic C–H in-plane 

Trm cm -1 

3464-3397 OH alcohol vibration H bond 

1707-1662 CO stretching carbonyl 

1456 CH methyl 

1375-1302-1278 COC acid alcohol 

1057-1080 CF stretching 

Dsm cm -1 

3407 OH alcohol vibration H bond 

2981-2953-2932-2866 CH methyl 

1704-1659 CO stretching carbonyl 

1617-1603-1436 C=C stretching aromatic ring 

1268 CF stretching 

Olz cm -1 

3221 NH stretching 

3078-3060 CH aromatic ring stretching 

2931 CH3 methyl stretching 

1584-1558 C=C asymmetric aromatic stretching 

1470-1446-1412 C=C aromatic ring stretching 

1289-1223 CN bonding 

Clozapine cm -1 

1545 C=N stretching vibration 

1357 C-N stretching vibration 

1025 C-N stretching vibration 

774 C-Cl bond 

 

Thermal property of each drug was then analysed to investigate solid-state of the compound. 

As crystalline and amorphous compounds have different internal energy levels, information regarding 

their physical state is needed to assess the stability of drug to interact with polymers during 

formulation process as well as with aqueous environment once final formulation would be tested. 
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Drugs thermograph is reported in Figure 25. All measures were obtained in triplicate in the 

thermal interval from 20 to 300°C. Irn showed a Tm at 270.56 ± 5.22 °C (Ishtikhar et al.; 2016); graph 

showed an endothermic event at 100°C for each replicate, this related to water loss. Melting point 

required a heat capacity or enthalpy of fusion (Δcp) of 37.65 ± 7.89 J/g. In the next Chapter, Irn was 

used in formulation at 1% w/w, this amount of drug in the mixture is usually below the detection limit 

in DSC analysis. Therefore, it was used Δcp as a method of quantification (Gaisford; 2007). Using DSC, 

the traditional approach for quantification of content is based on the determination of Δcp (Dilworth 

et al.; 2004). drugs Dsm, Trm and Olz were also analysed for thermal properties investigation. Each 

drug was proved to be in crystalline solid-state, presenting respectively Tm value of 267.63 ± 0.87°C  

(DrugBank; 2020), 292.24 ± 2.30°C (Li and Pustaka; 2009) and 193.98 ± 1.36°C (Modica de Mohac; 

2016). Dsm, Trm and Olz were used to perform pre-formulation studies intended to evaluate which 

techniques between spray-drying, solvent-casting and freeze-drying improve most dissolution rate of 

water poorly soluble drugs. In the study, each drug was used in the mixture at more than 10% w/w. 

DSC analysis of clozapine showed a characteristic endothermic peak associated with its melting point 

(Dias et al.; 2015) at 185.44 ± 0.89°C. resulting peaks once drugs were formulated, were visible, and 

heath capacity was not used as a quantification method; detail of each thermal event is summarised 

in Table 5.  

 The results confirmed that all drugs selected as a model drug to investigate the potential of 

the use of different techniques to produce a controlled release dosage form of clozapine were 

crystalline. As a crystalline compound, they possess low solubility and dissolution rate. Therefore, their 

use as a model of drugs could ensure data reliability during pre-formulation studies. 
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Figure 25. DSC thermographs of Irn, Dsm, Trm, Olz and Clozapine are showing respectively that each drug was 
in the crystalline state due to presence of peculiar Tm. 

 

Table 5. Thermal properties of drug as raw material and heat capacity necessary for the event to occur. 
 Tm (°C) Δcp (J/g) 

Irn 270.56 ± 5.22 37.65 ± 7.89 

Dsm 267.63 ± 0.87 18.54 ± 10.65 

Trm 292.24 ± 2.30 10.01 ± 3.45 

Olz 193.98 ± 1.36 15.85 ± 8.34 

Clozapine 185.44 ± 0.89 122.39 ± 4.52 
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3.2 Physical-chemical characterisation of the unformulated carrier used in solid dispersion 

manufacturing 

  

As discussed in Introduction, solid dispersion can be formulated, generating different 

generation which presents different solid-state compound as well as diverse polymer/s mixture. For 

example, the use of SLP leads to the formulation of fourth-generation solid dispersion with enhanced 

solubility carrier-related; while the use of excipient with a therapeutic effect leads to the formulation 

of multi component solid dispersion named the fifth generation. Therefore, in this Chapter, polymers 

solid-state was investigated to identify crystalline or amorphous nature and later recognise relevant 

solid dispersion generation. However, during formulation steps, drug and carrier can provide 

hydrogen bond interactions that could lead to the creation of new chemical entities. Therefore, carrier 

functional group were analysed to identify main chemical groups that could lead to bond formation 

via FTIR and ATR-FTIR as described in Methods. All polymers spectra were reported in Figure 26 while 

detailed peak assignation was provided in Table 6 CAP is a mixed ester of cellulose obtained through 

phthaloylation of cellulose acetate. It is utilised in different domains, as a pharmaceutical excipient, 

due to its pH-dependent solubility in aqueous media. FTIR study showed a strong H-bond stretch in 

the alcoholic group at 3445 cm -1. CAP presents different OH acid groups in its chemical structure and 

those were highlighted at 2640 and 2528cm -1; all CAP free OH groups may be involved in hydrogen 

bonding with CO group on other molecules (Dobos et al.; 2012). 

In present work, were used three different polysaccharides molecules: inulin, mannitol and 

maltodextrin (MDX). Inulin is usually used to improve intestinal microbiota, trough FTIR typical peaks 

were observed around 800–1200 cm -1 which are characteristic for polysaccharides at OH acceptors 

group, identified as hydrogen bond site, at 1132 and 1031 cm -1 and 989 and 936 cm -1 vibration C-C-C 

group. Inulin also showed peaks at 3343, and 1642 cm -1 referred to OH groups, recognised to be typical 

acceptor groups of molecules (Fischbach and Sonnenburg; 2011; Oscarson and Sehgelmeble; 2002; 

Pourfarzad et al.; 2015). Another saccharine unit used in the present work is mannitol. It presents 

typical CH deformation vibration between 1280 and 1300 cm-1 as well as donor groups alcoholic OH 

groups highlighted at 3405, 3391 and 3293 cm -1 (Shchodryi et al.; 2019). Finally, MDX was analysed 

by FTIR and peaks in the “fingerprint” region of sugar were identified at 930 and 843 cm  -1, referring 

to C-H bending 1,4-disubstituted (Sritham and Gunasekaran; 2017). Moreover, a band at 1642cm -1 

was identified as indicative of extended β-sheet structures (Oldenhof et al.; 2008). In saccharine 

molecules, the presence of free OH allows the formation of glycosidic bonds. Therefore, such groups 
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are considered able to donate an electron, so more likely to create hydrogen bond once formulated 

(Weiss et al.; 2015).  

PHEA is an adhesive polymer, which adhesiveness was investigated by ATR-FTIR by Saiano and 

co-workers, in 2005. PHEA presents characteristics “fork peaks” of C-N stretching vibration 2130, 1953 

and 1279 cm -1. The molecule has amidic groups repeated along the chain. FTIR spectra showed a signal 

of the carbonyl group (1063 and 1013 cm-1), that is recognised as an electron-donor group, therefore 

free for bond (Saiano et al.; 2002).  

Other polymers as PLA, PVA, PMMA and SLP were used in this work for their solubilising effect 

as well as suitability to different formulation strategies. PLA is a biocompatible polymer with high 

employability in implant production and tissue regeneration (Buscemi et al.; 2017; Gavini et al.; 2004). 

spectra showed typical peaks at 1750 and 1080cm -1 regarding stretching of C=0 group and fingerprint 

peak at 756cm -1 (Dukali et al.; 2014). PVA FTIR spectra showed a strong alcohol vibration H bond at 

3290cm -1; this hydroxide is considered as a proton donor group (Zelkó et al.; 2020). Another significant 

peak refers to the stretching of the C-O group at 1086cm -1 (Pal et al.; 2007). PMMA presents a proton 

acceptor hydrogen at 3389cm -1 (Dukali; 2014) from a free hydroxide and a strong signal at 1272, 1245 

and 1196 forester group (Rao et al.; 1999). Finally, SLP was characterised, and main peaks referring to 

aromatic and CO stretching were identified (Palmieri et al.; 2001).  
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Figure 26. FTIR spectra of each polymer acquired between 4000 and 700 cm -1 with 264 repetitions for each 
sample. Main peak assignation was reported in detail in Table 6. 
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Table 6. Table summarised peaks assignation for each polymer. Results were confirmed with existing 
literature. 

FTIR peaks assignation 

CAP 

3445 Strong H-bond stretch in alcoholic OH 

2640 and 2528 OH acids 

1720 Stretch ketone acyclic 

1383 CH bending 

1256 C-O stretching ether 

1038 CO Ester two bands peak 

Inulin 

3343 OH alcohol vibration H bond 

1642 OH-bending (in-plane) 

1327 C-O stretching ether 

1132 and 1031 C-O stretching 

989 and 936 Vibration C-C-C group 

Mannitol 

3405, 3391 and 3293 OH alcohol vibration H bond 

2970, 2946 and 1419 CH stretching 

1281, 1257 and 1301 CH deformation vibration 

1079 and 1019 Strong C-O Stretch 

MDX 

3396 OH alcohol vibration H bond 

1642 OH-bending (in-plane) 

1456 and 1418 CH blending 

1157 and 1030 C-O stretching ester 

930 and 843 C-H bending 1,4-disubstituted 

PHEA 

3371 OH alcohol vibration H bond 

3085 OH alcohol vibration H bond 

2130, 1953 and 1279 C-N stretching vibration 

1655 C=C asymmetric aromatic stretching 

1407 C=C aromatic ring stretching 

1063 and 1013 CO stretching carbonyl 

PLA 

1750 and 1080 C=0 stretch 

1363 and 1452 CH3 symmetric bending 

756 CH bending 

PVA 

3290 OH alcohol vibration H bond 

2939 asymmetric stretching of CH group 

1421 symmetric bending of the CH2 group 

1086 stretching of C-O group 

PMMA 
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3389 OH stretching of lattice water 

2998 and 2950 CH stretching 

1724 C-O carbonyl 

1449 CH3 Stretching 

1272, 1245 and 1196 C-O stretching ether 

SLP 

2926 aromatic CH stretching 

1732 and 1633 C-O stretching 

1477 C-O-C stretching 

 

Then, the thermal properties of each polymer were analysed to identify at first their solid-

state and then the type of solid dispersion created once the formulation occurred. Thermal analysis 

showed that polymers CAP, Inulin, MDX, PVA and SLP were in the amorphous state. Therefore, they 

were considered of further advantage in increasing solubility of drugs used for this work. Mainly, each 

drug resulted in being in the crystalline state, thus provided with low solubility. For each compound, 

Tg was identified and reported in Table 7. Tg values found correspondence in current literature, 

respectively for Inulin, MDX, PVA and SLP (Cooper et al.; 2013; da Silva dos Passos et al.; 2015; Reguieg 

et al.; 2020; Thakral et al.; 2012). 

Interestingly, CAP showed (Figure 27), an endothermic event a 190°C that is related to its 

degradation (Karlsson and Singh; 1998). Such a phenomenon was not registered for any of other 

polymers, which resulted in being more stable to thermal changes. Interestingly no Tg was identified 

for polymer PHEA; such data resulted in being lacking in literature as well. DSC present detection limit 

for a compound with a low specific weight (Kasap et al.; 2017). 

Mannitol, PMMA and PLA resulted in being in crystalline form. Mannitol is used in 

pharmaceutical formulations as a diluent (10–90% w/w) in tablet formulations and used in tablet 

direct compression. It is highly water-soluble used to prepare dispersions by solvent casting method 

(Arias et al.; 1994; Das et al.; 2011). Mannitol and PMMA showed respectively, narrow peaks related 

to the endothermic event of Tm at 168.75°C (Ye and Byron; 2008) and at 229.31°C (Poomalai et al.; 

2007). Finally, PLA showed a more complicated graph with both a Tg and a Tm. Thermograph presents 

a Tg at 66.58 ± 1.24 °C followed by polymer crystallisation and then by a melting point. This result is 

consistent with literature finding and demonstrated that polymer is present as a physical mixture of 

both form amorphous and crystalline (Poomalai; 2007; Xie et al.; 2016).  
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Figure 27. Thermographs were investigated with DSC instrument, and each sample was analysed in the range 
between 20 and 300°C. Data showed that polymers CAP, Inulin, MDX, PVA and SLP were in amorphous solid-
state. At the same time, Mannitol and PMMA presented a crystalline structure identified by Tm detection, 
respectively at 168 and 229°C. PLA demonstrated to be a mixture of amorphous and crystalline, showing both 
a Tg and a Tm. Data are consistent with literature findings.  

 

Table 7. thermodynamic properties of each compound expressed in term of Tg and Tm and related to Δcp 
needed for event occurrence.  

Carrier Tg (°C) Δcp (J/g) 

CAP 89.12 ± 0.91 31.52 ± 3.41 

Inulin 120.90 ± 5.67 2.76 ± 4.98 

MDX 
50.01 ± 12.53 4.98 ± 3.72 

142.13 ± 6.23 18.22 ± 0.58 

PVA 192.46 ± 7.73 30.61 ± 14 

SLP 57.85 ± 1.25 0.87 ± 0.06 
 Tm (°C) Δcp (J/g) 

Mannitol 168.75 ± 6.34 7.98 ± 3.21 

PMMA 229.31 ± 7.39 8.89 ± 7.23 

PLA 172.89 ± 2.57 40.76 ± 9.25 

 

4. Conclusion 

 

Physical-chemical characterisation of raw materials is a fundamental step in formulation 

sciences as it allows the understanding of their properties. In present work, at first, each material was 

characterised in term of chemical evaluation through FTIR and ATR-FTIR analysis aimed to identify a 

chemical group capable of bond formation. Data obtained showed that both drugs and polymers used 

present spectra compatible with literature findings and that drug Irn presents typical group able to 

donate electron for bond formation, as well as all sugary compounds used and polymer PHEA. Thermal 

analysis was conducted to evaluate the solid-state of each compound. Thermograph showed that each 

drug was used in the crystalline state. Such solid-state implies low solubility and high stability of the 

product. This finding is coherent with literature and with reported low solubility of each drug used in 

the present study. Form other hand side, polymers CAP, Inulin, MDX, PVA and SLP used were found to 
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be amorphous, while mannitol and PMMA were in the crystalline state. PLA was then proved to be a 

mixture of amorphous and crystalline.  

The data acquired in this section allow solid dispersion identification in the next Chapters.  
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Chapter 2. Model study on spray-drying to improve solubility and permeability 

of poorly water-soluble drug 

 

1. Background 

 

In last decades pharmaceutical technologists have proved the suitability of solid dispersion 

manufacturing as formulation strategy for drug dosage forms (Marano et al.; 2016; 2017; Modica de 

Mohac et al.; 2016; Pina et al.; 2014). Spray-dried solid dispersions were widely studied in the last 

decades as an option to improve dissolution rate and in turn bioavailability of poorly water-soluble 

drugs such as one classified as BCS class II and IV. Spray-drying is considered as a suitable method to 

produce multi component solid dispersion, as described in the Introduction of this thesis. This is due 

to flexibility in the selection of solvents, range of temperatures, kind of liquid dispersions injectable 

and pumps speeds, as recently reviewed by Paudel and co-workers (in 2013) and Singh and Van den 

Mooter (in 2016) (Paudel; 2013; Singh and Van den Mooter; 2016). This technique is useful to obtain 

spherical particles whit small size and narrow distribution. Those characteristics are not only due to 

the spray-drying procedure itself but are also affected by polymers ratios and properties. Spray-drying 

influences final product characteristic by using different parameters such as inlet and outlet 

temperatures, pump velocity and aspiration percentage and solvent selection. Changing of these 

parameters was proved to modify final product properties improving particle size homogeneity, 

wettability, moisture content, and solubility, through reduction of particle size.  

Due to crescent needs in clinical practice to use oral dosage forms to increase patient’s 

compliance towards their medication this part of the thesis focused on the formulation of drug-loaded 

multi component solid dispersion with the aim of both increase drug solubility and permeability 

through the intestinal barrier. multi component solid dispersion was formulated by use of spray-drying 

where the effect of two parameters in obtained multi component solid dispersions was investigated: 

pumping efficacy, in term of amount of feed dispersion, loaded in the heating chamber and feed 

dispersion concentration. Irn was used as a model drug as it is classified as BCS class II  (Slatter et al.; 

2000). multi component solid dispersion was characterised in term of particle size, solid-state and in-

vitro dissolution profile and ex-vivo permeation studies were conducted.  

 

2. Materials and Methods 

 

Irn, inulin from chicory, PMMA, CAP was purchased from Merck KGaA (Darmstadt, Germany). 

Ethanol, Dulbecco buffer phosphate (DPBS), chloride acid (HCl), potassium bromide (KBr), dimethyl 
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sulfoxide (DMSO), sodium chloride and sodium hydroxide were obtained from Merck KGaA 

(Darmstadt, Germany). Water used was Milli-Q ® (Millipore). 

 

2.1 Sample preparation  

 

Empty microparticle formulations were prepared by spray-drying with mannitol and inulin as 

based-polymer, with the addition of different ratio of PMMA and CAP. Polymers were dispersed in 

various solvents (water, basified water at pH 9.0 and 80:20 v/v water/ethanol mixture) and stirred 

magnetically overnight. Then, dispersions were homogenised using Microfluidics M-110P (Newton, 

Massachusetts, USA). Polymers dispersions (and consequently obtained microparticles) were named 

Polymers Dispersion (PD) and presented following composition: Mannitol/Inulin 90/10 (PD1); 

Mannitol/Inulin/CAP 85/10/5 (PD2); Mannitol/Inulin/PMMA 85/10/5 (PD3). Excipients concentrations 

were selected according to ‘Handbook of Pharmaceutical Excipients’ (Raymond and Paul; 2009). PDs 

were formulated at 1% and 10% w/v, to evaluate the effect of feed dispersion concentration of final 

microparticles. After homogenisation, liquid PDs were spray-dried through a BUCHI Mini Spray-Dryer 

B-290, with the co-current regime and a two-fluid nozzle atomiser, connected with an absorption air-

dryer (Ultrapac; 2000). Inlet Temperature (Tinl) of 110°C and outlet Temperature (Tout) of 70°C and two 

different values of the pump, 10%, and 20%, were used.  

For drug-loaded microparticles preparation, 1% w/v Irn was added to liquid PDs. Dispersions 

were stirred overnight by magnetic stirring and then homogenised using Microfluidics M-110P. Drug-

polymer distributions were then spray-dried at inlet Temperature (Ti) of 110°C and Tout of 70°C with 

20% of pump efficacy. Collected samples have then been stored under reduce humidity condition 

(30% RH).  

 

2.2 Scanning electron microscopy (SEM)  

 

SEM images were recorded on freshly prepared microparticles by using a Phenom ProXSEM. 

Particles were analysed using the same parameters (i.e. contrast and luminosity) and same stub for at 

least four samples. Average diameter (d) of microparticles was determined from the mean value of 

100 measurements using ImageJ (the USA, version 1.46 v). From diameter measurements have then 

been possible to evaluate polydispersity index (PDI) by formula (Gaumet et al.; 2008): 

 
 (PDI)= <d2> / <d >2   Equation 7 
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2.3 FTIR analysis 

 

FTIR studies carried out to identify any molecular interaction between Irn and polymers. 

Samples were prepared by compression of a thin circular tablet using as 1:99 drug: KBr ratio. Samples 

were placed on the holder, and nitrogen gas was used to reduce carbon dioxide peak and spectra were 

collected using a JASCO FTIR-6000 spectrometer, from 4000 to 300 cm-1 with 128 scans (same as 

background) at the resolution of 2 cm-1 for each sample. Experiments were carried out in triplicate. 

 

2.4 DSC and TGA 

 

DSC analysis was performed using a LABSYS Evo STA (simultaneous thermal analysis) TGA-DSC, 

at heating rates of 7°C/min between 30°C and 500°C and alumina crucibles were used in all 

experiments. Nitrogen purge gas was used with a flow rate of 5 mL/min. TGA studies were carried in 

triplicates out with calculation of water content of prepared microparticles.  

 

2.5 Drug loading evaluation 

 

Proper amount (2 mg) of microparticle samples were dissolved in 2 mL of DMSO, filtered 

through a 0.45 mm syringe filters with cellulose acetate membrane (VWR International, USA) and drug 

content of each sample was determined via UV-VIS spectra. Spectra were recorded by 2401 PC 

Shimadzu Recording UV Spectrophotometer, in 600-200 nm spectral range. A calibration curve was 

used for quantification of drug content in the concentration range of 0.1-0.0001 mg/ml of Irn standard 

solutions in DMSO (R=0.999) and spectra recorded at 254 nm.  

 

2.6 Permeation studies 

 

Colon sections were obtained from healthy male Winstar rats (300−350 g body weight). All 

animal tissues were collected by Istituto Zooprofilattico Della Sicilia ‘A. Mirri’ (Palermo, Italy) according 

to protocols approved by the National Bioethical Committee. Rats were sacrificed previous 

anaesthesia by intraperitoneal administration of ketamine (100 mg/kg). Then colon segments were 

collected immediately after animal sacrifice, washed twice with normal saline, and directly used for 

permeation experiments. Appropriate sections of the colon were mounted in vertical jacketed Franz 

type diffusion cells (5mL acceptor volume) with 5mm diameter orifice (0.20 cm2 area). Tissue specimen 

was equilibrated initially at 37±0.1°C between donor and acceptor chambers both filled with DPBS 
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solution at pH 6.80. Afterwards, DPBS solution was carefully removed from the donor compartment 

and replaced with drug-loaded microparticles dispersion in DPBS pH 6.80 (1 ml; drugs concentration 

0.20 mg/ml). At scheduled time intervals, aliquots (200 µl) were withdrawn from the acceptor 

chamber and immediately replaced with fresh buffer solution to maintain sink conditions. 

Subsequently, the filtrate was analysed spectrophotometrically at 254 nm, and Irn quantised using a 

calibration curve above described. Each experiment was carried out in triplicate at 37±0.1°C for eighth 

under continuous agitation in an orbital shaker. An identical procedure was used to evaluate drug 

colon permeation by using free drug dispersions (Irn 0.20 mg/mL). Results are expressed in term of 

percentage of drug permeated as a function of time. 

At the end of each ex vivo permeation experiment, the amount of drug entrapped into colon 

tissue was quantified by organic solvent extraction. Colon sections were removed from Franz cells and 

washed with DPBS at pH 6.80 to remove eventual drug remained on its surface. Subsequently, colon 

specimens were stirred in 2 mL of organic solvent DMSO overnight at 37°C. Extraction liquor was 

transferred into a flask and analysed spectrophotometrically at 254 nm.  

 

2.7 In-vitro Irn dissolution and release studies 

 

In-vitro dissolution studies were carried out by using the basket method, in gastrointestinal 

mimicking condition at pH values according to European Pharmacopeia (European Pharmacopeia 7.6; 

2012). the gastric environment was mimed by 70mL of a pH of 1.2 acid solution for 2 hours, then 30 

mL of DPBS was added to reach a pH of 6.8. During the experiment, a rotation speed of 100 rpm and 

a temperature of 37.0±1 °C was maintained. At predetermined intervals, 1 mL of solution (0.20 

mg/mL) was withdrawn and filtered through a 0.45 µm cellulose acetate syringe filter and replaced 

with the same amount of fresh buffer. Subsequently, the filtrate was analysed spectrophotometrically 

at 254 nm. All in-vitro dissolution studies were performed under sink conditions. The calibration curve 

was conducted in the concentration range of 0.1-0.0001 mg/ml of Irn standard solutions in both acid 

solution and DPBS pH 6.80 (R=0.999) and spectra recorded at 254 nm. 

 

2.8 Statistical Analysis 

 

A one-way analysis of variance (ANOVA) was applied to compare different samples. Data were 

considered statistically significant with a value of p below 0.05, and differences between groups were 

compared using Bonferroni t-test. Each test was developed in triplicate. 
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3. Results and Discussion 

 

3.1 Preparation and characterisation of multi component solid dispersions: external solid-state and 

water content 

 

For the preparation of multi component solid dispersions, attention was focused on 

optimising spray-drying methodology to obtain spherical particles with an average particle size 

between 0 to 6 µm. It was proved by Barltorp and co-workers (1979) that particles within this diameter 

values might be better absorbed and retained by tissue (Barltrop and Meek; 2013). In particular, it 

was proved that microparticle with 3 µm diameter is detained in the mucosa (Jenkins et al.; 1994; 

Reineke et al.; 2013).  

 At first, feed dispersions concentration and pump efficacy were analysed in the spray-drying 

process. Two different feed concentrations (1 and 10%) and for each, two different pumping rates (10 

and 20%), were used for producing microparticle samples. As a result, twelve PDs as multi component 

solid dispersion were formulated via spray-drying. PD used for consequent microparticles production 

by spray-drying technique, were numbered from 1 to 3 as summarised in Table 8. particles were then 

named according to parameters used during the spraying process, as in Table 9. 

 

Table 8. Summary of the composition of polymer dispersions and solvents ratios used. 

 

 

Table 9. Microparticle names after the spray-drying process. Particles -A were obtained using 1% of feed 
solution concentration and 10% pump efficacy; B were obtained using 1% of feed solution concentration and 
20% pump efficacy; -C were obtained using 10% of feed solution concentration and 10% pump efficacy; - D 
were obtained using 10% of feed solution concentration and 20% pump efficacy.  

Name Feed Concentration Pump Efficacy 

PD1-A 1% 10% 

PD1-B 1% 20% 

PD1-C 10% 10% 

PD1-D 10% 20% 

PD2-A 1% 10% 

PD2-B 1% 20% 

Name Polymers Polymers ratios w/w Solvents ratios v/v 

PD1 Mannitol/Inulin 90:10 Water 

PD2 Mannitol/Inulin/CAP 85:10:5 Basic Water 

PD3 Mannitol/Inulin/PMMA 85:10:5 90:10 Water: Ethanol 
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PD2-C 10% 10% 

PD2-D 10% 20% 

PD3-A 1% 10% 

PD3-B 1% 20% 

PD3-C 10% 10% 

PD3-D 10% 20% 

 

The obtained microparticle samples were collected to be characterised in terms of particle 

size and PDI, which were evaluated by SEM and analysed by ImageJ software allowing calculation of 

PDI values. Figure 28 summarises mean average particle size of PDs and related values of PDI. As was 

previously stated that the particle size of below 6 µm achieves the best absorption in the intestine, 

the authors decided to study the effect of feed dispersion concentrations on particles diameters. 

