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INTRODUCTION  

The increasing energy demand and the decline in availability of drinking 

water are two of the major challenges that humanity has to face in the coming 

decades. Many technologies have been explored, which can produce electricity 

from renewable resources and drinking water from non-conventional sources.  

In this scenario, Electrodialysis (ED) and Reverse Electrodialysis (RED) 

processes have drawn much attention. In particular, RED and ED are two 

promising membrane-based technologies for electricity production and for saline 

water desalination, respectively.  

The key components of ED/RED units are the Ion Exchange Membranes 

(IEMs), which contain fixed charges in their polymeric matrix, that allow for 

selective transport of ions through them. In ED and RED units, Anion and Cation 

Exchange Membranes (AEMs and CEMs) are alternately stacked and separated 

by means of net-spacers or built-in profiles, which create the channels where 

solutions flow. An assembly of an AEM and a CEM combined with two fluid 

channels, adjacent to them, forms the repetitive unit of an ED/RED stack, which 

is referred to as a “cell pair”. 

So far, the performance of ED and RED stacks have been extensively studied 

by both modelling tools and experimental campaigns. However, membrane 

deformation phenomena and their effects on process performance have been 

neglected. On the other hand, several studies have highlighted the significant 

detrimental effects of membrane deformation on the performance of many other 

membrane-based processes, such as forward osmosis, pressure assisted osmosis, 

pressure retarded osmosis, reverse osmosis and proton exchange membranes fuel 

cells. In ED/RED units, a different pressure distribution between the two channels 

may occur, giving rise to a transmembrane pressure (TMP) distribution. The TMP 

can induce deformations of the membrane/channels assembly, which, in turn, 

may work under very different conditions (e.g. flow, mass transfer and electrical 

resistance) compared to the nominal (undeformed) ones. As a result, the 

performance of ED/RED units can be affected.  
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In this context, the aim of this PhD thesis is to assess, for the first time, the 

effects of membrane deformation in ED and RED systems induced by a 

transmembrane pressure difference (TMP) related to an uneven pressure 

distribution in the fluid channels, which may occur in industrial applications. 

To achieve this objective, it has been essential to combine knowledge from 

solid mechanics, fluid dynamics and electrochemistry fields. 

Firstly, the mechanical behaviour of plates has been thoroughly analysed and 

novel tools for their study have been proposed. In fact, the term “plate” 

encompasses many structural elements, such as thin plates and membranes. In 

particular, membranes have been studied as thin plates with large deflections.  

Thin plates are commonly studied by means of Finite Element Methods or 

Boundary Layer Methods, which require a discretization of the domain or the 

boundary of the element, respectively. However, the possibility of investigating 

plates without any discretization has recently gained much attention to overcome 

the problem related to meshing and remeshing of the above-mentioned methods.  

In this PhD thesis, innovative procedures have been proposed for the analysis 

of both thin plates and membranes, which do not require any discretization 

neither in the boundaries or the domain. In particular, a novel procedure has been 

introduced for the analysis of isotropic thin plates of an arbitrary shape and 

boundary conditions with small deflections. The procedure employs harmonic 

polynomials to express the plate deflection and computes only line integrals. 

An optimization procedure has been also developed for the identification of 

the mechanical parameters of orthotropic arbitrarily shaped plates based on 

vibration data. In particular, the proposed procedure combines the so-called pb-2 

Rayleigh-Ritz method, specifically extended for the analysis of orthotropic 

plates, with a Particle Swarm Optimization (PSO) algorithm. The pb-2 Rayleigh-

Ritz method has also been applied for the study of arbitrarily shaped plates by 

taking advantage of Green lemma to convert double integrals into simpler line 

integrals. To assess the procedure’s accuracy, an extensive experimental 

campaign has been conducted at the Laboratory of Experimental Dynamics at the 

University of Palermo to identify the modal parameters of structurally orthotropic 

plates made by a 3D printer.  
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Then, the behaviour of thin plates with large deflections (membranes) has 

been considered. In particular, an optimization procedure has been introduced for 

the identification of the mechanical properties of orthotropic membranes based 

on static bulge test measurements. Specifically, a genetic optimization algorithm 

has been coupled with the principle of minimum energy applied to the analysis 

of rectangular orthotropic membranes.  

 Based on the aforementioned studies, the behaviour of Ion Exchange 

Membranes for ED and RED applications has been analysed. The deformation of 

two adjacent profiled membranes has been investigated by conducting finite-

element three-dimensional structural mechanics simulations at the small scale of 

a “periodic portion” of the membranes for different values of applied TMP, using 

the Finite Element Ansys Mechanical® software. Afterwards, the fluid dynamics 

and mass transport characteristics have been assessed in undeformed, compressed 

and expanded fluid channel configurations, found from the previous mechanical 

simulations, by finite-volume three-dimensional Computational Fluid Dynamics 

(CFD) simulations employing the commercial Ansys-CFX® software. 

Then, a two-dimensional numerical model, based on an original iterative 

algorithm, has been developed in order to simulate, at the higher scale of a cell 

pair, the fluid-structure interaction and the associated flow redistribution 

phenomena in channels where distributed membrane deformations occur. This 

model employs correlations on the hydraulic friction factor coming from the 

results obtained with the small scale models.   

Finally, a two-dimensional multi-scale process model has been developed to 

simulate ED units for water desalination. Transport and electrochemical 

phenomena have been simulated, computing the distribution of the main 

variables, thus predicting the process’ performance. Deformation and its effects 

have been included by using the results of the previous numerical simulations 

(structural mechanics and CFD) and of the fluid-structure interaction model as 

input data. 

 
The thesis consists of eight chapters: 

Chapter I presents a brief survey of the theory of elasticity and theories for 

the analysis of thin plates and membranes, e.g. Kirchhoff’s plate bending theory 
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and Von Karman equations. Moreover, the most common methods for the 

solution of problems concerning thin plates and membranes are discussed. 

Chapter II describes the innovative procedure developed for the analysis of 

isotropic thin plates of arbitrary shapes and boundary conditions. 

 In Chapter III, the pb-2 Rayleigh-Ritz method is presented and extended for 

the analysis of orthotropic arbitrarily shaped plates. 

Chapter IV presents the two optimization procedures developed for the 

identification of the mechanical properties of orthotropic plates and membranes. 

First, the results of the experimental campaign conducted on the 3D printed plates 

are presented. Then, the proposed approach is applied for the mechanical 

identification of plates based on vibration data from both literature, and the 

experimental campaign. In the second part of the chapter, the mechanical 

characterization of orthotropic membranes based on bulge test data is presented.  

Chapter V presents, first, uniaxial tensile tests of Ion Exchange Membranes, 

conducted at the Tilburg Research Laboratory of the FUJIFILM Manufacturing 

Europe B.V. in the Netherlands. Then, it reports the finite element model 

developed for the analysis of membrane deformations at the small scale and its 

results for two different geometries of profiled membranes. Model validation is 

also reported. 

In Chapter VI, the analysis of flow and mass transport properties in 

undeformed and deformed channels predicted by CFD simulations at the small 

scale is reported.  

Chapter VII presents the fluid-structure model for the higher scale (cell pair) 

simulation aimed at predicting flow and deformation distributions in ED 

channels. Results on cross flow and counter flow arrangements are reported and 

discussed. 

Finally, Chapter VIII describes a comprehensive ED process model adopted 

for a sensitivity analysis of the operation of cross-flow units for water 

desalination. The process performance is evaluated under different geometrical 

and operating conditions and the effects of membrane deformations are 

discussed. 
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CHAPTER I 

 

ANALYSIS OF THIN PLATES AND MEMBRANES 

 

1.1) Introduction 

Plates are widely employed in many engineering fields, including civil, 

mechanical and chemical engineering [1-3]. The term plate encompasses a vast 

variety of structural components such as thick plates, thin plates and membranes. 

Plates are initially flat, plane, two-dimensional members, which are geometrically 

bound by two parallel planes, faces, and a cylindrical surface, edge or boundaries. 

The distance between the faces is called the thickness, h , whose dimension is 

typically much smaller than the others (e.g. length and width). These structural 

elements are typically subjected to the action of lateral loads and their load-

carrying action has been associated with that of grid-works of an infinite number 

of beams or cables. This two-dimensional action makes plates lighter and stiffer 

compared to beams of the same thickness and span. Consequently, plates are 

largely used in weight-sensitive structures, such as foundation slabs, lock-gates, 

bridge decks, aircraft’s wings and fuselage, and ships’ hulls, as shown in Figure 

1. 1. 

 

 

Figure 1. 1 Examples of plate applications: a) aircraft components; b) bridge decks. 
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As far as the plate analysis is concerned, the ratio /a h  between the plate 

thickness and the typical plate dimension (e.g. the length size a ) subdivides plates 

into four categories [4]: 

i) Membranes ( / 50a h  ); they are very thin plates devoid of flexural 

rigidity. Membrane carrying-action is predominantly associated with 

axial shear forces acting in the membrane surface. These forces are 

often defined as membrane forces. Specifically, the component of the 

membrane forces along the direction normal to the surface balances 

the applied lateral loads. 

ii) Stiff plates (10 / 50a h  ); these are thin plates, which withstand 

loading by bending and torsional moments, and transverse shears. In 

this case, membrane forces are often neglected. It is worth noting 

that, the term thin plate is usually associated with the meaning of stiff 

plate. 

iii) Moderately thick plates ( 5 / 10a h  ); they are thicker than stiff 

plates. In this case, the effects from shear forces are taken into 

account in the description of stress components.  

iv) Thick plate ( / 5a h  ); they are mathematically studied as three-

dimensional bodies by considering internal stress conditions. 

The plate categories give, in an engineering sense, an indication about plate’s 

behaviour. Naturally, it is worth noting that, intermediate conditions may exist.  

In this Chapter, the theories developed to deal with the behavior of plates and 

membranes are presented. To introduce these theories, the concepts of stresses, 

strains and displacements of a body are discussed and constitutive equations for 

anisotropic, orthotropic and isotropic plates are reported. Finally, the most 

common methods for solving plate and membrane problems are described.  

 

1.2) Constitutive equations for anisotropic and isotropic 

materials  

The theories of plates and membranes are framed in the theory of elasticity, 

which studies the relationships of forces, displacements, stresses and strains in an 



  Chapter I 

 

3 

 

elastic body. A solid body subjected to the action of an external force deforms, 

producing internal strains and stresses. Many relationships have been developed 

to correlate stresses and strains generated in a body. In the following sections, 

attention is focused on linear elastic materials, i.e. materials in which the 

relationship between stress and strains is linear, which are ruled by the Hooke 

law, and no residual deformations and stresses remain in the body after removing 

external forces.  

 
1.2.1) Stresses 

Consider an arbitrarily shaped body subjected to external loads, which are in 

equilibrium. If a Cartesian coordinate system x , y , z is employed, an 

infinitesimal parallelepiped of edges dx , dy , dz  can be taken at a point anywhere 

in the interior of the body, as shown in Figure 1. 2. The stresses acting on the 

faces of this parallelepiped describe the magnitude of the internal forces. A stress 

vector of three components can be defined at each face of the element. The normal 

component of the stress vector to the element face is referred to as the normal 

stress 
ii . The tangential components of the stress vector to the element face are 

defined as shear stresses ij . Please note that, the first subscripts of the stress 

vector refer to the outer normal of the face on which stress vector acts; while the 

second subscripts refer to the direction of the stress itself. The subscripts ,i j vary 

from 1 to 3, which refer to the coordinates x , y , z . 

 
Figure 1. 2 Stresses acting on an infinitesimal part of a body at anywhere in an interior of a body 

[4]. 
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As convention, normal and shear stresses are considered positive if the 

direction of the outer normal and that of the specific stress are in the same 

direction, vice-versa they are negative [4]. Positive normal stresses are 

denominated tensile stresses and cause an extension of the body. Conversely, 

negative normal stresses are defined as compressive stresses and cause a 

compression of the body. On this basis, stresses of Figure 1. 2 are positive and 

the stress tensor 
sT  can be defined as:   

 

x xy xz

s yx y yz

zx zy z

T

  

  

  

 
 

  
 
 

  (1.1) 

Please note that repeated subscripts have been omitted, i.e. the normal 

stresses have only one subscript indicating the stress direction. The stress tensor 

is symmetric with respect to the principal diagonal because of the reciprocity law 

of shear stresses, i.e. xy yx  , 
xz zx  and yz zy  ). 

 

1.2.2) Strains and displacements of a body      

Let A and B be two points of the infinitesimal body of Figure 1. 2 before the 

application of any external forces. A system of coordinates 
1 2 3, ,x x x  can be 

chosen so that the position of a point A of a body will have coordinates
ix (i=1, 2, 

3) and the position of a point B will have coordinates
i ix dx , as shown in Figure 

1. 3.  

 

Figure 1. 3 Strain measure of a segment [5]. 
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After the action of an external load, the points A and B move to point A’, B’ 

of positions 
i ix u  and ( )i i i ix u d x u   , respectively. The length of the 

segments AB (
0ds ) and A’B’ ( ds ) can be calculated as follows:  

 
2 2 2 2

0 1 2 3ds dx dx dx     (1.2) 

 
2 2 2 2

1 1 2 2 3 3( ) ( ) ( )ds d x u d x u d x u        (1.3) 

where
0ds and ds are the undeformed and deformed segment length, respectively. 

Considering: 

   1 2 3

1 2 3

i i i
i

u u u
du dx dx dx

x x x

  
  
  

       1,2,3i     (1.4) 

After same manipulations, one has: 

 
3 3 3

2 2 2 2

1 2 3

1 1 1

ji k k
i i

i j kj i j i

uu u u
ds dx dx dx dx dx

x x x x  

   
      

     
    (1.5) 

Defining the components of the Green’s symmetric strain tensor, [5, 6], as:  

  
3

1

1

2

ji k k
ij

kj i j i

uu u u

x x x x




   
   

     
   (1.6) 

the length increment of the segment AB can be written as follows 

 
3 3

2 2

0

1 1

2 ij i i

i j

ds ds dx dx
 

     (1.7) 

The Green’s symmetric strain tensor is a second-order tensor quadratic in the 

displacements 
iu , and its elements have a physical meaning: 

1. i

i

u

x




 1,2,3i    (1.8) 

represents the linear strains of a body.  

2. i

j

u

x




i j   (1.9) 

accounts for the rotations of a body subjected to the action of an external 

force. It should be noted that under the assumptions of small rotations and 
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infinitesimal extensions, the terms 
3

1

k k

k j i

u u

x x

 

 
  in Eq. (1.6) vanish and the 

components of Green strain tensor becomes linear in the displacements 
iu  [5]  

 
1

2

ji
ij

j i

uu

x x


 
  

   

   (1.10) 

Please note that, hereinafter, the displacements
1u ,

2u , 
3u  of a point P (x, y, z) 

are referred to as u , v , w , and the unabridged notation (x, y, z for  x1, x2, x3 [6]) 

is used. Further, repeated subscripts will be omitted, thus the subscript will refer 

to the direction of the strain. The w  component of the displacement of a point P 

is usually referred to as the deflection. 

To better understand the quantities of Eqs. (1.8-1.9), Figures 1. 4 a-f show 

the six simplest deformations, which a body may encounter [4]. 

 

  

Figure 1. 4 Representation of: a-c) normal strains; d-f) shear strains [4]. 

 

Figures 1. 4 a-c, present the normal strain (extension or contraction) of a 

body along the three directions of a system using Cartesian coordinates: 

 x

u

x






, y

v

y






, z

w

z






  (1.11) 
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Moreover, Figures 1. 4 d-f show the so called shear deformation. Shear 

deformations cause a distortion of an initially right angle between edges of the 

parallelepiped. They are indicated as xy ,
xz , yz , where subscripts indicate the 

coordinate planes in which the shear strains occur. Under the assumption of a 

small deformation, the shear strain can be expressed as:  

 xy

v u

x y


 
 
 

 , xz

u w

z x


 
 
 

, yz

v w

z y


 
 
 

   (1.12) 

As for stresses, in the case of a small deformation and a small rotation, the 

strain tensor 
DT can be expressed as:  

 

1 1

2 2

1 1

2 2

1 1

2 2

x xy xz

D yx y yz

zx zy z

T

  

  

  

 
 
 
 
 
 
 
 
 

  (1.13) 

 

1.2.3) Anisotropic, orthotropic and isotropic materials 

Most of the common engineering materials are both homogeneous and 

isotropic [7], i.e.: 

 Homogeneous: the properties of the material are independent of the 

position in the body. 

 Isotropic: the properties of the material are independent of the orientation 

at a point in the body. 

It is worth noting that homogeneity does not imply isotropy. For instance, 

the density of a body could be a function of temperature, but the mechanical 

properties of the body can be still independent of the body’s orientation. 

However, in many cases, materials exhibit different properties with respect 

to body orientation. Specifically, materials can be classified as: 

 Anisotropic, all the material properties change as a function of the body 

orientation; 
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 Orthotropic, material properties are different in three mutually 

perpendicular directions at a point in the body. These directions are 

defined as principal directions of orthotropy. 

 Isotropic, the material properties do not change as the body orientation 

changes. 

Anisotropic, orthotropic and isotropic materials have different behaviour 

under the application of forces. Figure 1. 5 presents the mechanical behaviour of 

anisotropic, orthotropic and isotropic materials subjected to the action of a tensile 

stress (first row) and shear stresses (second row) [7]. 

 

Figure 1. 5 Mechanical behaviour of anisotropic, orthotropic and isotropic materials subjected to 
the action of a tensile stress (first row) and shear stresses (second row) [7]. 

 

Under pure normal stresses, see Figure 1. 5 (first row), isotropic materials 

stretch along the stress direction and contract in the perpendicular direction 

without any shearing deformation. Under shear stresses (Figure 1. 5 (second 

row)), the body presents only shear deformations without extension or 

contraction in any direction. This behaviour is detected for any material 

orientation. Therefore, only two mechanical parameters are required for the 

characterization of isotropic materials: the Young’s modulus E , which relates 

material longitudinal elongations with the normal stress applied, and the 

Poisson’s ratio  , which is the ratio between lateral contractions and longitudinal 

extensions measured during the application of the normal stress. 
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As far as orthotropic materials are concerned, if the normal stress acts along 

one of the principal directions of orthotropy of the material, no shearing 

deformations are detected (Figure 1. 5 (first row)). It is worth noting that the 

magnitude of extensions and contractions changes when the normal stress is 

applied along the different principal directions of the material. Therefore, 

Young’s moduli and Poisson’s ratios along the principal directions of orthotropy 

cannot be the same. Moreover, shear stresses (Figure 1. 5 (second row)), cause 

shearing deformations, whose magnitude could be independent of Young’s 

moduli and Poisson’s ratios of the material. Consequently, in a two-dimensional 

space, an orthotropic material requires at least five material properties, i.e. two 

Young’s moduli, two Poisson’s ratio and one shear modulus G. The shear 

modulus gives information about the response of the material when shear forces 

are applied. It is worth noting that, shearing deformations are also detected in 

orthotropic materials when normal stresses are not applied along the principal 

directions. 

Finally, an anisotropic material subjected to normal stresses or shear stresses 

always show extensions, contractions and shearing deformations at all 

orientations of the body. Therefore, to characterize an anisotropic material many 

mechanical parameters are required. 

In the case of linear-elastic materials, the relationship between stresses and 

strains of a body is described by Hooke’s law:  

 ii ij ijC   , 1,2,3i j   (1.14) 

where 
ii are the stress components acting on a body, ij  are the strain 

components and 𝐶𝑖𝑗 is the stiffness matrix. Indexes ,i j  refer to the component x, 

y, z of a Cartesian system. Please note that, in the following equations, repeated 

subscripts will be omitted. 

Hooke’s law can also be written as a strain-stress relationship:  

 ij ij iiS   (1.15) 

where ijS is the compliance matrix.  
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For three-dimensional materials, the stiffness matrix 𝐶𝑖𝑗 and the compliance 

matrix ijS have 36 constants, which reduce to 21 due to the symmetry of the stress 

and strain tensors [7]. Therefore, an anisotropic material needs 21 constants to be 

fully characterized. On the other hand, taking into account the above-mentioned 

material behaviour of isotropic and orthotropic materials, nine and two constants 

are needed for the characterization of orthotropic and isotropic materials, 

respectively.   

Components of the compliance matrix are easier to be determined than those 

of the stiffness matrix. In fact, they can be derived simply by performing 

experimental tests. For the sake of brevity, only the compliance matrix for an 

orthotropic material, whose principal directions of orthotropy are assumed to be 

parallel to the x, y, z components, is reported as a function of the mechanical 

parameters [7]:  

 

1/ / / 0 0 0

/ 1 / / 0 0 0

/ / 1 / 0 0 0
[ ]

0 0 0 1/ 0 0

0 0 0 0 1/ 0

1 /

x yx y zx z

xy x y zy z

xz x yz y z

ij

yz

zx

xy

E E E

E E E

E E E
S

G

G

G

 

 

 

  
 
 
 
  

  
 
 
 
  

     (1.16) 

 

Where
xE , yE ,

zE are the three Young’s moduli along the principal axes of 

orthotropy of the materials; ij  are the Poisson’s ratios defined as 
j

ij

i





   with 

, 1,2,3i j  , i j ; and xyG , yzG ,
zxG  are the shear moduli. 

Further, since no shear-extension or normal-shear stress coupling occurs 

when orthotropic materials are stretched along a principal direction, a relationship 

between Poisson’s ratios and Young’s moduli can be defined [8]: 

 
ij ji

i jE E

 
 , i j and , 1,2,3i j    (1.17) 
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For an orthotropic plate, taking into account the compliance matrix Eq. 

(1.16), the strain-stress equations can be written as: 

yx
x yx

x yE E


   ; y x

y xy

y xE E

 
   ; xy

xy

xyG


    (1.18 a, b, c) 

After some manipulations, the corresponding stress-strain equations can be 

obtained: 

  
1

x
x x yx y

yx xy

E
   

 
 


; 

  
1

y

y y xy x

yx xy

E
   

 
 


; 

 xy xy xyG   (1.19 a, b, c) 

For the sake of brevity, equations for 
z ,

xz and yz have been omitted, as 

their description is not necessary in this work. 

As discussed above, the shear moduli of an orthotropic material do not 

depend on Young’s moduli or Poisson’s ratios, however, an estimation of the 

shear values are often calculated as follows [4]: 

 
2(1 )

x y

xy

yx xy

E E
G

 



  (1.20) 

In the case of an isotropic material (i.e. x yE E , yx xy    ), Eqs. (1.18 

a-c) and (1.19 a-c) become: 

   
1

( )x x y
E

    ;
1

( )y y x
E

    ; 
xy

xy
G


   (1.21 a, b, c)  

        21
x x y

E
  


 


;  21

y y x

E
  


 


; xy xyG      (1.22 a, b, c) 

It should be noted that, in the case of isotropic materials, G  is a function of 

both Young’s modulus and Poisson’s ratio: 

 
2(1 )

E
G





 (1.23) 
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1.3) Thin Plate and Membrane analysis   

The mechanical behaviour of plates has been investigated in great depth 

since the early 18th century. In the following section, attention is focused on the 

analysis of thin plates (10 / 50a h  ) and membranes ( / 50a h  ). Specifically, 

considering a plate of constant thickness h  and arbitrary geometry, the plate can 

be subdivided into two equal parts by a plane orthogonal to the thickness in Figure 

1. 6. This plane is commonly known as the middle plane or the midplane of the 

plate. In the elastic theory of plates, plate behaviour is well described by 

investigating only the midplane deformations. 

 

Figure 1. 6  Arbitrarily shaped plate of contour .  

 

To derive the linear and elastic theories of bending of thin plates and membranes, 

some common fundamental assumptions can be given [1, 2, 4]:  

a) The plate is thin ( h a , where a  is a characteristic length of the plate, 

at least ten times larger than the thickness); and, as stated above, the plate’s 

midplane halves the plate into two equal parts 1/ 2z h  ; 

b) The material of the plate is elastic and homogeneous; 

c) The plate is initially flat; 

d) The straight lines, initially normal to the midplane before the application 

of any loads, remain straight and normal to the midplane during 

deformation and their length is not altered. Thus, vertical shear strains (

0yz  and 0zx  ) and the normal strain can be omitted ( 0z  ); 
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e) The stress normal to the middle plane, 
z , is small compared with the 

other stresses. This is due to the thin thickness of the plate. Consequently,

z can be neglected in the stress-strain relation. 

In addition:  

 In the case of thin plates under small deformations, two assumptions can 

be drawn:  

1. The deflection (the normal component of the displacement vector) 

of the midplane is small compared to the thickness of the plate. Thus, 

the slope of the deflected surface is very small and the square of the 

slope is much smaller than the unity; 

2. The middle surface of the plate remains unstrained during bending, 

since the displacements of the plate are small. 

Assumptions a-e combined with 1-2 are the fundamental assumptions 

of the plate bending theory commonly referred to as Kirchhoff’s plate 

theory of thin plates in small deflections. All the above-mentioned 

assumptions allow the analysis of thin plates to be reduced from a three-

dimensional to a two-dimensional problem. 

 In the case of a large deflection, despite the membrane deflection ( ( , )w x y

) may be comparable to the plate thickness, ( , )w x y is assumed to remain 

small compared to the other dimensions of the plate. 

 

1.3.1) Kirchhoff’s plate bending theory 

The mathematical description of thin plates dates back to the end of the 18th 

century, when Euler and Chladni experimentally investigated the modes of 

vibration of thin plates. Later, Bernoulli proposed a theoretical model of plates 

based on the Euler-Bernoulli beam bending theory, by considering the plate as a 

system of mutually perpendicular strips functioning as a beam. Some years later, 

Cauchy and Poisson also focused their studies on the behaviour of plates. 