Ability to control particle size and density, even after formulation, is the main advantage of spray-

drying as it was proven form authors in the field of pulmonary delivery (Items et al.; 2018). In 

particular, particles obtained from polymers dispersions with a 1% w/v concentration PD1-3-A present 

a particle size lower than 3 µm and PD1-3-B lower than 4 µm resulted in being smaller than one 

obtained with 10% w/v concentration. Overall particles received when preparation a solution at 10% 

w/v have a diameter 1.80 fold (p-value <0.0001), although in current literature is reported that higher 

feed dispersion concentration leads to smaller particle size (Hashib et al.; 2015). However, when the 

solvent represents the majority in dispersion, it has a low density that is reported to cause the 

formation of a particle with a small diameter (Ekdahl et al.; 2019). Particle -C and -D presented a size 

around 6 µm, therefore considered of use to mucosa permeation.  
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Figure 28. Graphical summary of particle size and PDI of each multi component solid dispersion. Data showed 
that particles obtained with 10% w/v feed dispersion concentration have higher (around 6 µm) respect than 
one produced with 1% w/v (about 3 µm). 

 

However, it is well-known that an increase of feed dispersion viscosity, as happened by 

increasing feed dispersion concentration, affect the solvent evaporation process, leading to obtaining 

particle with high density and low diameter. Moreover, the effect on pump efficacy on particles 

humidity was evaluated. As previously stated, the peristaltic pump percentage affects the difference 

between Tinl and Tout. So, the water content of the obtained microparticles was investigated using TGA; 

results showed in Table 10. Data showed that particle -D has a lower water content respect to other 

empty multi component solid dispersions, due to the use of ethanol in the solvent mixture. EtOH 

presents fast evaporation in spray-drying due to its low boiling point, and it is reported that adding 

ethanol a solvent in the spray-drying process reduces the water content of the produced product 

(Gilani et al.; 2005).  

 

 Table 10. Water content obtained by TGA analysis. 

The water content of each PDs obtained by TGA 

PD1-A PD1-B PD2-A PD2-B PD3-A PD3-B 

2.50 % ± 0.30 3.22% ± 1.22 2.42% ± 0.60 1.98% ± 3.50 2.20% ± 0.10 3.56% ± 2.36 

PD1-C PD1-D PD2-C PD2-D PD3-C PD3-D 

1.95% ± 0.65 1.80% ± 1.56 2.16% ± 3.75 0.74% ± 0.30 1.50% ± 3.65 0.86% ± 2.56 
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The production of multi component solid dispersion was obtained using spray-drying to 

formulate particles with a mean diameter below 6 µm. The particle was characterised to detect their 

particle size, homogeneity in distribution (through PDI values calculation) and water content. Such an 

investigation could suggest that the use of more concentrated feed dispersion and higher pump 

efficacy, might allow obtaining particle with bigger particles size and less water content. Therefore, 

multi component solid dispersions PD1-D, PD2-D, and PD3-D were used for the successive step of drug 

loading, as was noticed that higher pumping efficacy is the lowest water content is detained. A relation 

between particle size and pump efficacy percentage was also seen, regarding the fact that in most 

produced multi component solid dispersions a pump efficacy of about 20% increased particle size. This 

founding is coherent with literature insights that explained that water content depends on how much 

time the sample has spent in atomiser  (Maa et al.; 1997; Sweeney; 1998).  

 

3.2 Preparation and characterisation of Irn-loaded multi component solid dispersions: external solid-

state and water content 

 

For the preparation of drug-loaded microparticles, three PDs formulation (PD1-D, PD2-D, and 

PD3-D) obtained with same spray-drying conditions (D), was selected to prepare final drug-loaded 

formulations because of those with a size between 4 and 6 µm, with lowest residual water content. 

Drug loaded formulations (F) were named: F1 from PD1-D+Irn; F2 from PD3-D+Irn and F3 from PD2-

D+Irn. 

SEM images of F1, F2, and F3, were acquired to measure the mean particle size of multi 

component solid dispersion, and results are provided and summarised in Figure 29. It is interesting to 

notice that the particle size of multi component solid dispersions containing Irn resulted smaller than 

empty correspondent formulation. F1 was 1.51-fold (p-value <0.001) lower than PD1-D, as well as F3, 

has a particle size of 1.60-fold (p-value <0.001) inferior of its correspondent not loaded MDS. While 

F2 and PD2-D had similar particle size and no significance was found. Reduction in particle size could 

be due to alteration in density and viscosity of feed dispersion once Irn is added to the formulation 

(Gilani; 2005). However, such properties were not characterised. 
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Figure 29. Left panel: SEM images of empty (PD1-D, a; PD2-D, c; PD3-D, e) and drug loading (F1, b; F2, d; F3, f) 
multi component solid dispersions. Right panel: Graphic comparing obtained mean average particle size with 
relevant standard deviation values expressed by errors.  

 

Then, the physical characteristics of loaded multi component solid dispersion were evaluated 

in term of drug-excipients interaction, drug solid-state, and water content.  

Overall DSC analysis of drug loading multi component solid dispersions identified one main thermal 

event related to mannitol Tm. Such an event is coherent with raw material characterisation even if in 

F3 Tm moved to a slightly lower temperature value. In Figure 30, DSC thermograms and zoom of area 

related to Irn Tm are shown.   
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Figure 30. a) Comparison of multi component solid dispersion formulations and pure drug thermograms. From above: F1, physical mixture (PM) of F1, F2, F3, and Irn. b) 
Zoom of the region from 250°C and 300°C. 
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From the other hand, identification of drug Tm resulted almost complicated due to low drug 

loading in all formulations (~ 1%). DSC curve of Irn was reported as well to discuss obtained results 

easy. As shown in the zoomed region (Figure 30b), for formulations F2 and F3, it was possible to detect 

endothermic events associated with Irn Tm. A confirmation of this was obtained evaluating Δcp of pure 

drug Tm and comparing it with values obtained from F2 and F3. In particular, Irn Tm and Δcp were 

respectively about 270°C and 49 J/g while for F2, and F3 values were respectively about 273°C and 1.2 

J/g and 276°C and 1.3 J/g. That evidence appeared to happen closer to pure drug Tm and Δcp values 

and resulted in being coherent with the amount of drug-loaded in F2 and F3. However, for F1, it was 

challenging to find an event well associated with Irn endothermic peaks. To be sure that fact 

highlighted for F1 was related to Irn Tm, PM with polymers presented in F1 and with 10% of drug 

loading was analysed as a control. PM thermogram showed an endothermic peak at 265°C, value at 

which small event in F1 occurred, with a Δcp of 4.7 J/g. value is coherent with drug percentage in PM 

and helps to ensure drug identification in F1 thermogram. TGA studies were involved in evaluating 

water content changing after drug loading. Results, shown in Figure 31, demonstrated that drug 

addition to polymers dispersion caused an increase in humidity of 1.74-fold for F2 (p-value < 0.0001) 

and of 2.75-fold F3 (p-value < 0.0001), but unchanged for F1. Increasing water content could be 

explained since Irn could detain water, as suggested by Hermann and Robert in 1972 (Hermann; 1972).  

 
Figure 31. water content of multi component solid dispersion before and after drug loading 

1.80% 1.80%

0.86%
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Figure 32. a) FTIR spectra from above of PD1-D, F3, F2, F1. b) FTIR spectra zoom from 1595 cm-1 to 1047 cm-1 
of F3, F2, F1. c) FTIR spectra zoom from 3061 cm-1 to 2773 cm-1 of F3, F2, F1. 

 

FTIR spectra were analysed to evaluate the existence of any interactions occurring between 

drug and polymers used in each formulation. To a better understanding of obtained data, FTIR spectra 

of drug-loaded multi component solid dispersions (F1, F3, and F3) were compared with empty one 

(PD1-D), as it mannitol and inulin. In Figure 32, from left, a comparison of FTIR spectra of Irn, F1, F2, 

F3, and PD1-D is illustrated. It is possible to notice a difference between all formulations and frequency 

of PD1-D (see regions highlighted in circles and zoomed-in Figure 32b and 32c). In Figure 32b, it is 

possible to notice three peaks that are not present in PD1-D, and that comes out in all formulations 

containing Irn. Those peaks at 1321, 1262 and 1196 cm-1 were assigned to Irn aromatic groups and 

come out from signals overlap of inulin peak at 1327 cm-1 and mannitol CH deformation at 1257 cm-1. 

Moreover, it was possible to notice a peak enlargement at 1458 cm-1 of F2; this could be due 

to Irn peak at 1452 cm-1. Another central peak in all formulation that is not present in PD1-D is one at 

2940 cm-1 (Figure 32c) assigned to Irn CH2 symmetric stretching vibration. However, this peak appears 

to be of different intensity and shape. So it was related to a possible bond created between donor 

groups of mannitol and acceptor group of Irn (Thomas et al.; 2004). 
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3.3 multi component solid dispersions drug loading and dissolution profiles 

 

The drug loading studies were performed dissolving all formulations in DMSO and evaluating 

drug absorbance at 254 nm. Table 11 summarised all drug loading contents that resulted in being all-

around 1% which corresponds to a 100% encapsulation efficiency. 

 

Table 11. Drug loading of each multi component solid dispersion formulations. 

Formulations Drug Loading 

F1 0.93% ± 0.56 

F2 1.11% ± 2.31 

F3 1.10% ± 1.65 

 

The evaluation of the dissolution profile of loaded-multi component solid dispersions allowed 

assessment of the potential of use spray-drying to enhance poorly water-soluble drug dissolution rate, 

compared with the unformulated drug. Figure 33 shows dissolution profiles of F1, F2, and F3 

compared with pure Irn within 10h (Figure 33a), and an overview of first 120 min of the experiment 

conducted in the gastric-mimicking environment (Figure 33b). F1 increase Irn dissolution profile with 

a potential increase on its gastric permeation, and it was not considered capable of reaching purposed 

aim, as 60% of the drug was released in an acid environment. A different profile can be observed for 

F2 and F3. F2’s profile had an initial fast drug release at acid pH (within 2h) with a maximum of drug 

release percentage reached of about 80%. Therefore, it was not considered as suitable with the 

purpose of protecting Irn release from the gastric environment. However, F3 was able to reduce drug 

release in the gastric environment and allowed to release 100% of Irn when pH was jumped, 

accordingly to pharmacopoeia suggestion, to intestinal pH. As the main aim was to increase Irn 

dissolution rate in the intestinal environment and then its permeation in the colon, dissolution studies 

were conducted reproducing gastrointestinal environment according to European pharmacopoeia to 

evaluate gastro-protective efficacy of PMMA and CAP. From F1 and F2 were possible to notice an 

initial fast drug release at acid pH (within 2h) with a maximum of drug release percentage reached of 

about 80% and therefore it was not considered as suitable with the purpose of protecting Irn release 

from the gastric environment. Such behaviour was not noticed, from another hand side, from F3, 

which exhibited a shallow dissolution behaviour in the gastric environment. At the same time, at pH 

6.8, it was able to release a maximum of drug percentage of about 100%. This behaviour could be 

useful to increase selective drug delivery to the colon, where colon cancer is located. At this regard, 

inulin should confer a synergistic action as colon-targeting excipient when associated with CAP as 

enteric disregard of microparticles. 
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Figure 33. Drug release percentage: a) of F1, F2 and F3 compared with pure Irn within 10h. b) Zoom on the 
first 120 min of the experiment in the gastric-mimicking environment  

 

Ex-vivo studies (summarised in Figure 34), demonstrated the real capability of prepared multi 

component solid dispersions to increase drug permeation and absorption through colon specimens.  
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Figure 34. Experimental scheme of ex-vivo permeation studies. 

 

Interestingly, each obtained formulation showed a significant increase in drug permeation 

across physiological tissue. As shown in Figure 35, the percentage of permeated drug always increases 

when formulated as multi component solid dispersion, up to experiment time (10hs). Furthermore, 

the fact that Irn was not found in colon specimens suggests that permeation could have continued 

until completion. It cannot be excluded that improvement of drug absorption generated by three 

formulations might be associated with the development of Irn solubility because of the presence of 

mannitol that acts as solubilising agent and diluent. As mannitol possesses high solubility, it increased 

Irn solubility in the donor compartment allowing a higher amount of drug molecules readily available 

for permeating across colon specimens. Interestingly F2 achieved the best result allowing 50% of drug 

permeation after just 300 min. presence of pH-dependent PMMA could show an enhancer effect 

attributed to mucoadhesive properties of this copolymer that could interact with mucus glycoproteins 

by forming physical interactions resulting in the formation of a strengthened mucus gel network, able 

to promote drug diffusion (Cui et al.; 2006). 
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Figure 35.Percentage of permeated drug trough colon specimens.  

 

4. Conclusion 

 

This part of the project detected the use of spray-drying as a formulation strategy to produce 

multi component solid dispersions able to increase solubility and permeability of poorly-soluble drug. 

Irn was used as a model drug due to its low solubility and permeability. Due to advantages described 

in Introduction, multi component solid dispersions were prepared empty and characterised to ensure 

selection of best final products. Twelve empty particles were formed via spray-drying, and mannitol 

and inulin were used as based-polymers in each preparation. Particle size and water content analysis 

showed that particles obtained with 10% w/v feed dispersion concentration and 20% spray-drying 

pump efficacy generated multi component solid dispersions in range of 4 and 6 µm and low water 

content. Therefore, those particles were loaded with the model drug. By varying two formulation 

parameters, improvement of Irn dissolution and release profile in gastrointestinal mimicking 

conditions was demonstrated. Obtained results confirmed that an increase of feed dispersion 

concentration produces an increase of particle size and that pump efficacy has, in most cases, an equal 

effect. 

 The dissolution profile of each formulation has shown an increase of drug release percentage 

in comparison to pure drug and ex-vivo permeation experiments demonstrated a significant 

enhancement in drug permeation through colon specimens respect unformulated drug. Whole 

obtained results suggested a potential use of spray-drying to increase in oral absorption of the poorly 

water-soluble drug. However, spray-drying is not only formulation strategies to improve the solubility 
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of poorly soluble drugs. Therefore, further investigation of its advantages compared with other leading 

methods is highly recommended to identify the most suitable for solid dispersion manufacturing.   
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Chapter 3. Comparison of Traditional Processes in Enhancement of Drug 

Dissolution Rate. 

 

1. Background  

 

All drug delivery systems are composed of two components, drug that produces physiological 

effects, and excipients, that allow drug administration and distribution within the physiological 

environment. Drugs with low solubility represent a significant challenge in drug-delivery, and several 

pre-formulation strategies are usually employed to overcome this issue (Campardelli et al.; 2017; 

Samie et al.; 2017). In particular, a most common strategy is based on the formulation of solid 

dispersions (Marano; 2016; 2017; Pina; 2014) and its preparation can be categorised into a general 

grouping based on equipment or strategies used (Lu et al.; 2017). Advantages and disadvantages of 

each formulation strategies were discussed in the Introduction section of the present thesis. All 

techniques are used to produce solid dosage forms in a big scale from pharma companies. In Chapter 

2, it was proved spray-drying efficacy in both increasing dissolution and permeability of a poorly water 

soluble drug. However, just a few studies compared this technique with the other available and none 

more than two simultaneously. One of the purposes of this thesis was to analyse and compare the 

most common formulation methods to understands their weakness and strength when formulation 

solid dosage forms. 

Therefore, this thesis section aims to compare spray-drying, freeze-drying and solvent-casting 

method, as they represent the most common formulation strategies used to prepare drug-loaded solid 

dispersions. Pharmaceutical advantages proposed by these techniques were investigated, with focus 

placed on faster drug release profiles, improve surface homogeneity, increase drug incorporation 

capability of three different model drugs: Olz, Dsm and Trm. These drugs, classified as BCS class II, 

were selected due to their low solubility and their widespread use in medical practice (Clinical; 2019; 

Fuentes et al.; 2018). 

 

2. Materials and Methods 

 

Olz, Dsm, Trm, MDX, PVA, Ethanol, phosphate buffer saline (PBS) tablets, hydrochloric acid, 

KBr, DMSO, sodium chloride and sodium hydroxide and were purchased from Merck KGaA 

(Darmstadt, Germany). Water used was produced using Milli-Q ® system (Millipore). 
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2. 1 Sample preparation  

 

A 10% w/v solution of PVA:MDX (50:50 weight ratio) mixture was prepared. polymers were 

added to 20 mL of water and stirred overnight and then heated for 40 minutes in an ultrasonic water 

bath. Water was used as solvent-based due to its suitability for selected preparation techniques. 

Polymer solutions were processed as follows: 5 mL was placed into a Petri dish (5 cm diameter) and 

placed under a laminar flow of 0.45 mL/min for 24 hours, to allow for water evaporation. Another 5 

mL of solution was freeze-dried using 30 °C as a shelf temperature. A further 7 mL of solution was 

spray-dried (at Tinl of 120 °C, 20% pump and 100% aspiration). 

Drug loaded solid dispersions were obtained by adding each pure drug to the polymer 

solution, followed by evaporation, freeze-drying or spray-drying procedures. A small amount of each 

polymer solution (containing drug) was withdrawn and tested to evaluate the polymer’s influence on 

drug solubility. 

 

2.2 SEM 

 

SEM images were obtained for each freshly prepared sample to investigate their surface 

homogeneity, solid-state, and size, using a Phenom ProXSEM. Each sample was deposited onto a 

carbon-coated steel stub and dried under vacuum (0.1 Torr) before analysis. 

 

2.3 FTIR 

 

Samples were prepared by compression of thin circular tablet using as 1:99 drug: KBr ratio. 

After samples were placed on the holder, nitrogen gas was used to reduce carbon dioxide peak. 

Spectra were collected using a JASCO FTIR-6000 spectrometer, from 2θ 4000 to 300 cm-1 with 128 

scans (same as background) at a resolution of 2 cm-1. Spectra were recorded in triplicate. 

 

2.4 DSC and TGA 

 

DSC studies were performed, and measurements taken with n=3 repetitions, using a LABSYS 

TGA-DSC and heating rates of 7 °C/min. Experiments were performed between 30 °C and 500 °C, with 

alumina crucibles used in all tests conducted in triplicate. Nitrogen purge gas was used with a flow 

rate of 5 mL/min. TGA studies were carried out to measure the water content of prepared samples 

using the same instruments. 
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2.5 Determination of drug solubility equilibrium in polymer solutions 

 

The aqueous solubility of each drug was investigated in the presence of PVA and MDX. Excess 

amounts of pure drug powders were dispersed in aqueous polymer solutions for 72 h and stirred using 

a shaking incubator (150 rpm, 37 °C). polymer solutions (10% w/v of the drug in a polymer mixture of 

PVA: MDX 50:50 weight ratio) were then filtered through a 0.22 mm Millex-GP filter (Merck Millipore, 

UK) and their concentrations determined spectrophotometrically using calibration curves for each 

drug (concentration range of 0.1–0.0001 mg/mL in drug standard water solutions (R = 0.999). 

Ultraviolet (UV) spectra were recorded on a 2401 PC Shimadzu Recording Spectrophotometer in 600–

200 nm spectral range. Spectra were recorded at 253 nm for Olz, 242 nm for Dsm and 241 nm for Trm. 

 

2.6 Drug-loading evaluation 

 

Drug-loading of prepared formulations were determined after weighing 2 mg of each sample 

was dissolved in DMSO for optimum solubilisation of selected drugs. Dispersions were agitated on an 

orbital shaker for three days at room temperature and covered with aluminium foil to avoid light 

interaction. Following this, 1 mL of solution was withdrawn and filtered using a 0.45 mm syringe filter 

with a cellulose acetate membrane (VWR International, USA). Drug loading of each sample was 

determined spectrophotometrically. Drug loading of each sample was determined 

spectrophotometrically, as aforementioned, with n=6.  

 

2.7 In-vitro release studies 

 

In-vitro drug release studies were carried out in triplicate using basket apparatus method. 

European Pharmacopeia (European Pharmacopeia 7.6; 2012) was used to determine experimental 

conditions, such that they would mimic those found within intestine in-vivo. DPBS at pH 6.8 was used 

to achieve the desired intestinal pH. Each formulation was added to 100 mL of dissolution medium 

(20 mg to 100 mL) and stirred (100 rpm, 37 ± 1 °C). This drug concentration represents a conventional 

dose of each drug, given at the beginning of a therapeutic regimen. At predetermined time intervals, 

1 mL of solution was withdrawn and filtered through a 0.45 µm cellulose acetate syringe filter and 

replaced with the same amount of fresh buffer. Subsequently, the filtrate was analysed 

spectrophotometrically at a specific wavelength for each drug and the amount of drug present 
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calculated using a calibration curve. Drug release of each sample was determined 

spectrophotometrically, as aforementioned.  

 

2.8. Statistical Analysis 

The f2 Equation was used to compare dissolution performance between drugs, as well as 

corresponding formulations (Raimi-Abraham et al.; 2015). This similarity factor is calculated using the 

following Equation (Shah et al.; 1997): 

 

f2 = 50*log {[1+ (1/n)∑t=1
n ( Rt - Tt )2 ]-0.5 100} Equation 8 

 

Where n is the number of time points, R is dissolution value of reference t batch at time t, and T is 

dissolution value of test batch t at time t. 

When f2 is below 50, profiles are considered different, and when f2 is above 50, compared 

release profiles are considered equivalent. Two-way analysis of variance (ANOVA) was applied to 

compare different samples. Data were considered statistically significant with a value of p below 0.05. 

Each test was conducted in triplicate. 

 

3. Results and Discussion 

 

3.1 Effect of polymeric excipients on drug solubility 

 

Three different methods to produce solid dispersions were investigated by using three 

different model drugs as showed in Table 12. For clarity throughout the text, A= OLZ, B=DSM, C=TRM, 

1=spray-drying, 2=solvent-casting and 3=freeze-drying. To evaluate which of preparation methods 

used (spray-drying, solvent-casting, and freeze-drying) improved drug dissolution rate in an aqueous 

environment, some parameters such as drug particle size, drug-loading capacity and surface 

homogeneity were evaluated. 

Firstly, the effect of polymers (PVA and MDX with a weight ratio of 50:50) on drug solubility 

was evaluated to predict drug behaviour in the physiological environment. Improvements of more 

than 100% (p-value <0.0001) in water solubility were noticed for each drug, as shown in Table 13. PVA 

and MDX are well-known solubility enhancers and used widely for this scope formulation of dosage 

forms of poorly-water soluble drugs (Ganesan et al.; 2015; Sahoo et al.; 2009). Particularly, MDX has 

a ratio dependant behaviour when in polymer combination at more than 20% w/w (Oktavia et al.; 

2020). Polymers used in this work used to decrease the surface tension of aqueous solutions or for 
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adsorption onto colloids with steric interactions  (Dong and Johnson; 2003). Such interactions could 

be repulsive, with a stabilising effect on the system, or otherwise attractive, increasing solubility of 

adsorbed molecules (Agama-Acevedo and Bello-Perez; 2017). 

 

Table 12. Summary of prepared solid dispersion formulations and their composition. 

 

 

 

Table 13. Drug solubility expressed as g/mL in water and polymer solutions (PVA and MDX with a weight ratio 
of 50:50). 

 Drug solubility in Water g/mL Drug solubility in polymers solution g/mL 

Olz 0.0023 ± 1.35 0.09 ± 0.02 

Dsm 0.0008 ± 0.86 0.45 ± 1.72 

Trm 0.0013 ± 0.35 0.19 ± 3.42 

 

3.2 Characterisation of solid dispersions produced  

 

SEM was used to evaluate surface homogeneity and solid-state of each sample. Shape and 

surface solid-state of solid dispersion samples prepared by spray-drying were reproducible for all drug 

molecules as the same polymer-based composition was used for drug loading. However, the size of 

these spray-dried microparticles was not found to be homogeneous, with diameters ranging from 7 

to 30 µm (see SEM images A1, B1 and C1 of Figure 36). Freeze-drying samples (see SEM images A3, B3 

and C3 of Figure 36) reproduced surface solid-state, with pores of ± 1 µm. Conversely, surface analysis 

of pharmaceutical films obtained using the solvent-casting method (see SEM images A2, B2 and C2 of 

Figure 36), showed the presence of spherical drug aggregates, differing in abundance and diameter 

for each loaded drug. Films containing Dsm (image B2 of Figure 36) and Trm (image C2 of Figure 36) 

showed a homogeneous distribution of drug aggregates in pharmaceutical films, with a diameter of 5 

µm for B2 and 10 µm for C2 respectively. It was proved that the particle size of drug in a final 

Sample Name Drug Methods Composition 

A1 Olz Spray-drying 

All formulations contain a 

10% w/w drug loading and 

polymeric matrix formed by 

PVA: MDX with a weight 

ratio of 50:50. 

A2 Olz Solvent-casting 

A3 Olz Freeze-drying 

B1 Dsm Spray-drying 

B2 Dsm Solvent-casting 

B3 Dsm Freeze-drying 

C1 Trm Spray-drying 

C2 Trm Solvent-casting 

C3 Trm Freeze-drying 
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formulation depends on Mw, smaller Mw, smaller obtained particle size (Choi et al.; 2008). Dsm 

presents a lower Mw respect to Trm (Dsm, Mw 392.46 g/mol, Trm, Mw 434.50 g/mol). While Olz has 

an even smaller Mw (312.43 g/mol), corresponding sample, A2, showed a non-homogeneous 

distribution of drug aggregates, with diameters ranging from 2-15 µm compared with films loaded 

with Dsm and Trm, indicating that drug affected solid-state of the final product.  

Freeze-drying and solvent-casting methods allowed shape and surface solid-state to be 

reproduced, the spray-drying process needs further optimisation, considering various experimental 

variables in sample preparation, as seen in a previous study (Modica De Mohac et al.; 2019). 

 

 
Figure 36. SEM images of solid dispersion samples loaded with Olz (A1-3), Dsm (B1-3) and Trm (C1-3) 
respectively, recorded at 2000x magnification. Samples prepared by spray-drying (A1, B1 and C1), solvent-
casting(A2, B2 and C2) and by freeze-drying (A3, B3 and C3). Scale bar 30 µm. 
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 The physical-chemical characterisation of each formulation investigated the presence of drug-

excipient interactions, occurring between specific chemical groups within their structures. Table 14 

summarises peaks assignment of each pure drug and respective peaks found in each formulation. This 

experiment was also conducted to prove that the drug was in the polymer’s mixture. Identified peaks 

found relevant correspondence in literature and no abnormal chemical interactions were detected, as 

further confirmed by thermal analysis (Hiriyanna et al.; 2008; Rodrigues et al.; 2009; Shin et al.; 2000). 

Figure 37 showed central peak identified in each formulation. A1, A2 and A3 showed Olz peak at 1584 

cm-1 related to C=C asymmetric aromatic stretching as well as a peak at 2931 cm-1. No shift in signal 

was reported. Samples containing Dsm showed main peaks associated with CO stretching   
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carbonyl and C=C stretching aromatic ring, as well as CF stretching. Same typical groups confirmed the presence of Trm in samples C1, C2 and C3 where CF 

stretching is showed at 1080 cm-1. No peak shifts were observed in any samples. 

 

Table 14.FTIR peak assignment for each drug molecule and solid dispersion formulation. 

Infrared peaks assignation 

Olz cm-1 A1 cm-1 A2 cm-1 A3 cm-1  
3221 3221  3221 NH stretching 

3078-3060    CH aromatic ring stretching 

2931 2939 2931 2936 CH3 methyl stretching 

1584-1558 1584 1586-1561 1582 C=C asymmetric aromatic stretching 

1470-1446-1412 1415  1418 C=C aromatic ring stretching 

1289-1223    CN bonding 

     
Dsm cm-1 B1 cm-1 B2 cm-1 B3 cm-1  

3407   3407 OH alcohol vibration H bond 

2981-2953-2932-2866 2936-2862 2932  CH3 methyl 

1704-1659 1705 1662 1655 CO stretching carbonyl 

1617-1603-1436 1616-1602 1620-1603-1425 1620-1610 C=C stretching aromatic ring 

1268 1268 1254 1268 CF stretching 

     
Trm cm-1 C1 cm-1 C2 cm-1 C3 cm-1  

3464-3397 3375   OH alcohol vibration H bond 

1707-1662 1715-1654 1704-1659 1718-1660 CH stretching 

1456   1454 CH3 methyl 

1375-1302-1278 1375  1375 COC acid alcohol 

1057-1080 1078 1080 1080 CF stretching 
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Figure 37. FTIR spectra of formulations A1, A2 and A3; B1, B2 and B3; C1, C2 and C3. Per each group of main 
peaks were highlighted in correspondence of pure drugs peaks. 

 

The physical-chemical characterisation allows solid-state of pure drugs (Chapter 1) to be 

ascertained. Internal solid-state of each drug was then studied by DSC analysis. Data show all drugs 

remained in their crystalline state, as can be seen by retention of Tm values associated with this state. 

Therefore, formulation processes did not affect drug solid-state, while both polymers were 
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maintained in their amorphous conformations. Such drug-polymer solid-state are referred to in the 

literature as second-generation solid dispersions, in which carriers, generally polymeric, are in the 

amorphous state (Modica de Mohac et al.; 2020). At the same time, the drug is dispersed molecularly 

within the inert matrix in a crystalline form (Modica de Mohac et al.; 2018). Table 15 reports thermal 

analysis properties such as Tm, Δcp and water content of pure drugs and solid dispersions. No Tg was 

recorded, as formulation strategies did not cause drug amorphisation over time. This finding allowed 

each prepared formulation to be classified as a second-generation solid dispersion (both drug and 

carriers in an amorphous state) according to the classification proposed by Meng and co-workers and 

Modica de Mohac and co-workers (Hallouard et al.; 2016; Meng et al.; 2015; Modica de Mohac; 2018). 

For all samples, it was noticed that, while drugs as pure compounds did not present water (therefore 

pure and well-stored), once formulated, water content increased. This finding relates to the reduction 

in surface tension of aqueous solutions caused by polymers used. It is also proved that both PVA and 

MDX are hygroscopic molecules that cause water absorption (Asem et al.; 2018; Hofman et al.; 2016). 

Interestingly, samples with Olz, the present lowest increase in water content (from 8 to 30-

fold increase), with the highest growth for samples prepared via the solvent-casting method (A2). Such 

finding represents one of the disadvantages of the technique itself as present in the Introduction 

section (Boateng et al.; 2009). For samples containing Dsm and Trm, an increase in water content was 

from 30 to 250-fold (p-values <0.0001), with a 145-fold increase (p-values=0.0023) for both samples 

produced by freeze-drying. This finding could be due to freeze-drying residual moisture content 

considered as a disadvantage of the process (Seligmann and Farber; 1971). Overall, the highest 

enhancement of water content was highlighted in formulations produced by spray-drying, which 

cause a 250-fold increase in B1. Fold increase varies consistently between different drugs and 

formulation processes. It is well-know that hygroscopicity depends as well on compound Mw, and 

therefore results are coherent with reported Mw for each drug used in the present study (Lesvi et al.; 

2009). Moreover, it is described that while Olz is a non-hygroscopic molecule (Lesvi et al.; 2009), while 

Trm and Dsm are most of the corticosteroid molecules (Davidson et al.; 2017).  

 

Table 15. Thermal analysis data for each pure drug and drug-loaded formulation. 

 Sample name Water content % Tm (°C) Δcp (J/g) 

Olz sample 

A1 0.24 ± 0.03 193 ± 0.95 10.11 ± 4.71 

A2 0.60 ± 1.12 191 ± 0.87 11.43 ± 3.21 

A3 0.17 ± 0.67 192 ±1.21 14.93 ± 9.76 

Olz 0.02 ± 0.09 193 ± 1.35 15.80 ± 2.56 

Dsm sample 

B1 4.95 ± 0.23 271 ± 0.23 4.95 ± 0.93 

B2 1.49 ± 1.04 267 ± 0.52 1.71 ± 2.43 

B3 2.82 ± 0.89 265 ± 0.78 1.82 ± 0.09 
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Dsm 0.06 ± 0.01 267 ± 0.95 18.5 ± 9.98 

Trm sample 

C1 1.74 ± 0.53 292 ±1.35 2.11 ± 1.67 

C2 0.64 ± 0.42 298 ±2.09 9.13 ± 4.86 

C3 2.95 ± 0.86 290 ± 0.64 1.29 ± 3.45 

Trm 0.16 ± 0.23 292 ± 0.24 10.01 ± 6.12 

 

3.3 Drug loading and release studies 

 

Each solid dispersion formulation was prepared such that drug made up 10% of the total. As 

expected, corresponding drug loading values were obtained for formulations developed by solvent-

casting and freeze-drying techniques. In contrast, lower drug loading was detected in all formulations 

prepared by spray-drying (samples A1, B1 and C1, Table 16). results suggest that solvent-casting 

method allowed for highest and most consistent drug loading, while freeze-drying and spray-drying 

methods resulted in drug loss during the formulation process. According to drug loading, each 

formulation was evaluated in terms of its drug release profile. The dissolution rate of each formulation 

was compared with that of the respective pure drug within a buffer solution. It was found that even if 

all formulation strategies allowed 70% release of each drug after 60 minutes, the only solvent-casting 

method achieved a release of 50% after 5 minutes and 100% after just 120 minutes, as shown in Figure 

38. These results were confirmed statistically by evaluation of similarity factor, f2 (values are reported 

in Table 17), which was calculated to be less than 50 for each formulation when compared to pure 

drug alone, confirming differences in dissolution profiles. Data relevance was assessed by two-way 

ANOVA, with a p-value lower than 0.001 for each pure drug dissolution profile compared with the 

formulation. Overall, each formulation achieved a faster drug dissolution than the particular pure drug 

alone. However, this work aimed to detect formulation strategy that produced the most enhancement 

of release profile of model drugs. Dissolution rate enhancement was observed in pharmaceutical films 

prepared by solvent-casting, because drug molecules are more readily soluble since they are more 

accessible to aqueous solvent, being closer to the surface of solid dispersion than in other 

formulations (Siemann; 2005). Similarity factor validated findings, f2, which was found to be less than 

50 for each of solid dispersions prepared. 
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Table 16.Drug loading values for all solid dispersion formulations prepared by spray-drying (samples A1, B1 
and C1), solvent-casting(samples A2, B2 and C2) and freeze-drying (samples A3, B3 and C3). Respectively. 

Sample name Drug Loading 

A3 9.20 ± 0.2 

A2 9.89 + 2.56 

A1 5.96 ± 1.37 

B3 8.54 ± 1.95 

B2 9.12 ± 0.98 

B1 5.23 ± 1.49 

C3 7.56 ± 2.62 

C2 9.74 ± 0.81 

C1 8.39 ± 1.79 
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Figure 38. Drug release profiles depicting percentage drug release over time (minutes). The pattern of each pure drug alone is compared to that of individual drug 
formulations over 24 hours (a, b and c), as well as for first 10 minutes of drug release (d, e and f).  
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Table 17. Similarity factor, f2, for each drug formulation. 

Sample Name f2 Sample Name f2 Sample Name f2 

A1 16.58026 B1 23.01202 C1 22.49841 

A2 14.02035 B2 26.09391 C2 19.36046 

A3 26.34483 B3 20.59854 C3 18.45019 

 

4. Conclusions 

 

More than 40% of commercialised drugs are poorly soluble. Solid dispersions are used to 

increase dissolution rates of BCS class II and IV drugs. They can be produced using several formulation 

strategies, with the three most common techniques (spray-drying, solvent-casting, and freeze-drying) 

being compared in this study. This study aimed to investigate pharmaceutical advantages of different 

methods described above, in terms of achieving faster drug release, improved surface homogeneity 

and drug incorporation capability using three different active molecules: Olz, Dsm and Trm.  

Firstly, techniques were compared to evaluate differences in surface homogeneity, drug 

incorporation capability and drug stability during the formulation process. Freeze-drying and solvent-

casting methods allowed to obtain a more homogenous and reproducible surface solid-state and 

pore/particle size, while spray-drying did not generate particles of the same size or shape. Moreover, 

spray-drying caused drug loss during the production process, while the other two methods produced 

the best drug loading results. All methods were able to preserve each drug in its original crystalline 

solid-state showing to be suitable formulation strategies for model drugs used. Concerning the 

dissolution rate, of all processes, solvent-casting generated the fastest drug dissolution/release rate 

for all model drugs used. These results suggest that solvent-casting still represents the most efficient 

and reproducible productive method of solid dosage form, such as solid dispersion. Further 

investigations and innovations are needed to make the technique industrially scalable. 
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Chapter 4. PVA-PHEA electrospun nanofibres – Synthesis, characterisation and 

evaluation of their adhesive and drug delivery potential  

 

1. Background 

 
In treatment-resistant schizophrenia , a significant clinical challenge is poor patient 

compliance with clozapine medication due to both its daily dose and taste (Oloyede et al.; 2019). 

Clozapine is usually administered as a tablet, but due to its low solubility in the gastrointestinal tract 

and its hepatic metabolism, it must be taken by multiple doses per day. Drug delivery to the oral cavity 

is a promising and attractive route of drug administration (Chinna Reddy et al.; 2011; Kraan et al.; 

2014). Mainly, buccal transmucosal delivery is a favourable route as drug avoids gastrointestinal tract; 

therefore, bypasses first-pass metabolism  (Morales and McConville; 2011). Oral mucosa (inner lining 

of cheek) has a stratified and non-keratinised epithelium that makes drug absorption via this route 

more natural compared to keratinised epithelium (Hooda et al.; 2012; Jiang and Turner; 2016). For 

this route of administration, solid dosage forms such as films and patches are favourable, especially 

for controlled drug release (Lam et al.; 2014). The potential of electrospinning at commercial scale is 

well discussed in the literature, and there is an increasing drive to discover suitable excipients for an 

electrospun transmucosal dosage form that possesses desirable properties such as adhesion, 

improved drug dissolution and in-turn oral bioavailability (Persano et al.; 2013; M. J. Taylor et al.; 

2010). 

The work detailed in this chapter aimed to synthesise, characterise, and evaluate PVA-PHEA 

based nanofibres patches for their adhesive and drug delivery potential. PHEA is a novel 

biocompatible, low toxicity, the solubilising and mucoadhesive polymer, which properties were 

discussed in the Introduction of this thesis (Carfì Pavia; 2014; Civiale; 2009; Licciardi et al.; 2012; Lo 

Monte A. et al.; 2012; Saiano; 2002). PHEA elecrospinnability an effect as solubiliser agent was proved 

during a parallel study reported in Appendix 1. Though PHEA has low electro-spinnability, this has 

shown to be improved when co-electrospun with polymers, such as PVA (Aytac and Uyar; 2017; 

Brough et al.; 2016; Buscemi, Damiano, et al.; 2017; Buscemi; 2017; Golafshan et al.; 2017; Lo Monte 

A. et al.; 2012; Wali et al.; 2018; Yu et al.; 2011). PVA use in electrospinning, especially for drug delivery 

applications, has increased over the years, most likely due to its positive effects in improving aqueous 

drug solubility and high electro-spinnability (Aytac; 2017; Brough; 2016; Golafshan; 2017; Wali; 2018; 

Yu; 2011). Mucoadhesive properties of PHEA-PVA film formulations were evaluated using AFM-Qi 

(Jiang; 2016). SLP was included in this study to improve drug release properties, PHEA 

elecrospinnability and an investigation into its role in adhesion was also evaluated using AFM-Qi.  
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The new oral nanofibrous transmucosal polymeric patches were prepared both via wet 

electrospinning and solvent casting film method with the purpose to increase clozapine solubility as 

well as prolong its release. Two different formulations made via electrospinning and solvent casting 

were compared. In Chapter 3, the solvent casting method was recognised as the most suitable 

technique to produce big surface area, particle size homogeneity along the film surface, and high 

dissolution performance. However, the drug particle dimension is difficult to optimise, and the drug 

can aggregate during the process (Saldanha and Kyu; 1987). Nanofibres are known to possess 

advantageous properties such as the high surface area to volume ratio (Gareth R. Williams; 2018), 

malleability, porosity (Brako et al.; 2015), mechanical properties (Zhu et al.; 2010) and release profile 

tailoring (Williams et al.; 2012; Yang et al.; 2017) compared to the older system such as solvent cast 

films. In the present section, it was therefore investigated the effect of PHEA in physical formulation 

properties such as adhesiveness, particle size dimension and finally in controlling clozapine release, 

which was evaluated via in-vitro dissolution studies. 

 

2. Materials and Methods 

 

 NHS Maudsley Hospital kindly provided clozapine, STEBICEF synthesised PHEA, PVA (Mw 

145000 g/mol) was purchased from Sigma-Aldrich and SLP was kindly supplied from BASF USA. PBS 

tablets with pH 7.4 were purchased from Sigma-Aldrich. EtOH was purchased from Sigma-Aldrich. 

Water used was distilled. 

 

2.1 Sample preparation 

 
  Clozapine, PVA, PHEA, and SLP were initially combined as PM by gentle mixing using a mortar 

and pestle with drug-polymer ratios displayed in Table 18. SLP was added to formulations to improve 

PHEA spinnability (Nagy et al.; 2012). Physical mixtures were analysed to evaluate their influence on 

drug dissolution rate. Thus, the formulations were formulated both as pharmaceutical films and 

nanofibrous patches. Those were generated in ratios highlighted in Table 18 by solvent casting method 

and wet electrospinning. Films and nano-fibres formation was achieved by adding to physical mixtures 

PBS pH 7.4 and stirring magnetically overnight. Obtained dispersions were then placed in plastic Petri 

dishes and left overnight under fume cupboard to obtained films and electrospun with 18kV and with 

a flow rate of 0.1 mL/h to collect nanofibres. 
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Table 18. Drug-Polymers ratios w/v and formulations composition. 

 

 

2.2 DSC  

 

The analysis was conducted using a DSC 2920 Modulated DSC machine (TA instruments). DSC 

analysis was held at a rate of 10°C/min, and samples were heated to 200°C. nitrogen purge gas used 

had a flow rate of 130mL/min. Samples were also held isothermally for 5 minutes. Aluminium pans 

used were from TA Instruments. Each sample was analysed in triplicate. 

 

2.3 ATR-FTIR  

 
The analysis was conducted using a Perkin Elmer Frontier FTIR spectrometer. This was to identify any 

interactions occurring between molecules, such as hydrogen bonding. A total of 64 scans were taken 

at a resolution of 2 cm-1 and using a wavelength range of 4000-600cm1. Each sample was analysed in 

triplicate. 

 

2.4 Particle Size analysis 

 

Composition Physical 
Mixture 

Film Nanofibres 
PVA PHEA SLP Clozapine 

7.5 / / 10 A F1 F2 

7.5 2.5 / 10 B F3 F4 

7.5 5 / 10 C F5 Not Spinnable 

7.5 2.5 2.5 10 D F6 F7 

7.5 5 2.5 10 E F8 F9 
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Dynamic light scattering measurements analysed particle size with 12 mm cell (DTS 0012). 

Each sample was sonicated for 5 minutes before reading. Particle size was determined with a Malvern 

Zetasizer Nano ZS (Malvern Instruments Ltd., GB) and analysed by a Malvern analytical Instrument. 

 

2.5 SEM 

 

The images were recorded on freshly prepared microparticles by using a Phenom ProXSEM. 

Particles were analysed using the same parameters (i.e. contrast and luminosity) and same stub for at 

least four samples. The d of microparticles was determined from the mean value of 100 measurements 

using ImageJ (the USA, version 1.46 v). 

 

2.6 AFM 

 

AFM was performed on a Bruker Nanowizard 4 system (Bruker Nano GmbH) operated in 

Quantitative Imaging (QI) mode. An RTESPA-300 cantilever with a nominal spring constant of 40N/m 

was calibrated and checked on a sample of polystyrene of a known modulus value. Images were 

acquired at a resolution of 512 x 512 and processed in JPKSPM data processing software. 

 

2.7 PVA and PHEA effect on clozapine saturation solubility 

 

The effect of PVA, different concentrations of PHEA and SLP on the aqueous solubility of 

clozapine was investigated (in ratios presented in Table 18). Excess amounts of clozapine powders 

were dispersed in aqueous polymer/s solutions for 72 h and stirred with 150 rpm at 37 °C using a 

shaking incubator (SciQuip, UK). Polymer solutions were then filtered through a 0.45 mm Millex-GP 

filter (Merck Millipore, UK) and concentration of clozapine was determined spectrophotometrically at 

257 nm. 

 

2.8 Drug loading evaluation  

 
Proper amount (2 mg) of samples were dissolved in 2 mL of EtOH, filtered through a 0.45 mm syringe 

filters with cellulose acetate membrane (VWR International, USA) and drug content of each sample 

was determined spectrophotometrically. UV-VIS spectra were recorded by Perkin Elmer Lambda 

UV/VIS Spectrophotometer, in 300-200 nm spectral range. A calibration curve was used for 
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quantification of drug content. The calibration curve was performed in the concentration range of 0.1-

0.0001 mg/mL of clozapine standard solutions in EtOH (R=0.999) and spectra recorded at 257 nm. 

 

2.9 In-vitro dissolution and release studies  

 
The studies were carried out in not sink condition by using 24 well-plates placed in a shaking 

incubator provided by SciQuip Ltd at 37°C and with 50 rpm of shaking. Samples were weighed and 

placed in well-plates to obtain 3 mg of clozapine in each plate. According to European Pharmacopeia 

and literature evidence, each sample was placed in a PBS solution at pH 6.8 to mimic buccal 

environment (Abruzzo et al.; 2012; Koland et al.; 2010; Langoth and Kalbe; 2003). At predetermined 

intervals of 15, 30, 45, 60, 90, 120, 180, 360, 480 and 1360 minutes 500µL was withdrawn and diluted 

in 5mL and filtered through a 0.45 µm cellulose acetate syringe filter and replaced with the same 

amount of fresh buffer. Subsequently, the filtrate was analysed spectrophotometrically at UV with a 

wavelength of 257 nm. The calibration curve was performed in the concentration range of 0.1-0.0001 

mg/mL of clozapine standard solutions in PBS pH 6.80 (R=0.999) and spectra recorded at 257 nm. 

 

2.10 Statistical Analysis  

 

A one-way analysis of variance (ANOVA) was applied to compare different samples. Data were 

considered statistically significant with a value of P < 0.05, and differences between groups were 

compared using Bonferroni t-test. Each test was developed in triplicate. f2 was calculated using 

Equation 1 in Chapter 3 (Shah; 1997) and was used to compare dissolution performance between 

drugs, as well as corresponding formulations (Raimi-Abraham; 2015). When f2 below 50, profiles are 

considered different, and when f2 above 50 compared release profiles are considered equivalent. 

 

3. Result and Discussion 

 

3.1 Use of atomic force microscopy quantitative imaging to assess adhesiveness  

 
Oral transmucosal dosage forms are available since the 1980s, and their prerogative is to be 

adhesive to buccal mucosa (Patel et al.; 2011; Torres-Lugo and Peppas; 2000). PHEA has both 

solubilisation and mucoadhesive properties. Its mucoadhesive features were confirmed uniquely 

using ATR-FTIR by observation of bond formation between PHEA and mucin molecules (Cespi et al.; 

2010; Dias; 2015; Saiano; 2002). SLP effect on mucoadhesion was significantly demonstrated on 

solvent cast film by Alopaeus and co-workers, 2020 and Salawi and co-workers, 2018, by a mucin-
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interaction test (Alopaeus et al.; 2020; Salawi and Nazzal; 2018). Particularly both literature findings 

described that SLP possesses adhesive properties when used at 0–75% w/w. In this section, it was 

assessed adhesiveness of PHEA-PVA films at different concentration with and without SLP using AFM-

Qi. AFM-Qi allows for simultaneous topographical mapping and quantitative nanomechanical analysis 

of the sample’s surface. It also represents the only method available to investigates intrinsic adhesive 

forces of compounds (Beach et al.; 2002). Adhesion forces are defined as the pull-off force when the 

tip of the needle (of the AFM) is moved closer to the surface of the material and then suddenly repelled 

(Jiang; 2016). In this study, adhesive forces assessed at the nanoscale were measured in sub 

nanonewton (nN) range. 

Figure 39 shows AFM-Qi phase images and a corresponding plot of the adhesive force (nN). 

7.5% w/v PVA films had an adhesive force of 14.96 nN. This finding relates with findings in the 

literature where 15 and 20% w/v PVA films presented a work of adhesion of 15 nN (Ikeuchi-Takahashi 

et al.; 2017; Padday and Uffindell; 1968; Peppas and Mongia; 1997). Particularly, increasing polymer 

concentration leads to increment density that is correlated with an increase of adhesiveness due to 

augmentation of average bond energy that improves adhesive bond strength (Brenman and 

Lerchenthal; 1976). However, the work of adhesion does not provide direct information on the 

magnitude of the adhesion range. Therefore the tradition AFM-based pull-off cannot be used for fine 

calculation that is allowed by the newest AFM-Qi that does consider surface topography (Bhat et al.; 

2018). Addition of 2.5% w/v of PHEA increased adhesive force from 14.96 ± 1.57 nN to 19.02 ± 9.41 

nN (p<0.0001), a 1.27-fold increase, respect 7.5% w/v PVA patch. When increasing PHEA 

concentration to 5% w/v, adhesiveness increased 3-fold (p<0.0001) to 45.79 ± 13.07 nN. PHEA 

adhesive properties were previously analysed using FTIR and a mucin solution; therefore, findings are 

shown here represent first available data on the intrinsic adhesive force of this polymer (Lee; 2005; 

Saiano; 2002). Polymer combination was then augmented with 2.5% w/v of polymer SLP to improve 

PHEA spinnability. However, it was observed that adding 2.5% w/v of SLP to patch prepared with 7.5% 

w/v PVA and 2.5% w/v of PHEA caused 2-fold increased respect to patch without SLP. SLP adhesive 

and mucoadhesive properties are thought to be related to its plasticising effect that leads to a 

decrease in intermolecular forces which improves flexibility and chain mobility (Alopaeus; 2020; Vieira 

et al.; 2011). High flexibility is favourable to adhesion, as proved in the case of a buccal-adhesive tablet 

of carvedilol (Yamsani et al.; 2007). However, when SLP is added to the formulation containing 7.5% 

w/v of PVA and 5% w/v PHEA, the adhesive force was reduced to 32.37 ± 9.61 nN (p<0.0001), a 1.4-

fold decrease. This event could be due to a reduction of the plasticising effect of SLP when used in 

polymer combined with a w/v ratio higher than 3.5% w/v (Alopaeus et al.; 2019). Overall, it was 

possible to assess that increasing PHEA concentration to 5% increases patch adhesiveness and that 
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there is a relation between the increase of its ratio and increase of adhesive forces. Particularly, 

increasing PHEA concentration from 2.5% to 5% w/v leads to an increase of adhesive force from 19.02 

nN to 45.79 nN, with an overall 2.40-fold increase (p<0.0001), representing a potential to increase the 

adhesiveness of 24% for each increase of concentration of 2.5% w/v. This result could be attributed 

to the intrinsic adhesive effect of PHEA. Such force depends on polymer surface interaction, thus zeta 

potential when solubilised (Ault et al.; 2019; Craparo et al.; 2010). When in aqueous solution presents 

a zeta potential of -13 mV, previously determined by Cavallaro and co-workers who demonstrated 

that dispersing a polymer in distilled water of PVA 2% w/v reduced the zeta potential of PHEA leading 

to a more interactive surface (Gennara Cavallaro et al.; 2015; Craparo; 2010). In the present work here 

it was used a higher concentrated PVA solution (7.5% w/v) and, in 2017 it was found that using PVA in 

the ratio between 2% and 15% w/v offers higher adhesiveness (Ikeuchi-Takahashi; 2017). This finding 

suggested that PVA and PHEA combination could be of use in the preparation of adhesive patch for 

buccal delivery. Overall, it was possible to assess that increasing PHEA concentration to 5% increases 

patch adhesiveness. A relationship between the increase of PHEA ratio from 2.5 to 5% w/v and the 

increase of adhesive forces were identified. Polymer combination containing 7.5% w/v of PVA and 5% 

w/v of PHEA led to highest values of 45.79 nN that could be a promising potential for successful 

adhesiveness to the buccal mucosa. Particularly, Sumarokova and co-workers demonstrated that a 

force of 2.50 nN is sufficient to create adhesion between a layer of endothelial cells and the untreated 

tip of the AFM (Sumarokova et al.; 2018). Such compliance would allow patch enough to contact with 

epithelium to prolong drug release allowing a systemic delivery of drug. 