However, the first satisfactory theory on the bending of plates was presented by 

Navier, who considered the rigidity of the plate as a function of the plate 

thickness, which was considered constant by Poisson. 
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Moreover, Navier proposed an “exact” solution for the bending problem of 

simply supported rectangular plates by employing Fourier trigonometric series. 

In 1850, Kirchhoff published a revised plate bending theory, based on the so 

called “Kirchhoff assumptions”, which allowed the reduction of the mathematical 

complexity of the plate study. At the end of the 19th century, shipbuilders began 

replacing wood with structural steel, thus plates and plate theory drew the 

attention of many researchers. Among them, Galerkin and Timoshenko 

contributed extensively to the development and refining of the plate bending 

theory proposed by Kirchhoff [4].  

 

1.3.1.1) Strain expressions 

As already discussed above, Kirchhoff’s assumptions allow the study of thin 

plates to be reduced from a three-dimensional to a two-dimensional problem, and 

thus the shear and normal strains with respect to the z  axis can be neglected:  

 0yz  , 0zx  and 0z   (1.24) 

Integrating Eqs. (1.11) and (1.12) over the plate thickness and taking into 

account Eqs. (1.24), one obtains: 

0 ( , )
w

u u x y z
x


 


, 0 ( , )

w
v v x y z

y


 


and ( , )w w x y    (1.25) 

where the terms 
0 ( , )u x y  and 

0 ( , )v x y  represent the eventual initial extensions of 

the body due to a pre-stress loading of the midplane. As can be observed, the plate 

deflection ( , )w x y does not vary along the plate thickness, while the 

displacements’ components ( , )u x y  and ( , )v x y vary linearly over the plate 

thickness. It must be noted that, if the small deformation assumptions are taken 

into account,
0 ( , )u x y  and 

0 ( , )v x y  vanish.  

Considering Eqs. (1.25), the elements of the Green’s symmetric strain 

tensor, Eq. (1.6), can be expressed as follows [5]: 

  

2 22

0

2

1 1

2 2
x

uu w w w
z

x x x x x


      
       
       
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2 22

0

2

1 1

2 2
y

vv w w w
z

y y y y y


      
       
       

   

 0z

w

z



 


  (1.26 a, b, c) 

 
2

0 02 2xy xy

u vu v w w w w w
z

y x x y y x x y x y
 

          
          

            
  

 2 0xz xz

u w

z x
 

  
    

  
   

 2 0xz yz

v w

z y
 

  
    

  
  (1.26 d, e, f) 

Eqs. (1.26) take also into account both large deformations and pre-stress 

terms.  

In the case of unstrained plates and small deflections, Eqs 1.26 become: 

 
2

2x

w
z

x



 


, 

2

2y

w
z

y



 


and 

2

2xy

w
z

x y



 

 
   (1.27 a, b, c) 

where, 
2

2

w

x




 defines the curvature of the midplane along the x axis, commonly 

indicated as 
x . Similarly, 

2

2

w

y




is the curvature of midplane along the y axis, 

y . Finally, 
2w

x y



 
 defines the cross-curvature generated by the plate torsion and 

it is called twisting curvature with respect to the x  and y axes, xy . Assuming 

the bending curvature to be positive if it is convex downward, i.e. in the positive 

direction of the z axis, 
x , y and xy have a negative sign since the second 

derivative of the deflection for the convex downward curve is negative. 

Therefore, Eqs. (1.27 a-c) can be written as:  

 
x xz  , y yz  and 2xy xyz     (1.28 a, b, c) 
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1.3.1.2) Stress-strain relation for the case of small deformations  

Based on Kirchhoff’s assumptions the stress-strain relationship expressed by 

Eqs. (1.19), can be employed for the thin plate analysis. In particular, taking into 

account the definition of the plate curvatures ( i.e.,
x , y and xy ), Eqs. (1.19) 

can be written as follows: 

  
2 2

2 2
( )

1 1

x x
x x yx y yx

xy yx xy yx

E z E z w w

x y
    

   

  
     

    
;  

 
2 2

2 2
( )

1 1

y y

y y xy x xy

xy yx xy yx

E z E z w w

y x
    

   

  
     

    
;  

 
2

2 2xy xy xy xy

w
G z G z

x y
 


  

 
  (1.29 a, b, c) 

In the case of isotropic material, Eqs (1.29 a-c) simplify: 

 
2 2

2 2 21
x

Ez w w

x y
 



  
   

   
;  

 
2 2

2 2 21
y

Ez w w

y x
 



  
   

   
;  

 
2

1
xy

Ez w

x y





 
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  (1.30 a, b, c) 

Instead of working with stress components at a point in the body, it is 

convenient to introduce the shear forces 
xV and yV , and the bending and twisting 

moments 
xM , yM  and xyM , which are the total statically equivalent forces and 

moments applied to the midplane of the plate:  

 
/2

/2

hx xz

h
y yz

V
zdz

V





   
   

   
    (1.31) 

and 

  
/2

/2

x x
h

y y
h

xy xy

M

M zdz

M








   
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   
   
   

    (1.32) 
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It is worth noting that, although Kirchhoff’s plate bending theory neglects 

the shear stain 
xz  and yz , their corresponding shear forces are necessary for the 

plate element equilibrium. 

Substituting Eqs, (1.29 a-c) into Eqs (1.31-32) and integrating over the plate 

thickness, the shear forces and the bending and twisting moments can be 

expressed as a function of the plate’s deflection and curvature: 
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2 2 2 212(1 )

x
x yx x yx
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 (1.33-35) 

where 
xD , yD , xyD and 

tD  are the flexural and torsional rigidities of the plate 

[2]: 
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 
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
, 

3

12(1 )

y

y

xy yx

E h
D

 



  (1.36-37) 

      (1 ) (1 )t xy yx x y xy xyD D D D       or 
3

12
t xy

h
D G , 

 

3

12(1 )

x yx

xy

xy yx

E h
D



 



, 1 xy y yx xD D D    (1.38-41) 

In the case of isotropic materials Eqs. (1.33-35) becomes: 
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 (1.42-44) 

and the flexural rigidity D  of the plate is simply:  
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 (1.45) 
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1.3.1.3) The governing equation for the deflection of plates in Cartesian 

coordinates 

The governing equation of the deflection of a thin plate can be presented by 

expressing the equilibrium condition of an infinitesimal portion of a plate 

subjected to an external vertically distributed load of intensity ( , )q x y , as shown 

in Figure 1.7. Following the midplane approach, i.e. the load is assumed to be 

applied to the midplane surface of the plate, three equilibrium equations can be 

drawn [4]:  

I. The force summation about the z  axis 

( , )

0

yx
x y

x y

VV
V dx dy V dy dx q x y dxdy

x y

V dy V dx

  
      
    

  

  

which leads to:   

 ( , ) 0
yx

VV
q x y

x y


  

 
   (1.46 a, b) 

 

II. The moment summation about the x axis: 

( , ) 0

y xy y

y xy y

y

y xy y

M M V
M dy dx M dx dy V dy dx

x x y

V
q x y dxdy M dx M dy V dy dx

y

       
          

       

 
      

 

 

Omitting the products of infinitesimal terms, having higher order of 

smallness, one obtains:  

 0
xy y

y

M M
V

x y

 
  

 
   (1.47 a, b) 
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Figure 1. 7 Equilibrium condition of an infinitesimal portion of a plate subjected to an external 

vertically distributed load of intensity ( , )q x y  [4].  

 

Similarly, the moment summation about the y axis leads to: 

 0
yx x

x

M M
V

y x

 
  

 
   (1.48) 

Combining Eqs. (1.47b-48) and Eqs. (1.33-35), the shear forces can be 

written as follows: 

 
2 2

2 2

yxx
x x

MM w w
V D B

x y x x y

     
     

     
 

 
2 2

2 2

y xy

y y

M M w w
V B D

y x y x y

     
     

     
   (1.49-50) 

Considering that xy yxM M , substituting Eqs. (1.49-50) into Eq. (1.46b), 

one obtains: 

 

2 22

2 2
2 ( , )

yx yx
M MM

q x y
x x y y

 
   

   
   (1.51) 

Or 

 
4 4 4

4 2 2 4
2 ( , )x y

w w w
D B D q x y

x x y y

  
   

   
   (1.52) 
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where 1/ 2( 4 )yx x xy y tB D D D    is the effective torsional rigidity of the 

orthotropic plate. Moreover, considering Eq. (1.17), the effective torsional 

rigidity can also be expressed as 2xy xy tB D D  . 

Eq. (1.52) is the governing differential equation for thin orthotropic plate 

bending analysis based on Kirchhoff’s assumptions. Mathematically, Eq. (1.52) 

is a linear partial differential equation of the fourth order having constant 

coefficients. The equation describes the behaviour of both naturally and 

structurally orthotropic plates. Structurally orthotropic plates are plates where the 

addition of structural elements on their surface cause orthotropy. 

As far as isotropic plates are concerned, Eq. (1.52) becomes: 

 
4 4 4

4 2 2 4

( , )
2

w w w q x y

x x y y D

  
   

   
   (1.53) 

Eq. (1.53) can also be presented as  

 
2 2 4 ( , )
( )

q x y
w w

D
        (1.54) 

where 

 
4 4 4

4

4 2 2 4
() 2

x x y y

  
   

   
   (1.55) 

is the biharmonic operator. 

In the case of isotropic plates, the sum of the bending moments (Eqs. (1.42-

44)) is invariant, and thus the so-called moment sum can be defined as follows 

 2

1

x yM M
M D w




   


   (1.56) 

Substituting Eq. (1.56) into Eqs. (1.49-50), the shear forces can be written 

as:      

 
2 2

2 2x

M w w
V D

x x x y

    
    
    

 

 
2 2

2 2y

M w w
V D

y y x y

    
    
    

   (1.57-58) 
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Thus, the governing equation, Eq. (1.53), can be decomposed into two 

equivalent simultaneous Poisson’s equations, as proposed by Marcus [9]:  

 
2 2

2 2
( , )

M M
q x y

x y

 
  

 
 

 
2 2

2 2

( , )w w M x y

x y D

 
  

 
   (1.59-60) 

This is a system of two-second order partial differential equations, whose 

solutions can be simpler than that for Eq. (1.53) depending on the mathematical 

approach employed.  

 

1.3.1.4) The strain energy of plates 

During the deformation, the work of the external forces, 
extW , is balanced by 

the work of the internal conservative forcers, 
intW . Thus, the law of conservation 

of energy holds [2]: 

 
int 0extW W       (1.61) 

In the case of thin plates, the strain energy of the plate, or the potential of the 

internal forces, can be defined as the opposite of the work done by the internal 

forces: 

 
intStrainU W       (1.62) 

The strain energy 
StrainU  is negative since the displacement of the body will 

always occur in the direction opposite to that of the internal forces. In particular, 

under the Kirchhoff’s assumptions, the strain energy stored by an elastic body 

can be written as: 

 
1

( )
2

Strain x x y y xy xyU dV           (1.63) 

where V is the whole body volume. Substituting the strain-stress relationships 

Eqs. (1.18) into Eq. (1.63), one has: 

 

2 22
1

2
2

x y y xyx
Strain yx

x y y xy

U dV
E E E G

   


 
    

 
 

    (1.64) 
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Substituting Eqs. (1.29) into Eq. (1.64) and integrating over the thickness the 

strain energy can be rewritten as: 

 

2 2
2 2 2 2

2 2 2 2

2
2

2
1

2
4

x xy y

Strain

t

w w w w
D D D

x x y y
U dA

w
D

x y

         
        

         
  

  
      

   (1.65) 

where 
xD , yD , xyD and 

tD  are defined in Eqs. (1.36-41), and A  is the area of the 

midplane.  

In the case of an isotropic material Eq. (1.65) simplifies:  

2 2
2 2 2 2 2

2 2 2 2

1
2(1 )

2
Strain

w w w w w
U D dA

x y x y x y


           
           
              

  (1.66) 

As was introduced for the internal forces, it is possible to define the potential 

of the external forces: 

 
ext W     (1.67) 

In the case of static analysis, the potential of the external forces can be 

calculated as the product of the loads for the produced displacements [4]: 

 ,( , ) ( , )ext c ext i j j

i j

q x y w x y dA P w M 
 

     
 

     (1.68) 

where ( , )q x y is a distributed load acting on the plate surface, ( , )w x y  is the 

corresponding surface deflection. ,c extP and jM are the concentrated forces and 

moments, and 
iw and j  the corresponding concentrated deflections and slopes 

of the surface at the point of application of the ith  force and jth  moment, 

respectively. The law of the conservation of energy states that the internal and 

external potential have to balance each other:  

 0tot Strain extU         (1.69) 

where 
tot  is the total potential energy of the plate. 
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1.3.1.5) Transverse vibrations of thin plates   

So far, it was assumed that all external loads are applied slowly, and thus 

both the resulting stresses and deformations are independent of time. However, 

machines and many structures are subjected to loads which change with time or 

are applied suddenly i.e. seismic disturbances, wind gusts, etc. Two vibration 

states are commonly investigated:  

 the free vibration of a body, which occurs in the absence of applied load, 

and can be initiated by applying an initial displacement to the body. The 

free vibration motion concerns the natural characteristics of the structure, 

and these natural vibrations occur at discrete frequencies, depending only 

on the geometry and material of the body. 

 the forced vibration motion, which occurs if an external time-dependent 

force is applied to the body. 

In these cases, the governing equation of plates can be adequately modified 

by using D’Alambert’s principle [4]. This principle introduces a new term 

concerning the inertia forces as reversed effective forces to the static governing 

equation. Considering an un-damped structure, i.e. a system where the effects of 

internal friction or surrounding media are neglected, and taking into account Eq. 

(1.52), a new term on the right hand side of Eq. (1.52) can be introduced to deal 

with the dependent variables as a function of time: 

 
2

2
( , , ) ( , , )

w
q x y t h x y t

t






   (1.70) 

where both p  and w  are now functions of time and space. In Eq. (1.70)  is the 

mass density of the material and h  the plate thickness. As mentioned above, in 

the case of free vibration the term ( , , )q x y t is null, since no external force is 

applied, whereas, in the case of forced vibrations, this term describes the external 

force acting on the body.  

Introducing Eq. (1.70) into Eqs. (1.52) and (1.53), the governing equation of 

motion for the orthotropic and isotropic plates can be obtained:  

 
4 4 4 2

4 2 2 4 2
2 ( , , ) ( , , )x y

w w w w
D B D p x y t h x y t

x x y y t


   
   

    
  (1.71)  
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and  

 
2

2 2

2
( ( , , )) ( , , ) ( , , )

w
D w x y t q x y t h x y t

t



   


   (1.72) 

Moreover, considering a plate in free vibrations, it is possible to define the 

kinetic energy of the plate correlated to its vibration, as follows: 

 

2
1 ( , , )

2

w x y t
T h dA

t


 
   
    (1.73) 

The kinetic energy of the plate must equal the strain potential energy of the 

body, therefore for vibrating plates, one has: 

 0tot StrainU K       (1.74) 

 

1.3.2) Membranes ( / 50a h  ) 

Membranes are very thin plates, which do not have flexural rigidity and 

withstand to lateral loads by the action of in-plane forces. Membranes may be 

studied as thin plates with large deflections. 

Therefore, the small deformation assumptions (1 and 2) are not valid, since 

the membrane deflection ( , )w x y  is comparable to the plate thickness. 

Consequently, referring to Eq. (1.26), the terms 
u

x




and

v

y




 are of the same order 

of smallness as 

2
w

x

 
 
 

 and

2

w

y

 
 
 

. 

On the other hand, the terms linearly varying with respect to the thickness, 

i.e.
2

2

w
z

x





,

2

2

w
z

y




and 

2

2
w

z
x y




 
, can be reasonably neglected as membranes 

have very small thicknesses. Consequently, the strain relations for the membrane 

case become:  

 

2

0 1

2
x

u w

x x


  
   
  
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2

0 1

2
y

v w

y y


  
   
  

 

 0 02xy xy

u v w w

y x x y
 

    
    

    
   (1.75 a, b, c) 

As far as stresses are concerned, the action of direct (or membrane) forces, 

i.e. forces acting in the plane of the plate, have to be considered. Considering an 

infinitesimal portion of a membrane subjected to the action of a lateral load 

( , )q x y , as shown in Figure 1. 8, the in-plane forces
xN , yN and xy yxN N  can 

be defined as [4]:  

 
/2

/2

x x x
h

y y y
h

xy xy xy

N h

N dz h

N h

 

 

 


     
     

      
     
     

      (1.76) 

Membrane structures are often subjected to the action of initial in-plane 

forces, which can be called 
0

xN , 0

yN and 0 0

xy yxN N .  

 

Figure 1. 8 Membrane subjected to the action of a lateral external force ( , )q x y  and initial in-plane 

forces 
0

xN , 0

yN and 0 0

xy yxN N . 

 

For the sake of brevity, the accurate derivation of the governing equation of 

bending of membranes (the large deflection case of thin plates) is omitted. Thus, 

introducing the stress function  for the in-plane stress components:  

 
2

2xN
y

 



; 
2

2yN
x

 



 and 
2

xyN
x y

 
 

 
    (1.77 a, b, c) 
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where h  , the governing differential equations for large deflections of thin 

plates is:  

2
4 4 4 2 2 2

4 2 2 4 2 2

4 4 4 2 2 2 2

4 2 2 4 2 2 2 2

2 2

21 1 1

2 ( , )

2

y xy

x xy y y

x y

E G y w w w

h E x G E x y E y x y x y

w w w w w
D B D q x y

x x y y y x x y

w

x y x y

            
      

         

         
      

       


   
    

(1.78a, b) 

where 
xD , yD , xyD and 

tD  are defined in Eqs. (1.36-41).  

Eqs. (1.78 a, b) were first introduced by Von Karman in 1910. The resolution 

of these equations is a complex mathematical task. Consequently, numerical 

methods have been employed for solving the membrane problem in many 

different conditions [4]. 

 

1.3.2.1) The strain energy of membranes  

In Section 1.3.1.4, the strain energy of a thin plate was defined as the opposite 

of the work done by the internal forces. Similarly, in the case of membranes, the 

internal potential energy can be defined as:   

 
/2 /2

/2 /2

1
( )

2

a a

Strain x x y y xy xy
a a

U N N N dxdy  
 

       (1.79) 

Substituting Eqs. (1.75) and (1.76) into Eq. (1.79) and taking into account 

Eqs. (1.19 a-c), one has:   
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 (1.80) 

Eq. (1.80) is the strain energy of membrane or thin plate with a large 

deflection. In the case of isotropic materials, Eq. (1.80) simplifies to:  
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 (1.81) 

As discussed above, membranes do not have bending stiffness. Thus, it is 

common to pretension these structural elements. The potential energy associated 

with initial pre-stress forces can be written as [5]: 
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where 
0

xN , 0

yN and 0 0

xy yxN N , are the initial in-plane loads along the x  and 

y axes. Please note that, only the terms of large out-of-plane rotations have been 

retained. 

Finally, the total potential energy for a membrane subjected to an initial pre-

stress and lateral load is:  

 0tot Strain pre stress extU U           (1.83) 

Where 
tot  is the total potential energy. 

 

1.3.3) Boundary conditions  

Boundary conditions are a set of constraints which approximate the 

behaviour of a mechanical system in a specific circumstance. Precise boundary 

conditions have to be prescribed in advance to solve the governing equation of 

the system under study. In solid mechanics, boundary conditions can be classified 

as: geometric or kinematic boundary conditions, which impose restrictions on 

deflection or slope of a boundary; static or natural boundary conditions which 

concern both external loads or impose restrictions on the internal forces and 

moments at a boundary of the body. As far as thin plates and membranes are 

concerned, two kinematic boundary conditions have to be specified at each edge 

of the element under study. In the following section, the three most common 

kinematic boundary conditions, i.e. clamped edge, simply supported edge and 

free edge, are presented [4]. 

Consider an arbitrarily shaped plate, as shown in Figure 1. 6, let n  and t be 

the outward unit normal and tangent vector at a point A of a generic curvilinear 

edge of the contour and   the angle between the normal n  and the x  axis. The 

moments on the plate boundary   can be called 
nM ,

tM and 
ntM , where

nM is 

the bending moment of the plane Onz , oriented along the tangent to the contour; 

sM is the bending moment in the perpendicular direction; and 
ntM is the twisting 

moment about the normal [2].  

Considering the equilibrium of a volume element on the plate boundary  the 

frame transformations for the moments can be obtained as [4]:  
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 2 2( , ) 2n x x y y x y xyM x y n M n M n n M      

 2 2( , ) 2t x y y x x y xyM x y n M n M n n M     

 2 2( , ) ( ) ( )nt x y y x x y xyM x y n n M M n n M       (1.84 a, b, c) 

where 
xn  and yn are the components of the unitary vector n. 

Therefore, the boundary conditions can be expressed as: 

1. Clamped, or fixed edge:  

 ( , ) 0;w x y    

 
( , ) ( , ) ( , )

0x y

w x y w x y w x y
n n

n x x

  
  

  
  (1.85 a, b) 

The deflection and rotation (the slope) at the boundary must be null. 

2. Simply supported edge 

 ( , ) 0;w x y   

 0nM    (1.86 a, b) 

Note that, in the case of isotropic plates and small deformations, substituting 

Eqs. (1.42-44) into Eq. (1.84 a), 
nM  in Eq. (1.86 b) can be written as: 

 
2 2 2

2 2 2 2

2 2
( ) 2(1 ) ( )n x y x y x y

w w w
M n n n n n n

x x y y
  

  
     

   
  (1.87) 

Eq. (1.87) simplifies for a plate of straight edges oriented along the x , y  axes: 

 
2

2
0n

w
M

y


 


 (for an edge along the x  axis)   (1.88) 

3. Free edge 

 0;nt
n n

M
V V

s


  


   

 0nM    (1.89 a, b) 

where nV  is the so-called effective shear force, and 
nV  is the shearing force 

on the edge of the plate, given as: 

 n x x y yV n V n V     (1.90) 
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The shearing forces were defined in Eqs. (1.49-50) and (1.57-58), for both 

orthotropic and isotropic plates. 

The effective shear forces were first introduced by Kirchhoff to solve the 

free edge boundary condition. In fact, at a free edge no stresses are applied and 

thus all the moments and shear forces can be assumed to be zero. Therefore, three 

boundary conditions should be considered [1]: 

 0yM  ; 0yV   and 0yxM      (1.91) 

However, three boundary conditions are too many for the solution of the 

governing equation of the bending of plates. By introducing the concept of the 

effective shear forces, Kirchhoff proposed an appropriate approach to threat the 

free edge condition. 

 

1.4) Numerical methods  

Mathematically the governing equation of thin plates and membranes are 

partial differential equations of the fourth order. An exact closed-form solution 

can be found only in a few specific geometries, load configurations and boundary 

support conditions, e.g. elliptical thin plate where all edges are clamped and 

subjected to a uniform constant load, or an equilateral plate with all edges simply-

supported and subjected to uniformly distributed loads. Closed solutions can also 

be obtained by employing double trigonometric series and single series solutions. 

However, these methods can be applied only in a few cases. Consequently, many 

analytical and numerical methods have been developed to attain approximate 

solutions of arbitrarily shaped plates and membranes, with various type of 

boundary conditions and subjected to different load conditions. In the following 

section, a survey of the most common methods employed for the solution of the 

bending problem of plates and membranes are presented. For the sake of brevity, 

the methods are discussed for the application of isotropic materials and under the 

assumption of small deflections. Of course, the same methods can be extended to 

the solution of orthotropic materials, and to the large deflection of membranes 

both in static and dynamic analysis.  
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The most common methods can be subdivided depending on the main 

resolution approach [2, 4]: 

a) Methods based on Fourier series;  

b) Methods based on the Variational Method; 

c) Methods based on domain discretization. 

 

1.4.1) Methods based on Fourier series 

Among the methods which employ the Fourier series, the Navier method and 

the Levy method are the oldest and most well-known. 

 

1.4.1.1) Navier methods (double series solution) 

In 1820, Navier presented a paper to the French Academy of Sciences on the 

solution of bending of simply supported plates at all edges by double 

trigonometric series [2, 4]. Assuming a rectangular plate of sides a , b  and taking 

into account Eq. (1.87), the expression of the deflection surface ( , )w x y , and the 

distributed load ( , )q x y , can be sought in term of double sine series, as follows: 

 
1 1

( , ) sin sin ;mnm n

m x m y
w x y W

a b

  

 

   
    

   
     (1.92 a, b) 

 
1 1

( , ) sin sinmnm n

m x m y
q x y Q

a b

  

 

   
    

   
    for , 1,2,3,...m n    

where 
mnW and 

mnQ  are coefficients to be determined. It must be noted that 

Eq. (1.92 a) satisfies the prescribed boundary conditions. Considering a generic 

load configuration, after some manipulations, the
mnQ coefficients can be 

expressed by:  

 
0 0

4
( , )sin sin

a b

mn

m x m y
Q q x y dxdy

ab a b

    
    

   
   (1.93) 

Substituting Eqs. (1.92 a, b) into the governing equation Eq. (1.53) and 

taking into account Eq. (1.93), an algebraic equation is obtained by which the 
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unknown coefficients 
mnW can be calculated. Thus, substituting Eq. (1.92 a) into 

Eqs. (1.42-44) and Eqs. (1.57-58), the moments and shear forces can be found. 

The infinite series solution for deflections ( , )w x y , typically converges 

quickly and satisfactory solutions can be obtained by using a few terms. On the 

other hand, the convergence of the series becomes slow if moments and shear 

forces are sought. This is due to the fact that moments and shear forces are 

obtained from the second and third derivatives of the deflection, which makes the 

convergence slower and may be accompanied by some loss of accuracy; thus, a 

higher number of terms are preferred for their estimation. Convergence also 

becomes slow if concentrated and discontinuous loads are studied. 

 

1.4.1.2) Levy method (single series solution) 

In 1900 Levy proposed a method for solving rectangular plate bending 

problems by a single Fourier series for plates with two opposite simply-supported 

edges. This method is more practical compared to Navier’s as it requires the 

evaluation of only single Fourier series [2, 4]. Moreover, the method can be 

employed for solving plates with various boundary conditions. In Levy’s method, 

the deflection ( , )w x y of the plate is composed of two terms: 

 ( , ) h pw x y w w     (1.94) 

where 
hw  is the solution of the homogeneous form of Eq. (1.53) and pw  is the 

particular solution of Eq. (1.53). Each of these two terms can be expressed in 

terms of a single Fourier series and their unknown coefficients determined by 

satisfying the prescribed boundary conditions.  

As an example, let a rectangular plate have opposite edges of coordinates 

0x   and x a , simply supported, and the other opposite edges, 0y   and 

y b , which may have arbitrary supports. Taking into account Eq. (1.87) for 

simply supported edges, 
hw  can be expressed as: 

 
1

( )sinh kk

m x
w f y

a





 
  

 
   (1.95) 
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where ( )kf y  is a function of y  only. Please note that Eq. (1.95) satisfies the 

prescribed boundary conditions.  

Substituting Eq. (1.95) into the homogeneous form of the governing equation 

Eq. (1.53), after some manipulations, 
hw  can be given as: 

1

sinh cosh

sin

sinh cosh

k k

h m

k k

m y m y
A B

a a k y
w

ak y m y k y
C D

a a a

 



  





    
     

               
     

     

   (1.96) 

where the unknowns 
kA ,

kB ,
kC  and

kD are obtained from the boundary 

conditions on the edges 0y   and y b . 

Similarly, the particular solution of pw and the distributed load can be 

expressed as: 

 
1

( )sinh kk

k x
w g y

a





 
  

 
   

 
1

( , ) ( )sinkk

k x
q x y q y

a





 
  

 
   (1.97 a, b) 

where ( )kq y can be written as: 

 
0

2
( ) ( , )sin

a

k

k x
q y q x y dx

a a

 
  

 
    (1.98) 

Substituting Eqs. (1.97 a-b) into the governing equation Eq. (1.53), pw can 

be found. Finally, the plate deflection ( , )w x y is obtained by Eq. (1.94). 

As for the Navier method, moments and forces can then be found by 

substituting Eq. (1.94) into Eqs. (1.42-44) and (1.57-58). 

The convergence of Levy’s method was proven to be very fast, even though 

it requires mathematical manipulations, which may be quite complex. 

 

1.4.2) Variational methods 

The variational methods, often defined as energy methods, use the 

Bernoulli’s principle of virtual work and the Lagrange principle of minimum 
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potential energy for solving plate and membrane bending problems employing 

definite integrals of stresses, strains, and displacements functions called 

functionals. A functional is a scalar quantity depending on some function or 

several functions, as from independent variables. Energy methods are easier, both 

conceptually and mathematically, than the classical solutions and can be 

employed for the solution of arbitrarily shaped plates with arbitrary boundary 

conditions. 

Assuming that a body is already in its equilibrium state of deformation due 

to the action of a force 
intP  and this equilibrium is disturbed by a small 

(infinitesimal or virtual), arbitrary, but compatible displacement, i.e. a 

displacement that satisfies the boundary conditions, the internal work produced 

can be written as: 

 
int intW P x      (1.99) 

Since the displacement is assumed to be very small, internal and external 

forces can be considered to be held constant, and the increment done by external 

forces can be expressed: 

 
ext extW P x      (1.100) 

The principle of virtual work states that an elastic body is in equilibrium if, 

and only if, the total work done by external forces and internal forces is zero for 

any admissible virtual displacements i.e.,  

 
int 0tot extW W W       (1.101) 

Taking into account the definition of strain energy and the potential energy 

of external forces, see Section 1.3.1.4, Eq. (1.69) can be written in in terms of 

infinitesimal variation: 

 0tot Strain extU            (1.102) 

Eq. (1.102) can be solved by employing suitable functions ( , , )if x y z  of 

unknown coefficients 
ic  to approximate the shape of the plate displacements or 

the plate stress filed. Specifically, substituting these equations in Eq. (1.102) and 

performing the minimization of the total potential energy 
tot , with respect to 

the unknown coefficients 
ic , an algebraic system of equations is attained. 
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Therefore, the analysis of the plates described by partial differential equations is 

reduced to a simpler algebraic system of equations, which can be easily solved. 

Among the energy methods, the Rayleigh-Ritz and the Galerkin methods 

have been widely adopted. 

 

1.4.2.1) The Rayleigh-Ritz Method 

The traditional Rayleigh-Ritz method applies the principle of minimum 

potential energy [2, 4]. In particular, the deflection function of the midplane 

surface  ,w x y is expressed in the form of a series of the type: 

    
1

, ,
N

j j

j

w x y c x y


   (1.103) 

where N  is the chosen truncation limit of the series expansion, jc  are unknown 

coefficients to be determined, and  ,j x y  are the so-called Ritz functions, that 

satisfy individually at least, the geometrical boundary conditions. The unknown 

constants
1c ,

2c ,.. 
nc can be found by applying the principle of the minimum 

potential energy, i.e.: 

 
1

0tot

c





, 

2

0tot

c





, …, 0tot

nc





   (1.104) 

The minimization procedure leads to a set of n  algebraic equations in the 

unknown coefficients, which can be solved to find the unknown coefficients.  

Therefore, it is of paramount importance to select appropriate Ritz functions, 

which have to satisfy the boundary conditions and to approximate the shape of 

the deflection surface. 

Many functions have been proposed for the Ritz method, i.e. trigonometric 

and hyperbolic series, polynomials, which were found to be effective, but their 

application to arbitrarily shaped plates with different combinations of edge 

supports may not be convenient. Liew et al. [10] proposed a set of two-

dimensional orthogonal plate functions to apply the Rayleigh-Ritz method to 

arbitrarily shaped plates with different combinations of edge supports. A detailed 

explanation of this approach is reported in Section 3.2. 



  Chapter I 

 

36 

 

1.4.2.2) The Galerkin Method 

Garlerkin proposed a further generalized and simplified formulation of the 

virtual work principle [2, 4]. 

Considering a structural body in equilibrium in a Cartesian coordinate 

system , ,x y z , the equilibrium condition of an infinitesimal element can be 

described by the differential equation:   

 ( , , ) 0
i iL u v w q    (1.105) 

where 1,2,3i  and refers to the , ,x y z  quantities. 
i

L are either linear or non-

linear differential operators operating on displacement functions of a body, and 

i
p are external loads. Referring to Eq. (1.54), 

i
L corresponds to  4 . 

The equilibrium of the structure can be obtained by integrating Eq. (1.105) 

over the whole structure. Assuming arbitrary infinitesimal variations of the 

displacement functions by u , v , w , the virtual work of the external and 

internal forces of the body can be obtained directly from Eq. (1.105) as: 

 
1

( )

[ ( , , ) ]( ) 0,x

V

L u v w q u dV    

 2

( )

[ ( , , ) ]( ) 0,y

V

L u v w q v dV   

 3

( )

[ ( , , ) ]( ) 0,z

V

L u v w q w dV     (1.106 a, b, c) 

Eqs. (1.106 a-c) would be valid only if the displacement functions ( , )u x y ,

( , )v x y , ( , )w x y  are the exact solution of the problem under study. Therefore, in 

order to get an approximate solution of Eqs. (1.106 a-c), displacement functions 

can be expressed in the form of series: 

 
1

( , ) ( , )
m

k k

k

u x y a x y


 , 

 
1

( , ) ( , )
n

k k

k

v x y b x y


 , 

 
1

( , ) ( , )
r

k k

k

w x y c x y


   (1.107a, b, c) 
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where ( , )k x y , ( , )k x y , ( , )k x y are functions that satisfy the prescribed 

boundary conditions, 
ka ,

kb and 
kc are the unknown constants to be determined 

and m, n, r the truncation limits of the series expansion. ( , )k x y , ( , )k x y , 

( , )k x y are functions should have at least the same order of derivatives as the 

differential operators 
i

L . Further, performing the variation of the displacements 

with respect to the unknown constants and taking into account equation Eqs. 

(1.106 a-c) a system of m n r  equations in the unknown coefficient, 
ka ,

kb and 

kc  is provided. Thus, the unknown coefficients can be obtained and the 

displacement functions calculated by Eqs. (1.107 a-c). 

The Galerkin method does not require the use of the strain energy. In this 

sense, the Galerkin method appears to be more general than the Ritz Method. 

 

1.4.3) Domain Discretization methods 

Domain discretization methods employ computational algorithms for 

approximately solving problems of mathematical physics. They are often defined 

as discrete methods, since they require that a body or its boundaries have to be 

discretized either mathematically or physically. In the following section, among 

the several numerical methods, only the finite element method and the boundary 

element method are presented.  

The Finite Element Method (FEM) [11] and the Boundary Element Method 

(BEM) [12, 13] unquestionably represent the most commonly employed and 

powerful numerical techniques for general structural analysis. Notably, the 

extensive research efforts in this field from the last few decades devoted to the 

development of these approaches have allowed the circumvention of most 

numerical problems associated to the domain or boundary discretization, thus 

making FEM and BEM the dominant approaches for most problems in 

computational mechanics. 
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1.4.3.1) The Finite Element Method (FEM) 

Nowadays, the Finite Element Method (FEM) is the most dominant 

numerical method in structural analysis. The FEM is based on the concept that 

the continuum structure under investigation can be replaced by an assembly of 

discrete elements, i.e. finite elements having well defined displacement and 

material relationships. The three most common FEM approaches are: (a) FEM 

based on displacements, (b) mixed or hybrid FEM and (c) equilibrium-FEM. 

Among them, the most employed method is the displacement approach, wherein 

the governing set of algebraic equations is expressed in terms of unknown nodal 

displacements. In the FEM method the elements are connected at only certain 

points called nodal points. Mathematically, the FEM can be treated similarly to 

the Ritz method. However, the Ritz method is applied to the entire structure under 

investigation, while in the FEM the Ritz method is applied at each element, which 

forms the whole structure.  

 
1.4.3.2) The Boundary Element Method (BEM) 

The Boundary element method (BEM) is an emerging numerical solution 

technique, which has drawn much attention in the last few years. In contrast with 

the Finite Element Method, which requires the discretization of the entire body 

in finite elements, the BEM uses element discretization only at the boundaries of 

the plate. In particular, the governing equation of the system under study is 

transformed into a set of integral equations on the plate boundary and then these 

equations are discretized by a finite number of elements located on the boundary. 

At an interior point of the plate, the governing equation of the plate is satisfied 

and high accuracy is generally achieved with a relatively small number of 

boundary elements. This strongly reduces the computational effort of the 

calculus. Despite the advantages of the BEM, its implementation may be still 

tedious, since the solution of the system has to be expressed as the sum of a 

particular integral corresponding to a given loading applied to the plate and of a 

complementary solution. That solution satisfies the homogeneous partial 

differential equation corresponding to a load-free plate, subject to certain 

boundary condition. 
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CHAPTER II 

 

AN INNOVATIVE PROCEDURE FOR THE 

ANALYSIS OF THIN PLATES OF ARBITRARY 

SHAPES UNDER STATIC LOADS 

 

2.1) Introduction 

Many structural problems in engineering mechanics are governed by partial 

differential equations (PDEs) whose exact solutions are known for a few 

restricted cases of practical interest.  

As discussed in Chapter I, many numerical and analytical methods have been 

proposed for the solution of plate problems [14-16], since exact solutions are 

available only for certain shapes, boundary conditions and loading conditions [1]. 

In the last few decades the extensive research efforts devoted to the 

development of these approaches, and especially for FEM and BEM methods, 

have allowed engineers to circumvent most numerical problems associated with 

domain or boundary discretization. 

Nevertheless, the possibility of obtaining numerical solutions for PDEs 

without resorting to any discretization, that is the so-called meshless approach, 

has recently gained the attention of scientists and engineers working in this field. 

As defined in ref [13] a meshless method, also referred to as meshfree method, is 

a method used to establish system equations for the whole problem domain 

without the use of a predefined mesh for the domain discretization. This approach 

has, therefore, become an alternative to the classical FEM and BEM due to some 

beneficial features such as its flexibility, wide applicability and the possibility of 

avoiding problems related to meshing and remeshing in the domain or boundary 

[13, 17]. 

In this regard, framed in the meshless approach, different procedures have 

been proposed to solve a variety of engineering problems [18], such as the 
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element free Galerkin Method [19, 20], the Petrov–Galerkin approach [21], the 

h-p clouds method [22], and the reproducing kernel element method [23] among 

others. Further, specifically referring to plate analysis, the works in [24-31] and 

references therein can be mentioned. Finally, note that other classes of methods, 

which are inherently meshless, exist for the plate bending problem, including the 

Trefftz method [32], the pb-2 Rayleigh-Ritz method [33], and the Galerkin 

method [34]. 

Additionally, a novel truly meshless procedure, namely the Line Element-

less Method (LEM), has been introduced for the analysis of the De Saint Venant 

pure torsion and flexure-torsion problem for both isotropic and orthotropic 

materials [35-39]. Notably, this method does not require any discretization, 

neither in the domain nor in the boundary, and all the involved integrals are 

simple line integrals. Moreover, the efficiency and efficacy of the LEM has been 

proven by Barone et al. [40] demonstrating the competitiveness of the method 

with respect to the Complex Polynomial method (CPM) and the Complex 

Variable Boundary Element Method (CVBEM) especially when exact solutions 

exist. 

 Further, based on the analogy between plates bending under edge moments 

and beams in torsion [41-43], the aforementioned LEM has recently been 

employed for the bending problem of simply supported plates subjected to 

uniformly distributed edge moments [44]. 

In this Chapter, first, an overview of the LEM method developed for the 

analysis of the De Saint Venant pure torsion and flexure-torsion of beam problem 

is presented. Further, the analogy between plates bending under edge moments 

and beams in torsion is discussed. Finally, the LEM method for the solution of a 

simply supported plate bent by edge moments is extended for the analysis of 

arbitrarily shaped plates assuming various boundary conditions (BCs) and subject 

to transverse loads. 

 

2.2) LEM for shear and torsion of beam 

The Line element-less method (LEM) was first presented by Di Paola et al. 

[35]  in 2008 for solving torsion problems of beams. Framed in the complex 
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analysis context, the authors introduced a new potential function related with the 

shear stresses, involving the warping function and its harmonic conjugate, which 

satisfies the field equation in the whole domain without resorting any domain or 

boundary discretization.  

Stresses were expressed by employing the double-ended Laurent series in 

terms of harmonic polynomials, and the coefficients of the Laurent expansion can 

be found by employing an element-free weak-form procedure. Specifically, the 

total square net flux across the border is imposed to be minimum, with respect to 

the parameters, together with the fulfilment of static equivalence. 

The method has been shown to be robust, leading to exact analytical 

solutions, if these exist, or in the other cases, providing very accurate results using 

very few terms in the Laurent series. 

For the sake of completeness, a brief overview of the classical theory of beam 

torsion is reported to elucidate the development of the LEM method. 

Consider an elastic and isotropic De Saint-Venant bar of arbitrary cross-

section, as shown in Figure 2. 1, subjected to the action of a moment
zM , applied 

at the end of the bar and causing the twisting of the bar. 

 

Figure 2. 1 De Saint Venant cylinder under torsion: a) displacement  field; b) stress field [35]. 

 

Consider a counter-clockwise coordinate system with x  and y  axes 

coincident with the principal axes of inertia of the beam’s cross-section, and the 

cross-section being constant along the length. Referring to Figure 2. 1 the 

displacements u , v and w  of a point P ( x , y , z ) can be written as follows: 
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 u zy  ; v zx ; ( , )w x y ; (2.1 a-c) 

where   is a constant accounting for the twist rotation of a cross-section per 

unit length, and where ( , )x y  represents the warping function. It is worth noting 

that,   was assumed to be small. Assuming that the bar is free of stress between 

its ends, the resulting stress caused by the aforementioned displacement field can 

be expressed as: 

        0x y z xy       ; zx G y
x


 

 
  

 
; 

zy G x
y


 

 
  

 
;   (2.2a-c) 

where [ ]T

zx zy    is the shear stress vector of non-null values, and G  is the 

shear modulus. 

As far as boundary conditions are concerned, the free-traction boundary 

condition on the contourof the cross-section should be satisfied, i.e. 

0T

zx x zy yn n    n , where [ ]T

x yn nn is the outward normal vector to the 

contour  . Further considering the three-dimensional equilibrium equations of 

elasticity, the warping function can be written as: 

 0G y G x
x x y y

 
 

       
       

        
 in A   (2.3) 

which leads to the condition which must be satisfied by the warping function 

( , )x y : 

 
2 2

2

2 2
0

x y

 


 
   

 
 in A   (2.4) 

while the free-traction boundary condition in terms of warping function can be 

presented as: 

 x y x yn n yn xn
n x y

    
   

  
 on    (2.5) 

Therefore, the warping function may be found by solving the Neumann 

problem for the Laplace equation: 
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2 0
in 

   
on 

x y

A

yn xn
n





  



 


 (2.6 a-b) 

Since only the stresses 
zx  and zy are not null in the case of the torsion 

problem, an equivalent solution can be achieved employing the Prandtl stress 

function ( , )x y , so that: 

 zx
y








, zy
x





 


,  (2.7 a-b) 

which allows the torsion problem to be formulated in terms of the Dirichlet 

boundary value problem:  

 

2 in  ( , ) 2
   

on ( , ) 0

Ax y G

x y

 



  



   (2.8 a-b) 

A solution for the problem of torsion in terms of the Dirichlet boundary value 

problem can be found employing complex analytical torsion functions. In 

particular, the authors of [35] presented a novel potential function ˆ( )F z  of the 

complex variable ẑ x iy  , where i  is the imaginary unit, for solving the torsion 

problem: 

 ˆ( ) ( , ) ( , )x yF z x y i x y      (2.9) 

where ( , )x x y  and ( , )y x y  are: 

 
 
 

ˆ( , ) Re ( ) ( , )

ˆ( , ) Im ( ) ( , )

x zx

y zy

x y F z x y G y

x y F z x y G x

  

  

   


   
   (2.10 a-b) 

It is worth noting that ( , )x x y  and ( , )y x y  are harmonic in the domain: 

 
2 ( , ) 0x x y  ,  2 ( , ) 0y x y   in A     (2.11 a-b)  

 / /x yx y      , / /x yy x       in A   (2.12 a-b) 

Substituting Eqs. (2.10 a-b) into Eqs. (2.11 a-b), the compatibility  equations 

for zy  and 
zx  can be obtained. Moreover, the Cauchy-Riemann conditions (Eqs. 

(2.12 a-b)) leads to the fulfilment of the equilibrium and compatibility conditions 

in the domain. 
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With regard to the potential ˆ( )F z , ˆ( )F z  is analytical in the entire domain 

and may be expanded in the double-ended Laurent series as:  

 
0

ˆ ˆ ˆ( ) ( )k

k

k

F z z z




  ,   
k , 

0ẑ C   (2.13)

00
ˆ ˆ( )k

kk
z z




 is called the regular part and it is capable of expressing any 

analytical function everywhere. The summation 
2

0
ˆ ˆ( )k

kk
z z




  is called the 

principal part and it accounts for singularities in 
0ẑ . As presented in [36] the term 

1k    has to be neglected, because it returns multi-valued functions. 

Powers ˆ( )kz  can be expressed as 
k k kP P iQ  , where 

kP  and 
kQ  are 

harmonic polynomials defined as follows: 

    , Re
k

kP x y x iy   (2.14 a) 

    , Im
k

kQ x y x iy    (2.14 b) 

or, recursively as 

   1 1,k k kP x y P x Q y     (2.15 a) 

   1 1,k k kQ x y Q x P y     (2.15 b) 

which are valid for 0k  , and with 
0 1P   and 

0 0Q  . 

Further, the derivatives of the harmonic polynomials are 

 1 1;k k
k k

P P
kP kQ

x y
 

 
  

 
 (2.16 a-b) 

 1 1;k k
k k

Q Q
kQ kP

x y
 

 
 

 
  (2.16 b-c) 

 
2 20; 0k kP Q k       (2.16 d-e) 

Thus, the complex potential function ˆ( )F z  and the shear stress field can be 

expressed in terms of harmonic polynomials. By letting ( , )k k k k ka ib a b R   

, the unknown coefficients ,k ka b  of the harmonic polynomials can be found by 
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satisfying the free-stress boundary condition minimizing the squared value net 

flux of the shear stress vector   through the boundary of the domain  

 
2

( , , ) ( )T

k ka b d 


   n   (2.17) 

taking into account the static equivalence condition: 

 
T

z
A

dA M  g   (2.18) 

where [  ]T y x g . 

Finally, considering the Green’s lemma, surface integrals are converted into 

line integrals avoiding any discretization of the inner domain. The variational 

procedure of the potential function combined with the static equivalence 

condition and the use of line integrals leads to a system of algebraic equations 

from which the unknown constant can be found and the torsion problem of beam 

solved. 

 

2.3) The analogy between the torsion beam problem and the 

plate bending problem  

The harmonic partial differential equation, which describes the behaviour of 

an isotropic thin plate Eq. (1.54) can be decomposed in the two second order 

partial differential equations Eqs. (1.59-60). Many analogies between the Saint 

Venant-type torsion of beams and the bending of thin plates problems have been 

presented in literature [41-43]. In particular, a very useful analogy was presented 

by Murtha-Smith [41] for a studying simply supported Lagrange Kirchhoff type 

plate loaded by uniformly distributed edge moments.  

Specifically, referring to Eqs. (1.59-60) and Eqs. (2.8 a-b), a relation between 

the Prandtl function and both the moment sum ( , )M x y and the plate deflection 

( , )w x y can be noted: 

 
1( , ) ( , )x y v M x y   (2.19a) 

 
2( , ) ( , )x y v w x y   (2.19b) 

where 
1v and 

2v are constants, thus 
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12G v q    (2.20a) 

 22
M

G v
D

   (2.20b) 

In the general case of a plate, the moment sum M varies along the plate 

surface and thus, appropriate analogous functions have to be defined. In the case 

of simply supported plate bent by moments 
nM  uniformly distributed along the 

plate edges and without any transversal loads ( 0q  ), the analogy between the 

beam and plate is easier to be carried out. 

Specifically, in this case, where  is the contour of an arbitrarily shaped 

plate, 
nM M  at all points of the contour. Therefore, Eq. (1.60) becomes:  

 
2 2

2 2

nMw w

x y D

 
  

 
  (2.21) 

Therefore, Eq. (2.20 b) becomes: 

   22 nM
G v

D
    (2.22) 

and 

  
2

( , ) ( , )
n

G D
x y w x y

M




 
  
 

 (2.23) 

Therefore, a solution of simply supported plates bent by uniformly 

distributed moments at all its edges can be found by means of similar numerical 

and analytical method employed in the case of beam torsion problem.  

 

2.4) LEM for plates 

 

2.4.1) LEM for simply supported plates 

Based on the plate analogy discussed in Section 2.3, the LEM method 

introduced in 2.1 for the problem of Saint Venant beams in torsion has been 

successfully extended for the analysis of the plate bending problem [45]. Later, 

Pirrotta et al. [44] also applied a novel plate deflection function through series 
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expansion in terms of harmonic polynomials for the solution of a thin simply 

supported plate. 

Considering a simply supported isotropic and elastic plate loaded by 

uniformly distributed edge moments
nM , recalling the harmonic polynomials

kP  

and 
kQ , whose properties are expressed in Eqs. (2.14-16), the deflection 

functions can be written in terms of series of harmonic polynomials as follows: 

 2 2

0 0

( , ) ( , ) ( , ) ( )
4

n n
n

k k k k

k k

M
w x y a P x y b Q x y x y

D 

      (2.24) 

which requires the evaluation of (2 1)n  coefficients 
ka , 

kb .  

In the plate analysis, these constants can be found by fulfilling the boundary 

constrains. Specifically, for a plate which is simply supported at its edges, the 

closed path integral of the squared displacement function could be set to be null: 

      
2

, , min ,k k k k

C

a b w x y d a b         (2.25) 

Finally, by performing the variations of the above functional with respect to 

the unknown coefficients, a linear algebraic system of equations is obtained, by 

which coefficients can be calculated and the problem solved. 

 

2.4.2) LEM extension for the analysis of arbitrarily shaped plates with 

different boundary conditions.  

 

As discussed above, the LEM represents a very powerful method to 

accurately solve problems in structural mechanics. Therefore, an extension of the 

LEM approach for the analysis of arbitrary shaped plates, without holes, with 

general boundary conditions (BCs), under a transverse load  ,q x y  has been 

carried out. Specifically, considering a homogeneous isotropic thin plate, of 

arbitrary shape with contour   and domain  , uniform thickness h and modulus 

of elasticity E, (Figure 2. 2), based on the classical applications of the LEM [35-

37, 46] and taking into account Eqs. (1.59-60),  ,M x y  and  ,w x y  can be 
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expressed in terms of the aforementioned harmonic polynomials 
kP  and 

kQ , 

defined in Eqs. (2.14-2.16). 

 

Figure 2. 2 Plate with an arbitrary shape. 