Through this analysis, it was possible to observe a relation between the increasing 

concentration of PHEA and increasing adhesiveness effect. It was noticed that 7.5% of PVA w/v and 

PHEA at 5% w/v in formulation increased mucoadhesive property up to a maximum of 45.79 ± 13.07 

nN. Such a result suggested that PVA and PHEA combination could be of use in the preparation of 

adhesive patch for buccal delivery. 
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Figure 39. AFM in QI mode analysis was used to investigate mucoadhesive properties of different polymer 
combinations in the nanoscale range. The investigation was conducted on polymer-based films with polymer 
combination reported in Table 18. It was observed that film is containing 7.5% w/v of PVA and 5% w/v of 
PHEA present highest adhesiveness of 45.79 nN. Two-way ANOVA showed the highest significance (****) 
when comparing each result. 

 

3.2 Fibre characterisation: Solid-state and fibre diameter  

 

SEM studies were conducted to confirm fibre solid-state and diameter changes with polymers 

w/v ratio used. Figure 40 presents SEM images of randomly aligned fibres successfully generated with 

PVA (F2) and with increasing concentrations 2.5% (F4) and 5% (F7) w/v of PHEA and SLP (F9) well in 

the nano range. Addition of 2.5% w/v of PHEA (F4) appeared to reduced fibre diameter to 536 ± 166 

nm, while at 5% PHEA fibres could not be spun due to precipitation of PHEA when adding pressure 

from the pump system. Though PHEA spinnability is well reported in the literature, it showed to be 

spinnable when dissolved in pure organic solvents (such as Dimethyl-sulfoxide)or water/organic 

solvent mixture with water lower than 30%v/v (Buscemi; 2017; Licciardi; 2012). However, the addition 

of 2.5% w/v of SLP (F9) increased PHEA spinnability, and fibre diameter was 606 ± 212 nm. SLP ability 

to increase polymers solution or dispersion by stabilising it and reducing precipitation, as proved by 

Paveer and co-workers (Paaver et al.; 2014). No clear trend was observed upon the increase of PHEA 

concentration and the resultant effect on nanofibre diameter.  
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Figure 40. SEM images of electrospun nanofibres F2, F4, F7 and F9. Images were obtained with x2050 
magnification 
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3.3 Clozapine particle size analysis and solid-state determination of clozapine in films and nanofibrous patches 

 

Drug crystallinity is considered an advantage when formulating a product to improve shelf-life longevity. In this study, it was investigated the effect 

of formulation method on resultant properties of clozapine, namely, hydrogen-bonding interactions between clozapine and polymers, solid-state and particle 

size.  

The presence hydrogen bond interaction between polymers PVA, SLP and PHEA and clozapine within formulations F1-F9 was evaluated in ATR-FTIR 

and DSC studies, respectively. Figure 41 shows the ATR-FTIR spectra of clozapine and formulations F1 -F9. Characteristic ATR-FTIR characteristic peaks for 

crystalline clozapine (Cavallaro et al.; 2004) were observed at 774 cm-1 (C-Cl bond), 1025cm-1 and 1357cm-1 (C-N stretching vibration) and 1545 cm-1 (C=N 

stretching vibration) in formulations F1-F9. No hydrogen bonding interactions were observed between clozapine and polymers (i.e. PVA, PHEA and SLP) in 

any of formulations. 

 
Figure 41. ATR-FTIR spectra of clozapine, film and nanofibrous formulations F1 – F9 from 4000 – 700 cm-1 with characteristic clozapine peaks highlighted at 774 cm-1 (C-Cl 
bond), 1025 cm-1 and 1357 cm-1 (C-N stretching vibration) and 1545 cm-1 (C=N stretching vibration). 
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DSC analysis of clozapine (raw material) exposed a characteristic endothermic peak associated with its melting 

point (Licciardi et al.; 2012) at 185 ± 0.75°C (Δcp 122.39 ± 4.52 J/g). This endothermic peak corresponding to 

the clozapine melting point was observed in formulations F1 to F7 irrespective of the method of preparation 

(Figure 42). However, in formulations, F8 and F9 (both containing 7.5% w/v PVA, 5%w/v PHEA, 2.5% w/v SLP 

and 10%w/v clozapine) a step-change in the baseline characteristic of a glass transition (Tg) at 40.36°C and 

41.54°C respectively was observed. Temperature range of this thermal event occurred ~10°C lower than 

reported Tg clozapine, which would be expected in a system where additives (i.e. polymers) providing a 

plasticising effect. (Caron et al.; 2013; Triolo et al.; 2017; Wood et al.; 2016). In F8 and F9, the Presence of 

clozapine in the amorphous state lead to the creation of amorphous solid dispersion and could be due to the 

addition of 2.5% w/v of SLP. SLP presents property of preventing drugs (i.e. ibuprofen and carbamazepine) 

from re-crystallising over time (Cho et al.; 2015; Hussain et al.; 2018). This effect could be due to the 

amphiphilic and solubilising properties of SLP that could create a complex with the drug preventing clozapine 

recrystallisation. Even if drug crystallinity is considered advantageous as it would lead to an improved dosage 

form stability in terms of shelf-life, amorphous solid dispersion presents the advantage of a higher solubility 

that influences dissolution behaviour.  

 As ATR-FTIR analysis demonstrated no interactions between polymers and drug, it is possible to 

conclude that identified thermal events are correlated with clozapine. An evaluation of drug solid-state is 

essential to a better understanding of the drug release profile. Usually, an amorphous drug tends to give a 

burst in release while crystalline form gives a slower profile (Ignatious et al.; 2010; Shi et al.; 2019). The release 

profile is influenced not just from solid-state but also from its particle size (Dokoumetzidis and Macheras; 

2006).  
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Figure 42. DSC thermograph of clozapine and all F1- F9 formulations. 

 
An evaluation into particle size post formulation would confirm if in one or both types of formulations, 

micro- or nanocrystalline solid dispersions have been created. These types of solid dispersions have been 

shown to have increased advantages over amorphous solid dispersions due to their increased stability. It was 

proved that these systems combine the benefit of long term stability provided by a crystalline compound with 

the enhancement of dissolution profile provided by formulation (Modica de Mohac et al.; 2020; Modica de 

Mohac; 2016; 2018). Clozapine particles extracted from F1-F9 formulations were analysed via dynamic light 

scattering and compared with unformulated clozapine), data reported in Figure 43. Unformulated clozapine 

average particle size was 1.95 ± 1.02 µm. Initially, formulations F1, F3 and F6 achieved a particle size above 
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the range of 1 µm. However, no statistical significance was found running a one-way ANOVA test between 

clozapine alone and F1. These formulations were prepared with the solvent casting method, and both F3 and 

F6 showed 2.5% w/v of PHEA in the formulation. 

All formulations prepared by electrospinning (F2, F4, F7 and F9) reduced drug particle size significantly 

(between 500 nm and 1 µm) compared to drug alone dissolved in same media (p<0.0001). This reduction is 

related to electrospinning capabilities of reducing drug size due to a combination of needle diameter as well 

as of high voltage applied to evaporate solvent (Ball and Woodrow; 2014; Ignatious; 2010). Interestingly, the 

film F5 and F8 (both containing 5% of PHEA) showed a particle size in the nano-size range between 60, a 16-

fold decrease (p=0.0023) and 90 nm, an 11-fold reduction (p<0.0001). This size could be due to micellisation 

properties of PHEA, which can create micelles within the range from 10 to 100 nm (G. et al. Cavallaro; 2004). 

It was observed that formulations developed by solvent casting method (F1, F3 and F6) gave a larger particle 

size compared counterpart electrospun fibres. With solvent casting method the particle dimension could be 

influenced by dispersibility of particle within solvent and agitation force applied while stirring initial dispersion. 

Therefore, control of particle diameters is more challenging to achieve, resulting overall in size higher than 

1µm (Prasad et al.; 2017). Using electrospinning provides the advantage of modifying parameters such as 

voltage and flow rate to affect the size. Notably, the application of high voltage (Deitzel et al.; 2001) and a low 

flow rate (Haider et al.; 2018) is proved to achieve a smaller particle size. These set of experiments, allowed 

us to identify formulations F2, F4, F5 and F7 as solid nanocrystalline dispersion which could aim to improve 

shelf-life and prolonged release profile.  
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Figure 43. Particle size per each formulation compared with clozapine unformulated. The analysis was developed using 
Nanosizer, and value is expressed in µm. Statistical analysis showed the highest significant (****) comparing clozapine 
pure drug with all formulation apart from F1 where no significance occurred (ns). 
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3.4 PVA, PHEA and SLP effect on clozapine saturation solubility 

 
Saturated solubility studies were conducted on clozapine dissolved in aqueous pH 7.4, PVA, PHEA, 

PVA-PHEA and PVA-PHEA-SLP solutions. Solution combinations were chosen to mimic drug-polymers ratios 

w/v and formulation compositions used in the study (as displayed in Table 18). Clozapine aqueous (pH 7.4) 

solubility at 25°C resulted to be 0.018 mg/mL. All subsequent clozapine saturated solubility as compared to 

this value. It was observed that addition of 7.5% w/v PVA increased clozapine saturated solubility 11-fold to 

0.21 mg/mL (p<0.0001). This increment is due to pH-independent solubility of PVA and its electron density 

which was shown to improve the solubility of poorly water-soluble drugs (Brough; 2016; J. Lu et al.; 2008).  

The analysis of solution containing 2.5% w/v PHEA increased clozapine saturated solubility 5-fold 

increase to 0.09 mg/mL (p<0.0001). Due to the amphiphilic nature of PHEA, it can successfully encapsulate 

and solubilise hydrophobic drugs such as clozapine through micelles formation. Particularly, PHEA has a critical 

aggregation concentration at about 0.037 mg/mL, and in present work, it was used at higher concentration 

(250 mg/mL) (Andrews and Jones; 2014; G. et al. Cavallaro; 2004; Gennara Cavallaro et al.; 2003; Civiale; 2009; 

Triolo; 2017). At concentration above 0.037 mg/mL PHEA forms micelles that are well-known as a 

pharmaceutical strategy to improve drug solubility (Duan et al.; 2011). PHEA chemical structure is fundamental 

in carrying hydrophobic drug as clozapine because as it presents a hydrophobic core to entrap drug and 

hydrophilic shell able to interact with the aqueous environment of the human body (Torchilin; 2006). 

Clozapine saturated solubility in a PVA-PHEA solution increased 19-fold to 0.35 mg/mL (p<0.0001). 

Interestingly, increasing PHEA concentration to 5% w/v in combination with PVA further increased clozapine 

saturated to 0.20 mg/mL (p=0.0007). Addition of SLP (2.5% w/v) to PHEA (2.5% w/v)-PVA clozapine saturated 

solubility increased 8-fold compared to clozapine in pH 7.4 (p<0.0001). Increasing PHEA and SLP concentration 

i.e. PHEA (5% w/v)-PVA-SLP (2.5% w/v) further increased clozapine saturated solubility 13-fold (p<0.0001) to 

0.23 mg/mL. These findings confirm that PVA, PHEA and SLP combinations overall increase clozapine saturated 

solubility.  

 

3.5 Drug loading and In-vitro dissolution studies 

 
At first, drug loading and drug encapsulation efficacy were calculated to allow clozapine quantification 

during dissolution studies. Each formulation was prepared with a theoretical concentration of 10% of 

clozapine. Through drug loading study, it was possible to calculate that all formulation present ~12.53 ± 0.62 

%; therefore, 100% of encapsulation efficacy was ensured. Table 19 summarised each drug loading value. 
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Table 19. Drug loading expressed in percentage (%) obtained in each formulation prepared both as a physical mixture 
and as the formulated film. The expected drug loading was 10%.  

A B C D E 
11.19 ± 0.55 % 7.83 ± 0.39 % 9.56 ± 0.47 % 9.15 ± 0.45 % 8.85 ± 0.44 % 

F1 F2 F3 F4 F5 
12.06 ± 0.60 % 6.11 ± 0.30 % 25.99 ± 1.29 % 21.11 ± 1.05 % 8.90 ± 0.67 % 

F6 F7 F8 F9   
14.62 ± 0.73 % 21.52 ± 1.07 % 7.99 ± 0.39 % 10.56 ± 0.52 %   

 
In-vitro dissolution studies comparing unformulated clozapine to clozapine-polymers PM (Table 18) 

were conducted in non-sink conditions. The experiment was conducted under the non-sink condition to allow 

the creation of a supersaturated condition; strategy usually used when analysing poorly soluble drugs BCS 

class II (i.e. indomethacin and itraconazole) (Augustijns and Brewster; 2012; Liu et al.; 2013; Sun et al.; 2016). 

Figure 44 illustrates in-vitro dissolution profile of unformulated clozapine and PM. All PM except from E 

(containing 7.5% w/v PVA, 5%w/v PHEA, 2.5%w/v SLP and 10% w/v clozapine) had increased clozapine 

dissolution profile. Mainly, f2 similarity factor was studied to investigate differences in dissolution profile of 

clozapine and each of PM and reported in Table 20. Comparing clozapine release profile with PM, it was 

noticed an f2 below 50 for PM C (containing 7.5% w/v PVA, 5% w/v PHEA and 10% w/v clozapine) and E 

implying diversity in release respect to the unformulated drug. f2 is a calculation approved by the FDA policy 

to detect alteration of more than 10% in the release profile of approved drugs (Shah et al.; 1999). Particularly 

values above 50 are considered equivalent to control pathway, while below are deemed different, and lowest 

value most significant difference in profile (Dubois and Ford; 1985; Shah; 1999). Analysing release mg/mL at 

time points 15, 30 and 45 min, considered of importance in oral formulations (Hermans et al.; 2017; Rams-

Baron et al.; 2018), it was noticed that C and E achieved a constant release of drug from of 0.005 ± 0.0006 

mg/mL and 0.005 ± 0.001 mg/mL, respectively. These time points are fundamental, according to the FDA 

guideline, as 75% of drug release within the first 45 minutes is considered as an immediate release. Both FDA 

and the International Pharmaceutical Federation established that the dissolution study should mimic the in-

vivo condition and for dosage form applied in the oral cavity this implicates resembling the intraluminal 

environment that the drug passes through during administration. Such an environment is not considered 

achieved after 45 min in the oral cavity (Hermans; 2017; Marroum; 2012).  

Overall C and E exhibited a constant at every time point, suggesting the use of PHEA at 5% w/v 

possesses an effect of controlling release profile. While PMA (containing 7.5% w/v PVA and 10% w/v 

clozapine), B (containing 7.5% w/v PVA, 2.5% w/v PHEA and 10% w/v clozapine), and D (containing 7.5% w/v 

PVA, 2.5% w/v PHEA, 2.5% w/v SLP and 10% w/v clozapine) displayed similar pathways with clozapine. Such 

effect could be due to a concentration of PHEA of 2.5% w/v, while at its highest concentration (of 5% w/v) it 

is due to the controlled release of clozapine. Such potential is a novelty in the field of treatment treatment-
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resistant schizophrenia as only formulations available of clozapine are immediate-release oral dosage forms 

(Abeelen; 2013; Bachmann et al.; 2017; D. M. Taylor; 2017). 

 

 
Figure 44. In-vitro dissolution study of PM (drug-polymer ratio in table 18) and clozapine pure drug express in mg/mL. 
The release profile was evaluated in non-sink condition and experiment conducted for 24 hours (1440 minutes). Graph 
b) a zoomed-in of first 50 minutes of release, allows a better understanding of release pathway from each formulation. 

 
Table 20. Similarity factor f2 per each PM. 

 
f2 

A 52.28 

B 59.62 

C 45.89 

D 77.73 

E 40.46 

 
The results obtained from PM dissolution studies were used as a guide of understanding behaviour of 

clozapine once released from formulation prepared as nanofibres and film, graph reported in Figure 45. 

Therefore, in-vitro dissolution studies revealed different release profiles between formulations and pure 

drugs. Such differences could be noticed, using f2 and time points till 45 minutes, between solvent casted film 

and fibres produced with same compound ratios. Similarity factor reported in Table 21. At first it was noticed 

that F1 and F2 both containing PVA 7.5% w/v and 10% w/v clozapine, and F6 and F7 (containing 7.5% w/v PVA, 

2.5% w/v PHEA, 2.5% w/v SLP and 10% w/v clozapine) have a f2 below 50, resulting of releasing clozapine with 

equivalent pathway as if it was not formulated. From another hand side, F3 and F4 (containing PVA 7.5% w/v 

and PHEA 2.5% w/v and 10% w/v clozapine) presented an f2 of 33.18 and 30.67, respectively, achieving an 

immediate release of the drug. This data is coherent with finding, discussed in the previous paragraph, that 

combination of PVA 7.5% w/v and PHEA 2.5% w/v caused an increase of clozapine saturation solubility of 19-

fold. This result was not the purpose of present work that intended to create a controlled release delivery 

system. 
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The 45-minute time point is an important reference time point in an oral formulation, a slight increase 

in release profile could be seen for F4 with 0.007 ± 0.0001 mg/mL release, higher than what observed for F3 

0.006 ± 0.0006 mg/mL. This overall enhancement of 1.16-fold (p=0.0034) relates to the higher surface area 

available in nanofibre formulation (F4) compared to solvent cast film (F3) (Deng et al.; 2018). F5 (containing 

7.5% w/v PVA, 5% w/v PHEA and 10% w/v clozapine), F8 and F9 (containing 7.5% w/v PVA, 5% w/v PHEA, 2.5% 

SLP and 10% w/v clozapine), shows a f2 value of 28.81, 26.00 and 31.39, respectively. Interestingly, all these 

formulations present PHEA at 5% w/v and most constant and prolonged release of clozapine from the patch. 

F5 has been identified as solid nanocrystalline dispersion. It presents a more constant release profile over time 

with an overall release of 0.0007 ± 0.00008 mg/mL/min along with all study. From the other hand side, film F8 

contains the drug in amorphous conformation, and profile presents a burst in the release, as observed as well 

in formulation F9. However, F8 did not exhibit a constant trend after 45 minutes while F9 achieves this. As 

expected from the pre-formulation study on PM C and E, correlate formulations F5 and F9, showed a constant 

trend overall experiment, achieving a modified and prolonged release.  

In-vitro dissolution studies presented different release profiles between formulations and pure drugs. 

Such differences could be noticed between solvent casted film and fibres produced with the same compound 

ratios. In particular, it was seen that as the drug is present in crystalline state release profile is more constant 

over time (F5), while when the drug is in amorphous conformation profile presents a burst in the release, as 

formulation F9. Nanofibre F9 offers the advantage of a higher release rate 0.008 ± 0.0009 mg/mL/min 

compared with F5, a 1.14-fold increase (p<0.0001) due to the upper surface area available from in electrospun 

fibres and to the addition of 2.5% w/v SLP to the formulation. These results are coherent with the solubilising 

effect of SLP that was proved and discussed in the polymer solubility section of the present work. 
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Figure 45. In-vitro dissolution study of formulations prepared by solvent casting method (F1, F3, F5, F6, F8) and 
electrospinning (F2, F4, F7, F9) compared with clozapine pure drug express in mg/mL. Graphs b) and d) represent a 
zoomed-in of first 50 minutes of release. 

 
Table 21. f2 similarity factor for each formulation. 

 f2 

F1 58.81 

F2 50.62 

F3 33.18 

F4 30.67 

F5 28.81 

F6 84.78 

F7 73.4 

F8 26.00 

F9 31.39 

 

4. Conclusion 

 
In conclusion, this study developed a new oral transmucosal polymeric patch containing clozapine 

aimed to reduce drug daily dosage to treat treatment-resistant schizophrenia. In particular, the effect of 

varying concentrations of polymer PHEA on drug solubility, patch adhesiveness and dissolution performance 

were tested. Therefore, it was possible to conclude that PHEA possesses a solubility enhancement effect and 

that achieved higher solubility enhancement potential when mixed with 7.5% w/v of PVA. PHEA possesses a 
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concentration dependant effect on adhesiveness providing most top adhesive forces when in a mixture of 

7.5% w/v of PVA and 5% w/v of PHEA. Such polymer combination also provided control in clozapine release 

resulting in a potential advantage in terms of patient acceptability and compliance in this demographic group. 

However, patient compliance is well-known to be affected by drug taste. Transmucosal patch here produced 

has the potential to release a small amount of drug in the oral cavity and cause alteration in taste perception. 

Therefore, it is considered fundamental to assess the taste of clozapine to investigate if drug release in the 

mouth could influence negatively patient compliance when the patch is scaled up and progress in further 

formulation for human production. Moreover, patch production toward customisable technique should be 

evaluated for optimal patient compliance. 
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Chapter 5. 3D Printing Technology to Produce a Novel Polymeric Patch for Oral 

Controlled Release of Clozapine: An Investigation into the Effect of Infill Percentage 

on Clozapine Release Profile from Patches with a Surface Area of 4cm 2 

 

1. Background  

 
Chapter 4 demonstrated that formulating clozapine as a transmucosal patch achieved a prolonged 

drug release and a potential advantage in improving patient compliance towards medication. The main 

advantage of the use of electrospinning in oral drug delivery is to create a nanofibrous oral dosage form with 

a high surface area which allows a high dissolution rate. However, the method presents difficulties in 

producing customisable 3D structure as fibres deposition is most commonly achieved using a cylindric 

structure (collector) which low level of product customisation (Nune et al.; 2017; S. Sahoo et al.; 2009). While 

specific collector has to be produced on purpose, 3D printed technology allows for shape and size modification 

by designing the appropriate CAD file. 

3D printing is a manufacturing method to produce 3D structured, which is used in pharmaceutics for 

drug delivery is a new and developing trend(Trenfield et al.; 2018). 3D printing allows flexibility in dosage form 

shape, dimension and design, which represent advantageous when formulating patient-centric 

formulation(Rui et al.; 2016). In recent years such flexibility of using 3D printing in pharmaceutics is under 

investigation, and a range of 3D printed structures have been designed to study drugs release profile(Goyanes, 

Wang, et al.; 2015; Khaled et al.; 2015a; 2015b). 

Moreover, 3D printing provides chances for scale-up by printing multiple devices/dosage forms in the 

same operation; and its use in the clinical environment is under evaluation due to smooth operation process 

of designing, developing and dispensing(FabRx; 2020; Ku and Dulin; 2012). This technique allows dosages 

modification by physically altering design shapes, dimensions or infill percentage (Goyanes et al.; 2014). 

Mainly, the infill percentage (infill %) is a printing parameter that indicates the quantity of total volume of 

thermoplastic polymer that filled the final product during printing as a percentage. When the total amount is 

printed, this is referred to as 100% infill. Depending on the 3D printer used, reduction in printed volume could 

be select between 100 and 0%.  

This work aimed to use 3D printing manufacturing technology to produce a transmucosal patch 

capable of prolonged delivery of clozapine. 3D printing is advantageous when creating intricate 3D structures, 

and in this part of this thesis, it was used to print micro-pyramids on top of flat patches. Effect of different 

infill % and differential geometry to dissolution performance were evaluated. Physical properties of each patch 

produced were analysed to ensure reproducibility. Patches have final goals to allow systemic and prolonged 

administration of clozapine, a formulation that does not exist in the market yet. In Chapter 4, it was 
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demonstrated that PVA possesses adhesive force. Therefore, it was used as a based polymer to ensure 

adhesion to the buccal mucosa. Moreover, a set of micro-pyramids were printed on a patch surface to ensure 

membrane penetration and modify the release profile. Release properties of the drug from patch were 

analysed ex-vivo and through permeation study.  

 

2. Material and Method 

 
Clozapine was kindly provided from NHS Maudsley Hospital. RS PRO 1.75mm Natural PVA 3D Printer 

Filament, 500g and RS PRO 1.75mm green PLA 3D Printer Filament, 500g were purchased by RS UK. PBS with 

pH 7.4 and with pH 6.8, EtOH were purchased from Sigma-Aldrich. Water used was distilled. 

 

2.1 Sample preparation 

 
Eight different samples were printed by UP2 mini 3D printer and designed via software online 

TinkerCad producing a 3D CAD to be exported as STL file. Various models were designed to create the most 

efficient patch in term of prolonged-release and best permeation profile. Figure 46 showed the designed CAD 

file. At first, each patch was printed to obtain a 4cm  2 area with a dimension of 2cm x 2 cm x 0.5 cm (length, 

width, and thickness). As the aim of the device is to have a strong adhesiveness to buccal mucosa as well to 

ensure the release of clozapine just through the mucosa and not in oral cavity patches present different 

designs with a total of 4 different patches. Patches were provided with a set of micro-pyramids (0.2 cm x 0.1 

cm width and radius) to control the release of drug towards to mucosa while to prevent release in oral cavities 

patches were provided with an impermeable backing membrane. PLA was used as a hydrophobic is not soluble 

in the aqueous environment for blacking layer creation.  

 
Figure 46. CAD design drafted via TinkerCad of four different patches with dimension 2cm x 2 cm x 0.5 cm: a) flat patch 
design to be made of PVA; b) PVA-based patch with nine micro-pyramids on top of surfaces with 0.2 cm x 0.1 cm width 
and radius; c) and d) corresponded to design a) and b) with an extra layer of PLA to ensure a one-way drug release. 
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The samples differ in infill used while printing 65% and 100%, creating a set of 8 different samples, as shown 

in Figure 47 and samples were named as reported in Table 22.  