 

It can be argued that a solution of Eq. (1.59),  can be obtained expressing the 

moment sum function as the sum of harmonic polynomials, which satisfy the 

Laplace equation as in Eq. (2.16 d-e), and a particular solution of Poisson’s 

equation Eq. (1.59), namely  ,pM x y ; that is 

        
0 1

, , , ,
n n

k k k k p

k k

M x y a P x y b Q x y M x y
 

      (2.26) 

where 
ka  and 

kb  are  2 1n   unknown coefficients to be determined, and n  is 

an integer number which denotes the truncation limit of the series expansion. 

Further, introducing the vectors 

 

 

 

 

 

 

 

0 1

0 1

, ,

, ; , ;

, ,

               ;

n n

n n

n n

P x y Q x y

x y x y

P x y Q x y

a b

a b

   
   

    
   
   

   
   

 
   
      

p q

a b

 (2.27) 

Eq. (2.26) can conveniently be rewritten in compact form as 

    , ,n pM x y M x y r η   (2.28) 
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where 

 ;T T

n n n

 
     

 

a
r p q η

b
  (2.29) 

are vectors containing the harmonic polynomials and the unknown 

coefficients, respectively. 

Note that, as far as the particular solution to  ,pM x y  of Eq. (1.59) is 

concerned, this can be obtained in closed-form using the approach in [47], when 

the load function  ,q x y  is represented by a homogeneous polynomial of degree 

N; i.e. 

  
0

,
N

N k k

k

k

q x y A x y



  (2.30) 

where 
kA  are known coefficients which depend on the form of the assigned 

load.   

Specifically, considering a Poisson’s equation of the form 

    2 , ,f x y q x y    (2.31) 

where  ,q x y  is a generic homogeneous polynomial of degree N  given as 

Eq. (2.30), a closed form particular solution of Eq. (2.31): 

   2

0

,
N

N k k

p k

k

f x y P x y 



  (2.32) 

which is a polynomial of degree N , where the coefficients kP  are  

 
     

 

  2

2

0

1 2 ! 2 !
; 1

! 2 !

mN k

k k m

m

k m N k m
P A k N

k N k

  





   
  

 
  (2.33)  

Note that, in Eq. (2.33) the term   2N k     denotes the integer part of 

  2N k . 

It is worth mentioning that, when  ,q x y  is not directly given, as in Eq. 

(2.30), the particular solution in Eq. (2.32) can still be used if  ,q x y  is firstly 

appropriately approximated by a truncated series of Chebyshev polynomials [48, 

49].  
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Clearly, this yields a quite versatile tool for expressing various shapes of load 

distributions, and even concentrated loads. For completeness’ sake, expressions 

of  ,pM x y  are reported in Table 2. 1 for some common cases of transverse 

distributed loads  ,q x y . 

As far as the unknown coefficients in Eq. (2.26) or (2.28) are concerned, the 

 2 1n   values of 
ka  and 

kb  in the vector η  can be determined appropriately 

imposing the specified BCs of the plate. In this context, it is convenient to firstly 

consider the simplified case of polygonal plate with simply-supported edges, 

which will be then further generalized to arbitrary shaped plates with any 

boundary conditions. 

 

Table 2. 1 Particular solution of Eq. (1.59) for different distributed loads. 

Type of load Load function Particular solution  

Uniform 

 

  0,q x y q     2 20,
4

p

q
M x y x y    

 

Triangular 

 

  0

1
,

2

x
q x y q

a

 
  

 
  

2 3

0,
2 2 3

p

q x x
M x y

a

 
   

 
 

 

Parabolic 

 

 
2

20

2
,

4

q a
q x y x ax

a

 
   

 
  

2 3 4

0

2
,

2 4 3 6
p

q x x x
M x y

a a

 
    

 
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2.4.2.1) Simply-supported polygonal plate 

Let the plate be of a polygonal shape and with all the edges simply-supported, 

transversely loaded and free of moments at the edges. As discussed in Section 

2.3, since in this case the moment sum function must be zero along the entire 

contour of the polygonal plate, the following relation holds 

    , , 0,nM x y M x y in     (2.34) 

Taking into account Eq. (2.34), it is feasible to evaluate these unknown 

coefficients η  in Eq. (2.28) applying a minimization procedure on the closed 

contour path integral of the squared moment sum function: 

    
2

,M x y d


    η  (2.35) 

Thus, introducing Eq. (2.28) into Eq. (2.35), the functional can be recast as 

        
2 2 , 2 ,n p n pM x y M x y d



    
 η r η r η  (2.36) 

Further, performing variations of the above functional with respect to η , 

yields: 

 
 

n


  



η
Q η τ 0

η
 (2.37) 

which is a linear algebraic system in the unknowns η , where 

 2 T

n n n d


 Q r r   (2.38) 

  2 ,T

n pM x y d


 τ r   (2.39) 

In this manner the vector η  can be directly evaluated as: 

 
1

n

 η Q τ  (2.40) 

and, taking into account Eq. (2.28), the moment sum function can be 

expressed as 

    1, ,n n pM x y M x y  r Q τ   (2.41) 

Once  ,M x y  is determined, the deflection function  ,w x y  can be 

obtained solving Eq. (1.60). Specifically, as is performed similarly for the 
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moment sum function, a solution of Eq. (1.60) can be found by assuming  ,w x y  

as the sum of harmonic polynomials, and a particular solution of the Poisson’s 

equation Eq. (1.60), namely  ,pw x y ; that is 

        
0 1

, , , ,
m m

k k k k p

k k

w x y c P x y d Q x y w x y
 

      (2.42) 

where 
kc  and 

kd  are  2 1m  unknown coefficients to be determined, and 

m  is an integer number which denotes the truncation limit of the series expansion. 

Again, note that the particular solution  ,pw x y  can be evaluated by 

applying the procedure in [47] considering the obtained moment sum function 

 ,M x y  in Eq. (2.41). 

As far as the unknown coefficients in Eq. (2.42) are concerned, the  2 1m  

values of 
kc  and 

kd  are determined appropriately by imposing the BCs. In this 

regard, Eq. (2.42) can conveniently be rewritten in compact form as 

    , ,m pw x y w x y r ξ   (2.43) 

where 
T T T   ξ c d  is the vector containing the unknown coefficients, and: 

  

 

 

 

 

 

0 1, ,

; , ; , ;

, ,

T T

m m m m m

m m

P x y Q x y

x y x y

P x y Q x y

   
   

        
   
   

r p q p q   

 

0 1

;

m m

c d

c d

   
   

 
   
      

c d   (2.44) 

Therefore, considering that for a simply-supported plate Eq. (1.86 a) holds, 

the vector ξ  can be found by minimising the closed contour path integral of the 

squared deflection function; that is 

    
2

,w x y d


    ξ   (2.45) 
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Introducing Eq. (2.43) into Eq. (2.45), and performing variation with respect 

to the unknown coefficients leads to an algebraic linear system in terms of the 

unknowns ξ , as: 

 
 

m


  



ξ
Q ξ λ 0

ξ
 (2.46) 

where 

 2 T

m m m d


 Q r r   (2.47) 

  2 ,T

m pw x y d


 λ r   (2.48) 

Finally, obtaining the vector ξ  from Eq. (2.46) as 

 
1

m

 ξ Q λ   (2.49) 

and substituting into Eq. (2.43), yields the deflection function of the plate 

 ,w x y  as: 

    1, ,m m pw x y w x y  r Q λ   (2.50) 

Note that if the number of terms in Eq. (2.42) corresponds to that of Eq. 

(2.26), that is if n m , then 
m nr r  and 

m nQ Q ; thus, in this case it is only 

necessary to compute 
nQ  via Eq. (2.38) once beforehand. 

 

2.4.2.2) General plate analysis 

As previously mentioned, the above discussed procedure is strictly valid for 

polygonal plates with all edges simply-supported. In this case, in fact, both the 

moment sum and the deflection functions must be null on the contour, that is 

 , 0M x y   and  , 0w x y   in  . Notably, these properties allow the 

functionals   η  and   ξ  to be expressed as in Eqs. (2.35) and (2.45), 

respectively. 

Clearly, in the generic case of arbitrarily shaped plates with any BCs, neither 

 ,M x y  nor  ,w x y  will equal zero on the entire contour, and hence Eqs. (2.40, 

2.49) cannot be directly used to find the unknown coefficients. This is, for 
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instance, the case of a plate with curved boundaries   , 0M x y in  , in which 

at least one edge can undergo vertical deflections   , 0w x y in  . Therefore, 

the possibility of the moment sum or the deflection functions being present in   

should be appropriately accounted for in the evaluation of the unknown 

coefficients. 

In this regard, assuming that the plate boundary conditions are the same on 

the entire contour  , the functional in Eq. (2.35) can be properly modified as 

      
2

, ,M x y M x y d


    η  (2.51) 

where  ,M x y  is given in Eq. (2.26) and  ,M x y  is an additional function, 

conventionally introduced to take into account the generic plate boundary 

conditions. As is apparent from Eq. (2.51), this function represents the pertinent 

moment sum function evaluated on the boundary. For consistency,  ,M x y  can 

be expressed in terms of harmonic polynomials as  

      
0 1

, , ,
n n

k k k k

k k

M x y a P x y b Q x y
 

     (2.52) 

in which 
ka  and kb  are unknown coefficients to be determined, while n  is an 

integer number denoting the truncation limit of the series expansion, with n n  

and it is generally small. 

Denoting these as: 

 

 

 

 

 

 

 

0 1

0 1

, ,

, ; , ;

, ,

                    ;

n n

n n

n n

P x y Q x y

x y x y

P x y Q x y

a b

a b

   
   

    
   
   

  
  

    
     

p q

a b

 (2.53) 

Eq. (2.52) can conveniently be rewritten in compact form as 

  , nM x y  s η   (2.54) 
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where 

 ;T T

n n n

 
     

 

a
s p q η

b
  (2.55) 

Clearly, as shown in Figure 2. 3, if the plate’s BCs vary on the contour  , it 

is feasible to appropriately subdivide   in the N  edges 
i  on which the BCs 

remain constant, that is 
1

N

i

i





   . 

 

Figure 2. 3 Arbitrary shaped plate with mixed BCs and 4.N   

 

Therefore, the functional in Eq. (2.51) becomes: 

      
2

1

, ,

i

N

i

i

M x y M x y d



 

    η  (2.56) 

where the symbol  
i

d


  denotes the classical line integration and, similarly to 

Eq. (2.54), the function  ,iM x y , representing the moment sum function on the 

corresponding edge, is given by: 

  , ; 1, ,i n iM x y i N s η   (2.57) 
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where the subscript i  refers to the i-th edge 
i . It is worth stressing that, as 

previously mentioned,  ,iM x y  equals zero only for simply-supported straight 

edges. 

Taking into account Eqs. (2.28) and (2.57) and substituting into Eq. (2.56), 

yields 

    
2

1

,

i

N

n p n i

i

M x y d



 

     η r η s η  (2.58) 

Analogously, to allow for the possibility of vertical deflections on the 

contour, the functional in Eq. (2.45) can be properly modified as: 

      
2

1

, ,

i

N

i

i

w x y w x y d



 

     ξ  (2.59) 

where  ,w x y  is given in Eq. (2.42) and  ,iw x y  is an additional function, 

conveniently introduced to take into account the possibility of boundary 

deflections. Similarly to  ,M x y  in Eq. (2.51),  ,iw x y  represents the pertinent 

deflection function evaluated on the boundary. Expressing  ,iw x y  in terms of 

harmonic polynomials, yields 

      , ,

0 1

, , , ; 1, ,
m m

i k i k k i k

k k

w x y c P x y d Q x y i N
 

      (2.60) 

in which ,k ic  and ,k id  are unknown coefficients to be determined, while m  is the 

chosen truncation limit of the series expansion, with m m  and it is generally 

small. 

Denoting these as: 

  

 

 

 

 

 

0 1, ,

, ; , ;

, ,

m m

m m

P x y Q x y

x y x y

P x y Q x y

   
   

    
   
   

p q  

 

0, 1,

, ,

;

i i

i i

m i m i

c d

c b

  
  

    
  

   

c d  (2.61) 



  Chapter II 

 

57 

 

Eq. (2.60) can conveniently be rewritten in compact form as 

  , ; 1, ,i m iw x y i N s ξ  (2.62) 

 

where 

 ;
iT T

m m m i

i

 
     

 

c
s p q ξ

d
 (2.63) 

Further, taking into account Eqs. (2.43) and (2.62) and substituting them into 

Eq. (2.59), the functional is obtained in the form: 

    
2

1

,

i

N

m p m i

i

w x y d



 

     ξ r ξ s ξ  (2.64) 

Note that, the additional function  ,iw x y  in Eq. (2.59) must be taken into 

account only for the plate edges 
i  which can undergo vertical deflections (such 

as for a free edge). Therefore, unless at least one edge is allowed to move 

vertically,  , 0iw x y i  , that is 0i ξ , and the functional in Eq. (2.59) reverts 

to the more simple one in Eq. (2.45). 

As far as the solution procedure is concerned, a three steps scheme can be 

followed. 

The first step is associated with the solution of Eq. (1.59), which leads to the 

momentum sum function ( , )M x y . In this regard, minimising the functional in 

Eq. (2.58), that is performing the variation of the functional with respect to the 

unknown coefficients η , yields:  

 
 

,

1

N

n n i i

i






   




η
Q η τ Q η 0

η
 (2.65) 

which is an algebraic linear system of equations, where: 

 , 2 ; 1, ,

i

T

n i n n d i N


 Q r s   (2.66) 

Equation (2.65) can equivalently be rewritten as: 

 
1 1

,

1

N

n n n i i

i



 



  η Q τ Q Q η  (2.67) 
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to express the coefficients η  in terms of the vectors iη . 

Note that, as previously stated, if the plate’s BCs do not vary on the contour 

 , the functional in Eq. (2.51) should be used instead of the one in Eq. (2.58); 

thus, in this case, 1N   and the line integral in Eq. (2.66) simply reverts to a 

contour integral in  . 

In this manner, considering Eq. (2.28) the moment sum function  ,M x y  

can be directly expressed as: 

    1 1

,

1

, ,

N

n n n n n i i p

i

M x y M x y


 



  r Q τ r Q Q η   (2.68) 

and a particular solution of Eq. (1.60)  ,pw x y , which is required for the 

definition of the functional in Eq. (2.64), can be evaluated following the approach 

in [47]. It is worth stressing that, since  ,M x y  depends on iη  as shown in Eq. 

(2.68), also  ,pw x y  will be a function of the unknown iη . To directly express 

this dependence, hereinafter the particular solution will be denoted as 

 , ,p iw x y η . 

The second step is associated with the solution of Eq. (1.60), which yields 

the deflection function  ,w x y . In this regard, the variation of the functional in 

Eq. (2.64), with respect to the unknown coefficients ξ , can be performed as: 

 
 

,

1

N

m m i i

i






   




ξ
Q ξ λ Q ξ 0

ξ
 (2.69) 

Where: 

 , 2 ; 1, ,

i

T

m i m m d i N


 Q r s   (2.70) 

this solution leads to the coefficients ξ  in terms of the unknowns iξ , that is 

 
1 1

,

1

N

m m m i i

i



 



  ξ Q λ Q Q ξ   (2.71) 
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Once these coefficients are found, the deflection function  ,w x y  can be 

evaluated through the substitution of Eq. (2.71) into Eq. (2.43): 

    1 1

,

1

, , ,

N

m m m m m i i p i

i

w x y w x y


 



  r Q λ r Q Q ξ η   (2.72) 

Finally, the unknown terms iη  and iξ  can be obtained by imposing the 

appropriately specified BCs on the edges 
i  for which the additional functions 

 ,iM x y  and  ,iw x y  have been introduced. Specifically, for the most common 

cases, taking into account Eqs. (1.85 a, b, 1.86 a ,b) and (1.89 a, b), the following 

functionals can be defined for each edge 
i  of the whole plate contour   

i. Simply-supported curved edge 

    
2

,

i

i i nM x y d


    η   (2.73) 

ii. Clamped edge 

  
 

2

,

i

i i

w x y
d

n




 
   

 
η  (2.74) 

iii. Free edge 

    
2

,

i

i i nM x y d


    η   (2.75) 

    
2

,

i

i i nV x y d


    ξ   (2.76) 

Note that, taking advantage of the properties of the harmonic polynomials, 

and considering the general expression of the deflection function in Eq. (2.72), 

all the aforementioned BCs in Eqs. (2.73) and (2.74-2.76) can be appropriately 

represented in compact matrix form. In this regard, for simplicity’s sake, the 

resulting expressions are reported in Appendix A. 

In this context, observe that even more complex BCs, such as guided-end 

conditions, elastically restrained edges or imposed deflections, can be taken into 

account in a similar manner. Further, variations of the BCs on the same edge 
i  
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can be considered as well, appropriately subdividing the pertinent edge 
i  in the 

corresponding part on which the BCs remain constant. 

Clearly, minimising the above defined functionals, that is performing the 

variation with respect to the unknown coefficients iη  and iξ , as 

 
 i i

i






η
0

η
 (2.77a) 

 
 i i

i






ξ
0

ξ
 (2.77b) 

yields an algebraic linear system of equations in terms of iη  and iξ , which can 

be easily solved for the coefficients. Further substitution in Eq. (2.72) leads to the 

complete definition of deflection function  ,w x y . 

To further elucidate the mechanics of the technique, Figure 2. 4 provides a 

step-by-step flowchart for the method. 
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Figure 2. 4 Flowchart of the method. 

 

2.4.3) Numerical applications 

Firstly, as benchmark cases, the extended LEM method is employed for three 

different well-known examples, namely a triangular, simply-supported plate; a 

circular, clamped plate; and an elliptical clamped plate, demonstrating the ability 

of the method to directly yield the exact solutions. Further, as approximate 

solutions, a rectangular shaped plate with mixed boundary conditions, a triangular 

simply-supported plate under a concentrated load and a plate with a complex 

shape are investigated to show the potential of the method. Finally, to assess the 

accuracy of the procedure, the LEM based deflection functions are compared with 

the results of classical Finite Element analyses for all the above mentioned 

Begin

Choose an appropriate number of coefficients n 

and   in Eq. (2.68) and m and   in Eq. (2.72)

Find the particular solution Mp (x, y) in Eq. (2.68) 

as Table 2.1 or following the approach in [47]

Evaluate the moment sum function M (x, y) in Eq. (2.68), taking into account 

Eqs. (2.38-39), (2.55) and (2.66), in terms of the coefficient vectors    

Find the particular solution wp (x, y) in Eq. 

(2.72) following the approach in [47]

Evaluate the deflection function w (x, y) in Eq. (2.72), taking into account Eqs. 

(2.47-48), (2.63) and (2.70), in terms of the coefficient vectors    and    

End

Find w (x, y) substituting    and    in Eq. (2.72)

Find the unknown terms in    and    solving the linear algebraic system of 

equations in Eqs. (2.77), taking into account the appropriate BCs based on Eqs. 

(2.73-2.76) and following the approach in [47]

Step 1

Step 2

Step 3
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configurations. As far as the selection of the number of terms in Eqs. (2.26), 

(2.42), (2.52) and (2.60) is concerned for these numerical applications, it is noted 

that these values strongly depend on the specific problem under consideration. In 

this regard, in general, greater values might be required for determining the 

deflection of plates with complex shapes or BCs, and in the case of complex load 

functions. Further, a higher number of terms is generally necessary if stress 

distributions on the boundaries must be found. Obviously, a higher number of 

terms leads to enhanced accuracy, at the expense, however, of higher 

computational cost. Further, as a rule of thumb for choosing an appropriate 

number of terms, the procedure in Figure 2. 4 can be performed for few different 

values of n and m, since the approach generally requires a few seconds in terms 

of computational cost.  

 

2.4.3.1) Exact solutions 

Consider the case of a triangular shaped plate (see Table 2. 2) under a 

uniformly distributed load   0,q x y q  and with all the edges simply-supported. 

Applying the previously described procedure yields the non-null series 

coefficients for the deflection function Eq. (2.43) of the vector ξ , as reported in 

Table 2. 2.  

Substituting this in Eq. (2.43) leads to 

       3 2 2 2 3 2 2 20, 3 3 4
192

q
w x y y x y l x y l l x y

l D

 
           

 
 (2.78) 

which is the exact solution of the considered problem [1]. In this regard, the 

contours of the above obtained deflection function are shown in Figure 2. 5 for 

3 6l m . 
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Table 2. 2 Triangular shaped plate and corresponding coefficients of the deflection function. 

Plate Shape and BCs Non-null coefficients of  ,w x y  

 

4 2

0 0 0

0 2 4

0 0

3 5

; ; ;
12 12 64

; ;
48 192

q l q l q
c c c

D D D

q l q
d d

D l D

  

 

 

 

 

Figure 2. 5 Deflection functions for 
2

0 500N ; 5mm; 210GPa; 0.3q m h E        for  the 

triangular simply-supported plate of Table 2. 2.   

 

Moreover, consider the case of a circular plate (see Table 2. 3) of radius r  

under a uniformly distributed load 
0q  and simply-supported along the entire 

contour  1N  .  
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Table 2. 3 Circular shaped plate and corresponding coefficients of the deflection function. 

Plate Shape and BCs Non-null coefficients of  ,w x y  

 

 

 

 

 

4

4 2

0 0

2

0

0

5 3
; ;

64 1 32 1

64

q r q r

D D

q

D

c c

c

 

 




 





 

 

The plate boundary   is defined by the curve in parametric form 

 
cos

, 0 2
sin

x r

y r


 




 


  (2.79) 

Since the boundary is curvilinear, the additional moment sum function 

 1 ,M x y  should be taken into account, while  1 ,w x y  is equal to zero, that is 

1 0ξ , because of the chosen BCs. Applying the previously defined procedure, 

coefficients η  and ξ  are found via Eq. (2.67) and (2.71), respectively, in terms 

of the unknowns 1η . Finally, considering Eq. (2.72), the remaining coefficients 

ka  and kb  in 1η  are found using Eq. (2.73). In this regard, a value of 

 

 

2

0

0

1

8 1
a

q r 







 is obtained, while all the other terms are equal to zero. 

Therefore, substituting in Eq. (2.72) yields the well-known exact solution of the 

deflection function as 

  
      2 2 2 2 2 2

0 1 5

64 (1 )
,w

q r x y y

D
y

x
x

r 



       


 


  (2.80) 

In this regard, the contours of the function into Eq. (2.80) are shown in Figure 

2. 6 for 1r m . 
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Figure 2. 6 Deflection functions for 
2

0 500N ; 5mm; 210GPa; 0.3q m h E        for  the 

circular simply-supported plate of Table 2. 3. 

 

Finally, consider the case of a clamped elliptical plate of axes a  and b  (see 

Table 2. 4), under a uniformly distributed load 
0q . 

 

Table 2. 4 Elliptical shaped plate and corresponding coefficients of the deflection function. 

Plate Shape and BCs Non-null coefficients of  ,w x y  

 

 

4 4 2 2 4

0 0 0

4 2 2 4

0 2 4; ;
8 4 8

3 2 3

c
q a b q a b q a

D D D

a a

c

b b

c
  









 


 

 

 The plate boundary   is defined by the curve in parametric form 

 
cos

, 0 2
sin

x a

y b


 




 


  (2.81) 

As in the previous case, taking into account the BCs and the plate shape, 

1N  ,  1 , 0M x y   and  1 , 0w x y  . Following the previously described 
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procedure, all the pertinent coefficients are found minimizing the functional in 

Eq. (2.73) considering Eqs. (2.67) and (2.71), leading to the deflection function 

  
 

 

2
2 2 2 2 2

0

4 2 2 48 3 2 3
,w

D

q b x a b

b
x y

y

a a b

   
 





 (2.82) 

which is the exact solution of the problem in [1]. In this regard, the contours 

of Eq. (2.82) are shown in Figure 2. 7 for 1.5a m  and 1 .b m  

 

Figure 2. 7 Deflection functions for
2

0 500N ; 5mm; 210GPa; 0.3q m h E        for  the 

elliptical simply-supported plate of Table 2. 4. 

 

As far as the convergence rates of the proposed approach is concerned, 

analyses can be performed in terms of the 
2L  displacement and energy norm, 

which can be defined respectively as [27] 

  

1

2
2

,w w x y d


 
  
 
  (2.83) 

and: 

  

1

2
22 ,

2

D
e w x y d



 
   

 
  (2.84) 

In Table 2. 5 the relative error between the 
2L  displacement and energy norm 

of the exact solution and the proposed approach, for different values of the 
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number of coefficients m in Eq. (2.42) is reported. As can be seen, the relative 

error is exactly equal to zero for the highest number of terms in the series 

expansion since, as previously mentioned, the proposed method leads to the 

analytical solutions. 

 
Table 2. 5 Relative errors in terms of L2 displacement and energy norm. 

Plate Shape and BCs 
Number of coefficients 

m 

Relative error for the 

L2 displacement norm 

Relative error for the 

L2 energy norm 

Triangular simply-

supported plate 

m=5 0 0 

m=4 3.42·10-2 3.33·10-1 

m=3 1.27·10-1 7.11·10-1 

Circular simply-supported 

plate 

m=4 0 0 

m=3 4.93·10-3 5.37·10-3 

m=2 4.93·10-3 5.37·10-3 

Elliptical clamped plate 

m=4 0 0 

m=3 1.89 1.13 

m=2 1.89 1.13 

 

Note that, classically to obtain the above reported exact solutions in Eqs. 

(2.78), (2.80) and (2.82) different approaches are required for each plate shape 

[1]. For instance, the solution of circular and elliptical plates is generally obtained 

considering polar and elliptical coordinates. On the other hand, as shown, the 

proposed method yields the exact solutions, if available, regardless the chosen 

plate geometry. 