 
Table 22. 3D printed patches names according to their designs 

Polymer/s 
Infill Percentage 

65%  100%  

PVA 

PVA Patch 65% PVA Patch 100% 

PVA Patch with Micro-pyramid 65% PVA Patch with Micro-pyramid 100% 

PVA and PLA as a 
backing layer 

PLA + PVA Patch 65% PLA + PVA Patch 100% 

PLA +PVA Patch with Micro-pyramid 65% PLA +PVA Patch with Micro-pyramid 100% 

 

 
Figure 47. On top printed designs obtained with 65% infill and 100% infill. At the bottom, a transversal image of a 3D 
printed patch with PLA backing layer and micro-pyramids. Overall height of 0.2 cm. 
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The patches were printed using an UpMini 3D printer using nozzle size of 200µm and filament 

thickness of 200µm, 190°C as nozzle temperature and 40°C as bed temperature when printing with PVA 

filament. New polymer (PLA) was loaded and was printed using 230°C as nozzle temperature and 50°C as bed 

temperature. 

 

2.2 Drug loading of 3D printed patches  

 
A 10% w/w clozapine solution was prepared by dissolving clozapine in pre-heated EtOH at 50°C 

(ethanol boiling point 78.73°C). Clozapine is soluble in EtOH (30mg/mL), and according to with first law of 

thermodynamics once to a system is applied heat, it is transformed in kinetic energies improving drug 

aggregates detachment in solubilised molecules (Struchtrup; 2014). The solution was left under vigorous 

agitation at 800rpm, 50°C for two hours in a Thermo Mix with heating, provided by SciQuip UK. Then 

impregnation method(Chew; 2019) was modified, and 500ul of this 10% w/w clozapine solution 

(corresponding to 5 mg of clozapine) was soaked into the printed patch and left under a fume hood for EtOH 

complete evaporation overnight. In a conventional impregnation method, drug solution is left overnight, and 

the solvent evaporates in a second drying step(Goyanes; 2015; Goyanes et al.; 2017). This method is applied 

when the drug is expected to have a low drug loading (<2% w/w) in the polymer of selection (Tagami et al.; 

2017; Tao et al.; 2016). In Chapter 4, it was that clozapine loading in PVA matrix (formulation A, F1 and F2) is 

9.79 ± 0.48% w/w. Therefore, soaking and evaporating steps were conducted simultaneously in this work. 

Figure 48 shows a patch after soaking.  

 
Figure 48. Image of a 4cm 2 patch before being soaked with clozapine solution and after soaking and drying process. 
Pure drug presents an intense yellow colour. Thus, drug impregnation could be visually detected. In the image, the 
patch was infused with 5mg of clozapine. 

 

2.3 Physical Properties 
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The physical properties of each patch, in term of weight, dimensions, volume (V), surface area (Sa) 

and density were analysed to assess 3D printing consistency in formulations preparations. Analysis of this 

parameter is fundamental to understand the dissolution profile of each printed product as it is proved that 

geometry and dimension effect drug release(Goyanes; 2015). Information was obtained after optical support 

and analysed through software ImageJ. Each patch was aligned with a ruler; a camera was focused at 90°C 

(angle) and placed equidistant from the sample to avoid prospective alteration. Each reading was analysed in 

triplicates. Patches presented both a cuboid shape combined with cone shape for micro-pyramids formation. 

Therefore, V and Sa were calculated accordingly: 

Cuboid 

V= length (l) × width (w) × height (h)  Equation 9 

Sa= 2lw+2lh+2hw    Equation 10 

Cone 

V= 1⁄3πr 2h     Equation 11 

Sa= πra+ πr 2    Equation 12 

 
When calculating Sa of the patch with micro-pyramids, micro-pyramids Sa was added to patch Sa. When PLA 

backing was applied, Sa available to drug release was reduced by subtraction of PLA Sa. 

 

2.4 SEM 

 
  Hitachi S5000 Emission Gun (FEG) with Tungsten Tip (25 kV) was used to examine gold-coated (10 nm 

thickness) blank full-size PVA. Images were captured using a secondary electron detector from X70 to X10.9K 

magnification. The d of microparticles was determined from the mean value of 100 measurements using 

ImageJ (the USA, version 1.46 v). 

 

2.5 ATR-FTIR  

 
 Studies carried out to identify main drug peaks after soaking patches. The analysis was conducted 

using a Perkin Elmer Frontier ATR-FTIR spectrometer, and samples were placed on crystal for characterisation. 

A total of 264 scans were taken at a resolution of 2 cm-1 and using a wavelength range of 4000-600cm­1. Each 

sample has been analysed in triplicate. 

 

2.6 Drug content 
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The drug-loaded patches were dissolved in 10 mL of EtOH, filtered through a 0.45 mm syringe filters 

with cellulose acetate membrane (VWR International, USA) and drug content of each sample was determined 

spectrophotometrically. UV-VIS spectra were recorded by Perkin Elmer Lambda UV/VIS Spectrophotometer. 

A calibration curve was used for quantification of drug content. The calibration curve was performed in the 

concentration range of 0.1-0.0001 mg/mL of clozapine standard solutions in EtOH (R=0.999) and spectra 

recorded at 257 nm.  

 

2.7 In-vitro Dissolution Studies 

 
The studies were carried out in non-sink condition in 25 mL of PBS pH 7.4 to mimic in-vivo buccal 

environment as reported in European Pharmacopeia and literature evidence(European Pharmacopeia 7.6; 

2012; Sun; 2016). In-vitro dissolutions studies were conducted using a shaking incubator (SciQuip Ltd) at 37°C, 

and 50 rpm. Samples were weighed and placed in 25 mL media to obtain 5 mg of clozapine. At predetermined 

intervals of 15, 30, 45, 60, 90, 120, 180, 360, 480 and 1440 minutes 500µL was withdrawn and diluted in 5mL 

and filtered through a 0.45 µm cellulose acetate syringe filter and replaced with the same amount of fresh 

buffer. Subsequently, the filtrate was analysed spectrophotometrically at UV with a wavelength of 257 nm. A 

calibration curve was performed in a concentration range of 0.1-0.0001 mg/mL of clozapine standard solutions 

in PBS pH 7.4 (R=0.999) and spectra recorded at 257 nm.  

 

2.8 Statistical Analysis 

 
The f2 Equation, calculated according to Equation 1 (Chapter 3), was used to compare in-vitro 

dissolution performance between drug and corresponding formulations(Raimi-Abraham; 2015). When f2 

below 50, profiles are considered different, and when f2 above50 compared release profiles are considered 

equivalent.  

The two-way analysis of variance (ANOVA) was applied to compare different samples. Data were considered 

statistically significant with a value of p < 0.05.  

 

3. Results and Discussion 

 

 At the first patch of 4cm2 were printed with four different designs and two different infill percentage 

(65 and 100%). Patches were characterised in term of physical properties to evaluate the reproducibility of 

the printing process and consistency with designed CAD files. Then, it was studied the influence of material 

properties and infill percentage on the dissolution profile of clozapine. Patches CAD files were created with a 
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surface area of 4cm2, half size of conventional oral nicotine patch NiQuitin(Ltd.; 2018) (4cm x 4cm), with the 

aim of further investigation on inner cheek surface. 

 

3.1 Physical properties of 3D printed patches  

 
Physical properties of printed patches were analysed to identify printing reproducibility in terms of 

weight and dimensions. Further analysis of volume and surface area ratio was conducted to investigate the 

effect of those parameters on both dissolution and permeation. Physical properties investigations were 

conducted, as showed in Figure 49. 

 
Figure 49. Visual representation of physical properties’ assessment and accuracy. Each patch was aligned with a ruler 
starting at 0cm, and a camera was applied equidistance from each patch. 

 
Table 23 summarises weight, V, Sa, Sa/V ratio and density for each patch design printed both using 

65% and 100% infill. Analysis of physical properties was fundamental in the understanding of process 

reproducibility. Therefore, the calculation of the standard deviation was a key element. As reported in the 

Table 23, each weight measurement confirmed to have a relatively low standard deviation with a percentage 

error minimum of 0.05% (p = 0.02) in weight for PVA Patch 65%, and a maximum error of 6.67% (p < 0.0001) 

for patch PLA +PVA Patch with micro-pyramid 100%. FDM has the advantage to prepare 3D complex 

geometrical parts neatly, and such was used as a technology to develop a pancreatic patch in 2016(Yi et al.; 

2016). In this study, weight consistency was fundamental to ensure encapsulation and release of the 

anticancer drug (5-Fluoruracil). Accordingly, FDM was recognised to provide high reproducibility in weight, 

and similar findings  
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were noted by Goyanes and co-workers (Goyanes et al.; 2016), and Skowyra and co-workers(Skowyra et al.; 2015). It was then observed that printing of an 

extra layer of PLA increased the overall weight of 1.65-fold (p=0.0012) in patches printed with 65% infill and of 1.70-fold (p <0.0001) increase when infill was 

100%. Slight difference in weight increase depends on different infill used as it determines the amount of material packed into a product designed(L. K. Prasad 

and Smyth; 2016). Effect of infill in increasing overall weight was also evaluated when adding micro-pyramids on top patch. This caused an increase in weight 

of 1-fold (p=0.0013) in patches with 65% infill and of 1.20-fold (p=0.0034) with 100%. Overall, considering an average weight of 65% infill of 569.25 ± 15.21 

mg and 100% infill of 620.25 ± 32.76 mg, it was assessed that using a high infill ratio there was an increase in weight of 1.08-fold with a statistical significance 

of p<0.0001.   

 
Table 23. Summary of weight, V, Sa, Sa/V ratio and density for each patch design printed both using 65% and 100% infill. 

 
Weight mg Length cm V/Sa 

 

 
Length Thickness V 

(cm 3) 
Sa 

(cm 2) 
Sa/V Density 

(g/cm 3) 
PVA Patch 65% 430.12 ± 0.05 1.54 ± 0.10 0.21 ± 0.002 0.51 6.06 11.85 0.83 

PLA + PVA Patch 65% 706.30 ± 28.28 1.63 ± 0.10 0.25 ± 0.032 0.67 0.82 9.83 1.05 

PVA Patch with micro-pyramid 65% 432.50 ± 4.33 1.60 ± 0.17 0.52 ± 0.171 0.18 12.87 71.44 2.4 

PLA +PVA Patch with micro-pyramid 65% 706.21 ± 28.18 1.63 ± 0.10 0.35 ± 0.001 1 1.39 7.48 0.85 
 

Weights mg Length cm V/Sa  

  
Length Thickness V 

(cm 3) 
Sa 

(cm2) 
Sa/V Density 

(g/cm 3) 
PVA Patch 100% 439.62 ± 8.95 1.66 ± 0.10 0.10 ± 0.009 0.27 6.19 22.4 1.63 

PLA + PVA Patch 100% 700.15 ± 42.43 1.62 ± 0.17 0.25 ± 0.021 0.66 0.81 9.84 1.05 

PVA Patch with micro-pyramid 100% 496.11 ± 26.22 1.60 ± 0.10 0.17 ± 0.007 0.25 7.42 11.66 1.79 

PLA +PVA Patch with micro-pyramid 100% 846.10 ± 53.47 1.79 ± 0.10 0.35 ± 0.068 1.13 1.89 7.38 0.74 
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The length of patches was constant for all eight different designs with an average value of 1.63 ± 0.07cm. The 

patch was designed to be of 4cm 2, and CAD file was produced creating sides of 2cm. However, it is proved 

that the quality of printing depends on CAD file produced and on STL file exported definition. It was overall 

observed that best quality and reproducibility of drafted designed could be obtained by using software 

designed for specific printed(TS. Srivatsan, T.S. Sudarshan; 2018). However, in this study, the software was not 

user friendly for the design of complex shape as a bi-layered micro-pyramidal patch.  

Regarding micro-pyramids, those were pyramidal-shaped structures printed on top of flat PVA patch. 

Micro-pyramids have a scope of penetrating the buccal mucosa to control the release of clozapine towards to 

mucosa. A different study on skin penetration showed that application of micro-needle between 70 μm and 

200 mm in length improved permeation and adhesion in a patch like structure(Coulman et al.; 2009; Gomaa 

et al.; 2012). Micro-needles use to present a sharper design to penetrate thick layers of skin dermal(Al-Qallaf 

and Das; 2009). However, buccal mucosa is more delicate and permeable and less thick compared with skin 

cutaneous (Galey et al.; 1976; Turabelidze et al.; 2014); in this work, the design was modified to obtain a 

pyramidal shape proportioning both radius and width at 200mm. They were analysed by SEM to allow precise 

calculation in a small size range. Images obtained were analysed with Software ImageJ, and each measurement 

is taken a hundred times. Figure 50 showed micro-pyramids for both patches printed at 65 an 100% infill. In 

the image, it is possible to notice each layer deposition during the printing process and set from printing 

parameter to be of 200 µm. 

 

 
Figure 50. SEM images of micro-pyramids printed on top of flat PVA surface. Photos were taken at 750um and using 
40x magnification. It is possible to notice layer thickness that was set at 200um. 

 
The physical analysis assessed 173.76 ± 2.90 cm of pyramid width and 93.45 ± 7.42 cm of pyramid 

radius that results in reduction respect designed CAD of 13.87% (p <0.0001) in width and of 10% (p=0.004) in 

radius. Data reported in Table 24. It was proved that when exporting a CAD design as an STL file, it makes loose 
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resolution causing a reduction in length of initial design(Chen et al.; 2017). Smaller is design, and higher is lost 

in resolution(Sachs et al.; 1990). However, no change in the exterior aspect could be visually observed when 

printing at different infill.  

 
Table 24. Summary of width, radius, V and Sa of micro-pyramids printed on top of the patch. 

 
Pyramid width 

mm 
Pyramid radius 

mm 
V Pyramid 

(mm 3) 
Sa Pyramid 

(mm 2) 

PVA Patch with micro-pyramid 
65% 

171.23 ± 19.98 195.09 ± 20.03 2.34 ± 0.01 1.23 

PLA + PVA Patch with micro-
pyramid 65% 

213.87 ± 30.87 70.65 ± 10.45 2.67 ± 0.09 1.38 

PVA Patch with micro-pyramid 
100% 

173.42 ± 0.44 80.12± 0.12 6.22 ± 0.02 1.89 

PLA + PVA Patch with micro-
pyramid 100% 

149.67 ± 0.07 82.34 ± 2.54 1.24 ± 0.01 7.54 

 
The problem of resolution in 3D printing is highly discussed as geometrical flexibility is restricted by 

typical layer thickness of 200 µm. Thin layers are preferred to achieve a relatively high resolution, but it 

depends on printer setting(Shirazi et al.; 2015; Will et al.; 2013). Therefore, layer thickness in each printed 

patch was investigated. At first, it was observed surface of printed patches and then calculated the average of 

each filament thickness and gap between each filament. Gaps represent distance needed by the printer to 

allow the creation of 65% and 100% infill(Farzadi et al.; 2014). Figure 51 are SEM images of each patch showing 

distance between two continuous filaments referred to as “gap”(Greenhall and Raeymaekers; 2017; Zhang et 

al.; 2016). From images, it is possible to visually observe that using a high infill reduces the gap between 

filaments. However, it was noticed that when patches were printed both at 65% and 100% with PLA backing, 

it was more challenging to distinguish between PVA and PLA layer that appears as a uniform solid block. This 

could be because PVA and PLA filaments were printed with two different temperatures 190 and 230°C, 

respectively. PLA backing needed a higher temperature of both nozzle and platform, respect PVA printing. This 

causes an overheating on PVA during printing. Even if it was considered to wait between two steps, it was seen 

that this induced detachment of two layers and it was therefore avoided. This effect was already discussed by 

Lopez and co-workers, in 2020, who proved that using PLA in multi-layered printing caused the formation of 

physical interaction that improved strength and flexibility of printed products(Baca Lopez and Ahmad; 2020). 

While Erokhin and co-workers, 2019, reported morphological changes as observed in showed images when 

combining PLA with other polymer printed with a lower nozzle temperature(Erokhin et al.; 2019). 

As this part of work was focused on the evaluation of physical properties as tools to assess 

reproducibility and resolution of the printed patch, filament thickness was calculated by use of software 

ImageJ applied on SEM images, and results were reported in Table 25. Overall, patches printed   
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With 65% present filament thickness with an average value of 240.51 ± 53.23 µm, with an increment of 1.2-fold (p < 0.0001) respect pre-set parameter of 

200 µm. Patches with 100% infill presented a size of 199.36 ± 52.99 µm. The difference with pre-set values is considered related to the impurity of CAD file 

produced at first instance(Park and Shin; 2018). High-resolution in 3D printing is an interplay between right printing parameters such as temperature, nozzle 

diameter and distance between pyramid and platform(Serra et al.; 2013).  

 

 
Figure 51. SEM images of patch PVA patch surface when printed with different infill. Images were obtained using 40x magnification and 750 µm as dimension range. The 
analysis showed that the application of PLA backing caused the formation of a solid molten state, while the use of 100% infill reduced the gap between filaments. 
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An interesting parameter that was analysed to identify accuracy in printing 65% and 100% of the total 

designed draft was gap dimension. It was observed that gap average in 65% patches was of 256.25 ± 5.12 µm, 

and 3.51 ± 1.29 µm in 100% infill patches. Ricotti and co-workers proved that when increasing printing infill, 

there is a difference in physical properties (as the gap between filaments) of 5% for each 20-percentile infill 

increment(Ricotti et al.; 2017). Nevertheless, this rule does not apply when comparing data with 100% infill as 

this printing style implies no cavities and formation of a compact(Goyanes; 2014; Patton et al.; 2019). 

Therefore, reduction in gap distance of 73% is considered consistent with pre-set printing option and 

statistically significant p < 0.0001.  

 
Table 25. Physical analysis of patch thickness and the gap distance between filaments. 

 
Patch microscopic analysis µm 

Patch thickness Gap 

PVA Patch 65% 192.23 ± 70.34 180.81 ± 20.02 

PLA + PVA Patch 65% 283.98 ± 3.45 222.01 ± 17.64 

PVA Patch with Micro-pyramid 65% 197.76 ± 64.52 303.65 ± 40.76 

PLA + PVA Patch with Micro-pyramid 65% 290.23 ± 33.98 323.12 ± 10.32 

  
Patch thickness Gap 

PVA Patch 100% 212.65 ± 27.09 4.98 ± 13.86 

PLA + PVA Patch 100% 237.81 ± 18.23 3.76 ± 0.56 

PVA Patch with Micro-pyramid 100% 121.65 ± 11.12 2.82 ± 0.73 

PLA + PVA Patch with Micro-pyramid 100% 226.19 ± 35.09 4.87 ± 0.86 

 

3.2 Drug physical properties  

 
 ATR-FTIR analysis was used as a tool to identify the presence of hydrogen bonding between clozapine 

and PVA. Figure 52 shows the spectra overlay of 3D printed patch soaked with the drug compared with the 

pure drug, which physical-chemical characterisation was provided in Chapter 1. From spectra, it was possible 

to notice two of the main peaks of clozapine at 1025 and 1357 cm-1 both correlated with C-N stretching 

vibration. It was possible to see that no hydrogen bonds were created during the formulation process. ATR-

FTIR analysis was essential to analyse the particle size of the drug. As shown in Figure 51, in precedent session, 

it is possible to notice particles on the surface of the patch. As ATR-FTIR is a surface analysis, it is reasonable 

to consider that clozapine particle cloud has deposited on patch surface during the soaking process. However, 

no chemical evaluation was conducted, and further analysis would be required. 
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Figure 52. ATR-FTIR spectra recorded from 4000cm-1 to 700 cm-1 of clozapine in red and patch in black. Frequencies 
were then enlarged to identify main clozapine peaks that were found at 1025cm-1 and 1357cm-1. 

 
 Drug particle size was then evaluated using SEM and ImageJ to identify average diameter for each 

patch. Images reported in Figure 53 were obtained using different magnification due to small particle size in 

range < 100 µm. Detail of each measurement is reported in Table 26. particles resulted in having an average 

diameter of 6.93 nm ± 2.91, with a slight increase (doubled size) in particle obtained both in PVA Patch with 

micro-pyramid 65 and 100%. This small dimension was obtained as the drug was dissolved in EtOH where 

clozapine is highly soluble, and high agitation and a warm environment allowed total solubilisation of drug 

insolvent. Information about particle size is essential when designing a dosage form intended to release drug 

on buccal mucosa and to permeate through the mucosal membrane. Literature reports that that nanoparticle 

with a diameter lower than 200 nm can penetrate oral mucosa(Holpuch et al.; 2010; Teubl et al.; 2013). For a 

particle in this size range, it is considered possible a paracellular transport achieving a systemic absorption of 

the drug and smaller particle size, higher amount of drug permeated through the membrane(Evans et al.; 

2011).  
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Figure 53. SEM images of all eight different designs focused on clozapine particles in the surface. Images were obtained 
using from 40x to 250x magnification, and the average particle size was detected to be lower than 20nm.  

 
Table 26. Drug particle size expressed in nm. For each patch, the average particle size was lower than 20 nm. 

 
Drug Particle Size (nm) 

PVA Patch 65% 4.01 ± 10.34 

PLA + PVA Patch 65% 7.63 ± 6.08 

PVA Patch with micro-pyramid 65% 10.04 ± 9.87 

PLA + PVA Patch with micro-pyramid 65% 8.32 ± 2.65 

  
Drug Particle Size (nm) 

PVA Patch 100% 4.06 ± 19.65 

PLA + PVA Patch 100% 6.54 ± 5.23 

PVA Patch with micro-pyramid 100% 12.01 ± 40.23 

PLA + PVA Patch with micro-pyramid 100% 4.56 ± 1.24 

 

 

3.3 In-vitro dissolution studies: Effect of infill percentage and geometry in clozapine dissolution profile in 4cm 2 

patches 

 

At first, it was analysed drug content in the patch with 4cm 2 surface area to calculate the amount of 

drug released during dissolution studies. Drug loading was obtained by soaking each sample with 500ul of 

clozapine-EtOH solution. Drug content analysis showed that each patch contained 5.04 ±.0.55 mg of clozapine, 

100% of encapsulation efficacy. This amount of drug was used as proof of concept that different infills and 

shapes printing could affect the release profile.  

 4cm 2 patches loaded with 5 mg of clozapine were first analysed. In this study, different dissolution 

rate provided by patch once printed with varying percentages of infill and when PLA backing was applied was 
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observed. Figure 54 portrays release rate, expressed in mg/mL, of the drug from 65% infill patches. Release 

mg/mL was analysed and compared using value at time point 45 min, considered of importance in oral 

formulations for immediate release(Hermans; 2017; Rams-Baron; 2018). Notably, a dosage form is regarded 

as providing immediate release when more than 75% of the drug is released from the dosage form in 45 

minutes, as discussed in Chapter 4(Mitrevska et al.; 2019). It was observed that in each patch within 45 

minutes, 64% (3.23 mg ± 0.46) of medication was released and after 3 hours it was achieved 100% of drug 

release. Focusing on trend provided by 65% infill printed with PVA without micro-pyramids and no PLA backing 

layer, it was noticed drug was released with a rate of 0.0007 mg/min while application of micro-pyramids 

improved release to 0.0009 mg/min a 1.42-fold increase (p=0.0034). All patches release rate and f2 values 

were reported in Table 27 for clarity. This increase in rate could be due to bigger, 2.12-fold (p<0.0001), surface 

area (Table 23) by PVA with micro-pyramids 65%, as expected by Fick’s law (Frederic P. Miller, Agnes F. 

Vandome; 2017). Applying PLA backing layer on patch has the purpose of direct and control release in buccal 

mucosa, therefore in a dissolution study it would reduce surface area available for release reducing overall 

release profile. In fact in PVA patch with PLA backing layer and no micro-pyramids (sample name PLA + PVA 

Patch 65%), there is a reduction in release rate to 0.0003 mg/min that is consistent with increase 1.90-fold (p 

non-significant) in particle size observed compared to PVA patch and with expected reduced rate offered by 

PLA layer. Most interestingly, in patch PLA + PVA Patch with micro-pyramids 65%, application of PLA reduced 

release of 3-fold (p<0.0001) respect counterpart patch without micro-pyramids. Observing the f2 value for this 

patch (PLA + PVA Patch with micro-pyramids 65%), it was registered the lowest data of 27.38 that represent 

the biggest difference in release profile. 

 At the contrary, it was noticed that in patches printed with 100% infill without PLA backing (PVA Patch 

100% and PVA Patch with micro-pyramid 100%), reported in Figure 54b, it was achieved a 48% released in 

(2.35 mg ± 0.49) in 45 min, but a burst in the release is observed at 90 minutes to 75%. It is possible to notice 

that from minute 90th, the drug is released with a rate of approximately 0.11 mg/mL ± 0.019 that is equivalent 

to 0.0013 mg/min. Mainly, PVA patch 100%, releases drug with an average rate of 0.005 mg/min, that is 2.51-

fold (p=0.003) faster than patch with micro-pyramids with a rate of 0.002 mg/min. Addition of PLA backing 

causes an overall decrease on the dissolution rate of 0.0007 mg/min for PVA+PLA patch 100% and 0.0002 

mg/min observed in PLA+PVA with micro-pyramids 100%. This rate is coherent with the reduction in the 

surface area noted respectively of 2.39 (p=0.0043) and 3.40-fold (p <0.0001) respect to patches without PLA 

backing. However, observing the f2 value, it was noticed that PLA+PVA 100% has a value above 50, considered 

equivalent to the unformulated clozapine behaviour. Overall, release profile observed for PVA patch 100% and 

PVA Patch with micro-pyramid 100% was too fast 7.88-fold (p=0.004) and 2.88-fold (p<0.0001), respectively, 

compared with its 65% counterpart. This effect could be due to higher surface area (Table 23) and smaller 
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particles size (Table 26) achieved in patch printed with 100% infill. However, after 200 min, all drug was 

released, and no constant rate was observed.  

 The objective of this Chapter was to determine the effect of infill on drug release profile to ensure a 

constant and prolonged release of the drug. Overall, it was observed that patch with 100% infill without PLA 

backing presented a faster release profile compared with 65% infill counterpart. Addition of PLA backing 

reduced release rate compared 100% patches without PLA backing, but it doubled release respect 65%. 

Previous studies, carried out using hydroxypropyl-methylcellulose and PVA filaments, suggested an opposite 

trend using soluble drugs as a model drug(Goyanes; 2015; Kadry et al.; 2018). However, it is well-known that 

drug-release could be drug-carried or polymer-carrier. 

Moreover, in both patches at 65 and 100%, it was observed that the PLA backing layer reduced, as 

expected release profile, suggesting an advantage is driving delivery in one-way. Reason for the difference in 

release between 65% and 100% infill patches it is supported confronting particle dimension and surface area 

obtained. Overall, 100% infill patch presented a higher surface area and smaller particle size compared with 

65% infill.  

 Finally,  the influence of micro-pyramids on release profile was considered. When patches were 

printed with PLA backing layer, release becomes more persistent, but the addition of micro-pyramids showed 

a significant trend. Notably, the micro-pyramid improved rate just when added to PVA flat patch 65%, while 

in all other patches designs and infill percentages, they reduced profile controlling the release.  Notably, 

patches PVA Patch 65%, PLA + PVA Patch 65%, PVA Patch with micro-pyramid 65 and PLA + PVA Patch with 

micro-pyramid 65% presented a most constant release and improved profile respect to clozapine 

unformulated and PLA backing layer offered advantage of a more controlled release. Therefore, those patches 

were reduced in size and loaded with different concentration of clozapine to understand if the release rate is 

drug-dependant. 
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Figure 54. Patches 4cm 2 a) Dissolution profiles of patch printed with 65% infill, on the top patch without PLA backing, on bottom patch with PLA backing. Overall, patch 
printed with 65% infill showed a constant release and improved dissolution profile respect to clozapine pure drug. b) Dissolution profiles of patch printed with 100% infill, 
on the top patch without PLA backing, on bottom patch with PLA backing. Overall, patch printed with 100% infill showed an immediate-like release and not constant or 
prolonged release profile was assessed. All the release profiles compared with pure clozapine presented high statistical significance graphically represented as **** (high 
statistical relevance). 
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Table 27. Dissolution rate expressed in average mg/min per each patch design and the respective f2 values 
that compare each patch with clozapine unformulated. 

 
PVA Patch 

 65% 
PLA + PVA 
Patch 65% 

PVA Patch with micro-
pyramid 65% 

PLA + PVA Patch with 
micro-pyramid 65%  

Ratio 0.0007 mg/min 0.0003 mg/min 0.0009 mg/min 0.0001 mg/min 

f2 27.64 34.51 49.81 27.38 
 

PVA Patch 
100% 

PLA + PVA 
Patch 100% 

PVA Patch with micro-
pyramid 100% 

PLA + PVA Patch with 
micro-pyramid 100%  

Ratio 0.005 mg/min 0.0007 mg/min 0.0026 mg/min 0.0002 mg/min 

f2 48.89 52.54 47.37 32.95 

 

5. Conclusion  

 
This work aimed to propose 3D printed technology as a method to produce an oral 

transmucosal patch to prolong the release of clozapine by demonstrating 3D printing reliability and 

easy management. At first, it was evaluated consistency in physical properties of obtained products. 

Results show the difference between setting parameters, CAD designs, and final patch due to a 

reduction in quality of file produced in different software respect printed own software. Interestingly, 

it was observed that differences regularly occurred in each product and therefore, that 3D printer 

produced homogenous samples. Then, it was investigated the effect of different infill on clozapine 

dissolution profile, considering as final aim a prolonged release. Data showed that printing with 65% 

infill achieved an extended and constant release profile, increase solubility respect pure drug while 

using 100% profile was immediate and not consistent. Both 65% and 100% infill with PLA backing 

possessed a major constancy in the release, while the addition of micro-pyramids caused an increase 

of dissolution profile. Further investigation on clozapine release profile dependence on the drug itself 

or the carrier should be performed to evaluate the effect of increasing the dose for scale-up industrial 

manufacturing. Moreover, 3D printing advantage in product customisation should be investigated by 

monitoring different size effect on clozapine dissolution profile. 
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Chapter 6. 3D printing technology as technology to scale down the oral patch 

to 1cm 2 surface area: evaluation of clozapine dissolution profile and 

permeation through membranes. 

 

1. Background 

 

The purpose of this thesis was to tackle reasons for medication non-compliance, thus 

discontinuation, in a patient affected by treatment-resistant schizophrenia. So far, different methods 

such as solvent casting method, electrospinning, and 3D printing were proposed to produce 

alternative dosage form to reduce dose per day, recognised to be a significant issue of non-

compliance. However, between all the techniques, 3D printing results flexible to customise and modify 

dosage form to be adaptable for different patients’ needs or preferences (Aquino et al.; 2018). For 

example, the use of a 3D printer M3DIMAKER™ is on trial in a Central London hospital (name 

nondisclosed) to design patient-centric shape and size (FabRx; 2019). In the previous section, 4cm 2 

patches were produced to conduct a broader analysis in term of infill percentage influence on the 

dissolution profile and in term of reproducibility of the 3D printing process.  

Therefore, this thesis section aims to demonstrate the efficiency of 3D printing patch of improving 

both the dissolution profile and permeation of clozapine by designing a scaled-down version of the 

previous patch. New patches are designed with a surface area of 1cm 2 as dosage forms size is proved 

to affect patient acceptability toward a medication (Hsu; 2013; Lopez et al.; 2015; Ranmal et al.; 2018). 

1cm 2 patches were loaded with varying concentrations of clozapine to evaluate at first the effect of 

drug strength on the release profile itself. It is well-recognised that the mechanism of release could 

be a carrier- or drug-dependent (Craig; 2002). This information is crucial when considering the scaling-

up of a dosage form for commercial purposes. If the mechanism is mediated by the drug, thus by its 

concentration in the formulation, this would mean that increasing or decreasing the amount of drug 

affects the overall release profile modifying the therapeutic effect. At last, drug permeation through 

conventional cellulose acetate membrane and the biomimetic PermeapadTM was analysed. 

PermeapadM presents two disks of cellulose acetate supporting a phospholipidic layer which allows 

evaluation of drug permeability through a lipidic component. This biomimetic membrane presents 

proved in-vitro-in-vivo correlation providing information on in-vivo absorption(Bibi et al.; 2015). It also 

reduces the use of animal tissue and in-vivo study ensuring accuracy in predicting in-vivo absorption 

improving laboratory animal welfare.  
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2. Materials and Method 

 

Clozapine was kindly provided from NHS Maudsley Hospital. RS PRO 1.75mm Natural PVA 3D 

Printer Filament, 500g and RS PRO 1.75mm green PLA 3D Printer Filament, 500g were purchased by 

RS UK. PBS with pH 7.4, EtOH were purchased from Sigma-Aldrich. The water used was distilled. 

 

2.1 3D printing 

 

The patches were printed using an UpMini 3D printer using nozzle size of 200µm and filament 

thickness of 200µm, 190°C as nozzle temperature and 40°C as bed temperature when printing with 

PVA filament. PLA was loaded and was printed using 230°C as nozzle temperature and 50°C as bed 

temperature. 

The patch CAD design size was reduced to 1cm 2 to evaluate printing efficacy and dissolution 

profile consistency. The 4cm 2 patches were printed once per time, while multiple 1cm 2 patches could 

be printed at once, as showed in Figure 55. The patches were 0.1 cm in thickness, and the micro-

pyramids have 0.04 cm x 0.04 cm width and radius. These patches were printed with 65% infill due to 

the advantage showed in controlling the drug release profile, as discussed in Chapter 5. 

 

 
Figure 55. 3D printed patch 1cm 2 printed with 65% infill. Each printing allows obtaining from three to nine 

samples per time, representing a good advantage in scalability. 

 

2.2 Physical Properties 

 

The physical properties of each patch, in term of V and Sa, were analysed to determine their 

effect on the release profile. The information was obtained after optical support and analysed through 

the software ImageJ. Each patch was aligned with a ruler; a camera was focused at 90°C (angle) and 

placed equidistant from the sample to avoid prospective alteration, as in Figure 49. Therefore, V and 

Sa were calculated accordingly with Equation 9 to 12 in Chapter 5.  
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2.3 Drug loading of 3D printed patches  

 

A 10% w/w clozapine solution was prepared by dissolving clozapine in pre-heated EtOH at 

50°C (ethanol boiling point 78.73°C) as described in Chapter 5. The solution was left under vigorous 

agitation at 800rpm, 50°C for two hours in a Thermo Mix with heating, provided by SciQuip UK. Then 

the modified impregnation method(Chew; 2019) used in the Chapter 5 was used, and 100ul of this 

10% w/w clozapine solution (corresponding to 10 mg of clozapine) was soaked into the printed patch 

and left under a fume hood for EtOH complete evaporation overnight. In this section, it is investigated, 

whereas the drug release could be drug-carried or polymer-carried. Notably, it was searched for the 

influence of the drug on the release profile itself. Three different concentrations of clozapine were 

loaded reproducing per patch 0.1mg, 1 mg and 10 mg of clozapine.  

 

2.4 In-vitro Dissolution Studies 

 

The studies were carried out in non-sink condition in 25 mL of PBS pH 7.4 to mimic in-vivo 

buccal environment as reported in European Pharmacopeia and literature evidence(European 

Pharmacopeia 7.6; 2012; Sun; 2016). In-vitro dissolutions studies were conducted using a shaking 

incubator (SciQuip Ltd) at 37°C, and 50 rpm. Samples were weighed and placed in a beaker covered 

with parafilm to avoid evaporation. At predetermined intervals of 15, 30, 45, 60, 90, 120, 180, 360, 

480 and 1440 minutes 500µL was withdrawn and diluted in 5mL and filtered through a 0.45 µm 

cellulose acetate syringe filter and replaced with the same amount of fresh buffer. Subsequently, the 

filtrate was analysed spectrophotometrically at the UV with the wavelength of 257 nm. The calibration 

curve was performed in the concentration range of 0.1-0.0001 mg/mL of clozapine standard solutions 

in PBS pH 7.4 (R=0.999) and spectra recorded at 257 nm.  

 

2.5 Permeation study 

 

Patches were weighed and placed in a PermeGear vertical glass diffusion Franz Cells kindly 

donated by SciQuipUK with a surface area of 1.77 cm2, upper chamber nominal volume of 3 mL and 

lower chamber volume of 12 mL. According to the European Pharmacopeia(European Pharmacopeia 

7.6; 2012; Pharmacopoeia and 5.0; 2005) and literature evidence, each sample was placed in the 

donor compartment in a PBS solution at pH 7.4 to mimic the buccal environment. The two chambers 

were separated by a cellulose acetate filter disk with a dimension of 1.77 cm 2 area, as showed in the 

schematic Figure 56. Each sample was cut to allow 10 mg of clozapine to be analysed. The amount of 
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drug was chosen to mimic the dose of initiation of clozapine of 12.5 mg. At predetermined intervals 

of 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300minutes 1mL was withdrawn from the acceptor 

compartment and filtered through a 0.45 µm cellulose acetate syringe filter and replaced with the 

same amount of fresh buffer. Subsequently, the filtrate was analysed spectrophotometrically at the 

UV with the wavelength of 257 nm. The calibration curve was performed in the concentration range 

of 0.1-0.0001 mg/mL of clozapine standard solutions in PBS pH 7.4 (R=0.999) and spectra recorded at 

257 nm. 

  
Figure 56. Design of the diffusion vertical Franz cell adapted via BioRender from Rouse and co-workers 
2010(Ng et al.; 2010).  

 

For each permeation experiment, the (dQ) was calculated according to Equation 5 and the 

apparent solubility to Equation 6. (di Cagno; 2015). 

Each experiment was replicated in triplicates.  

 
 The same studies parameters were used to conduct the permeation study by using the newest 

PermeaPad® membrane. It is a biomimetic membrane that simulates the passive transport through 

various barriers in the body (i.e. buccal) providing optimal in-vitro ex-vivo correlation. 

 
The apparent permeability coefficient across the lipid component of Permeapad™ (Plip) was estimated 

using Equation 13 (di Cagno; 2015):  

 
𝟏

𝑷𝒂𝒑𝒑−𝒑𝒆𝒓𝒎𝒆𝒂𝒑𝒂𝒅
= (𝟐 ×

𝟏

𝑷𝒂𝒑𝒑−𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆
) + 

𝟏

𝑷𝒍𝒊𝒑
 Equation 13 

 

2.6 Statistical Analysis 

 

https://app.biorender.com/
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The f2 Equation, calculated according to Equation 1 in Chapter 3, was used to compare the 

dissolution performance between the drug and the corresponding formulations(Raimi-Abraham; 

2015). When f2 below 50, the profiles are considered different, and when f2 above 50 the compared 

release profiles are considered equivalent.  

The two-way analysis of variance (ANOVA) was applied to compare different samples. Data 

were considered statistically significant with a value of p below 0.05.  

 

3. Result and Discussion 

 

3.1 Physical Properties 

 
 At first, the physical properties of the two patch designs were investigated to evaluate 

consistency respect with the designed CAD file. The images were taken as described in the method 

section and analysed through ImageJ, as reported in Figure 57 and 58. Flat patch presented length and 

thickness compatible with the designed parameters as they were 1.02-fold (p<0.0001) and 1.26-fold 

(p non-significant), respectively, more prominent than expected. Values summarised in Table 28. It 

was achieved a total surface area of 1.25cm 2, a 1.25-fold increase (p=0.0035). Changing in physical 

properties are expected when 3D printing in small scale as the present nozzle diameter of 0.2 cm as 

well as the filament thickness, parameters that could not be changed using UpMini printer and the 

related software(Trenfield; 2018). The small variations were coherent with the one observed when 

printing a higher surface patch area, as discussed in Chapter 5.  

 
 

 
Figure 57. PLA+PVA patch 1cm 2 flat image acquisition. 

 

Table 28. Physical properties for patch 1cm 2 flat. 

PVA+PLA 1cm 2 
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Length 
 cm 

Thickness 
 cm 

Volume 
 cm 3 

Surface Area  
cm 2 

Sa/V 

1.02 ± 0.02 0.12 ± 0.03 0.12 1.25 9.90 

 
 
 The physical analysis was conducted on the patches with micro-pyramids and demonstrated 

that their length was compatible with the printing parameter with just 0.003 cm reduction, while the 

thickness was 0.82-fold (p=0.0029) higher than designed. Data reported in Table 29. Interestingly, the 

width and radius of the cone presented both a size of 0.02 cm as designed. This relates to the filament 

thickness of 0.2 cm. The overall surface area was of 1.33cm 2, 1.33-fold increase (p<.0001), due to the 

application of the micro-pyramids on the patch surface.  

 

 
Figure 58. PLA+PVA patch 1cm 2 with micro-pyramids image acquisition. 

 

Table 29. Physical properties of PLA+PVA patch 1cm 2 with micro-pyramids.  

PLA +PVA patch with micro-pyramids 

Patch Micro-pyramids 

Length  
cm  

Thickness  
cm 

Volume 
cm 3 

Surface Area 
cm 2 

Sa/V 
Cone width 

cm 
Cone Radius 

cm 
Volume Cone 

cm 3 

0.99 ± 0.01 0.12 ± 0.01 0.12 1.33 11.29 0.04 ± 0.01 0.02 ± 0.01 0.00025 

 

3.2 Dissolution studies 

  

Patches with 65% infill and PLA hydrophobic backing layer were printed in the scale-down size 

of 1 cm 2. The patches both flat and with micro-pyramids were loaded with three different strengths 

of clozapine 0.1, 1, 10 mg respectively and was analysed the drug dissolution profile. The drug loading 

study demonstrated that the soaking method was efficient and reproducible in obtaining 100% 
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efficacy. Therefore, the 1cm 2 patches presented respectively 0.1, 1 and 10 mg when produced with 

the intent to evaluate the release mechanism. 

 When the patches (with and without micro-pyramids) were loaded with 0.1 mg of clozapine, 

an immediate drug release was observed. A low concentration was obtained when in the dissolution 

media, 25 mL, that brought the clozapine concentration to 0.004 mg/mL, 4.5-fold (p=0.0026) less than 

the saturation solubility of the drug, previously calculated (Chapter 4). Therefore, clozapine was 

released immediately. Figure 59a shows the dissolution profile from the flat patches with PLA backing. 

It is possible to notice that when clozapine is in the formulation at 1 and 10 mg it release rate was 

0.0001 mg/min achieving 72% (p=0.002) of drug release and 0.0004 mg/min reaching 23% (p<0.0001) 

of drug release, respectively. In both cases, the drug release percentage resulted in being low, and the 

total drug release was not achieved. On this data was to calculate the f2 value, that expresses the 

similarity between the pure drug release profile and the respective formulation. The analysis 

concluded that when using each amount present a different release profile compared to the pure drug 

(f2 below 50). This data showed a 5.46-fold (p<0.0001) increase in the dissolution rate when increasing 

the dose. A similar pathway could be observed in Figure 59b, where the dissolution rate was 0.0002 

mg/min achieving 76% (p non-significant) when 1 mg of clozapine were loaded and 0.0005 mg/min 

achieving 48% of drug release (p<0.0001) when loaded with 10 mg of the drug. The evaluation of the 

similarity factor demonstrated for each drug loading a different profile compared with the pure drug. 

Moreover, the results demonstrated that the presence of micro-pyramids improved the 

dissolution profile due to the higher Sa obtained compared with the patches without the pyramids. 

Interestingly, it was observed that the concentration of clozapine affects the dissolution profile 

demonstrating a mechanism drug-controlled and not carrier-controlled. Finally, it was noticed that 

the higher the drug loading, the faster the release profile. Such consideration is essential in the 

formulation of dosage form intended for systemic delivery as expected in the present work.  
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Figure 59. The dissolution profile of different clozapine loading at 0.1, 1 and 10 mg. a) 1cm  2 patches flat 
achieved an immediate dissolution for patch containing 0.1mg of clozapine, and respectively 72 and 23% of 
drug release for patch containing one and 10mg of clozapine. b) 1cm 2 patches with micro-pyramids achieved 
an immediate dissolution for patch containing 0.1mg of clozapine, and respectively 76 and 48% of drug release 
for patch containing 1 and 10mg of clozapine. The presence of micro-pyramids improved the release profile 
of the drug. The similarity factor, f2 value, was reported in correspondence of all the dissolution profile and 
was obtained comparing each pattern with the correspondent amount of pure drug. The asterisks indicate 
statistical significance where ns stands for non-significant while one to four asterisks suggest increasing 
significance. 

 

3.3 Permeability studies using an biomimetic synthetic membrane 

 

 Subsequently, drug permeability when released from the patch was analysed using both 

cellulose acetate membrane and the biomimetic synthetic membrane, Permeapad™. Each patch was 

loaded with 10 mg of the drug. At first drug, permeation was investigated through cellulose acetate 

membrane, which has the advantages of low costs, high physical strength, and pore dimension of 0.20 
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µm. Cellulose acetate is the main component of Permeapad™ supporting layer. Therefore, the use of 

cellulose acetate membranes allows calculation of the permeability through the phospholipid bilayer 

(Plip), which composed the biomimetic membrane(di Cagno; 2015).  

The 3D printed patches permeation study in cellulose acetate membrane (Papp-cell) 

demonstrated that the patches increase permeability rate compared to unformulated clozapine, 

which presented a flux (J) of 6.96x10 -7 and Papp 2x10 -7 cm/sec. Data presented in Figure 60. Mainly, 

65% PVA+PLA increase permeability of 4.5-fold (p<0.0001), due to the high surface area offered by 

the flat patch and to the fact that the drug is finely absorbed on patch surface. Interestingly, the 

application of micro-pyramids improved permeability from 18.01x10 -7 cm/sec and Papp-cell to 5.02x10 -

7 cm/sec a 2.5-fold increase (p<0.0001) respect to the unformulated drug. Data are also reported in 

term of permeation rate µg/cm 2/sec in Table 30 and Figure 61. Comparing the rate it was noted that 

flat patches increased rate of 3.35-fold (p= 0.043) respect with unformulated clozapine while patch 

with micro-pyramids of 2.37-fold (p>0.05), but non statistical significance was found. This result could 

be due to the radius of the micro-pyramids, which is 0.02 cm which might obstruct cellulose acetate 

pores with the same dimension. However, the surface area available for the drug to permeate is higher 

than the flat patches; therefore, it was noticed an increment compared to pure clozapine. Moreover, 

Etemadi and co-workers, demonstrated that when fine particles are dissolved in the donor 

compartment and permeate through the pore, they can deposit along the pore walls and cause 

blockage(Etemadi et al.; 2018). The higher dissolution in the dissolution media of the patch with micro-

pyramids compared with the patch without, was demonstrated in the previous section, supporting 

this hypothesis.  
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Figure 60. Permeation study through cellulose acetate membrane of unformulated clozapine, 65% patch 
PVA+PLA and 65% patch PVA+PLA with micro-pyramids. Both patches improved permeability compared with 
clozapine with a high statistically significance (****). 
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Table 30. Permeation rate expressed in µg/cm 2/sec comparing rate obtained in cellulose acetate. 

 Clozapine Patch 65% Patch 65% with micro-pyramids 

Cellulose 
acetate 

0.0079 ± 0.0044 0.031 ± 0.0073 0.018 ± 0.0052 
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Figure 61. Permeation rate calculated as µg/cm 2/sec in cellulose acetate. Data showed an increment in rate for 
flat patch, statically significant (*) of 0.0430 and a reduction in rate for patch with micro-pyramids, non-
significant (ns). 

 
 Data were then investigated by using Permeapad™, which is a biomimetic membrane 

consisting of two hydrophilic cellulose hydrate membranes supports and a layer of soy 

phosphatidylcholine S-100. Permeapad™ possess a high in-vivo-in-vitro correlation which was proved 

for different drugs with the Mw between 100 to 600 g/mol(Bibi; 2015; Bibi et al.; 2016, ; 2017). 

Moreover, the permeation through Permeapad™ membrane was compared with porcine buccal 

mucosa and TR146 cell from human oral carcinoma, demonstrating being a tool to estimate 

absorption through the buccal mucosa(Bibi; 2016). Figure 62 displayed the permeation of clozapine 

unformulated compared with clozapine permeability from patch 65% PVA+PLA and patch 65% 

PVA+PLA with micro-pyramids. Overall, 65% PVA+PLA increase drug flux through the membrane of 

1.15-fold (p=0.029) increase respect unformulated clozapine. Comparing the rate, displayed in Figure 

63 and Table 31, it was noted that flat patches increased rate of 1.26-fold (p non-significant) respect 

with unformulated clozapine while patch with micro-pyramids of 2.52-fold (p=0.0145). This finding, 

relates with the previous data obtained in cellulose acetate and it is due to the high surface area 

available from the flat patch and for the solubilising effect of PVA, previously discussed. From the 

other hand side, the addition of the micro-pyramids reduced permeability rate of 2.58-fold compared 

with pure clozapine. This data is coherent with the previous finding where micro-pyramids provided a 

slower permeability profile through membrane compared with flat patches. This could be due to 
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blockage formation due to the improved solubility of clozapine in the donor compartment, as 

previously assessed. 

 

0 5000 10000 15000 20000

0

10

20

30

Time Sec

C
u

m
u

la
ti

v
e

 (
u

g
/c

m
2
)

Clz 10 mg Patch 65% PVA+PLA Patch 65% PVA+PLA with miro-pyramids

✱✱✱✱

✱

 

Figure 62. Permeability study using Permeapad TM membrane. The study showed that flat patches 65% PVA+PLA 
increased clozapine permeation compared with both the unformulated drug, low statistical significance (*), and 
patches with micro-pyramids, high significance (****). 
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Figure 63. Permeation rate calculated as µg/cm 2/sec in Permepad TM. Data showed an increment in rate for flat 
patch, statically non-significant (ns) and a reduction in rate for patch with micro-pyramids, with a low 
significance (*) of 0.0145. 

 
Table 31. Permeation rate expressed in µg/cm 2/sec comparing rate obtained in Permepad TM. 

 Clozapine Patch 65% Patch 65% with micro-pyramids 

Permeapad TM 0.0085± 0.003 0.010 ± 0.003 0.003 ± 0.0004 

 
 
 Permeation assessment through Permeapad TM allows to detect the amount of drug that 

permeates through the lipidic membranes and to calculate Plip, data reported in Figure 64 and for 
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clarity in Table 32. Interestingly, clozapine does not permeate through the lipidic barrier but just 

through the cellulose acetate disks presented in Permeapad TM. A similar finding was reported by 

Shafaat and co-workers who conducted permeability study on mice abdominal skin showing a low 

permeability of 14.17 x 10 -7 cm/sec(Shafaat et al.; 2013). The formulation of transmucosal patches 

improved drug permeability through the lipidic component due to the improved solubility in the donor 

compartment in the first place, where the membrane was wetted with dissolution media which 

mimicked the buccal mucosa surface. Mainly, patch 65% PVA+PLA provided a Plip of 9.50 x 10 -7 cm/sec 

a 5.58-fold (pbelow0.0001) increase respect with clozapine alone; while patch 65% PVA+PLA with 

micro-pyramids an increase of 1.41-fold (p=0.0041). The increase of clozapine permeability from 

patches with micro-pyramids could be due to the overall improved solubility of drug that which is best 

absorbed by a passive mechanism. Overall, flat patches provided an increase in both permeability flux 

and coefficient in both cellulose acetate and Permeapad TM membrane, improving the partition of 

clozapine as well through its lipidic component.  
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Figure 64. Comparison of permeability coefficient both Papp-PermeapadTM, Papp-cell in the cellulose acetate 
membrane and Plip, which represents the permeation through the lipidic component of the PermeapadTM 
membrane.  
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Table 32. Permeability coefficient for clozapine, PVA+PLA 65% and PVA+PLA 65% with micro-pyramids. The 
coefficients were calculated according to Equation 5, 6 and 13, and allowed calculation of the amount of drug 
permeated through the lipidic component of the PermeapadTM membrane, which represent the in-vivo 
correlating barrier. 