 

2.4.3.2) Concentrated load 

To show how the proposed procedure can also be applied for plate under 

generic load conditions, consider the case of a simply-supported triangular plate 

under a concentrated load Q  applied at the origin. 
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Since in this case Q  cannot be directly expressed as in Eq. (2.30), the 

concentrated load can be assumed as a distributed load  ,q x y  shaped as a 

Dirac's delta  ,x y  of amplitude equal to Q , which can be conveniently 

approximated in terms of Chebyshev polynomials as: 

             0 2 0 2

1 1

1 2 1 2
, 1 1

N N
i i

m m

m m

q x y Q T x T x T y T y
    

  
      

  
  (2.85) 

where N is the truncation limit of the series expansion, while  mT   is the 

Chebyshev polynomial of order m, defined by the recurrence relation [49] 

      1 12m m mT x xT x T x     (2.86) 

in which  0 1T x   and  1T x x . 

Once the concentrated load has been expressed as in Eq. (2.85), the particular 

solution  ,pM x y  of Eq. (1.59) can be obtained in a closed-form using the 

approach in [47]. 

In this manner, the LEM procedure can be easily applied. Thus, firstly the 

moment sum function  ,M x y  is directly determined via Eq. (2.41) and secondly 

the deflection function  ,w x y  is immediately retrieved using Eq. (2.50). 

In this regard, Figure 2. 8 (a) shows the contour plot of the aforementioned 

function, assuming 3 6l m . Note that in this case 22  terms have been used 

in the vector ξ  in Eq. (2.49), considering only even coefficients 
2kc  and odd 

coefficients 
2 1kd 

 (thus also 22m   in Eq. 2.42). Further, in Figure 2. 8 (b) LEM 

results of the deflection profile at 0x   are compared with pertinent FEM data 

obtained employing the commercial code Ansys. 
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Figure 2. 8 Deflection functions   for 100 ; 1mm; 210GPa; 0.3:Q N h E      (a) Contours plot 

with LEM;( b) Deflection profile. 

 

As can be observed, classical FEM data are in very good agreement with the 

results of the proposed LEM approach, attesting to the accuracy of the considered 

procedure. 

To further assess the reliability of the procedure, the average relative 

discrepancy index 
r  between the proposed method results and the FEM data has 

been computed. 

 Specifically, 
r  can be defined as: 

 
 

2

2

1
100

LEM FEM

r

p FEM

w w

N w



        (2.87) 
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where 
LEMw  and 

LEMw  are the values of the deflection obtained using the 

LEM and FEM approach respectively, while pN  is the considered number of 

points of the deflection functions. 

In this regard, taking into account the points in Figure 2. 8 (b), 1.75%r  , 

thus showing the accuracy of the proposed approach. 

 

2.4.3.3) Mixed BCs 

Aiming at demonstrating the capability of the proposed procedure to treat 

plates with mixed BCs., consider the case of a rectangular plate under a uniformly 

distributed load 
0q , assuming that two opposite plate edges are simply-supported, 

one edge is clamped and one free, as shown in Figure 2. 9 (a). 

 

 

Figure 2. 9 Plate geometries: (a) Rectangular plate with mixed BCs; (b) Clamped plate of complex 

shape. 
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Applying the proposed method, the plate boundary   can be conveniently 

subdivided into four edges 
i , that is 4N  . Note that, since the two edges 

2  

and 
4  are simply-supported, as previously mentioned the corresponding 

function  2 ,M x y  and  4 ,M x y  in Eq. (2.56) can be assumed equal to zero and 

only the remaining functions  1 ,M x y  and  3 ,M x y  must be taken into 

account. Further, since just the boundary 
3  can undergo vertical deflections, 

 3 , 0w x y   while  , 0, 1,2,3iw x y i   in Eq. (2.59). 

In this manner, the vector η  in Eq. (2.67) can be specified as: 

 
1 1 1

,1 1 ,3 3n n n n n

    η Q τ Q Q η Q Q η   (2.88) 

and the moment sum function  ,M x y  can be obtained via Eq. (2.29). 

Further, the vector ξ  in Eq. (2.71) becomes: 

 
1 1

,3 3m m m

  ξ Q λ Q Q ξ   (2.89) 

and the deflection function can be evaluated substituting in Eq. (2.43) as 

    1 1

,3 3 1 3, , , ,m m m m m pw x y w x y   r Q λ r Q Q ξ η η   (2.90) 

Finally, the unknown terms 1η , 3η  and 3ξ  can be obtained by imposing the 

specified BCs on the edges 
1  and 

3  for which the additional functions 

 ,iM x y  and  ,iw x y  have been introduced. 

Specifically, minimizing the functional in Eqs. (2.75-2.76) specified for 
3

, namely  3 3 η  and  3 3 ξ , as in Eq. (2.77), the vectors 3η  and 3ξ  can be 

obtained in terms of 1η . Finally, minimization of the functional in Eq. (2.74) for 

1 , that is  1 1 η , yields the vector 1η . Clearly, further substitution in Eq. (2.90) 

leads to the complete definition of deflection function  ,w x y . 
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In this regard in Figure 2. 10 (a) the contour plot of the deflection function is 

shown, assuming 1a m  and 0.5b m . Note that in this case 12  coefficients 
kc  

and 10  coefficients 
kd  have been used in the vector ξ . Further, the proposed 

method results vis-à-vis FEM data are shown in Figure 2. 10 (b) for the deflection 

profile at 0x  . 

As can be seen, an excellent agreement is achieved between classical FEM 

data and the proposed LEM approach, showing the accuracy of the considered 

procedure. 

 

Figure 2. 10 Deflection functions   for  
2

0 500N ; 1mm; 210GPa; 0.3q m h E     : (a) 

Contours plot with LEM; (b) Deflection profile. 

 

To further show the reliability of the approach, the average relative 

discrepancy index in Eq. (2.87) has been computed, considering the points in 

Figure 2. 10 (b), leading to the very low value of 0.28%r  . 



  Chapter II 

 

73 

 

2.4.3.4) Arbitrarily shaped plate 

Finally, to demonstrate the capability of the method to treat plates with 

arbitrary geometries, a clamped plate with a complex shape (see Figure 2. 9(b)) 

under a uniformly distributed load 
0q  has been analyzed. The boundary   of the 

plate is defined by the curve in parametric form 

 
 

 

3 3

3 3

sin cos cos
, 0 2

sin cos sin

x r

y r

  
 

  

  


 
  


  (2.91) 

Applying the proposed procedure, considering the specified BCs, the 

moment sum function can be expressed as: 

    1 1

,1 1, ,n n n n n pM x y M x y   r Q τ r Q Q η   (2.92) 

where 1η  is a vector of unknowns due to the additional function  1 ,M x y  which 

takes into account the clamped BCs, while  ,pM x y  is given in Table 2. 1 for 

the uniform load distribution. 

Further, since no deflection occurs on  , 0i ξ  and the deflection function 

in Eq. (2.72) can be simplified as 

    1

1, , ,m m pw x y w x y r Q λ η   (2.93) 

where the particular solution  1, ,pw x y η  can be obtained as in [47]. 

Finally, the unknown term 1η  can be evaluated through imposing the 

specified BCs on  . Specifically, performing variation of the functional in Eq. 

(2.74) with respect to 1η  yields a linear system of algebraic equation, whose 

solution leads to the unknowns coefficients 1η . 

In this regard, the contours of the deflected surface for 1r m  is depicted in 

Figure 2. 11 (a), while in Figure 2. 11 (b) the deflection profile at 0x   is 

reported vis-à-vis pertinent FEM data. Note that, in this case just 9 terms of the 
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even coefficients 
2kc  are required in the vector ξ  in Eq. (2.71) (that is 16m  ), 

given that all the coefficients 
2 1kc 

 and 
kd  equal zero. As can be observed, also 

in this case an excellent agreement is achieved between proposed and FEM data, 

further assessing the reliability of the proposed procedure. Moreover, the average 

relative discrepancy index in Eq. (2.87) has been computed, considering the 

points in Figure 2. 11 (b), leading to the satisfactorily low value 1.83%r  . 

 

 

Figure 2. 11 Deflection functions for 2

0 500N ; 5mm; 210GPa; 0.3q m h E     : (a) 

Contours plot with LEM; (b) Deflection profile.   



  Chapter III 

 

75 

 

CHAPTER III  

 

AN INNOVATIVE PROCEDURE FOR THE 

ANALYSIS OF THIN PLATES OF ARBITRARY 

SHAPES UNDER DYNAMICS LOADS  

 

3.1) Introduction 

In the previous chapter, attention has been focused on the analysis of the 

static response of isotropic thin plates. However, in many practical cases, 

structural properties of thin plates differ in two mutually perpendicular directions, 

so that the plate is described as orthogonally anisotropic or, in short, orthotropic 

[50]. Such anisotropy can be due to the inherent orthotropic characteristic of the 

material, or it can be introduced by ribs, corrugation or stiffeners. Examples 

include reinforced plates with a set of equidistant stiffeners in one or two 

directions, open gridworks and corrugated plates [51]. Further, even isotropic 

plates altered by metallurgical process along perpendicular directions exhibit 

orthotropic characteristics [52, 53], thus requiring an orthotropic plate model. 

Therefore, considerable attention has been devoted by researchers to develop 

efficient and accurate methods for the investigation of orthotropic thin plates. In 

this context, the problem of the dynamic response determination of orthotropic 

plates under various boundary conditions (BCs) has been addressed. Existing 

approaches pertain generally rectangular shaped plates and resort either to 

Rayleigh-Ritz procedures [54, 55] or classical Finite Elements (FE) methods [56]. 

A recent contribution can be found in [52], where exact solutions have been 

obtained for the free-vibration response of rectangular plates with simply 

supported or clamped edges, while other numerical approaches can be found in 

[57-59]. On the other hand, the free-vibration analysis of orthotropic generally 

shaped plates has been much less addressed. Specifically, few common cases 
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have been studied in the literature, such as elliptical or circular plates [60], general 

triangular plates [61], skew plates [62], and trapezoidal plates [63]. 

In this chapter, the so-called pb-2 Rayleigh-Ritz procedure [33, 64-66], 

commonly used to treat isotropic plates of general shape, is extended to deal with 

arbitrarily shaped orthotropic plates. In particular, first, the pb-2 Rayleigh-Ritz 

procedure is extended for the analysis of orthotropic plates. Then, the Green's 

lemma is employed to convert involved computationally demanding double 

integrals in the plate domain to more simple line integrals over the contour of the 

plate. Finally, the accuracy of the proposed method is investigated by determining 

the dynamic response of two orthotropic plates with different shapes and 

boundary conditions. 

 

3.2) Pb-2 Rayleigh-Ritz method for general orthotropic plate 

analysis. 

The classical Rayleigh-Ritz method employs the principle of minimum 

potential energy in order to solve structural engineering problems. Specifically, 

in the case of thin plate, the deflection function of middle plane surface  ,w x y

ca be expressed in the form of series of the type: 

    
1

, ,
N

j j

j

w x y c x y


   (3.1) 

where N  is the chosen truncation limit of the series expansion, jc  are 

unknown coefficients to be determined, and  ,j x y  are the so-called Ritz 

functions, that satisfy individually at least the geometrical boundary conditions. 

As discussed in section 1.4.2.1, the main concern of applying the Rayleigh-Ritz 

method lies in the use of the most suitable Ritz function, which approximate the 

deflection function of the plate. A set of two-dimensional orthogonal plate 

functions have been proposed for the free vibration analysis of rectangular plates 

[10] and later applied for the analysis of isotropic plates of general shape [33, 64-

66]. The method is referred as pb-2 Rayleigh-Ritz, where p, b and 2 denote 

polynomials, boundary expressions, and dimension, respectively. Specifically, in 
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this procedure, Ritz functions,  ,j x y , are defined as the product of a boundary 

function  1 ,x y , and polynomial functions  ,jf x y , thus 

      1, , , , 2j jx y f x y x y j           (3.2) 

Considering a thin homogeneous plates of arbitrarily shape, contour   and 

thickness h , as shown in Figure 3. 1, if the plate BCs vary on the contour, it is 

feasible to appropriately subdivide   in the N  edges, described by the equation 

 ,k x y , on which the BCs remain constant, that is  
1

,

N

k

k

x y




   .  

 

Figure 3. 1 Arbitrary shaped plate with mixed BCs. 

 

In this case, the boundary function  1 ,x y  can be expressed as 

    1

1

, , k

N

k

k

x y x y







   (3.3) 

where the exponents 
k  depend on the support edge condition, as 

0, if the -thedgeisfree

1, if the -thedgeissimply supported

2, if the -thedgeisclamped

k

k

k

k

k

k













       (3.4) 
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Further, the polynomial function  ,jf x y  in Eq. (3.2) may be generated as 

 

 
 

 

2

2

2

2

1
, cos

2

1
             sin , 2

2

R R
Rr s

j

Rs r

j r
f x y x y

j r
x y j





 
 

 
 

  (3.5) 

where 

 1Rr j  
 

  (3.6) 

and 

 

 

 

22
2

22
2

11
cos

2 2

12
       sin

2 2

RR
R

RR

j rj r
s

j rj r





   
  
 

   
  
 

  (3.7) 

in which the symbol     denotes the so-called maximum integer function. 

It is worth mentioning that, through the chosen boundary function in Eq. 

(3.3), the Ritz functions  ,j x y  in Eq. (3.2) automatically satisfy the kinematic 

BCs. 

Introducing the energy functional of the plate 

 1 2 2tot Strain ext pre stressU U T          (3.8) 

where 
tot is the total potential energy of the plate, 

StrainU  is the potential energy 

of the plate, 
ext is the potential energy of external forces acting on the body, 

pre stressU  is the potential energy of external pre-stretching force on the plate and 

T  is the kinetic energy. In the case of
1 2 31, 0      Eq. (3.8) can be applied 

to deal with the solution of the bending of plates under transversal loads. The Ritz 

method can also be used for the analysis of plates under combined transversal and 

in-plane loads and lateral loads
1 2 31, 0     . Further, the method can be 

employed for both the free vibration analysis of plates with (
1 2 30, 1     ) 

and without (
1 2 30, 1     ) the influence of in-plane loads.  
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In the following, the pb-2 Rayleigh-Ritz method, introduced in [33, 64, 65] 

for general isotropic plate, is appropriately extended to deal with thin plates made 

of orthotropic material. In particular, the attention is focused for the free vibration 

analysis of orthotropic plates without  the influence of in-plane loads (

1 2 30, 1     ).  

In this case, Eq. (3.8) becomes:  

 
tot StrainU T     (3.9) 

Substituting Eqs. (1.65) and (1.73) into Eq. (3.9), taking into account Eqs. 

(3.1-7) leads to 

 

2 2

2 2
1 1

2 2

2 2
1 1

2 2

2 2
1 1
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
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

 (3.10) 

and 

 
2

1 1

1

2

N N

j j i i

j i

T h c c dx dy   
 

  
   

  
    (3.11) 

Taking into account Eq. (3.9) and performing variation with respect to the 

unknown coefficients jc  yields 



  Chapter III 

 

80 

 

22

2 2
, 1

2 22 2

2 2 2 2
, 1

2 22 2

2 2
, 1 , 1

2

2

2 8

2

N
ji

x i

i j

N
j ji i

xy y i

i j

N N
j ji i

y i t i

i j i j

D c dx dy
x x

D c dx dy dx dy
x y y x

D c dx dy D c dx dy
y y x y x y

h



  


  



 

  

  

 
    

   
        

     
               



 

  

  

2

, 1

0
N

i i j

i j

c dx dy  
 

 
 

 
 

(3.12) 

Introducing the matrices 
 ,d e pq

R  whose elements are given as 

 

     ,
,,

,

1, , ; 1, ,

p qd e

jd e p q i

ij d e p q

x yx y
R dxdy

x y x y

i N j N
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   

       

 

   (3.13) 

where the generic superscript  ,d e p q  of the term 
 ,d e p q

ijR  refers to the 

order of the partial derivatives of the functions  ,i x y  and  ,j x y  at the right-

hand side of Eq. (3.13). 

In this manner, the integrals in Eq. (3.12) can be specified as 
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  (3.14a-f) 
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and Eq. (3.12) can be rewritten in more compact form as 

        

   

20,20 20,02 02,20 02,02

, 1 , 1 , 1

11,11 00,002

, 1 , 1

4 0

N N N

x i ij xy y i ij ij y i ij

i j i j i j

N N

t i ij i ij

i j i j

D c R D c R R D c R

D c R h c R



 

  

 

   

 

  

 
  (3.15) 

Let c  be the vector containing the unknown coefficients, that is 

 1

T

Nc cc , and 
 20,20

R , 
 20,02

R , 
 02,20

R , 
 02,02

R , 
 11,11

R , and 
 00,00

R , the 

matrices containing as elements those in Eqs. (3.14 a) – (3.14 f) respectively. 

Then, Eq. (3.15) can be rewritten in compact matrix form as  

 

       

   

20,20 02,02 20,02 02,20

11,11 00,00
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  
 
  
  

R R R R

c 0

R R

  (3.16) 

where 2

xyh    . 

Finally, defining the stiffness ( K ) and mass matrices ( M ) as 

           20,20 02,02 20,02 02,20 11,11
4

yx t
y

xy xy xy

DD D
D

  
     
 

K R R R R R  (3.17) 

and 

 
 00,00

M R   (3.18) 

The Ritz method leads to a generalized eigenvalue problem 

   K M c 0   (3.19) 

Therefore, the natural frequencies   and the corresponding coefficients 

vector c of a orthotropic thin plate can be found. 

 

3.3) Extension of the Pb-2 Rayleigh-Ritz method to arbitrary 

shaped plates 

In Section 3.2, the pb-2 Rayleigh-Ritz was extended for the analysis of 

orthotropic thin plates. The procedure represents a simple and effective method 
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to determine natural frequencies and mode shapes of orthotropic plates under 

most common BCs. However, double integrals in Eq. (3.14 a-f) can be 

particularly cumbersome to be evaluated for plates of arbitrary shape. For this 

reason, application of the pb-2 Rayleigh-Ritz procedure is generally limited to 

the case of rectangular plate, for which integrals can be simply obtained 

numerically. 

In this context, taking into account Green's theorem, double integrals in Eq. 

(3.14 a-f) can be converted into much simpler line integrals, which allow for an 

elegant and straightforward application of the proposed procedure to orthotropic 

plates of arbitrary shape. 

Specifically, considering Eq. (3.13), a function ,

,

de pq

i jG  can be defined as: 

 

   ,

,

,,
( , ) ;

1, , ; 1, ,

p qd e

jide pq

i j d e p q

x yx y
G x y

x y x y

i N j N


    

   
       

 

  (3.20) 

where the generic superscript  ,d e p q  refers to the order of the partial 

derivatives of the functions  ,i x y  and  ,j x y . Consequently, the functions 

   ,
,

d e p q

ijA x y  and 
   ,

,
d e p q

ijB x y can be introduced as 

        

   
   , ( , )

,

,,
, ,

1, , ; 1, ,
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ij i j d e p q

x yx y
A x y G dx dx

x y x y

i N j N


    

    
       

 

               (3.21) 

and 

 

   
   , ( , )

,

,,
, ,

1, , ; 1, ,

p qd e

jd e p q ide pq

ij i j d e p q

x yx y
B x y G dy dy

x y x y

i N j N


    

    
       

 

      (3.22) 

Note that the above defined indefinite integrals can be generally obtained in 

closed form since they involve integrations of polynomial functions. 

Further, referring to Figure 3. 1, let the equation of the k-th edge  ,k x y  

of the plate be given in parametric form as      ,k k kx y       . Thus, 
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functions in Eqs. (3.21) and (3.22) can be expressed in terms of the generic 

parameter   as well, that is 
   ,d e p q

ijA   and 
   ,d e p q

ijB  . 

Taking into account Eqs (3.21) and (3.22), application of the Green's theorem 

yields the terms 
 ,d e p q

ijR  in Eq. (3.13) as 

 
     , ,

,

1

1

2
k

N

d e p q d e p q

ij ij k

k

R H d


 
 

     (3.23) 

where the symbol  
k

d


  denotes the classical line integration, and the 

function 
   ,

,

d e p q

ij kH   is given as 

 
       

     
 , , ,

,

d e p q d e p q d e p qk k

ij k ij ij

dy dx
H A B

d d

 
  

 
     (3.24) 

In this manner, Eq. (3.23) allows for a simpler evaluation of the terms 

 ,d e p q

ijR of Eqs (3.14 a-f).  Therefore, the method can be used even for plates of 

more complex shape. 

In passing, it is noted that if the plate BCs do not vary on the contour  , and 

the entire plate boundary can be described by a single equation   , then the 

line integral in Eq. (3.23) simply reverts to a contour path integral in  , that is 

 
     , ,1

2

d e p q d e p q

ij ijR H d 


    (3.25) 

 

3.4) Numerical applications  

To assess the accuracy of the proposed procedure to orthotropic plates of 

arbitrary shape, the frequencies of two plates were determined and compared with 

experimental and numerical values from the literature. 

In particular, a clamped elliptical plate and a triangular cantilever plate have 

been analyzed (see Figure 3. 2). Two material properties have been taken into 

account for each configuration, see Table 3. 1. 
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Table 3. 1 Material properties [67]. 

Material xE  [GPa] yE  [GPa] xyG  [GPa] xy    [Kg/m3] 

Graphite/Epoxy 181 10.30 7.17 0.28 1600 

Carbon/Epoxy 229 13.35 5.25 0.315 1600 

 

 

 a)  b)  

Figure 3. 2 Analysed configurations: a) Elliptical clamped plate; b) Triangular cantilever plate. 

Please note that, 20N   terms in Eq. (3.1) have been used for the pb-2 

Rayleigh-Ritz procedure. 

 

3.4.1) Elliptical plate 

Consider the case of an elliptical shaped plate, made of orthotropic material, 

clamped along the whole boundary, as shown in  Figure 3. 2 (a). The boundary 

equation  ,x y  is given as 

  
2 2

, 1
x y

x y
a b

   
      

   
      (3.26) 

and, considering the chosen BCs, the boundary function  1 ,x y  in Eq. (3.3) can 

be expressed as    
2

1 , ,x y x y   . Further, taking into account that the 

boundary of the plate is defined by the curve in parametric form 
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cos

, 0 2
sin

x a

y b


 




 


  (3.27) 

Eq. (3.25) can be used to obtain the element of the matrices 
 ,d e pq

R  in Eqs. 

(3.17) and (3.18). 

The pb-2 Rayleigh-Ritz procedure has then been applied to identify the first 

five frequencies of elliptical plates considering the two materials in Table 3. 1. 

Results are reported in Tables 3. 2 and 3. 3, considering 1a m , 0.5b m  and 

5h mm , for Graphite/Epoxy and Carbon/Epoxy  materials, respectively. Note 

that, for each frequency, relative percent error is reported. 

 

Table 3. 2 Frequencies 2k kf    [Hz] for elliptical plate of Graphite/Epoxy material. 

Graphite/Epoxy 1st 2nd 3rd 4th 5th 

Frequency in [60] 22.53 46.23 47.51 73.42 79.94 

Calculated frequency 22.53 46.25 47.53 73.52 80.10 

Error % 0 -0.04 -0.04 -0.14 -0.20 

 

Table 3. 3 Frequencies 2k kf    [Hz] for elliptical plate of  Carbon/Epoxy material. 

Carbon/Epoxy 1st 2nd 3rd 4th 5th 

Frequency in [60] 25.00 51.46 52.55 80.41 89.81 

Calculated frequency 25.00 51.49 52.58 80.52 89.99 

Error % 0 0.06 0.06 -0.14 -0.20 

 

Results show an excellent agreement between identified and reference 

frequencies with errors lower than 1% for all the frequencies investigated. 

 

3.4.2) Triangular plate 

Consider a general orthotropic triangular plate, bounded by the sides (1) 

2y bx d b  , (2) 2y b   and (3)   2y bx a d b    , where the 

quantities a, b and d are shown in  Figure 3. 2 (b). Assuming the plate to be 
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clamped only along the second edge, while the other two are free, the boundary 

function  1 ,x y  in Eq. (3.3) can be expressed as 

  
2

1
2

,
b

y yx
 

 
 

   (3.28) 

Representing the aforementioned boundary equations in parametric form, the 

element of the matrices 
 ,d e pq

R  in Eqs. (3.17) and (3.18) can be determined 

using Eq. (3.25). 

The first five frequencies of the triangular plate have been then identified for 

the two materials in Table 3. 1 and compared with those numerically calculated 

in [61], considering 0.25a m , 3 2b a , 2d a  and 5h mm . Results are 

reported in Tables 3. 4 and 3. 5 for Graphite/Epoxy and Carbon/Epoxy  materials, 

respectively. 

 Note that, for each frequency, relative percent error is reported. 

 
Table 3. 4 Frequencies 2k kf    [Hz] for triangular plate of Graphite/Epoxy material. 

Graphite/Epoxy 1st 2nd 3rd 4th 5th 

Frequency in [61] 29.60 128.36 218.24 311.85 536.72 

Calculated frequency 29.62 128.43 218.38 317.19 540.37 

Error % -0.04 -0.05 -0.66 -1.71 -0.68 

 

Table 3. 5 Frequencies 2k kf    [Hz] for triangular plate of  Carbon/Epoxy material. 

Carbon /Epoxy 1st 2nd 3rd 4th 5th 

Frequency in [61] 33.70 146.09 201.29 354.86 507.08 

Calculated frequency 33.71 146.18 201.46 361.09 509.79 

Error % -0.03 -0.06 -0.08 -1.75 -0.54 

 

Again, as for the elliptical case, an excellent agreement between calculated 

and reference frequencies have been obtained. Only the 4th frequencies show a 

percent error higher than 1%, but still lower than 2%. Results show the ability of 

the method to detect modal parameters of orthotropic arbitrarily shaped thin 

plates regardless the orthotropic material considered.  
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CHAPTER IV  

 

IDENTIFICATION OF THE MECHANICAL 

PROPERTIES OF ORTHOTROPIC PLATES AND 

MEMBRANES  

 

4.1) Introduction 

The accurate identification of the mechanical properties of materials is a 

crucial aspect for any structural analysis, optimum design and quality control. 

Besides classical static testing [68], which require time and can damage the tested 

materials, alternative approaches combine non-destructive tests and the use of 

numerical methods. 

 Specifically, the natural frequencies and corresponding mode shapes of a 

structure can be detected by means of dynamic tests. Similarly, the static response 

of a system can be obtained performing non-destructive load-deflection tests, e.g. 

bulge tests.  

The experimentally determined characteristics can be employed in 

optimization models, which update the elastic constants of a material until the 

predicted properties fit the experimental data within a certain tolerance. 

Notably, this procedure represents a fast and non-destructive method for the 

identification of the mechanical properties of structural elements.  

In this Chapter, two mixed numerical/experimental procedures are presented 

to identify the mechanical parameters of both orthotropic thin plates and 

membranes. In particular, first, the extended pb-2 Rayleigh-Ritz method, 

introduced in Chapter III, is combined with the Particle Swarm Optimization 

algorithm to yield the mechanical characteristic of orthotropic plates based on 

free-vibration data. The procedure is validated by identifying the mechanical 

properties of structurally thin plates, whose modal characteristics were detected 

by performing an extensive Experimental campaign at the Laboratory of 
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Experimental Dynamics of the University of Palermo. Second, the principle of 

the minimum energy is combined with a genetic optimization algorithm in order 

to identify the mechanical parameters of orthotropic membranes based on static 

bulge test data. 

 

4.2) Mechanical properties identification of orthotropic plates 

Several research efforts have focused in past decades on the development of 

numerical methods which would be able to determine mechanical properties of 

plates by vibration based experiments [69-72]. Initial approaches commonly 

employed a Rayleigh-Ritz technique to model the dynamic behavior of a plate, 

comprising of a least-squares method for estimating the elastic constants [69, 70]. 

Recent studies, which generally pertain to the application of FE method and novel 

optimization procedures, such as Genetic Algorithm, may be found in [73-80]. 

Although being very accurate, these latter approaches can be quite cumbersome 

and computationally demanding to  implement, since they require a time 

consuming number of iterations in the FE simulations.  

As previously discussed in Chapter III, the pb-2 Rayleigh-Ritz approach 

leads to an eigenvalue problem which can be easily solved to determine natural 

frequencies, as well as mode shapes, of arbitrarily shaped plates under several 

BCs and made of orthotropic material. 

Notably, one of the beneficial features of this procedure lies in the fact that 

plate flexural and torsional rigidities directly appear in the mass and stiffness 

matrices in Eqs. (3.17) and (3.18). Thus, it can be argued that the aforementioned 

approach could be appropriately exploited, as an inverse problem, for the 

identification of the orthotropic material parameters. In passing, it is noted that 

existing approaches to this problem [69, 80] concern rectangular shaped plates, 

due to their widespread diffusion and the required lower computational cost. On 

the other hand, the case of arbitrary plate shapes, and their influence on the 

identification of mechanical properties, has not been investigated yet. 

Remarkably, such cases may not be uncommon, since, for instance, they occur 

whenever plate edges are not perfectly parallel to the orthotropy axes, assumed 

to be aligned to the x and y axes of the chosen coordinate system. Specifically, 
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based on some known values of the natural frequencies 
k , for instance those 

which are experimentally identified, an inverse procedure can be implemented 

leading to an estimate of the four involved mechanical parameters 
xE , yE , xyG  

and xy . Note that, such a procedure can be easily pursued properly defining an 

objective function, to be minimized, related to the aforementioned elastic 

constants. 

Specifically, in the present procedure, assuming dimensions and density of 

the plate to be known, the objective function is expressed by the functional  

  
1

1
, , ,

fn

k k

x y t xy

kf k

D D D
n

 





     (4.1) 

subject to the constraints 

 
, , , ,

, , , ,

, ; , ;

, ; ,

x x lower x upper y y lower y upper

t t lower t upper xy xy lower xy upper

D D D D D D

D D D   

       

       

  (4.2) 

where fn  is a chosen number of considered frequencies, 
k  is the k-th natural 

frequency determined solving the eigenvalue problem in Eq. (3.19) and the terms 

in square brackets in Eq. (4.2) denote lower and upper bounds, respectively. 

Therefore, the functional to be minimized gives an account of the deviation 

between the measured 
k  and numerically calculated 

k  frequencies. Clearly, 

minimization of the functional in Eq. (4.1) leads to estimates of the flexural and 

torsional rigidities in Eqs. (1.36-37) and Eqs. (1.39-41), since the fn  natural 

frequencies 
k  depend on these parameters via Eq. (3.19). 

As far as the minimization of the functional  , , ,x y t xyD D D   is concerned, 

the Particle-Swarm Optimization (PSO) method [81] has been used. This is a 

population-based approach, inspired by a mathematical description of the 

swarming of birds, with some useful characteristics [82] as simple 

implementation and execution, avoided evaluation of the objective function 

derivatives, and ability of finding regions in which a global minimum is attained 

even in presence of non-smooth objective functions (as in the case in which 
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experimental data are used). This method has proven particularly suitable for 

optimization procedures pertaining to structural mechanics problems [82-85]. 

Further, the method is based on few parameters (see [82] for details), among 

which the maximum number of iterations and the population size are particularly 

important. In fact, to avoid possible premature convergence of the PSO method, 

appropriate values of these two parameters can be chosen. 

In this context, it is worth mentioning that other optimization procedures 

could be used to minimize the functional in Eq. (4.1) with respect to the 

coefficients  , , ,x y t xyD D D  , such as ant colony optimization [86, 87], genetic 

algorithms [76, 78], and hybrid optimization techniques exploiting combination 

of the above mentioned procedures and classical gradient-based minimization 

routines [84]. Moreover, objective functions different from the one in Eq. (4.1) 

could also be considered, as those reported in [71] and [73], and even some based 

on the joint use of experimentally determined natural frequencies and mode 

shapes [88]. 

As far as the numerical implementation of the identification procedure is 

concerned, a three step scheme can be followed: 

i) Based on known plate dimensions, geometry and BCs, matrices 
 ,d e pq

R  in 

Eqs. (3.17) and (3.18) are determined using Eq. (3.23). 

ii) PSO, implemented for instance in the MATLAB environment, is used to 

minimize the functional in Eq. (4.1) with respect to the coefficients 

 , , ,x y t xyD D D  . At each iteration of the optimization procedure, values of 

the aforementioned coefficients are assumed and corresponding natural 

frequencies 
k  are obtained solving the eigenvalue problem in Eq. (3.19). 

iii) Once the optimal values of the coefficients  , , ,x y t xyD D D   which minimize 

Eq. (4.1) have been obtained, pertinent values of the mechanical parameters 

can be determined taking into account Eqs. (1.36-37) and Eqs. (1.39-41) as 
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  (4.3) 

Observe that the evaluation of the matrices 
 ,d e pq

R , which represents the 

most computationally demanding step, can be carried out once beforehand. In this 

manner, since second and third steps do not depend on the plate shape or BCs, 

the identification procedure is completely generic and can be implemented 

independently on the first step. 

 

4.2.1) Literature comparison  

To primarily assess the accuracy of the proposed procedure, the mechanical 

properties of the two plate configurations investigated in Section 3.4 were 

identified. 

Again, properties of the two materials in Table 3. 1 have been taken into 

account for each configuration, demonstrating the ability of the method to detect 

mechanical properties regardless the orthotropic material considered. 

Note that, for the following applications upper and lower bounds in Eq. (4.2) 

for the mechanical properties have been determined using Eqs. (1.36-37) and Eqs. 

(1.39-41) and assuming a 60%  of variation with respect to the reference values 

in Table 3. 1. Further, 20N   terms in Eq. (3.1) have been used for the pb-2 

Rayleigh-Ritz procedure. 

 

4.2.1.1) Elliptical plate 

Consider the case of an elliptical shaped plate, made of orthotropic material, 

clamped along the whole boundary, as shown in Figure 3. 2 (a), and discussed in 

3.3.1.  

The proposed procedure has then been applied to identify the mechanical 

characteristics of the two materials in Table 3. 1, assuming as measured 

frequencies 
k  in Eq. (4.1) those numerically calculated in [60], considering 

1a m , 0.5b m  and 5h mm . Please note that to investigate the accuracy of 
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the approach, two different numbers of considered natural frequencies fn  in Eq. 

(4.1) have been used, namely 5fn   and 10fn  . Thus frequencies in Tables 

3.2 and 3.3 were extended up to ten frequencies, see Table 4. 1. 

 

Table 4. 1 Frequencies 2k kf    [Hz] for elliptical plate [60]. 

Material Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Graphite/

Epoxy 
22.5 46.2 47.5 73.4 79.9 87.8 110.5 111.8 145.9 151.4 

Carbon   

/Epoxy 
25.0 51.5 52.5 80.4 89.8 97.2 121.9 123.2 163.5 168.2 

 

Identified mechanical parameters, for each value of fn  and material, are 

reported in Table 4. 2. Note that, for each identified parameter, the pertinent 

relative error is reported in square brackets. 

 

Table 4. 2 Identified mechanical parameters for elliptical clamped plate. 

Material fn  
xE  [GPa] yE  [GPa] xyG  [GPa] xy  

Graphite/ 

Epoxy 

5 181.7 [0.4 %] 10.34 [0.4 %] 7.39 [3.1 %] 0.201 [28.3 %] 

10 180.8 [0.1 %] 10.23 [0.1%] 7.05 [1.7 %] 0.303 [8.3 %] 

Carbon/ 

Epoxy 

5 228.5 [0.2 %] 13.32 [0.2 %] 4.36 [16.8 %] 0.411 [30.4 %] 

10 228.8 [0.1 %] 13.34 [0.1 %] 5.12 [2.4 %] 0.336 [5.9 %] 

 

As can be observed in Table 4. 2, a satisfactory agreement between identified 

and reference Young's moduli in the x and y directions have been obtained, even 

for a low number of natural frequencies fn . However, generally a higher value 

of fn  must be taken into account to more accurately identify the Poisson's ratio 
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and the shear modulus, for both materials considered. This may be due to the fact 

that natural frequencies are not particularly influenced by variations of xy . 

4.2.1.2) Triangular plate 

Consider the case of an orthotropic triangular plate presented in Section 

3.4.2, clamped only along the second edge, while the other two are free as shown 

in  Figure 3. 2 (b).  

The mechanical characteristics of the two materials in Table 3. 1 have then 

been identified, assuming as measured frequencies 
k  in Eq. (4.1) those 

numerically calculated in [61], considering 0.25a m , 3 2b a , 2d a  and 

5h mm . Again, to investigate the accuracy of the approach, frequencies in 

Table 3. 4 and Table 3. 5 were extended up to the tenth, see Table 4. 3. 

 

Table 4. 3  Frequencies 2k kf    [Hz] for triangular plate. 

Material Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Graphite/ 

Epoxy 
29.6 128.4 218.2 311.8 536.7 572.6 957.9 1606.4 1801.0 1818.2 

Carbon/ 

Epoxy 
33.7 146.1 1264.8 201.3 507.1 655.4 942.1 1654.1 1817.7 2002.8 

 
In this regard, identified material parameters are reported in Table 4. 4, for 

the two chosen values of fn . Note that, for each identified parameter, the 

pertinent relative error is reported in square brackets. 

 
Table 4. 4: Identified mechanical parameters for triangular cantilever plate. 

Material fn  
xE  [GPa] yE  [GPa] xyG  [GPa] xy  

Graphite/ 

Epoxy 

5 163.8 [9.5 %] 10.29 [0.1 %] 7.17 [0 %] 0.226 [19.1 %] 

10 181.0 [0 %] 10.30 [0 %] 7.17 [0 %] 0.279 [0 %] 

Carbon/ 

Epoxy 

5 216.2 [5.6 %] 13.34 [0.1 %] 5.24 [0.1 %] 0.212 [32.7 %] 

10 229.0 [0 %] 13.35 [0 %] 5.25 [0 %] 0.315 [0 %] 
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Again, as can be observed in Table 4. 4, a good agreement between identified 

and reference Young's moduli in the x and y directions have been obtained, even 

for a low number of natural frequencies fn . However, in this case a very low 

value of relative error has also been achieved for the shear modulus xyG  for both 

materials, while higher discrepancies are obtained for the Young’s modulus 
xE . 

This could be due to both the shape of the plate and the adopted BCs. Further, it 

can be observed that considering a higher number of natural frequencies fn  

allow a very accurate estimation of all the mechanical characteristics. 

 
4.2.2) Vibration based frequency identification of stiffened plates 

To further assess the reliability of the procedure, an extensive experimental 

campaign was conducted at the Laboratory of Experimental Dynamics at the 

University of Palermo. Specifically, free-vibration tests were performed for 

several rectangular 3D printed plates reinforced by equidistant stiffeners in one 

direction. Plates were made by means of a 3D printer in order to avoid any 

possible detrimental effect due to bad connections between the plate and the 

stiffeners. Experimentally measured frequencies and mode shapes were obtained 

using both laser scanning vibrometer and impulsive tests.  

 

4.2.2.1) Experimental campaigns 

Three different plate configurations have been considered, as shown in 

Figure 4. 1(a): a homogeneous flat rectangular plate (Configuration #1), a 

rectangular plate with 6 equidistant stiffeners in one direction (Configuration #2) 

and a rectangular plate with 9 equidistant stiffeners in one direction 

(Configuration #3). A sketch of the plates geometry is shown in Figure 4. 1 (b), 

while dimensions of each Configuration is reported in Table 4. 5. 

Plates have been realized through a 3D printer Model PRUSA i3 MK2S, as 

shown in Figure 4. 1 (c), which is a fuse deposition modeling printer, employing 

common polylactic acid (PLA) filaments. Remarkably, thanks to the 3D printing 
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manufacturing process, any mechanical or adhesive bonding between the plate 

and the stiffeners have been avoided. 

Table 4. 5 Plate configurations parameters. 

Configurations a  [mm]  b  [mm] h  [mm] h  [mm] L  [mm] p  [mm]   [kg/m3] 

Configuration #1 190  210 4 - - - 1240 

Configuration #2 190  210 4 2 7.6 22.8 1240 

Configuration #3 190  210 4 2 7.6 15.2 1240 

  

 

Figure 4. 1 (a) Plate Configurations; (b) Plate geometry; (c) 3D Printer. 

 

As far as the experimental set-up is concerned, cantilever plate conditions 

have been employed for the tests for each Configuration, since these BCs are 
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particularly suitable for experiments compared to other common cases. In this 

regard, Figure 4. 2 shows the adopted experimental set-up, while in Figure 4. 3 

pictures of the experimental equipment are reported. 

 

Figure 4. 2 Experimental set-up. 

 

As can be seen, each plate configuration has been fixed on one side of a rigid 

frame (Figure 4. 3 (b)) and excitation has been provided through a B&K shaker 

type 4810 (Figure 4. 3 (c)) connected with a stinger close to the clamped side of 

the plate. Further, the input force signal has been acquired through a PCB ICP 

Force Sensor model 208C, directly positioned between the shaker and the plate 

(Figure 4. 3 (d)). The Frequency Response Functions (FRFs) and the mode shapes 

of the plates have been measured with a Polytec laser scanning vibrometer model 

PSV-400 (Figure 4. 3 (e)) which allows the measurement of both velocity and 

displacements over a chosen grid of points of the plate without any contact 

through the laser signal. Note that the forcing signal, provided by the shaker 
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connected to the B&K amplifier model 2706 Figure 4. 3 (f) is generated by the 

Polytec workstation Figure 4. 3 (g), to which the laser head is also connected. 

 

Figure 4. 3 Devices employed for the experimental tests. 

 

A sweep sine, of frequency range between 0.1 and 2000 Hz, has been used 

as forcing signal and repeated for each point of the grid, while the chosen sample 

rate was 2000 Hz. Finally, the mode shapes and corresponding natural 

frequencies have been identified by means of the vibrometer software version 

9.2. 

To obtain more precise data especially at the lowest frequency, impulsive 

tests have been also performed for all the three Configurations. Specifically, a 

small impact hammer model PCB 086E80 Figure 4. 4(a) has been used to provide 

the impulse, while four miniature PCB piezoelectric accelerometers Model 

352C23 Figure 4. 4 (b) have been employed to measure the acceleration 

responses on different points of the plates. Note that, considering the small 
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dimensions and mass of each of these accelerometers, the influence of these 

sensors on the plate frequency response can be neglected. Further, signals have 

been then digitalized and acquired by means of a National Instruments NI 4497 

PXI Acquisition Board provided inside the chassis of a National Instruments 

PXIe model 1082, and then processed in self-developed LabView and MATLAB 

environments programs (Figure 4. 4 (c)). 

 

 

Figure 4. 4 Devices employed for the impulsive tests: (a) PCB impact hammer model 

086E80; (b) miniature PCB accelerometers Model 352C23; (c) NI PXIe model 1082. 

 

For each plate Configuration five tests have been performed, both with 

shaker and the impact hammer, and pertinent average FRFs has been determined. 

The corresponding identified natural frequencies are reported in Table 4. 6. 
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Table 4. 6 Experimentally identified frequencies 2k kf    [Hz]. 

Configurations Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Configuration 

#1 
22.4 60.3 138.7 216 219 388 412 476 545 661 

Configuration 

#2 
34.5 76 201 221 292 474 482 586 650 684 

Configuration 

#3 
37.4 88.4 218.5 236.2 317.5 506 511 646 700 745 

 

4.2.2.2) Mechanical properties identification of 3D printed plates 

The mechanical parameters of the three printed plates were identified based 

on the vibration data obtained. Moreover, to verify the reliability of the approach, 

a comparison among experimental data, FE simulations and numerical results of 

the proposed procedure has been performed. 

Firstly, material parameters (Young’s modulus E  and Poisson's ratio  ) of 

the homogeneous flat plate (Configuration #1, see Figure 4. 1(a)), assumed to be 

isotropic, have been identified minimizing the mean squared error between the 

first two experimentally obtained natural frequencies, and the corresponding 

analytical ones reported in [3]. In this regard, the identified values are reported in 

first line of Table 4. 7. Clearly, since the material is isotropic x yE E E    and 

xy yx    .  

 
Table 4. 7 Identified material parameters. 

Configurations xE  [GPa] yE  [GPa] xyG  [GPa] xy  

Configuration #1 2.77 2.77 1.09 0.263 

Configuration #2 3.95 1.44 0.94 0.383 

Configuration #3 4.17 1.44 1.01 0.307 
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To verify the validity of the identified parameters, the natural frequencies of 

the plate have been determined also by FE analysis on ANSYS environment using 

these aforementioned values. Specifically, for the FE analysis a hexahedral mesh 

with 395 nodes and 67.000 elements has been used. Pertinent results are shown 

in Figure 4. 5 where experimental natural frequencies (black circles) are reported 

vis-à-vis analytical ones [3] (dashed blue line) and those from the numerical FE 

simulation (magenta squares). In this figure the modes are labelled by two mode 

indices, namely m and n, indicating the number of nodal lines approximately 

parallel to y- and x-axis, respectively, including the boundaries as nodal lines, 

except when the boundary is free [3]. The frequencies are plotted over the mode 

index m. Lines connecting the symbols are guides to the eyes only. 

As can be seen, a very good match between experimental and numerical 

natural frequencies is achieved, thus proving the validity of the identified 

parameters. In this regard, a low average relative error between FE results and 

experimental data, of approximately 2.5%, has been obtained. 

 

 

Figure 4. 5 Comparison of experimental vis-à-vis numerical data in terms of natural frequencies 

for Configuration #1. Dashed blue lines –Analytical results; Magenta squares – FE results; Black 

circles – Experimental data. 
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Once the material parameters of the flat plate (Configuration #1) have been 

determined and verified, attention has been focused on the two stiffened plates 

(Configurations #2 and #3, Figure 4. 1(a)). 

Specifically, assuming an orthotropic behavior of these plates, firstly the 

proposed identification procedure has been applied. On this base, equivalent 

orthotropic parameters of the two Configurations have been retrieved minimizing 

the functional in Eq. (4.1) considering the 10fn   experimentally determined 

natural frequencies 
k  in Table 4. 6. The pertinent identified mechanical 

parameters are reported in Table 4. 7 (second and third lines). Further, numerical 

results in terms of mode shapes and natural frequencies for Configurations #2 and 

#3 have also been obtained applying the pb-2 Rayleigh-Ritz procedure described 

in Chapter III. Again, to verify the validity of these identified parameters, natural 

frequencies and mode shapes of the actual stiffened plate have been determined 

also via FE analyses in the ANSYS environment using the actual geometry of the 

plate (Table 4. 5 and Figure 4. 1 (b)). Specifically, the real plates shapes (flat 

plates with stiffeners) have been modelled with 3D elements, assuming the 

isotropic material with the previously obtained Configuration #1 Young's 

modulus and Poisson's ratio (see Table 4. 4). 

It has to be noted that corrugated and stiffened plates have been deeply 

investigated in the past decades. Stiffened plates, in fact, show some economical 

and mechanical advantages, but their analysis and optimization may be a daunting 

task, thus requiring computationally demanding FE analyses. In some cases, 

however, mechanical behavior of stiffened or corrugated plates can be also 

studied considering an equivalent flat plate made of orthotropic material, 

generally referred to as Equivalent Plate Model (EPM). Previously obtained 

experimental data indicate good accuracy of such idealization, provided that 

relatively small, and closely spaced, stiffeners are employed. Clearly, this 

approach yields various advantages, such as reducing the computational effort 

that FE method would have demanded, especially in preliminary design. 

Therefore, several research efforts have been devoted to determining the required 

equivalent orthotropic plate parameters. It is worth noting that, the majority of 

studies have dealt with the cases of corrugated plates, introducing several 
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different approximate relations, which have also been experimentally analyzed 

[89]. On the other hand, the case of longitudinally stiffened plates has been less 

investigated, many studies date back to the ‘50s [90-93] and few other have been 

more recently presented [94, 95] on this topic. Further, experimental analyses in 

literature generally comprise only the first fundamental natural frequency, while 

the accuracy of such EPM pertaining to higher natural frequencies and mode 

shapes has been much less addressed [93]. Thus, to further assess the reliability 

of the approach, equivalent orthotropic plate rigidities have been estimated 

applying the relations of the so-called EPM for stiffened plates, given in [1, 2]. 

In this regard, according to the EPM, the orthogonally stiffened plate can be 

treated as an equivalent flat plate made of orthotropic material. Specifically, for 

a rectangular plate reinforced by equidistant stiffeners in one direction of 

thickness h , disposed symmetrically with respect to the middle plane of the plate 

(Figure 4. 1(b)), and assuming that both the plate and the stiffeners are made of 

the same isotropic material, EPM yields the equivalent rigidities as 
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   (4.4) 

where E  and   are the elastic constant of Configuration #1 given in Table 4. 7, 

I  the moment of inertia of the stiffener taken with respect to the middle axis of 

the cross section of the plate, while p  and L  are reported in Figure 4. 1(b). In 

this manner, based on Eq. (4.4), Eq. (3.19) yields the corresponding natural 

frequencies of Configurations #2 and #3 for the EPM. 

Comparisons of the different adopted procedures are shown in Figure 4. 6. 

In this figure natural frequencies obtained by applying the proposed procedure 

(red dotted line) are compared with the experimentally determined natural 

frequencies (black circles), the EPM numerical data (dashed blue line) and the 

numerical FE simulation results (magenta squares). 
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Figure 4. 6 Comparison of experimental vis-à-vis numerical data in terms of natural frequencies: 
a) Configuration #2; b) Configuration #3. Red dotted lines - Proposed procedure results; Blue 

dashed lines –EPM results; Magenta squares – FE results; Black circles – Experimental data. 

 

As is apparent, the proposed method results excellently agree with both 

pertinent experimental data and FE simulations, thus proving the reliability of the 

proposed identification procedure. Specifically, the average relative errors 

between the proposed method results and experimental data are 2.1% for 

Configuration #2 and 2.2% for Configuration #3. Moreover, considering that FE 

analyses have been carried out on the actual plate’s geometry, i.e. no assumptions 

have been made for these simulations, the validity of the applied experimental 

procedure has been further assessed. 

As far as the EPM results are concerned, Figure 4. 6 shows that EPM leads 

to a satisfactory agreement with the experimental data at lower frequencies, 

while, as expected, the accuracy of the EPM results decrease drastically at higher 
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frequencies. It can be therefore argued that EPM could be adopted to estimate the 

first few natural frequencies of stiffened plates. 

In addition, as shown in Figure 4. 7, analogous analyses have been also 

performed in terms of mode shapes. Specifically, in this figure, the first three 

mode shapes obtained experimentally are compared with those which are 

numerically determined with the proposed procedure and FE analyses with 

ANSYS on the actual stiffened plate geometry. As it can be observed, these 

numerical methods lead to satisfactory agreement with the experimental data. 

Similar results have also been obtained for higher modes, omitted for brevity's 

sake. 