 Papp-Permeapad (x10 -7)  

cm/sec 

Papp-cell (x10 -7) 

cm/sec 

Plip (x10 -7) 

cm/sec 

Clozapine pure 26.01 ± 0.006 2.09 ± 0.003 -17.06 

PVA+PLA 65% 31.04 ± 0.007 9.87 ± 0.001 9.50 

PVA+PLA 65% with micro-pyramids 12.09 ± 0.007 5.43 ± 0.006 2.46 

 

4. Conclusion 

  

 3D printing resulted in a flexible manufacturing process to produce unidirectional 

transmucosal patch provided with a hydrophobic backing layer with a surface area of 1cm  2. Patches 

physical properties were analysed to establish 3D printing reproducibility respect to the CAD and STL 

files produced, resulting in being printed coherently in term of designed size. Clozapine was loaded 

with three different strengths in both patches, and it was evaluated it dissolution profile, determining 

that drug-controlled mechanism. This implicates that clozapine dosage forms present different release 

profile when using different drug concentration, fundamental information when formulating systemic 

and controlled release system like the one proposed in this work. Moreover, the release was improved 

by the application of the micro-pyramids, which increased the surface area available. Finally, the 

investigation of permeability was conducted both on cellulose acetate membrane and the biomimetic 

membrane PermeapadTM. The analysis showed that the higher dissolution profile of the drug in the 

donor compartment caused membrane blockage in both membranes, reducing permeability in the 

patch with micro-pyramids. From the other hand side, flat patches PVA+PLA increased permeability. 

Results obtained using PermeapadTM allow to hypothesis a drug absorption in-vivo due to the 

membrane in-vivo-in-vitro correlation. Most importantly, both patches increase clozapine solubility 

through the lipidic layer, representing a promising absorption if the patch would be administered in-

vivo.  

 Moving forward, the PVA+PLA patches generated a controlled-release profile improving drug 

permeability through the membrane, tackling the problem of medication acceptability related to 

dosing per day. However, the second concern refers to drug taste perception if a small amount of drug 

would be released in the oral cavity affecting medication acceptability. Therefore, a structured 

qualitative and quantitative investigation of clozapine taste is considered fundamental.  
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Chapter 7.Clozapine Taste Investigation  

 

1. Background 

 

In the management of treatment-resistant schizophrenia low compliance of clozapine is an 

issue related to the number of daily doses and taste. Chapters 4 to 6 have investigated the potential 

to develop modified and prolonged release of clozapine dosage forms to address the current issue of 

multiple daily drug dosing. Taste is one of five senses stimulated in the mouth by the compound’s 

chemical characteristic and identified in brain, based on information provided by taste 

receptors(Bradbury; 2004). It is recognised by a family of receptor T2R, described in the Introduction, 

that is composed of 25 receptors, which gene expression creates the individual perception of 

taste(Shaw; 2018; Soares; 2013). In pharmaceutics, over 350 drugs are identified as aversive playing a 

crucial role in medication acceptability(Milne and Bruss; 2008). An aversive taste is defined as the 

avoidance of food or drug which is disliked. Literature references reported that clozapine taste is a 

cause of low compliance(Abeelen; 2013; S. Ramuth, J. Flanagan; 1996; Siva Prasad Reddy; 2011). In 

clinical practice, drug taste is considered to affect patient compliance toward antipsychotics 

medication(Bradshaw et al.; 2016; Brown and Bussell; 2011; Higashi et al.; 2013; Matsui; 2007). 

However, data about a quantitative and reliable assessment of clozapine taste or its formulation 

counterpart are missing. Therefore, it is fundamental to investigate claim about the aversive taste of 

clozapine and understand whereas or not the drug itself or formulation excipient causes low 

medication acceptability. Such is considered a leading cause of discontinuation in clozapine intake and 

risk of relapse(Shaker and Jones; 2018; D. M. Taylor et al.; 2009).  

Taste is one of five senses which is perceived from gustatory receptors from T2R family in the 

tongue. In the pharmaceutical industry, more than 350 drugs are considered of possessing an aversive 

taste, and it is well understood that aversive medications are not considered palatable. Palatability is 

fundamental to endorse medication acceptability, thus compliance. Taste can be assessed using both 

in-vitro and in-vivo methods to determine taste threshold that is a minimum amount of compound 

that causes an aversive taste perception(Dale Purves, George J Augustine, David Fitzpatrick, Lawrence 

C Katz, Anthony-Samuel LaMantia, James O McNamara, and S Mark WilliamsDale Purves, George J 

Augustine, David Fitzpatrick, Lawrence C Katz, Anthony-Samuel LaMantia, James O McNamara; 2001). 

This value is fundamental to understand how much a drug is aversive or bitter and it is usually 

compared with most bitter known compound quinine and strychnine, which threshold is, respectively 

0.008 mM, and 0.0001 mM(G. N. Martin; 2013). In-vivo methods are a human taste panel(Jessica Soto 

et al.; 2018) and animal preference studies(Mennella; 2013), while in-vitro strategies use 
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sensors(Latha RS; 2012), modified drug release studies(Jessica Soto; 2018) and cells(Ruiz-Avila; 2000). 

Human taste panel estimates gustatory perception responses in healthy human volunteers allowing a 

sensitive measure of taste designed to minimise bias and variable responses between volunteers, who 

rate sample according to an adjective scale. Human panel studies use limited due to potential toxicity 

and liability issues. From the other hand side, animal studies can be conducted obtained precise data, 

as it was proved that mice could detect a small quantity of bitter drug if diluted in sucrose 

solution(Contreras; 1995). As well novel drug release apparatus can be adapted to simulate buccal 

saliva and mimic the release of a drug from dosage forms to identify the concentration of drug that 

once release in mouth cause an aversive taste perception, named threshold(Yajima et al.; 2002). 

Another assessment method is electronic tongue which presents a sensor array and a detector, known 

as a sensor chip, capable to screen mainly bitterness when drugs are too toxic to be tested in 

humans(Podrażka; 2017). 

 Even if above mentioned, non-human techniques are advantageous if using toxic drugs. For 

ethical purposes, use of human taste panel is usually preferred to assess drug taste because it takes 

into consideration individuals perception mimicking most likely scenario of a patient taking prescribed 

medication(Anand; 2007). Moreover, this study can be standardised efficiently, reducing any 

operation error and improving the safety of candidates through the production of standard operation 

procedure (SOP)(Rui-xin Liu,Xiao-jie Gao,ming Wang, Li-ping Dai,4 Bing-ya Kang,Lu Zhang, Jun-han Shi, 

Xin-jing Gui, Pei Liu; 2017). 

The present work aimed to both conduct a structured investigation of literature to investigate 

the extension of clozapine taste related compliance and to assess for the first-time clozapine human 

taste perception. Therefore, excipients used in clozapine marketed dosage forms, such as FazoClo®, 

Clozaril®, Clozapine Sandoz®, and oral solutions Versacloz ® and Denzapine ® were investigated to 

understand if reported aversive taste relates with drug or with excipients. Moreover, two 

pharmaceutical companies were reached to understand which method was used to describe drug of 

possessing an aversive taste. However, medicaments taste is considered a leading cause of 

discontinuation in clozapine intake and risk of relapse(Shaker; 2018; David M. Taylor; 2009). 

Therefore, a qualitative evaluation of its threshold once administered is fundamental and was pursued 

in this last thesis Chapter. 

 

2.Materials and Methods  

Clozapine Pharma grade was procured from Fagron (Newcastle, Tyne & Wear, UK). 

Transparent 30mL polypropylene universal tubes were purchased from Wheaton (Rochdale, 

Lancashire, UK). Buxton® Natural Mineral water was procured from Nestle Waters (Rickmansworth, 
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Hertfordshire, UK); unsalted, plain crackers (Rakusen® Traditional Matzos) were obtained from 

Waitrose (London, UK); and plastic tumbler was purchased from Office Depot (Raton, Florida, USA). 

 

2.1 Structured literature review 

 

It was searched Google Scholar, Google Books and PubMed using medical subject headings 

(MeSH) and free words. MeSH terms included "Clozapine" AND "taste", or "taste perception", or "taste 

disorders", or "bitter". Title and abstracts of obtained paper were reviewed for each paper considered 

potentially relevant from its title and then refined considering eligibility criteria. Eligibility criteria were 

papers and clinical reports referring to 1) taste of clozapine, 2) effect of clozapine taste on compliance 

3) assessment of clozapine taste influence on compliance. Exclusion criteria were: 1) article dated 

before 01.01.2000, 2) literature referring to other antipsychotics, 3) reviews and PhD thesis. 

 

2.2 Data Collection 

 

BitterDB is a database that relates to the genome browser to predict the taste of the drug. 

Notably, it considers as aversive molecules with an Mw lower than 700 and hydrophobicity (AlogP) in 

a range between −3 and 7(Ayana Wiener, Marina Shudler, Anat Levit; 2011; Dagan-Wiener; 2017; 

Wiener; 2012). The BitterDB, database holds about 500 compounds that were reported as aversive or 

that activate at least one human bitter receptors(Dagan-Wiener; 2017; Wiener; 2012). It also contains 

data on bitter receptors and ligands from chicken, mouse, and cat. 

The patient information leaflet (PIL) of all marketed dosage forms of clozapine reports 

aversive taste as one of medication side effects. Two medical information departments of 

pharmaceutical companies (i.e. Novartis-Mylan and Sandoz) were contacted to investigate how to 

taste alteration was assessed between October 2019 and January 2020 and information via email was 

received from both pharmaceutical companies contacted 

 

2.3 Human Panel study design and methodology  

 

This study was a single-blinded, randomised sensory evaluation (taste) of extemporaneously 

prepared aqueous solutions of clozapine. University College of London ethically approved this study 

of London Ethics Committee under reference REC 4612/024. 
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2.3.1 Sample preparation 

 

Extemporaneous preparation of all samples was completed under the supervision of UK 

registered pharmacists, under strict quality measures, and according to pre-approved SOP. A copy of 

SOP created for solution preparation could be found in Appendix 2 of present work. A 0.018 mg/mL 

Clozapine stock solution was prepared by dissolving 36 mg of clozapine in 2 L of deionised water. This 

value of concentration represents Clozapine saturation solubility, and it was previously calculated in 

Chapter 4. Dilutions of stock were prepared to render clozapine solutions at 0.012, 0.00225 and 

0.001125 mg/mL, according to Table 34. Previous taste assessment studies were conducted using the 

following dilution factor considering drug poorly water solubility and therefor these were proposed in 

the present work(J. Soto; 2016). 

 

Table 33. Preparation of Clozapine dilutions. 

No Concentration 

(mg/mL) 

Dilution 

factor 

Volume of stock solution to 

prepare 1 L dilution (mL) 

1 0.018 Stock 36 mg in 2 L 

2 0.012 1.5 666.66 mL 

3 0.00225 8 125 mL 

4 0.001125 16 62.5 

 

2.3.2 Participant selection 

 

The study was advertised by internal email to all staff and students of University College 

London, where potential participants were invited to contact the research team to receive a detailed 

Participant Information Sheet. Potential participants were screened against inclusion and exclusion 

criteria, detailed in Table 35. Those who decided to participate and met inclusion/exclusion criteria 

signed an Informed Consent Form to participate. An equal number of male and female participants 

was maintained during recruitment.  

 

Table 34. Inclusion and exclusion criteria for participant recruitment. 

Inclusion criteria 
- Healthy adult males and females aged 18-40 years 

- Able to understand speak English 
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Exclusion criteria 

- Antecedent deterioration of taste or smell 

- Dental care is undertaken up to 15 days before the test 

- Local anaesthetics into mouth within 24 hours of study 

 

2.3.3 Taste assessment protocol 

 

The "swirl and spit" method was used as a means of taste assessment. Participants were 

instructed to swirl a 10 mL sample of test solution in their mouth for 5-10 seconds, ensuring that it 

was distributed across tongue and palate. After that, the sample was spit, and intensity of test stimuli 

was rated using a continuous measurement scale (Visual Analogue Scale, VAS, anchored from 0 "not 

aversive" to 100 "extremely aversive") and open-ended comments (Figure 66). samples were rated 

using an electronic data collection tool designed on Qualtrics. Each participant evaluated three 

samples of each concentration, to a total of 12 samples, which all samples blinded (coded) and 

randomised. Before and after assessment of each sample, participants were instructed to rinse their 

mouth with bottled water and to eat plain, wheat crackers to neutralise palate. An interval of 7.5 

minutes was maintained between test samples to ensure the taste of the previous sample was no 

longer perceived. Each session lasted between 1.5 to 2.0 hours. 

 

 
Figure 65. Graphical representation of swirl & spit methodology. 
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2.4 Human Panel Model Data treatment and analysis 

 

Data normality was checked with a Shapiro-Wilk test, and Kruskal-Wallis test was performed 

to check if there were significant differences for the rating of positive control between different 

sessions and between volunteers. To compare clozapine taste intensities, a value which corresponds 

to the concentration of drug that produces half of the maximal rating (100) (EC50) was calculated with 

the following Emax model:  

 

𝑬 = (𝑬𝒎𝒂𝒙 𝑿 𝑪𝑯𝒊𝒍𝒍

𝑬𝑪𝟓𝟎𝑯𝒊𝒍𝒍 + 𝑪𝑯𝒊𝒍𝒍⁄ ) +  𝜺 Equation 14 

 

where E is taste rating, Emax represents maximum taste rating fixed to 100, C refers to the 

concentration of the drug, Hill is slope factor affected by gradient of the curve, EC50 represents 

concentration which elicits a half-maximal taste rating, and ε is participant variability. EC50 values and 

95% confidence interval were derived from this model. Variance values for each parameter were 

obtained as well as the error value, as a reflection of volunteer variability(Jessica Soto; 2018).  

All statistical analyses, boxplots generation and some graphs were done with R (version 3.0.1). 

Microsoft Office Excel 2016 was also used to produce Figures. IC50 and EC50 values were estimated 

by using non-linear mixed-effects modelling performed using software NONMEM® (ICON, Ellicott City, 

Maryland, version 7.3) in conjunction with a Fortran (64-bit) compiler using Perl-Speaks NONMEM ® 

(PSN, version 4.2.0) as an interface to run NONMEM®. 

 

3. Result and Discussion 

 

3.1 Literature and excipients investigation  

 

The structured literature review aimed to find evidence discussing the taste of clozapine with 

the overall objective to find an assessment of clozapine taste identifying if this possess an aversive 

taste or not. The screening of titles retrieved during the structured literature review provided 55 

potentially relevant literatures: Google scholar 17, Google books 2, PubMed (MeSH) 4 and Web of 

Knowledge 32. After removing duplicates and reviewing both abstracts and title according to the 

inclusion criteria, a total of 15 papers were considered relevant. Table 35 reports the 15 papers in 

discussion.  
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Table 35. List of 15 papers and case reports obtained from the structured literature reviews. Those are 

displayed alphabetically.   

Author  Title Year  Reference 

Ben-Aryeh et al. 

Salivary Flow-Rate and 
Composition Schizophrenic 

Patients on Clozapine: Reports 
and Laboratory Data 

1996 
(Ben-Aryeh et 

al.; 1996) 

Derman et al.  

Effects of hM4Di activation in 
CamKII basolateral amygdala 

neurons and CNO treatment on 
sensory-specific vs. general PIT: 

refining PIT circuits and 
considerations for using CNO 

2020 
(Derman et al.; 

2020) 

Gaisler-Salomon et al. 

Systemic administration of MK-
801 produces an abnormally 

persistent latent inhibition which 
is reversed by clozapine but not 

haloperidol 

2003 
(Gaisler-

Salomon & 
Weiner; 2003) 

Gurok et al. 
Treatment of burning mouth 

syndrome with low-dose 
clozapine: a case report 

2019 

(Mehmet 
Gürkan 

Güroka,Alaaddin 
Hekima; 2019) 

Holger et al. 

Haloperidol and clozapine 
antagonise amphetamine-

induced disruption 
of latent inhibition of 

conditioned taste aversion 

2003 
(Holger Russig, 

Aneta Kovacevic 
et al.; 2003) 

Kostakoglu et al. 
Ketoacidosis as a side-effect of 

clozapine: a case report 
1996 

(Kostakoǧlu et 
al.; 1996) 

Man 
Monitoring patients using 

clozapine 
2018 (Man; 2018) 

Masareddy et al. 
Development of Mouth 

Dissolving Tablets of Clozapine 
Using Two Different Techniques 

2008 
(Masareddy et 

al.; 2008) 

Oloyede et al. 

Clozapine and Norclozapine 
Plasma Levels in Patients 

Switched Between Different 
Liquid Formulations 

2019 (Oloyede; 2019) 

Purohit et al. 

Pharmacogenetic Manipulation 
of the Nucleus Accumbens 

Alters Binge-Like Alcohol Drinking 
in Mice 

2018 
(Purohit et al.; 

2018) 

Reddy et al. 

Novel Approach in Designing of 
Mouth Dissolving Tablets for 

Bitter Drugs: Taking Clozapine as 
Model Drug 

2011 
(Siva Prasad 

Reddy; 2011) 
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Thrasher et al. 
Clozapine’s Effects on Ethanol’s 

Motivational Properties 
1999 

(Thrasher et al.; 
1999) 

Van der Poorten et al. 

Sublingual use of atropine for 
clozapine-induced sialorrhoea: 
literature review and two case 

reports 

2019 
(Poorten & Hert; 

1996) 

Vardigan et al.  

MK-801 produces a deficit in 
sucrose preference that is 

reversed by clozapine, D-serine, 
and the metabotropic glutamate 

5 receptor positive allosteric 
modulator CDPPB: Relevance to 
negative symptoms associated 

with schizophrenia? 

2009 (Poorten; 1996) 

Wang et al. 
The coding of valence and 

identity in the 
mammalian taste system 

2018 (Poorten; 1996) 

 

 

 References were analysed and sought relations between clozapine and taste. Interestingly, in 

each article, the taste of clozapine is deemed to be bitter; Douroumis(Douroumis; 2011) reported it 

as a known side effect of the drug whereas a case study from Gürkan et al., described the perception 

of a bitter taste in the mouth as a symptom of mental health condition(Mehmet Gürkan 

Güroka,Alaaddin Hekima; 2019; Melis et al.; 2019; Mullan; 2000; Pickering et al.; 2019). None of these 

carried strong evidence that the drug was bitter though. 

The structured literature review conducted in the present work primarily aimed to find a 

quantitative assessment of clozapine taste i.e. threshold and/or any data (clinical or others) that could 

connect drug taste with compliance issues.   

No papers measuring taste of clozapine were retrieved. However, only 26% of these papers 

(n=4 papers, p value < 0.0001) evaluated the effect of clozapine on the perception taste. While another 

26% (n=4, p value < 0.0001) were case reports, respectively reported by Man(Man; 2018), Gurok et 

al.(Mehmet Gürkan Güroka,Alaaddin Hekima; 2019), Ben-Aryeh et al., and Kostakoglu et 

al.(Kostakoǧlu; 1996). One case reports (33.3% of case reports, p value < 0.0001) discussed that after 

four weeks of treatment one patients complained a perception of “bad-taste” in the 

mouth(Kostakoǧlu; 1996). The second case report said that addition of clozapine reduced the 

perception of a metallic taste that a postmenopausal lady was perceiving during the day(Mehmet 

Gürkan Güroka,Alaaddin Hekima; 2019). The third and fourth case reports, from Man(Mehmet Gürkan 
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Güroka,Alaaddin Hekima; 2019) and Ben-Aryeh et al.(Ben-Aryeh; 1996), representing 50% (p value < 

0.0001) of all case report , monitored the perception of taste in patients taking clozapine. The study 

conducted by Man, in 2018, on 32 participants demonstrated that none of the participants perceived 

a taste which was different from the placebo (containing glycopyrrolate oral solution). While Ben-

Aryeah et al, discussed that none of the 25 patients presented changes in the perception of taste. 

Overall, just the 6.66% (p value <0.0001) of the total refined search (one paper out of fifteen) reported 

a bitter taste for one patient after four weeks of administration.  

Five papers (33.3%), investigated the effect of clozapine intake on taste perception, using mice 

models. The mice were deprived of water or food for 2 hours and then was evaluated the impact of 

clozapine on drinking behaviour of an appetitive 5% sucrose solutions. Notably, Thrasher et al., 

demonstrated that 1 mg/kg of clozapine dispersed in saline water plus 0.1 N HCl, administrated 

intraperitoneally  to a mice model did not affect the intake of a sucrose solution (Thrasher; 1999). 

Same findings were proposed by Derman et al., (Rifka C. Derman, Caroline E. Bass; 2019), and Holger 

et al., (Holger Russig, Aneta Kovacevic; 2003) who dissolved clozapine in 0.1 N HCL in 0.9% or 100% 

DMSO saline solution and diluted to obtain a final concentration of 5.0 mg/kg and administered the 

solution intraperitoneally. They discovered that clozapine intake did not affect a 5% sucrose solution 

drinking. Purohit et al., in 2018, observed that an intraperitoneal administration of 0.5 mg/kg for four 

days and a dose of 1mh/Kg on day 6 of clozapine did not change drinking behaviour of water or a 

quinine solution, concluding that there is no post-administration metabolic effect of clozapine on the 

sense of taste(Purohit; 2018). Those data showed that clozapine did not affect sucrose intake but, no 

quantitative taste assessment of clozapine was reported in the aforementioned studies. Lastly, 

Vardigan et al., in 2009, demonstrated that 3 mg/Kg of clozapine by subcutaneous administration 

reverse the reduction MK-801-induced deficit in sucrose consumption. Overall, the 100% of papers 

discussed in this section demonstrated that intraperitoneal administration of clozapine did not alter 

the neuronal perception of taste.  

Interestingly, six papers out of fifteen papers (40%) identified by the structured literature 

review, generically defined clozapine as a “bitter drug”, a drug with a bad-taste or an aversive taste. 

Particularly, the 33.3% (p values< 0.0001) of this category of papers published by Masareddy et 

al.(Masareddy; 2008), and Reddy et al.(Siva Prasad Reddy; 2011), proposed novel drug delivery 

systems to overcome clozapine bitterness. Reddy et al., in 2011, referred to a paper published by 

Ramuth et al., in 1996, where clozapine taste was not discussed. Finally, in 2019, Oloyede et al., 

highlighted a preference in taste of Denzapine® compared to clozapine suspension from crushed 

tablets. However, the authors highlighted an absence of evidence regarding clozapine aversive taste 
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and questioned the importance of the acquisition of this information to tackle medication 

acceptability in a patient with treatment-resistant schizophrenia(Oloyede; 2019).  

Overall, this structured literature review showed that just the 6.66% of papers (n=1 out 15) 

reported a bad taste of clozapine after four weeks of oral clozapine administration. Moreover, 33.3% 

of papers (n=5 out of 15) demonstrated that intraperitoneally administration of clozapine solution did 

not affect sucrose or ethanol solution intake in mice models.   The rest of the papers referred to an 

aversive taste of clozapine but without supporting evidence. Overall, none of the papers identified 

were able to provide a quantitative assessment of clozapine taste. Therefore, the data available from 

case reports suggest that clozapine does not alter patient taste perception (Ben-Aryeh et al.,(Ben-

Aryeh; 1996)) and that the claimed bitterness of clozapine (supported by six papers) is not supported 

by sufficient evidence.  

 

3.2 Database and PIL consultation 

 

In recent years a new database has become available to predict compounds taste, BitterDB. This 

database is a predictive tool that uses compounds values as molecular weight and hydrophobicity to 

detect bitterness. Compounds with molecular weight lower than 700 g/mol and hydrophobicity 

between -3 and 7 (expressed in logarithmic scale) are considered as bitter, where values higher than 

0 are considered very bitterly (Wang et al.; 2018). It cross-links information about molecular structures 

of compounds with a genomic server to predict drug taste. The use of this database to predict 

clozapine taste was carried out by using code Chemical Entities of Biological Interest (ChEBI) 3766, 

referred to clozapine molecule. BitterDB predicted drug taste to be aversive by generating a value of 

3.39, as reported in Figure 66. 

http://bitterdb.agri.huji.ac.il/dbbitter.php#searchMenu
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Figure 66. Taste score predicted by database BitterDB by using code ChEBI 3766 

 

 However, it does not create a taste threshold that is minimum concentration that activates 

taste perception. The tool does take into consideration that the molecule may bind taste receptor 

family T2R based on its chemical similarity. The main limitation of the database is that it does not take 

into account an individual’s perception of taste that can differ depending on age, sex and co-current 

therapy or disease(Ayana Wiener, Marina Shudler, Anat Levit; 2011; Podrażka; 2017; Rudnitskaya et 

al.; 2013). For a more specific result that does not include in-vivo studies, a ligand-based approach 

would be able to recognise chemical family, as suggested by Levit and co-workers (Levit et al.; 2014). 

Even if BitterDB cross-links information about receptor physiology and chemical bond with reported 

receptor structure, it uses as a validation method literature evidence. Through structured literature 

review conducted here, it was showed that literature lacks in demonstrating clozapine taste and does 

not propose an assessment of bitterness threshold. Thus, we considered this tool as not reliable for 

taste prediction of clozapine(Behrens et al.; 2007; Shaw; 2018).  

Clozapine taste was claimed both in literature and in all PILs as bitter. A taste aversion is 

considered in the literature to cause medication non-compliance. However, the structured literature 

review conducted here does not report evidence of clinical study or audit in which taste is considered 

as an issue. A PIL is the leaflet included in medicine boxes that it is written for patients and gives 

information about using the medicine, its composition, and side effects. PIL addition to dose box 

becomes a legal requirement since 1999; however, Raynor and co-workers , reported a lack of 

evidence that the patient refers leaflets(Holger Russig, Aneta Kovacevic; 2003). Usually, information 

about side effects reported in PIL is collected during step three of clinical trials when are conducted 
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animal study and have to be published with the highest accuracy(Holger Russig, Aneta Kovacevic; 

2003). However, data on side effect could be reported post marketing through a pharmaco-vigilance 

reporting system that includes clinician, pharmacists, nurses, and patients themselves(Dal Pan et al.; 

2019). 

Consequently, two pharmaceutical companies were contacted to understand why “bitter 

taste” is reported in PILs. Both companies were not able to provide information on how this side effect 

was assessed and referred to main monography. The latest version of the monograph was revised in 

2017 by Auro Pharma Inc., Canada, and presented bitterness as a side effect of medication(Inada and 

Ishigooka; 2013). Therefore, the reason for reporting aversive drug taste was sought in excipient of 

each marketed dosage forms: Clozaril® from Novartis, FazaClo® from Alamo Pharmaceuticals and Azur 

Pharma, Sandoz Clozapine tablets and in prescribing information provided by the FDA(Hardeman S.; 

n.d.; Novartis; n.d.; Oliver; 2013; Pharma; 2011; Sandoz; 2018). Moreover, it is well-known that in 

clinical practise clozapine dosage forms are crushed to be administered to patients with swallowing 

difficulties. Tablet crushing could cause a bad taste perception by exposing the oral cavity to different 

excipients. Therefore, it was investigated excipients listed in each of marketed medications and sought 

bitterness within them.  