 

Figure 4. 7 Comparison of experimental vis-à-vis numerical results in terms of mode shapes for 
the stiffened plate a) Configuration #2; b) Configuration #3. First row- Experimental data; Second 

row – Numerical results with proposed procedure; Third row – FE results with ANSYS. 
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4.3) Mechanical properties identification of orthotropic 

membranes  

Mixed numerical-experimental procedures have also been proposed for the 

analysis of orthotropic thin films and membranes in order to establish a reliable 

test method to determine the mechanical properties of these structural elements.  

To date, the mechanical characterization of orthotropic membranes presents 

many difficulties, which hinder the accuracy of the results. Their very thin 

thickness complicates the measurement of both longitudinal and transversal 

elongations using classical strain-gage extensometers [96]. Consequently, the 

longitudinal elongation is often measured by the crosshead movement of the 

testing machine, which is influenced by errors in measurements and by the 

slippage of the specimen. 

To overcome these limitations, several alternative methods have been 

proposed: ultrasonic based techniques have been used for the mechanical 

characterization of papers [97, 98]; and optic methods have been employed for 

the strain field analysis of papers under different orientation [99, 100]. A 

promising procedure, which combines a theoretical model of the response of thin 

films and experimentally determined load-deflection curves has garnered much 

attention. The procedure is based on recording the load-deflection response of 

thin films in bulge test apparatus. The bulge test system consists of a sample 

holder with a square or circular window, which allows the sample to deform 

under the action of a load. Samples are clamped at the edges of the window and 

both the load and the sample’s deflection are measured during the test. Since the 

determined load-deflection curve depends on the mechanical characteristics of 

the material under investigation, a mathematical model can be employed to 

extract the material’s mechanical properties. 

This method has been widely applied to the study of thin films [101, 102], 

biological tissues [103, 104], MEMS [105, 106] and membranes [107].  

Many studies have been focused on the development of theoretical models 

for the analysis of isotropic membranes. Tabata et al. [108] proposed an analytical 

formulation to describe the load-deflection relation of rectangular membranes. A 

functional form of the membrane’s displacements was assumed and the total 
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membrane potential energy was minimized. Functionals of the type of the Fourier 

expansion, presented by Timoshenko in early studies [1], were employed. Then, 

the material’s mechanical characteristics can be found by the least-square fitting 

between the experimentally measured load-deflection curve and that which was 

mathematically obtained. 

Later, Pan. et al. [109] investigated the accuracy of Tabata’s equation via 

numerical and experimental analysis. They developed an ad-hoc FEM model, 

which was validated by experimental measurements. The FEM model was in 

excellent agreement with the experimental results, while the analytical equation 

proposed by Tabata showed errors greater than 10%. Moreover, Tabata’s 

equation did not very accurately match the experimentally measured bending 

lines along the diagonals of the thin material. 

Some years later, Maier et al. [102] introduced a novel functional form for 

the membrane deflection to improve the accuracy of  Tabata’s analytical 

equation. Results showed a very good agreement with Pan’s FEM results and 

membrane bending shapes.  

As far as orthotropic thin membranes are concerned, some authors have 

proposed theoretical models for the analysis of orthotropic membranes. Among 

them, Chucheepsakul [110] presented a solution for the large deflection analysis 

of orthotropic elliptic membranes based on the Rayleigh-Ritz method. Moreover, 

Bouzidi et al. [111] introduced a semi-analytical solution for the deflection of 

orthotropic rectangular membranes by directly minimizing the total potential 

energy. The authors indicated that the approach may be used as an inverse 

problem to determine the mechanical characteristics of membranes based on 

experimental bulge tests. 

In this context, in the following section, the energy minimization method is 

applied for the analysis of the deflection of rectangular orthotropic membranes 

and combined with an optimization procedure in order to propose a novel 

procedure for the characterization of the properties of orthotropic membranes by 

means of experimental bulge tests.   
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4.3.1) The energy minimization principle for orthotropic membranes 

As mentioned above, the energy minimization method has previously been 

employed [101, 102, 108] to describe the load-deflection behaviour of isotropic 

thin films. The method can be adequately applied also for the analysis of 

orthotropic membranes.  

Specifically, considering a rectangular membrane, as shown in Figure 1. 8, 

functional forms of the displacement functions ( , )u x y , ( , )v x y  and ( , )w x y can 

be expressed as:  
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 (4.5-7) 

where a  and b  are the membrane half-edge length along the x  and y   axes, 

respectively; x  
ic  are the unknown coefficients to be determined.  Eqs. (4.5-7) 

are of the form of those proposed by Maier et al. [102] adequately modified to be 

used for the analysis of both orthotropic and rectangular membranes.  

As far as boundary conditions are concerned, Eqs. (4.5-7) satisfy the zero 

displacement condition at the boundaries. It should be noted that in the case of 

membranes, the tangent of the deflection function at the clamped edges is not 

horizontal, since thin films do not have flexural rigidity. 

According to the principle of minimum potential energy, the unknown 

coefficients 
ic  can be obtained by performing the variation of the total potential 

energy of the membrane with respect to the unknown coefficients. 

Thus, recalling the total potential energy for a membrane subjected to an 

initial pre-stress and lateral loading (Eq. (1.83)) and performing the variation with 

respect to the unknown coefficients 
ic , one has: 

 0tot

ic





 0,1,2,..,12i     (4.8) 
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Consequently, a set of non-linear equations in terms of the unknown 

coefficients
ic is obtained. Substituting, Eqs. (1.68), (1.80) and (1.82) into Eq. 

(4.8) and taking into account Eqs. (4.5-7), the coefficients can be retrieved and 

the displacement field obtained. 

 

4.3.2) Mechanical properties identification 

The principle of minimum energy can be employed to determine the 

displacement field of a membrane subjected to an external load and pre-stress 

loading. It is worth noting that the material properties ( i.e., 
xE , yE , xyG  and 

xy ) directly appear in the strain energy of the membrane (Eq. (1.80)).   

Therefore, the procedure could also be used as an inverse problem for 

evaluating the mechanical properties of a membrane, if the membrane deflection-

load relation of a bulge test is known. 

Specifically, an objective function, related to the material elastic parameters, 

can be defined and minimized. In particular, the absolute percentage error 

between experimental membrane deflection and that calculated by using the 

energy minimization method can be used: 
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Subject to constraints: 
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  (4.10-4.13) 

where w  is the experimentally measured deflection of the membrane at a 

certain point over the surface and for a certain loading value, and w  is the surface 

deflection value calculated numerically. Subscripts in Eqs. (4.10-4.13) indicate 

the lower and upper values limiting the intervals where the variables can be 

modified in the optimization procedure.  

As far as the minimization of the functional ( , , , )x y xy xyE E G  is concerned, 

a genetic algorithm has been used. 

To identify the material properties, a two steps scheme can be followed:    
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 First, Eqs. (4.5-7) can be substituted into Eqs. (1.68), (1.80) and (1.82), 

thus expressing the total potential energy as a function of the unknown 

coefficients 
ic . Then, the total potential energy is integrated with respect 

to the membrane geometry characteristics (i.e. membrane thickness, 

width and length). Finally, by performing the variation of the total 

potential energy (Eq. (4.8)) an algebraic system of equations is attained 

and membrane deflection can be found.  

 Second, a genetic algorithm, implemented for instance in the MATLAB 

environment, is used to minimize the functional, Eq. (4.9), by 

identifying the best set of the mechanical parameters , , ,x y xy xyE E G . 

Please note that, the first step requires high computing time due to the 

calculation of the integrals and then of the derivatives of the total potential 

energy. Therefore, an analytical expression of the derivatives of the total potential 

energy as a function of the material’s mechanical properties, unknown 

coefficients, the membrane’s geometrical characteristics (thickness, width and 

length) and of the loads was determined by employing the Mathematica software. 

Thus, the first step can be solved only one time, drastically reducing the 

computing time for the optimization procedure. 

 

4.3.2.1) Membrane properties from virtual bulge tests 

To assess the accuracy of the procedure, the mechanical properties of two 

square orthotropic membranes of 4 cm side (see Figure 4. 8) were identified using 

virtual experimental data. Specifically, the deflection-loading relation of the two 

membranes was obtained using the Finite Element software COMSOL 

Multiphysics. The membranes were simulated as a 2D surface with all edges 

clamped. A structured square mesh was used with 4489 square elements. The 

mechanical properties of the membrane investigated are reported in Table 4. 8. 
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 Table 4. 8 Material properties of the two investigated thin films. 

Material xE  [MPa] yE  [MPa] xyG  [MPa] xy  h  [mm] 

Spinnaker [112] 1110 385 220 0.35 0.1 

UKP [113] 7320 2680 1890 0.164 0.125 

 

 

Figure 4. 8 Configuration of the square orthotropic membrane analysed and detection points for 
the evaluation of membrane deflection. 

 

Membrane deflection was investigated for a transversal load varying from 0 

to 0.2 MPa, for in-plane pretension of 2.06 MPa and 1.90MPa along the x-axis 

for the UKP and the Spinnaker membranes, and in-plane pretension of 0.83 MPa 

and 0.79 MPa along the y-axis for the UKP and the Spinnaker membranes, 

respectively. The functional ( , , , )x y xy xyE E G  Eq. (4.9) was evaluated for five 

detection points along the x and y axes at three loads of 0.1, 0.15 and 0.2 MPa. 

Specifically, the surface’s middle point and two points placed respectively at a 

distance of 1 mm from each other were considered, as shown in Figure 4. 8. 

Therefore, Eq. (4.9) was computed fifteen times for each set of mechanical 

parameters , , ,x y xy xyE E G . Then, the largest discrepancy between calculated and 

experimental deflections is minimized to find the best set of mechanical 
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parameters. Further, to increase the accuracy of the identified mechanical 

parameters, the procedure was carried out following two steps: 

 First, the lower and upper values of 
xE  and yE in Eqs. (4.10-4.11) were 

set to be ±30% of their reference values (Table 4. 8), whereas, xyG and 

xy  in Eqs. (4.12-4.13) were let to vary between ±50% of their reference 

values (Table 4. 8).  

 In the second step, 
xE  and yE  were let to vary between ±10% and xyG

and xy  of ±15% with respect to the identified values in step 1. 

Each step is run 20 times and the resulting mechanical parameters are 

calculated as the mean value of those calculated for the each run. 

Tables 4. 9 and 4. 10 report the identified values for the Spinnaker [112] 

membrane characteristics for the first step and second step of the proposed 

procedure. Discrepancies are calculated with respect to values from literature 

(Table 4. 8). Standard deviation is also reported. 

 

Table 4. 9: Identified material parameters for the Spinnaker membrane material [112]  at the 1°Step. 

Discrepancies with respect to literature values and standard deviation are also reported. 

Quantities 
Identified values 

1° Step 
Discrepancy % St. Dev 

xE  [MPa] 1133.2 -2.1 38.48 

yE  [MPa]  386.65 -0.43 19.67 

xyG  [MPa] 207.8 5.54 56.25 

xy  0.3175 9.28 0.072 
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Table 4. 10 Identified material parameters for the Spinnaker membrane material [112] at the 2°Step. 

Discrepancies with respect to literature values and standard deviation are also reported. 

Quantities 
Identified values 

2nd Step 
Discrepancy % St. Dev 

xE  [MPa] 1130.85 -1.88 10.43 

yE  [MPa] 385.2 -0.05 6.88 

xyG  [MPa] 205.2 6.6 13.96 

xy  0.3235 7.57 0.02 

 

The highest discrepancy value is found to be 9.28% for the Poisson ratio 

identified at the 1st Step. Performing the 2nd Step, the value decreases to 7.57%, 

thus improving the accuracy of the identified value. As far as the Young’s moduli 

(Ex and Ey) are concerned, they are accurately detected, where the highest 

discrepancy found during the 2nd Step is only -1.88% for Ex. 

With regard to the UKP membrane [113] investigation, results are reported 

in Tables 4. 11 and 4. 12.  

Table 4. 11 Identified material parameters for the UKP membrane material [113] at the 1°Step. 

Discrepancies with respect to literature values and standard deviation are also reported. 

Quantities 
Identified values 

1° Step 
Discrepancy % St. Dev 

xE  [MPa] 7540 -3 130.84 

yE  [MPa] 2520 5.97 60.3 

xyG  [MPa] 1818.95 3.76 294.66 

xy  0.176 -7.59 0.0309 
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Table 4. 12 Identified material parameters for the UKP membrane material [113] at the 2°Step. 

Discrepancies with respect to literature values and standard deviation are also reported. 

Quantities 
Identified values 

2nd Step 
Discrepancy % St. Dev 

xE  [MPa] 7555.8 -3.22 56.82 

yE  [MPa] 2530 5.59 40.49 

xyG  [MPa] 1812 -4.13 118.23 

xy  0.170 -3.84 0.0129 

 

In this case, the highest discrepancy of -7.59% is detected for the Poisson 

ratio at the 1st Step. The value is almost halved by performing the 2nd Step. At the 

2nd Step, the highest discrepancy of 5.59% is calculated for the Ey. Overall, all the 

parameters identified in the 2nd Step have discrepancy values lower than 6%.  

Results obtained for both Spinnaker and UKP membranes show the 

reliability of the proposed method for identifying orthotropic parameters of 

membranes by means of deflection-load relations from the bulge tests. 
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CHAPTER V  

 

ANALYSIS OF THE MECHANICAL BEHAVIOUR 

OF ION EXCHANGE MEMBRANES IN 

MEMBRANE BASED TECHNOLOGIES 

 

5.1) Introduction 

In the previous chapters, the studies conducted on the mechanical behaviour 

of thin plates and membranes provide the necessary background to better 

understand membrane response in many possible scenarios. In the following 

chapters, the attention is focused on the investigation on the effects of membrane 

deformation in the specific application of the membrane-based Electrodialysis 

and Reverse Electrodialysis processes. 

 

5.1.1) Electrodialysis and Reverse Electrodialysis processes 

Membrane based processes have drawn much attention in water treatment 

[114], food processing [115] and energy harvesting [116], as both 

environmentally friendly and economically attractive. Among them, 

Electrodialysis and Reverse Electrodialysis have proved their reliability in water 

desalination and energy production, respectively. Specifically, in Electrodialysis 

(ED) [117], ions are driven by an imposed electric field from a dilute electrolyte 

solution to a concentrate one. Conversely, Reverse Electrodialysis (RED) [118] 

harvests electrical energy from the controlled mixing of two solutions at different 

salt concentration. ED and RED units are built by alternately stacking anion- and 

cation- exchange membranes, separated by net spacers or built-in profiles 

creating the fluid channels where the two solutions (concentrate and diluate) flow. 

The two membranes and the two solutions form the repeating unit, referred to as 
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cell pair. For the sake of brevity, in Figure 5. 1 is reported only a schematic 

representation of an ED stack. 

 

Figure 5. 1 Schematic representation of an Electrodialysis system. The repeating unit (cell pair) 

of the system is highlighted by a red rectangle [114].  

 

 Spacers cover part of the membrane surface, thus reducing the actual active 

area, and increase the electrical resistance, as they are electrically non-

conductive. Therefore, profiled membranes have recently been presented as an 

innovative solution to overcome net spacers drawbacks [117, 119, 120]. Profiled 

membranes simplify the stack assembly avoiding the use of spacers, and may 

improve the process performance. Numerical simulations [121-123] and 

experimental lab scale tests [117, 124-128] have confirmed their potential 

benefits. However, the actual performance of profiled membranes stacks depends 

on the specific profile geometry. Simple geometries (e.g., pillar or ridges profiles) 

are characterized by reduced hydraulic friction, but may exhibit lesser mixing 

properties than spacers [123, 125, 127-129]; on the other hand, improved profile 

shapes may provide better trade-off solutions among pressure drops, mixing and 
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Ohmic resistance, thus improving the stack performance [121, 128, 129]. In this 

context, two profiled membranes with Overlapped Cross Filaments (OCF) and 

Round Pillars (RP) are investigated in this Chapter. 

 

5.1.2) Trans-membrane pressure in membrane-based processes 

In membrane-based processes, a trans-membrane pressure (TMP) between 

the different solutions flowing through a module may be a design feature or may 

arise for various reasons (e.g., flow arrangement or differences in geometry, flow 

rate or physical properties). This may lead to local deformations of membranes 

and membrane-bounded channels. As a result, the channel geometry (shape and 

average size) may be modified with respect to the nominal one, affecting fluid 

dynamics and transport mechanisms (of mass, heat, ions) and, thus, the process 

performance.  

The effects of membrane/channel deformation have been studied in the 

context of different processes. She et al. [130] tested pressure retarded osmosis 

(PRO) modules at pressures up to 16 bar. Experimental performance became 

worse than theoretical predictions as the hydrostatic pressure increased; this 

difference was attributed to a more severe membrane deformation at high 

pressures. Later, She et al. [131] studied in detail the influence of spacer geometry 

on PRO efficiency under pressure loads up to 20 bar. The spacer with the largest 

mesh pitch gave the poorest performance in terms both of power density and of 

pressure drop.  

Karabelas et al. [132] investigated the influence of the compressive stresses 

that arise in reverse osmosis (RO) spiral wound membrane modules, provided 

with spacers, during the assembly stage. Interestingly, mild applied pressures (1–

2 bar) were sufficient to cause significant effects. 

Huang [133] simulated flow and heat transfer in deformed channels for 

liquid-to-air membrane energy exchanger (LAMEE) units. Membrane 

deformation was not actually computed, and the deformed membrane was 

modelled as a spherical surface. As membrane deformation increased, the friction 

coefficient was found to increase in the compressed (air) channel and to decrease 
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in the expanded (liquid) channel. Heat transfer was affected by deformation in a 

complex way. 

The influence of channel deformation on the performance of proton 

exchange membrane fuel cells (PEMFC) was assessed in several studies 

following similar approaches. Shi and Wang [134] predicted the compression of 

the porous gas diffusion layer due to the clamping (assembly) force, and 

simulated fluid dynamics, mass transport and electrochemical phenomena in the 

deformed geometries. The authors considered a serpentine channel and found that 

the assembly compression of the units enhanced pressure drop in the fluid 

channels, and that the process performance was particularly affected by 

deformation at high current densities. Zhou et al. [135] simulated a unit with a 

single straight channel including the membrane. As expected, most of the 

deformation was found to occur in the porous gas diffusion layer due to its lower 

mechanical stiffness. 

Hereijgers et al. [136] measured membrane deflection and mass transfer 

coefficients in membrane microcontactors using round and diamond-shaped 

pillar spacers of different pitch. They found that trans-membrane pressure 

exhibited a minimum as the spacer pitch was made to vary, and that membrane 

deflection had a positive or negative impact on mass transfer depending on the 

diffusion coefficients in the two immiscible phases. 

Time-dependent membrane deformation has recently been considered as a 

possible means to improve process performance. Moreno et al. [137] introduced 

the concept of “breathing cell” for reverse electrodialysis systems. In the 

breathing cell, the channels thickness changes dynamically due to the intermittent 

(5–15 cycles per minute) closure of an outlet valve in the concentrate channels. 

As a result, the Ohmic resistance of the diluate compartment (which is the 

predominant one) decreases. This cyclic operation was shown to yield higher net 

power densities in a range of flow rates. 

 

 

 

 



  Chapter V 

 

118 

 

5.1.3) Trans-membrane pressure in ED and RED cases 

In some ED/RED practical applications TMP values are almost null (TMP ≈ 

0). However, in prototype and industrial size stacks with non-parallel flow 

layouts (cross flow, counter flow) and/or with asymmetric channels (different 

geometries, fluid properties, flow rates), where the pressure distribution in the 

two compartments is different, appreciable values of TMP may arise. In 

particular, when some factors enhancing pressure drop are present, TMP values 

amounting to some tenths of a bar can be exhibited (higher TMP levels can cause 

severe risks of leakages [138-140]).  

In the cross-flow RED prototype units (44 × 44 cm2) installed within the 

REAPower project [141], pressure drops from 0.2 to 0.9 bar were measured at 

flow velocities up to 1 cm/s [142]. Despite some of the pressure drop can be 

supposed to occur in the manifolds, a significant part of it is expected to occur in 

the channels, thus causing the onset of non-negligible TMP values. Moreover, the 

compartments were asymmetric, because the viscosity of the concentrated 

solution (brine) was almost twice that of the dilute feed, thus causing an 

unbalanced pressure distribution in the two solutions. Larger TMP values (up to 

1.5 bar) were measured by Hong et al. [140] in a cross-flow RED stack (35.5 × 

35.5 cm2) fed with inlet velocities up to 5 cm/s, which provided a significantly 

lower electrical power (less than half) compared to an equivalent parallel-flow 

stack. Although the authors attributed this decline in performance to issues of 

internal leakage, an important effect of deformation can be supposed. 

ED units operate with fluid velocities higher than those typical of RED (in 

order to increase the limiting current density) and, despite the usually higher 

channel thickness, exhibit large pressure drops [114]. For example, Wright et al. 

[143] performed ED tests in a bench-scale unit and in a commercial-scale unit 

with parallel flow, measuring pressure drops up to 0.65 bar and 1.30 bar, 

respectively, at fluid velocities up to 9 cm/s. If such operating conditions were 

adopted in non-parallel flow arrangements, they would lead to significant levels 

of TMP. 

Recent studies showed that asymmetric channels are optimal for RED 

applications [144, 145]. However, they can be affected by TMP-related issues. 
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For example, in ref [145] it was shown that for the couple of NaCl solutions 15–

500 mol/m3 fed with parallel flow in a stack 50 cm long, the optimum thickness 

and fluid velocity are 400 μm and 1.4 cm/s for the concentrate and 217 μm 

and 2.6 cm/s for the diluate. The pressure drop predicted by CFD correlations is 

0.07 bar for the concentrate and 0.46 bar for the diluate, thus giving a maximum 

TMP located at the inlet equal to 0.39 bar. 

It must also be added that ion exchange membranes may have very different 

mechanical features. The Young’s modulus (E) may vary within a broad range 

from 10 MPa to 1 GPa [146-156] or even to higher values in some cases [157, 

158], but decreases with ageing due to membrane usage [147-149, 157]. 

Moreover, the new generation membranes are manufactured with low thickness, 

e.g., from 80 to 250 µm [159, 160]; even lower values can be found among 

commercial membranes and experimental membranes prepared in laboratory 

[161]. A theoretical study [162] has recently found optimal thicknesses of 15–20 

and 50–70 µm for ED and RED applications, respectively. Therefore, it is quite 

common that ion exchange membranes exhibit a low stiffness, due to the 

combined effects of a low E and a low thickness. This feature makes the 

membranes susceptible to large deformations in stacks with a non-negligible 

TMP, depending also on the spacer features. 

The presence of negligible TMP values may trigger a fluid-membrane 

mechanical interaction, which will find an equilibrium state characterized by 

some distribution of pressure, geometry, flow rate, hydraulic friction, mass 

transfer coefficient, current density, Ohmic and non-Ohmic resistances in both 

solution compartments. Compared to the nominal conditions, the values of any 

of the above quantities under deformed conditions may be: (i) either higher or 

lower in the whole channel (e.g., in asymmetric configurations); (ii) higher in 

some parts of the channel and lower in other ones (e.g., in non-parallel flow 

arrangements). In both cases, these deviations from the undeformed conditions 

may impair the process performance due to the lack of compensation of effects 

between compressed zones and expanded zones (in the same or in different 

channels). For instance, an increase in the thickness of the diluate (which often 

provides the predominant resistance), in the whole channel or in a part of it, 
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especially where the solution is less conductive, causes an increase in the average 

Ohmic resistance. Imbalances may also affect hydraulic friction, increasing the 

overall pressure drop. A significant increment of non-Ohmic resistance, is 

another well-known detrimental effect due to uneven flow rate distributions 

[126]. 

In the present Chapter the unexplored field of the mechanical response of 

membranes in ED and RED units is addressed. First, the results of an 

experimental campaign carried out to characterize the mechanical properties of 

cation and anion exchange membranes by uniaxial tensile tests are presented. 

These properties were used in a finite element model to determine the membrane 

deformation of a couple of profiled membranes, belonging to a cell pair, at 

different TMP values. The investigation was conducted at the small scale of a 

periodic portion of the membranes themselves. 

 

5.2) Experimental characterization of Ion Exchange 

Membranes  

The mechanical properties of anion and cation exchange membranes, 

currently employed in ED and RED applications, have been investigated by 

conducting uniaxial tensile tests. Specifically, flat ion exchange membranes 

produced by FujiFilm Manufacturing Europe B.V. with the name “Type 10” were 

studied. According to information provided by the manufacturer, Type 10 is a 

homogeneous reinforced membrane and is based on an amide polymer as 

backbone. The membrane is produced by roll to roll. 

The tensile machine (Zwick Roell z010) equipped with 10kN load cell was 

used for all measurements. Further, an ad hoc system was developed to keep the 

membrane wet during tests. To do so a small bag was filled with water or salt 

solution and a pair of customized clamps were built. Figure 5. 2 presents the 

equipment used. It is worth noting that, the bag was carefully designed to prevent 

the clamps from exiting the bag throughout the entire duration of the tests. 

Moreover, attention was paid to avoid any slippage of the sample and the bag. 
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Figure 5. 2  Zwick Roell z010 uniaxial tensile machine and details of the customized system used 

for the membrane characterization: a plastic small bag and a pair of appropriately designed clamps. 

 

The membrane was cut into rectangular strips of 30 cm (L) × 1.5 cm (W) and 

the wet membrane thickness, measured by a micrometer at four points along the 

sample length, were ~145±5 µm and ~154±5 µm for AEM and CEM membranes 

respectively. Tests were carried out at room temperature of 22°C and run five 

times for reproducibility. 