It was observed that each formulation presents at least one excipient that is considered bitter 

or having an unpleasant in taste. List of excipients per each medication is listed in Table 36. 

Interestingly, it was demonstrated that each formulation presents at least one aversive excipient. As 

in clinical practice, it is common to crush the tablet to administer medication; reported taste may refer 

to excipients themselves and not to drug.  

  

Table 36. Brand dosage forms and excipients that possess a bitter taste 

Dosage Form Brand Name Excipients Bitter or unpleasant taste 

Tablet 

FazoClo ® 

Aspartame 
Riera and co-workers , 

2007(Riera et al.; 2007) 

Sodium Bicarbonate 
Newbrun E., 1996(Newbrun; 

1996) 

Citric Acid 

Monohydrate 

Garden and co-workers , 

2003(Garden, J., Roberts, K., 

Taylor, A., and Robinson; 

2003) 

Clozaril ® Silicon Dioxide 
Shabir and co-workers , 

2012(Shabir et al.; 2012) 
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Clozapine 

Sandoz® 
Sodium Lauryl Sulfate 

CompoundChem 

2014(COMPOUNDCHEM; 

2014) 

Oral Solution 

Versacloz ® 
Sodium Phosphate 

Monobasic Dihydrate 

Shimokomaki and co-workers , 

2003(Shimokomaki et al.; 

2003) 

Denzapine ® 
Sodium dihydrogen 

phosphate dihydrate 

Shimokomaki and co-workers , 

2003(Shimokomaki; 2003) 

 

3.3 Human Taste Assessment 

 

Assessment of taste aversiveness provides information about the acceptability of various taste 

stimuli, which perception depends on activation of receptor family T2R(Mennella; 2013). Recent 

studies hypothesised that diversity in gene sequences creates diversity and variation in the individual 

opinion of taste and therefore in medication adherence(Kim et al.; 2005; Mennella et al.; 2011) These 

differences could also be influenced by patient's personalities such as temperament and 

experience(Macht & Mueller; 2007; Mela et al.; 1992). In treatment-resistant schizophrenia clozapine 

taste is considered to affect patient medication acceptability, but literature evidence as lacking in the 

identification of a taste threshold. Therefore, this part of work aimed in threshold calculation as EC50, 

the concentration of drug that produces half of the maximal rating through a human panel study. 

Volunteers were recruited according to inclusion and exclusion criteria defined in the method 

section, were asked to swirl four different concentrations of a clozapine solution and rate any aversive 

taste perception from 0 to 100%. Human taste panel study results are displayed in Figure 67 and 

showed an average of 7% of aversiveness for clozapine solutions, with a, and static Kruskal-Wallis test 

revealed concentration had a (just about) significant effect on human rating (p=0.05). However, it is 

usually considered that values under 50 are neutral. Therefore, no aversion against the taste of 

clozapine it was found. Moreover, no significant difference was found between four different 

concentration of clozapine solutions. Human taste panel aimed to calculate EC50, which give as 

information about taste threshold. However, results showed that no one of clozapine solutions at four 

different concentration values (0.018, 0.012, 0.0022 and 0.0011 mg/mL) affect volunteers taste 

perception; thus, EC50 could not be calculated, and clozapine taste perception has to be considered 

as not aversive. Low concentration of solution would not affect results as the use of a drug at its 

saturation solubility (clozapine saturation solubility 0.018 mg/mL) it is mimicked in-vivo condition. Due 

to clozapine low water solubility, saturation solubility represents the highest quantity of the drug that 

could be released in mouth and so capable of interacting with taste receptor(Colombo et al.; 2017). 
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Gao's post hoc analysis was used to look at differences between concentrations(Gao et al.; 2008). 

There was only one significant difference (p < 0.05) between 0.0022 and 0.0011 mg/mL (p = 0.034). 

All other concentrations were not rated in a significantly different way (p > 0.05). 
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Figure 67. Human taste panel results from a cohort of 23 patients. Data showed an overall 7% of alteration 

of taste perception. This average value is not considered as aversive. Results are just about statistically 

significant (*) at static Kruskal-Wallis test. 

 

Different in the perception of clozapine taste between gender and age groups were evaluated. 

Data showed in Figure 68. No significant differences observed between males and females, 

particularly, highest concentrations of 0.018 mg/mL showed an average value of averseness percentile 

of 11.12 ± 4.26 % (p=0.013) and 0.012 mg/mL of 19.87 ± 34.72 % (p=0.016). No difference was 

identified either for both lowest concentrations.  

As well no difference between ages at all concentrations, data were analysed by searching for 

similarity using t-test obtaining all p values < 0.05, as displayed in Figure 69.  
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Figure 68. Displayed that no difference occurred between gender. With good statically significance (** and *) 

for higher concentrations (0.018 and 0.012 mg/mL), while not-significance (ns) was found for lower 

concentrations (0.0022 and 0.0011 mg/mL). 

 

Figure 69. Displayed that no difference occurred between two age groups 18-24 and 25-34. High statistical 
significance were found comparing the highest concentration of 0.018 mg/mL (***). Good significance (**) 
were identified comparing groups age of concentrations 0.012 and 0.0011 mg/mL and low statically 
significance (*) was observed concentration 0.022 mg/mL. 

 



176 
 

This human panel study received ethics approval (REC 4612/024). Therefore, it was possible 

to analyse volunteer responses, as well as reporting all volunteer comments in Table 37. Comments 

were listed from the most concentrated solution to lowest focused solution of the drug. Overall, it 

was noticed that candidate did not perceive any taste from solution compared with "plain water", that 

was available to neutralise palate between each sample, as per guidance(Keeley; 2019). The taste was 

described as "not aversive" or "like water" from 22 candidates up to 23, where just one recognised an 

unpleasant feeling for 0.018 mg/mL. While for concentration 0.012 mg/mL, it was identified a slight 

aversive after taste from two candidates. However, most of the comments for all solutions reported 

a watery-taste, not aversive and quite acceptable, confirming rate provided. 

 

Table 37. Comments provided by volunteers during the human panel study. This information can be disclosed 
as volunteer's privacy is respected and as allowed by ethical approval REC 4612/024. 

0.018 mg/mL 

There is no taste difference of sample compared to water 

No difference to water 

Slight powdery taste in the end but nothing aversive. 

Also, I could not tell that I felt any flavour. Felt like water 

less of a taste than the previous sample with similar viscosity and mouthfeel 

taste like water 

It tastes like tap water. Slightly bitter when it first came into the mouth, and feelings became 
stronger later 
no taste at all 

Seemingly tasteless, not aversive at all 

The beginning taste was not aversive, but towards the end of 10 seconds, it became a lot more 
aversive. Taste it left in your mouth was not nice 

It is a neutral flavour 

not aversive at all, taste quite like water 

plain as water 

0.012 mg/mL 

a slightly different taste when first swirled around back of the mouth which then disappears 

The sample has no difference in taste compared to water. 

Same taste as water. 

A slight powdery taste again. 

Feels like water. Subtle flavour but it is negligible 

Slight taste upfront which fades 

No taste at all 

Bitter but not strong. taste last long after spitting it out. (compare to previous ones) 

very slight taste but minimal 

Seemingly tasteless, but a mild and subtle bitter aftertaste lingers around the mouth 

Not aversive. Yet again beginning taste reminds me of a mushroom, but that went away very 
quickly. 

0.0022 mg/mL 
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Like water 

It is not bitter at all, not in aversive 

No difference to the taste of water 

Tastes neutral - like water. 

No taste at all 

No taste whatsoever 

Water-like viscosity and mouthfeel; extremely mild almost bitter taste after several seconds but 
practically unremarkable 

Palatable taste 

no taste at all 

slightly bitter 

almost no taste to no taste at all 

Very plain, water-like 

quite like water 

Is neutral, a little bit sweet at the end 

Tasted like water with high pH 

plain and smooth taste, not irritating and quite acceptable 

No difference from water 

taste like water 

0.0011 mg/mL 

The sample has little (nearly no difference) taste to water, probably to different pH of the sample 
compared to water given at the start of the project 

Could not tell the difference with water 

Slight bitter taste - not noticeable if you are not observing 

Very subtle taste, can/t even describe it because it is barely noticeable. Just felt like water as well 

The taste is acceptable 

It is very bitter and a little astringent. Tastes like tap water. 

Very slight medicinal taste at the end of 10 seconds 

Seemingly tasteless, not aversive 

No problems with this one. The taste reminded me off mushrooms. Did not leave an after taste in 
my mouth 
It is neutral 

Very neutral-tasting 

taste acceptable 

 

These findings suggest that none of the different concentrations of clozapine solution 

generate taste aversion. In Chapter 7 of this thesis, it was proved that literature lacks clarity regarding 

the claim that clozapine possesses an aversive taste. Moreover, it was suggested that unpleasant 

sensation related with marketed dosage forms could be due to use of at least one excipient recognised 

as bitter or aversive such as aspartame(Riera; 2007), sodium bicarbonate(Newbrun; 1996), silicon 

dioxide(Shabir; 2012) and sodium dihydrogen phosphate dihydrate(Shimokomaki; 2003). Therefore, 

it was recommended the use of produced data to improve existing formulations as a strategy that 

would improve patient acceptability of medication and thus reduce the cause of non-compliance.  
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4. Conclusion  

 

 Taste is recognised to be one of the causes of medication non-compliance. In treatment-

resistant schizophrenia , non-compliance is considered to cause 70% of medication discontinuation 

that cause a relapse. In this section of present work, the problem of clozapine taste was addressed. At 

first, literature was revised extensively, and no reference regarding an assessment of clozapine taste 

was found. However, four papers reported that clozapine solution does not affect the drinking 

behaviour of a 5% sucrose solution and, therefore, was considered as not creating taste aversion. 

Then, the database BitterDB for taste prediction was used and predicted an aversive taste for the drug. 

Since the database relies on literature as a confirmation method and since no valuable documentation 

was found, this source was considered inconsistent with the research question. Investigation of the 

literature demonstrated that no evidence of human patient experiencing an aversive taste after 

clozapine intake. 

 Moreover, analysis of PIL showed that each formulation presents excipients known for its 

aversive taste. Lack of information was sought when contacting companies which were not able to 

provide evidence or guidance on how to taste aversion was assessed, but referred the monograph as 

main resource. Overall, due to the influence of taste on medication acceptability in patient affected 

by treatment-resistant schizophrenia patients being treated with clozapine, it is essential to 

investigate further its taste by a in-human taste assessment.  

Therefore, the present work investigated taste of clozapine as literature reported that one of 

the leading causes of non-compliance toward clozapine market dosage forms could be due to its 

aversive taste. It was previously proved that in the literature, there is missing evidence reporting an 

assessment of this taste perception and its effect on medication acceptability. Therefore, in this 

definitive work, it was proposed a quantitative evaluation of clozapine taste, namely EC50, by 

performing a human panel study. The study was conducted on four different concentrations of 

clozapine and its saturation solubility. Data showed that no one of the solutions causes an unpleasant 

or aversive mouth perception and that EC50 was not calculable. Such results were confirmed by 

statistical analysis, demonstrating that no difference occurred between the different sample. No 

difference was also observed between gender or age groups. Moreover, volunteers commented that 

the solution tasted like water, and no aversiveness was overall found. These results are outstanding 

as for the first-time clozapine aversiveness was assessed proving that clozapine does not affect the 

mouth sense, suggesting that the excipient of the marketed dosage form is responsible for the claim 

reported in the literature.  
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Part 4. Conclusion and Recommendation 
of Future Work 
 

This PhDfocused on different formulation strategies application to produce a patient-centric 

delivery system as a novel dosage form aimed to control clozapine release profile reducing dose per 

day and investigate medication acceptability challenge related to drug taste perception. Different 

methods were used and examined to obtain the optimal drug delivery system and propose a product 

that could potentially be introduced into the market. 

To achieve this aim, different objectives were pursued to identify the best formulation process 

willing to both achieve clozapine controlled release profile and show process reproducibility and 

flexibility in designing a patient-centric dosage form. 

 At first, spray-drying was used to produce multi component solid dispersions able to increase 

solubility and permeability of the poorly-soluble drug, classified a BCS class II. By using optimised 

parameter, it was possible to improve both drug dissolution and release profile in the gastrointestinal 

as well as its permeability through colon tissue. Overall, the results suggested a potential of successive 

compression of the microparticles to obtain a conventional oral dosage form as a tablet. As discussed 

in the Introduction, even if the tablet represent the most common oral route, this is not suitable for 

poorly soluble drugs due to low solubility as well as the first past metabolism. Therefore, other 

common formulation strategies, solvent casting method and freeze-drying, were investigated and 

compared with spray-drying to detect the most suitable method of producing a controlled release 

dosage forms.  

 Three different poorly soluble drugs were used to increase the study reliability, such as olz, 

dsm, and trm. Mainly, were analysed the pharmaceutical advantages in achieving higher drug 

dissolution profile, surface homogeneity and drug encapsulation efficacy. Firstly, it was noticed that 

each of prepared product improved solubility of all drugs; however, through freeze-drying and the 

solvent-casting method was obtained a more homogenous and reproducible surface morphology and 

pore/particle size. Spray-drying caused mass loss and low drug encapsulation efficacy. In all 

formulation the drugs were maintained in the crystalline state in the micro-range, therefore, were 

produced solid micro-crystalline dispersion with high dissolution profile. Of all the methods, solvent-

casting generated the fastest and most controlled drug release rate for each drug in the study, 

suggesting it as the most efficient and reproducible manufacturing strategy. 

 The advantage of the solvent casting method opened to the formulation of a novel oral 

transmucosal polymeric patch containing clozapine, the target drug of this thesis. Therefore, the 
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combination of the promising polymers PVA and PHEA was used in different concentrations to prepare 

transmucosal patch both via solvent casting method and wet electrospinning. Interestingly, it was 

concluded that 7.5% w/v of PVA and 5% w/v of PHEA achieved higher solubility enhancement 

potential. Moreover, PHEA showed a concentration-dependent action on adhesiveness providing, at 

the same polymer ratio, the highest adhesive forces. Electrospun nanofibress provided a controlled 

drug release profile while incrementing drug dissolution rate. However, this transmucosal patches if 

administered in-vivo would allow the multi-directional release of clozapine both through the mucosa 

and the oral cavity, causing drug clearance and low bioavailability.  

 Even if electrospinning and the combination of PVA-PHEA produced the advantage of 

controlling drug release profile, this technique did not allow the production of a complex structure 

such as the addition of a hydrophobic backing layer to the unidirectionally direct drug just through the 

buccal mucosa. Moreover, it did not allow product customisation in the creation of patient-centric 

formulation. Therefore, 3D printed technology was investigated as a manufacturing strategy to 

produce a unidirectional oral transmucosal patch. Eight different patches were printed with and 

without hydrophobic backing layer and with and without a set of 9 micro-pyramids to improve mucosa 

penetration and adhesion. The patches were realised with PVA as adhesive layer impregnated with 

drug and PLA as a hydrophobic backing layer. It was analysed the effect of printing infill on clozapine 

release profile. Data showed that patches printing with 65% infill presented a controlled-release 

profile while 100% patches an immediate-like release. The addition of the backing layer supported a 

controlled-release and was further investigated in the scaled-down of 1cm2. 

The unidirectional transmucosal patch provided with a hydrophobic backing layer with a 

surface area of 1cm2 were loaded with three different strengths of clozapine to determine whereas 

the release mechanism was drug-controlled or carrier-controlled, resulting in being drug-controlled. 

In term of the potential of a market dosage form to control the release of clozapine, this information 

will be crucial as different strengths of clozapine will present different release profiles. Moreover, the 

application of micro-pyramids improved the dissolution profile respect both unformulated drug and 

flat patches. Permeation studies were conducted both on cellulose acetate membrane and the 

biomimetic membrane PermeapadTM. The analysis showed that the higher dissolution profile of the 

drug in the donor compartment caused membrane blockage in both membranes, reducing 

permeability in the patch with micro-pyramids. From the other hand side, flat patches PVA+PLA 

increased permeability.  

 In conclusion, 3D printing technology represents the most convenient formulation strategy to 

generate PVA+PLA patches which controlled clozapine release profile and improve its permeability. 

Such dosage form could be further investigated through in-vivo study confirming an increase of drug 
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bioavailability. This formulation is the first dosage forms available to controlled clozapine release; 

therefore, further investigation in-vivo will be of advantage to bring the patch to a patentable and 

market product.  

In this project, it was also analysed the issue related to drug taste, as if the patch would be 

applied in human in the oral cavity it could generate an aversive taste perception. A structured 

literature review showed that claim about clozapine taste was not based on scientific evidence or 

clinical report and that aversive taste perception could be due to excipient present in each marketed 

dosage forms. Moreover, it was conducted a human taste study to assess clozapine taste aversion, 

and it was found that even at the saturation solubility, the highest concentration of drug capable of 

interacting with mouth receptors, do not generate taste perception. Such results were confirmed by 

volunteers’ free comments and statistical analysis, reconducting the reported taste issue to excipient 

used in the marketed dosage forms.  

In conclusion, this thesis aimed to produce a patient-centric transmucosal dosage form to 

control clozapine release profile. To achieve this aim, different formulation strategies were proposed 

to tackle both clozapine dosing per day and taste. The analysis of the most common techniques 

brought to the identification of 3D printing as a flexible tool to produce complex structures as a 

unidirectional transmucosal patch. The patches printed with 65% infill and produced with PVA and 

PLA were able to provide a controlled release profile higher than the unformulated drug, improving 

both clozapine permeability rate and permeation through membrane lipidic component. Moreover, 

drug taste would not result in an aversive perception if the dosage form would be marketed and 

administered in human. 

This patch represents the firstly produced clozapine dosage form with controlled-release; 

therefore, a future investigation of the in-vivo release of clozapine from the generated patch, thus its 

bioavailability, is considered fundamental. Further research and confirmation on the absence of taste 

aversion could be sought conducting BATA test using the dosage form instead of pure drug. 
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Appendix 
Appendix 1. Influence of PVA) on PVA-PHEA microcrystalline solid dispersion 

films  

 

This study was conducted to formulate buccal films consisting of PVA and PHEA, to improve 

the dissolution of the drug through the oral mucosa. Ibuprofen sodium salt was used as a model drug, 

and the buccal film was expected to enhance its dissolution rate. Two different concentrations of PVA 

(5% w/v and 7.5% w/v) were used. Solvent casting was used to prepare films, where a solution 

consisting of drug and polymer was cast and allowed to dry. ATR-FTIR, DSC, and scanning electron 

microscopy (SEM) were used to investigate the properties of films. In-vitro dissolution studies were 

also conducted to investigate drug release. SEM studies showed that films containing a higher 

concentration of PVA had larger particles in micro-range. FTIR studies confirmed the presence of the 

drug in films and indicated that ibuprofen sodium did not react with polymers. DSC studies confirmed 

the crystalline form of ibuprofen sodium when incorporated within films. In-vitro dissolution studies 

found that the dissolution percentage of ibuprofen sodium alone was increased when incorporated 

within the film from 59 to 74%. This study led to the development of solid microcrystalline dispersion 

as a buccal film with a faster dissolution rate than the drug alone overcoming problem of poor 

solubility. 
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Appendix 2. Human Taste Assessment SOP 

 
Before the panel 

1) Check that you have all you need for the panel ~1 week before 
 order/buy what is missing  

 
2) Make sure the room is booked with CT/Susan Smyth 

email Maria Buck to kindly remind her at what date /time you will be using the room 
 

3) Recruitment 
The recruitment process starts about one week before, and it usually takes half an hour to fill all the 
positions available. Then, the participants need to be contacted individually and informed about the 
session in which they have been allocated. A confirmation email has to be sent from the participants 
to avoid incomplete slots. 
 

4) Generate: 
a.  the randomisation orders 
b.  and the coding of the samples 
c.  and the anonymisation list of the participants  
d. The tiny URL link to the QUALTRICS questionnaire of the present panel 

 
5) Preparation of samples  

Done in B21 
According to SOPs/BMRs 
Respect shelf life 

 
What to do in PSL1 before the panel 
NB you need access to PSL1 - arrange with CT and lodge 
Two people are required to set up the room promptly but also: 

✓ One to keep an eye on participants and  
✓ The other one to prepare samples in between  

One must be a pharmacist 
Make sure the master file for the panel is in the room with all necessary information: one hard copy of 
the REC, REC approval, REC amendment if any, SoPS/BMRs, all H&S documents, the payment form, the 
anonymised randomisation sheets etc 
 
Bring the trolley with all materials, samples etc. needed for the panel 
Could you put it in the dispensary? 
Clean the bench with alcoholic wipes 
 

1) Switch on all computer needed for the session 
Leave 1 computer empty in-between each participant 
Pull the middle screen to create a separation between them 
(16 is good AND already a large number of participants in one go) 

 
2) Log in 

PSLUSER 
PW: Pharma14 

 
3) Open a web browser 
4) Type in the URL linking to the questionnaires for the panel 
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5) Wipe all bench with the alcoholic wipes 
Bring at each seat 

 A bottle of water  

 A paper plate 

 A (big) plastic cup to spit in 

 A box of tissue 

 2 consent forms 

 1 information sheet 

 1 pen 

 1 test tubes containing water  
 

6) Put some crackers in the plate 
 
 
During the panel 
 
The participants arrive. 
 
The PI or designated researcher gives a bit of background and introduces the taste testing 
methodology, and ask them to make sure that: 

• they have read the Information leaflet 

• ask if they have any question 

• ask them fill in the consent form (one for UCL one for them) signed by both parties 

• what the crackers and water are there for 

• they do NOT refresh the link (as it erases all data and they would have to start again) 
 

Monitor that they are not communicating about the samples/results. 
 
It is good practice to start with a ‘blank’ sample eg 10ml of water (same as the one used to prepare 
sample if it is a water-based sample) and make sure they understand the swirl and spit and the scale.  
 
Between the samples the researchers, prepare the tubes according the randomised codes and place 
them in a basket to distribute the sample to the participants. Before each new samples is provided 
the previous has been disposed from the researcher/PI to avoid any confusion with the codes. 
 
At the end of the panel 
 
Ask them to discard their spit in the sink 

Make sure you give it a good clean after the last participants has finished 
 
A big bin bag should be available for them to discard all disposable consumable 

If specific bins are required, they need to be introduced to the participants 
 
They get their payment and MUST sign the receipt form as well as the person who is giving them the 
money 
 
At the end make sure you exit all applications on the computer Log out, switch of the computer 
Put back the screen neatly as they were when you arrived 
 
Wipe all spaces where panellists were sitting as well as the dispensary 
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PhD Publications 
 

1. Engineering of Nanofibrous Amorphous and Crystalline Solid Dispersions for Oral Drug 

Delivery, Laura Modica de Mohac, Alison Veronica Keating, Maria de Fátima Pina, and Bahijja 

Tolulope Raimi-Abraham. doi.org/10.3390/pharmaceutics11010007. Pharmaceutics. 2018 

2. Multicomponent solid dispersion as a formulation strategy to improve drug permeation: A 

case study on the anti-colorectal cancer irinotecan, Laura Modica De Mohac, Roberto 

Caruana, Francesco Carfì-Pavia, Gennara Cavallaro, Gaetano Giammona, Mariano Licciardi. 

doi.org/10.1016/j.jddst.2019.04.040. Journal of Drug Delivery Science and Technology. 2019 

3. Chew SL, Modica de Mohac L, Tolulope Raimi-Abraham B. 3D-Printed Solid Dispersion Drug 

Products. Pharmaceutics. 2019;11(12):672. doi:10.3390/pharmaceutics11120672 

4. Paolino M, Licciardi M, Savoca C, et al. Hyaluronan Graft Copolymers Bearing Fatty-Acid 

Residues as Self-Assembling Nanoparticles for Olanzapine Delivery. 2019;44. 

5. De Mohac LM, Caruana R, Cavallaro G, Giammona G, Licciardi M. Spray-Drying, Solvent-

Casting and Freeze-Drying Techniques: a Comparative Study on their Suitability for the 

Enhancement of Drug Dissolution Rates. Pharm Res. 2020;37(3):57. doi:10.1007/s11095-020-

2778-1 

6. Modica de Mohac LM, Raimi-Abraham B, Caruana R, Gaetano G, Licciardi M. Multicomponent 

solid dispersion a new generation of solid dispersion produced by spray-drying. J Drug Deliv 

Sci Technol. 2020;57(March):101750. doi:10.1016/j.jddst.2020.101750 

7. Al-Sahaf Z, Raimi-Abraham B, Licciardi M, de Mohac LM. Influence of Polyvinyl Alcohol (PVA) 

on PVA-Poly-N-hydroxyethyl-aspartamide (PVA-PHEA) Microcrystalline Solid Dispersion Films. 

AAPS PharmSciTech. 2020;21(7):267. doi:10.1208/s12249-020-01811-z 
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PhD Conferences: Invited and awarded 
poster and podium presentations  

 

1. Global Congress & Expo on Biomaterials (Biomaterials-2019). 13th and 14th May 2019. 16 

hours. Kuala Lumpur, Malaysia. Invited Poster presentation. Title “Engineering Oral Mucosal Polymeric 

Patches  

for Treatment of Childhood-Onset Schizophrenia”.  

2. Cancer & Pharmaceutical Sciences Postgraduate Research Symposium. 3rd June 2019. Invited 

Poster presentation. Title “Pediatric Oral Transmucosal Delivery of Clozapine for the Treatment of 

Childhood Schizophrenia”. 

3. 13th Excellence in Teaching Conference. 20th June 2019. Invited Oral Presentation. Title 

“International experiences in early career academic development”. 

4. Cancer & Pharmaceutical Sciences Postgraduate Research Symposium. 2nd of September to 

11th of September 2020. Awarded Oral presentation. Title “Clozapine Taste Assessment: the first in-

human clozapine taste confirmation”. 
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