Uniaxial tensile tests and loading and un-loading tests were performed.  

Tensile tests were conducted following the ASTM D882 guidelines at the 

constant displacement rate of 30 mm/min. Membranes were cut along three 

directions: the machine direction (MD), the cross direction (CD, i.e. the direction 

orthogonal to the MD) and at 45 degrees (XD) with respect to the machine 

direction. In addition, the influence of the sample conditioning in different 

solutions and for a different amount of time was addressed. In particular, samples 

were kept for 1 day or 1 week in solutions of tap water, salt solutions of 0.5 M 

and 4.5M of pure NaCl. 

With regard to loading and un-loading tests, samples were conditioned 1 day 

in tap water and the analysis was performed at a constant displacement rate of 30 

mm/min both in loading and unloading steps. The load was increased of steps of 

2 MPa till reaching the tensile stress of 14 MPa. No dwell time was set. 
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5.2.1) Uniaxial tensile tests 

The engineering stress-strain curves for anion and cation exchange 

membranes conducted for all the three directions are shown in Figure 5. 3. Results 

are reported in terms of engineering stresses and strains. In particular, engineering 

stresses are calculated as ratio between the tensile force and the original cross-

sectional area of the sample. Moreover, strains are calculated as the ratio between 

sample longitudinal elongation and the its original length.  

 

 

Figure 5. 3 Engineering stress-strain curves for anion (AEM) and cation (CEM) exchange 
membranes tested in the MD (red dotted lines), XD (blue dotted lines) and CD (green dotted lines)  

directions. Samples were conditioned 1 day in tap water (TapW) and tests were run at 30 mm/min. 

 

Both membranes do not have a well-defined linear elastic region expect over 

a small range of strain. CEM membranes have a higher elongation at break of 

18% compared to that of 12% of AEMs. On the other hand, values of stresses at 
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break are similar for both membranes. In particular, membranes cut along the 

MD, CD and XD directions show values of stress at break of 16, 14 and 11 MPa, 

respectively. In addition, CEM membranes present a gradual rollover yield 

occurring over a strain ranging from almost 1 to 5%. Post-yield strain hardening 

is then observed with the strain hardening slope increasing slightly with 

increasing strain. 

Membranes show different mechanical responses at the three directions 

investigated, thus indicating an anisotropic behaviour of the membranes. 

However, mechanical properties do not much differ in the three directions 

especially in the small strain region.  

As far as the linear elastic region is concerned, Figure 5. 4 presents the stress-

strain curves of Figure 5. 3 in a magnified region up to 0.8% of strain.  

 

Figure 5. 4 Magnified region of the stress-strain curves of  Figure 5. 3 up to 0.8% of strain.  

 

CEMs are found to be stiffer than AEMs. Moreover, they present higher 

yielding stresses. Young’s moduli for the two membranes at all the directions are 

reported in Table 5. 1.  

 

Table 5. 1 Identified Young’s moduli for both AEM and CEM membranes tested in tap water. 

Quantities MD Direction XD Direction CD Direction 

AEMs Young’s modulus 284 258 245 

CEMs Young’s modulus 360 320 305 
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5.2.1.1) Uniaxial tensile tests of samples conditioned in different solutions 

The mechanical response of the AEMs and CEMs conditioned for one day 

in tap water and salt solutions of concentrations of 0.5M and 4.5M, are reported 

in Figure 5. 5. Solutions were prepared using deionized water and pure NaCl salt.  

 

Figure 5. 5 Engineering stress-strain curves for anion (AEMs) and cation (CEMs) exchange 
membranes conditioned in tap water (fine dotted lines), in salt solution of 0.5M (course dotted lines) 

and in salt solution of 4.5M (straight lines). Membranes are tested along MD (red lines), XD (blue 

lines) and CD (green lines) directions. Tests were run at 30 mm/min. 

Interestingly, the characteristics of conditioned membranes in the salt 

solution of 0.5M are similar to those of membranes conditioned in tap water. On 

the other hand, the membranes conditioned in the salt solution of 4.5M are found 

to be stiffer than those conditioned in tap water. 

 Further, CEMs properties vary more than those of AEMs. As an example, 

the Young’s modulus of CEMs, along the MD direction, conditioned in the salt 
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solution of 4.5M is almost 22% higher than that of membranes conditioned in tap 

water (463 MPa and 360 MPa, respectively).  

 

5.2.1.2) Uniaxial tensile tests of samples conditioned at different conditioning 

time 

For the sake of brevity, in Figure 5. 6 a comparison between the mechanical 

response of the AEMs and CEMs conditioned for one week and one day in the 

salt solution of 4.5M is shown. 

 

 

Figure 5. 6 Engineering stress-strain curves for anion (AEMs) and cation (CEMs) exchange 
membranes conditioned in the salt solution of 4.5M for one week (dotted lines) and one day (straight 

lines). Membranes are tested along MD (red lines), XD (blue lines) and CD (green lines) directions. 

Tests were run at 30 mm/min. 
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After one week, membranes show a reduction of their mechanical properties. 

The effect is higher in the MD direction with respect to the CD direction. 

Measurements conducted for samples conditioned in tap water or salt solution of 

0.5M did not show any change in their mechanical response. This can be due to 

faster membrane aging in high concentrate salt solutions that can deteriorate 

membrane polymeric structure. On the other hand, a conditioning time of one day 

may be not enough for a proper conditioning in concentrate solutions, thus 

affecting the measurements.  

To further investigate the effect of the conditioning time, Figure 5. 7  presents 

the mechanical behaviour of AEMs and CEMs conditioned in the salt solution of 

4.5M for one week and in tap water for one day. AEMs conditioned in the salt 

solution show the same properties of the AEMs conditioned in tap water. On the 

other hand, CEMs still show an improvement of the mechanical properties when 

membranes are conditioned in the high concentrate solution. This may be due to 

different ion interactions between the polymeric matrix of the CEM and AEM 

membranes, which in turn may make the membrane stiffer.  
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Figure 5. 7 Engineering stress-strain curves for anion (AEMs) and cation (CEMs) exchange 

membranes conditioned in the salt solution of 4.5M for one week (dotted lines) and one day in tap 
water (straight lines). Membranes are tested along MD (red lines), XD (blue lines) and CD (green 

lines) directions. Tests were run at 30 mm/min. 

 

5.2.2) Loading and un-loading tests 

The mechanical response of the AEMs and CEMs to uniaxial loading-

unloading-reloading tests are shown in Figure 5. 8. Results concern only 

membranes conditioned in tap water for one day and cut along the MD direction. 

The linear elastic region of the membranes is confirmed to be in the region of 

stresses of almost 2 MPa, i.e. the first loading condition. In this case, no residual 

plastic deformations are identified. Overall, the AEMs show smaller hysteresis 

and lower residual deformations compared to CEMs. At the last applied load of 



  Chapter V 

 

128 

 

14 MPa, the residual strains of the CEM membranes are the doubled with respect 

to the AEMs, thus showing that CEMs dissipate more energy compared to AEMs. 

 

Figure 5. 8. Engineering stress-strain curves for anion (AEMs) and cation (CEMs) exchange 

membranes conditioned in the salt solution of 4.5M for one week (dotted lines) and one day in tap 
water (straight lines). Membranes are tested along MD (red lines), XD (blue lines) and CD (green 

lines) directions. Tests were run at 30 mm/min. 

 

5.3) Finite element model of profiled AEMs and CEMs 

Taking into account the mechanical behavior of ion exchange membranes 

discussed in Section 5.2, a finite element model was developed to study the 

deformation of profiled membranes in ED and RED systems. Specifically, two 

profiled membranes type were investigated: Overlapped Crossed Filaments 

(OCF) and round pillar (RP) types, in Figure 5. 9. OCF are made by an array of 

semi-cylinders on both membrane sides, placed at 90° each other. Instead, RP 
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membranes bear on one side flat cylindrical protrusions. To reduce the 

computational effort and study accurately the deformation of the profiled 

membranes, a periodic portion of the whole membrane was studied, enlarged in 

Figure 5. 9. 

 

Figure 5. 9 First row) Profiled membranes of the Overlapped Crossed Filaments (OCF) type. 

Second row) Round pillar (RP) profiled membranes. For each membrane type, the corresponding 

repetitive unit (periodic portion) of profiled membranes is shown, enlarged, in the central inset. The 

geometric parameters H (channel thickness), POCF and PRP (pitches), α (intrinsic angle) and F  

(flow attack angle) are indicated. 

 

OCF type present a square planform and profiles of adjacent membranes 

were assumed to be aligned on top of one another; in practice, this arrangement 

may not be precisely achieved since, in operation, shifts would be likely to occur. 

In this case, the pitch (POCF) was defined as the distance between two profiles on 

the same membrane side, while the channel height (H) was the distance between 

the two undeformed membranes. Three different pitch (P) to channel height ratio 

P/H values were considered. With regard to the RP membranes, Pillars were 

assumed to be arranged in a regular hexagonal lattice (α=60°) and the pitch was 

the normal distance between adjacent pillar rows and the pillar diameter was fixed 

to five times the channel thickness H, while the pitch to channel height ratio P/H 

was made to vary. The undeformed channel thickness H was assumed to be 0.2 

mm and the undeformed membrane thickness 0.12 mm, for both OCF and RP 
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cases. These values are representative of advanced membrane-channel 

configurations currently being considered for ED and RED applications [114, 

159, 160, 163]. The channel thickness H ranges usually from ~0.1 to ~0.4 mm in 

RED applications [141], while a larger thickness is typically adopted in ED units, 

i.e. from ~0.3 to ~2 mm, especially in commercial stacks [114]. However, several 

recent researches on ED modelling and experiments have been focused on the use 

of thin spacers [164-166]. Therefore, the value of 200 μm can be considered 

representative of both RED and ED applications. 

As discussed above, the mechanical properties of the membrane depend on 

manufacturing method, nature of co-polymers, cross-linking degree, ageing, etc. 

Therefore, instead of using the Young’s modulus values determined from the 

experimental campaign, a lower conservative value of 150 MPa for the Young’s 

modulus ( E ) was chosen and a Poisson ratio ( ) of 0.4  was used as suggested 

by the producer. Cation and anion exchange membranes were assumed to have 

the same mechanical properties and, for the sake of simplicity, were treated as 

linearly elastic, homogeneous and isotropic media. 

The geometrical and mechanical quantities for both the OCF and RP profiled 

membrane types are summarized in Table 5. 2. 

 
Table 5. 2 Geometrical and mechanical quantities for OCF and RP membranes. 

Quantity Value Units 

Membrane Young’s modulus, E 150 MPa 

Membrane Poisson ratio, ν 0.4 - 

Membrane thickness, HIEM 120 μm 

Channel thickness, H 200 μm 

OCF-Pitch-to-height ratio, P/H 7–9 - 

OCF-Angle between filaments 90 deg 

RP-Pitch-to-height ratio, P/H  9-11 - 

RP-Pillar diameter, d 1 mm 

RP-Intrinsic angle of pillar lattice, α  60 deg 
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All these properties are assumed to hold for swollen membranes, because 

this is the actual condition under which membranes find themselves in a real 

operating ED/RED stack. 

The linearly elastic hypothesis is quite reasonable for ED/RED membranes 

within the mild load conditions considered in this study: for TMP = ±40 kPa, the 

maximum computed von Mises stress is 2 MPa, which is close to the limit stress 

for linearly elastic behavior generally exhibited by ion exchange membranes 

[152-156], including findings of the experimental campaign (Section 5.2).  

The homogeneity assumption is based on the membrane structure and on the 

preparation technique adopted, as described by the manufacturer (FujiFilm 

Manufacturing Europe B.V.).  

In regard to the isotropy assumption, results of Figure 5. 4 evidence that in 

the linear elastic region, the behavior of the membrane do not differ much along 

the different membrane directions. In view of this modest degree of anisotropy, 

it was decided to neglect this feature, which would have complicated the 

computations of the representative test cases without changing significantly the 

results.  

 

5.3.1) Boundary Conditions and computational grids 

Figure 5. 10 reports the computational domains of both OCF and RP profiled 

membranes, where the mechanical boundary conditions are evidenced.  

1. Each of the four segments representing the external vertical edges of the 

domain (1) was clamped, i.e., zero displacement and rotation were imposed 

to all points belonging to it. 

2. Each of the four side faces of the domain (2) was imposed zero displacement 

in the direction normal to itself, so that a single computational domain is 

representative of a periodic array of repetitive units. 

3. The trans-membrane pressure TMP (relative to that of the internal fluid 

channel) was applied to the whole outer surface of the domain (3). Please 

note that TMP > 0 for compression conditions, while TMP < 0 for expansion 

conditions. 
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Figure 5. 10 Upper row) The computational domain the OCF profiled membrane and a detail of 

the finite element mesh used. Lower row) The computational domain the RP profiled membrane 
and its detail of the finite element mesh adopted. Numbers 1–3 indicate the mechanical boundary 

conditions (see text).  

 

In addition, Figure 5. 10 shows insights of the computational grids used for 

the two membranes cases. Specifically, in the case of OCF membrane, a hybrid 

(hexahedral-tetrahedral) grid was necessary, while for the RP completely 

hexahedral and block-structured grid was used. Grid dependence for both cases 

was preliminary assessed. 

Tables 5. 3 and 5. 4 report the maximum displacement at the outer surface of 

the domain computed for TMP = 80 kPa and P/H = 8 and P/H = 10, for OCF and 

Pillars respectively, with increasingly fine meshes. 

 
Table 5. 3 Grid dependence results (TMP = +80 kPa) for OCF with P/H=8 type membrane. 

FE mesh No. elements Maximum displacement [μm] 

OCF-I 200 × 103 67.04 

OCF-II 500 × 103 67.38 

OCF-III 1 million 67.53 
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Table 5. 4 Grid dependence results for the mechanical simulations (TMP=+80 kPa, P/H =10) for 

Pillar type membrane. 

FE mesh No. elements Maximum displacement [μm] 

RP-I 21 ×103 67.69 
RP-II 60 ×103 67.97 

RP-III 180 ×103 68.06 

 

On the basis of results of Table 5. 3, computational mesh of 500 × 103 

elements (OCF-II) was used in all the simulations for the OCF membrane type as 

a compromise between accuracy and computational effort.  

Moreover, taking into account results of Table 5. 4, the computational mesh 

of 6×104 elements (RP-II) was chosen for the RP membrane type. The same 

element size was adopted in all the simulations. The simulations were conducted 

by the Finite Element code Ansys-Mechanical®. Equilibrium, compatibility and 

constitutive equations were numerically solved by using a FE method in order to 

find the deformed configuration of the bodies, large deflections were taken into 

account. 

 

5.3.2) Model validation  

To validate the FE model, experimental bulge tests were conducted for a 10 

× 10 cm2 square samples of flat anion exchange membranes (AEM) of the same 

type of those investigated in Section 5.2. Moreover, a comparison between FE 

results and an analytical solution was also carried out to investigate the FE 

predictions of the deflection of smaller membrane areas. 

 

5.3.2.1) Bulge tests of an anion exchange membrane 

A custom-designed bulge test equipment was built (Figure 5. 11). Two 

square plexiglas® plates of 20 cm side and 2 cm thickness were used. Six circular 

holes with a diameter of 1.2 cm were drilled in one of the two plates (Plate 1) in 

order to allow water entrance and exit. The inlet and outlet manifolds were then 

installed into the holes. Moreover, a square hole of 10 cm side was milled in the 

other plate (Plate 2), to serve as a window allowing the membrane expansion. An 



  Chapter V 

 

134 

 

anion exchange membrane of the same type of those analysed in the Section 5.2, 

was conditioned for 24 h in tap water and then cut into square sheets of 20 cm 

side. A silicone gasket 1 mm thick creating the space for the liquid was interposed 

between the membrane sample and Plate 1. The two plates were clamped by 8 

bolts and nuts. The bottom manifolds were connected to a water column. Once 

the channel was filled and air bubbles were carefully removed, a valve placed in 

the exit pipe was closed.  

Membrane wrinkling was observed when no pre-stretching was applied. This 

is a common phenomenon, which happens for very thin sheets with negligible 

flexural stiffness if compressive residual stresses are present. Applying in-plane 

tensile forces (i.e., pre-stretching the membrane biaxially in its plane) would 

reduce this phenomenon. However, it would require a suitable equipment that 

was not available. Therefore, the membrane was slightly pre-stretch by applying 

an initial hydrostatic load of ~1 kPa (10 cm water column). The initial maximum 

displacement of the central point of the membrane was measured to be ~7.3 mm. 

The membrane was then pressurized by increasing the liquid height. The central 

membrane displacement was measured by a highly accurate laser scanner 

vibrometer (Polytech® PSV-400) and recorded at various levels of applied 

pressure increasing in 2 kPa steps up to 10 kPa. Tests were repeated five times 

for repeatability purposes. Corrected displacements were obtained by subtracting 

the initial displacement from the measured values. 
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Figure 5. 11 Experimental setup. a) Overall layout; b) Bulge test cell and laser head; c) Detail of 

the Plexiglas plates making up the bulge test cell. 

 

5.3.2.2) Comparison between experimental and FE bulge test results 

Membrane bulging was simulated by the FE model. As mentioned above, the 

membrane was considered to be isotropic. Therefore, the mechanical properties 

and thickness experimentally determined for the anion exchange membrane along 

the XD direction (Young’s modulus 258 MPa, thickness 148 μm), investigated in 

the Section 5.2, were provided as input to the model, taking into account the non-

linear elastic behaviour. A Poisson ratio of 0.4 was again considered, as suggested 

by the producer. As boundary conditions, all edges of the square membrane were 

clamped. The small deformation approximation was not used. First, the deformed 

stretched configuration (no-wrinkles) was numerically determined, knowing the 

maximum central displacement value. Then, a uniform pressure was applied to 

the pre-stretched configuration. The comparison between the numerical results 

and the corrected measured displacements is shown in Figure 5. 12 (a). Figure 5. 

12 (a) compares the predicted and experimental maximum displacements (placed 
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at the central point of the membrane) as functions of the trans-membrane 

pressure. Error bars are reported for the experimental data. A fairly good 

agreement can be observed. 

 
5.3.2.3) Comparison between FE predictions and an analytical solution 

 A further validation of the FE model was performed by comparing 

numerical predictions with an analytical solution of structural mechanics for a 

two-dimensional domain [167] to investigate FE predictions for smaller 

membrane areas compared to that of bulge test. A square body loaded with a 

uniform pressure and with all the edges clamped was considered. Since the 

membrane deflection overcomes the “small deflection” range, a suitable 

analytical solution was used for the comparison. In particular, Figure 5. 12 (b) 

reports the maximum deflection as a function of the trans-membrane pressure. 

The broken line is the first-order approximated analytical solution reported by 

Iyengar and Naqvi [167], the solid line is the present FE numerical solution. In 

this case, the square membrane is 2 mm wide and 0.120 mm thick and Young’s 

modulus is 150 MPa. The Poisson ratio is 0.316, as the analytical solution 

proposed in reference [167] was specifically obtained for this value. Figure 5. 12 

(b) shows that numerical simulations are in good agreement with the approximate 

theoretical solution, the discrepancy increasing with TMP and being only 3% at 

80 kPa. 

 

Figure 5. 12 Maximum displacement for a square, edge-clamped membrane as a function of the 

trans-membrane pressure. Comparison of FE predictions (solid line) with (a) experimental results 

(symbols) of bulge tests on a 10 × 10 cm2 sample and (b) the first-order analytical solution by 

Iyengar and Naqvi [167] for a 2 × 2 mm2 membrane (dashed line). 
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5.3.3) Results  

The mechanical investigation of the deformation of the periodic portion of 

OCF and RP profiled membrane types was carried out in two steps: 

1. First, the influence of the pitch-to-height ratio (P/H) was addressed. A 

TMP of 80 kPa was applied, and the geometry with the largest value of 

P/H still able to withstand this load without collapsing (i.e., without 

exhibiting a contact between opposite membranes) was identified. The 

figure of 80 kPa was conservatively chosen as a value comfortably larger 

than the highest TMP actually expected in real RED/ED applications. 

The search for the largest admissible P/H was motivated by the fact that 

small values of P/H are associated with large pressure drops: many 

studies [126, 129, 143, 168-170] have highlighted the importance of 

reducing pressure drop and thus mechanical power losses in the channels, 

especially in RED applications. It is true that the increase of P/H may 

also cause a reduction in mass transfer coefficients, but its effect on stack 

performance is usually less important. 

2. The geometry thus identified was then investigated under expansion and 

compression conditions corresponding to TMP varying from -40 to +40 

kPa. As discussed in the Section 5.1.3, this range encompasses most of 

the conditions that are likely to occur in actual ED/RED applications. 

 

5.3.3.1) Influence of Pitch to Height Ratio (P/H) and limiting values 

Computational results for the deformation of periodic portions with different 

pitch (P) to channel height (H, distance between the two undeformed membranes) 

ratios under the conservative value of TMP = + 80 kPa (the “+” sign refers to 

compression) are presented in Figures 5. 13 and 5. 14  for the OCF and Pillar 

profiled membranes, respectively. Three values of P/H were investigated for both 

the membranes. Specifically, the P/H values of 7, 8 and 9; and 9, 10 and 11 were 

studied for the OCF and RP membranes, respectively. In the case of OCF 

membrane type (see Figure 5. 13), the first contact between the two membranes 

approximately occurs for / 9P H   and is located at the centres of the side ridges 
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(note that an inter-membrane clearance of 60 μm is still preserved at the centre 

of the periodic unit). Therefore, the value P/H = 8 was chosen as the largest 

admissible one. 

 
Figure 5. 13 Deformation of OCF membranes with different P/H ratios under TMP = +80 kPa. The 

quantity shown is the displacement in the direction orthogonal to the undeformed membranes. Top: 

external view; bottom: view after sectioning by a mid-plane A-A. 

 

In the case of RP membranes (Figure 5. 14), the first contact between the two 

membranes approximately occurs for P/H=11 at two points located on the long 

diagonal of the unit diamond somewhere in between the central point and the 

pillars, symmetrically with respect to the short diagonal. The immediately lower 

value P/H=10 was thus selected as the largest admissible one. 

 
Figure 5. 14 Deformation for RP membranes with different P/H ratios under TMP=+80 kPa. The 
quantity shown is the displacement in the direction orthogonal to the undeformed membranes. Top: 

external view; bottom: view after sectioning by a diagonal plane A-A. 
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5.3.3.2) Membrane and Channel Deformation for the Selected Geometries 

The geometries characterized by the maximum admissible P/H ratio, (being 

8 and 10, for OCF and RP membranes, respectively) were subjected to TMP 

varying in 10 kPa steps from  40 kPa (expansion) to +40 kPa (compression), 

and the corresponding deformation was computed. In the case of OCF 

membranes, Figure 5. 15 shows the deformed configuration for P/H = 8 under 

TMP = ±40 kPa. The insets on the right show the deformed fluid volumes. The 

maximum relative variation of the clearance occurs at the centres of the ridges. 

Here, the distance between the two opposite membranes (thickness of the fluid 

passage), which is H/2 = 100 μm in the undeformed configuration, decreases to 

53.7 μm in the compression case and increases to 148.4 μm in the expansion 

case. The distance between opposite membranes at the centre of the domain, 

which is H = 200 μm in the undeformed configuration, decreases to 130 μm 

under compression or increases to 272 μm in expansion (i.e., the maximum 

deflection at the centre is  ±70 μm). 

 
Figure 5. 15 Deformation of OCF membranes with P/H = 8 for the compressed and the expanded 

cases at TMP = ±40 kPa. The quantity shown is the displacement in the direction orthogonal to the 
undeformed membranes. The corresponding deformed fluid volume is shown in the insets. 
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In the case of RP profiled membranes, Figure 5. 16 presents the deformed 

configurations calculated for TMP=±40 kPa for the geometry with the maximum 

admissible P/H ratio (10).  

 
Figure 5. 16 Deformation for the RP with P/H=10 in both the compressed and the expanded cases 
at TMP=±40 kPa. The quantity shown is the displacement in the direction orthogonal to the 

undeformed membranes. The corresponding deformed configuration of the fluid volume is shown 

in the insets on the right. 

 

Under compression, the minimum clearance occurs at two points with 

maximum displacement located on the long diagonal of the unit diamond 

symmetrically with respect to the short diagonal. It amounts to 128 μm, 

corresponding to a vertical displacement of 36 μm for each membrane. Under 

expansion, the maximum inter-membrane distance increases to 268 μm (vertical 

displacement 34 μm for each membrane). 

Figure 5. 17 provides information concerning the TMP effects, in the whole 

range studied, on the fluid volume. In particular, in the case of OCF with P/H=8 

(Figure 5. 17 a), the volume follows a linear trend and exhibits an almost perfect 

symmetry between compression and expansion; the volume changes by ±25% for 

TMP = ±40 kPa. 

In the case of RP with P/H=10 (Figure 5. 17 b), a slight deviation from a 

perfectly symmetric behavior can be observed: the volume decreases by 22.7% 

for TMP= +40 kPa and increases by 21% for TMP=  40 kPa. 
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 (a)  (b) 

Figure 5. 17 Fluid volume (normalized by the undeformed volume) as a function of trans-

membrane pressure for: (a) OCF with  P/H = 8 and (b) RP with P/H=10. 
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CHAPTER VI 

 

INVESTIGATION ON FLUID DYNAMICS AND 

MASS TRANSFER IN DEFORMED CHANNELS  

 

6.1) Introduction  

The hydrodynamics and mass transport phenomena in channels of membrane 

modules have been systematically addressed by experimental and computational 

methods [168, 171-177]. Computational Fluid Dynamics (CFD) has been largely 

employed as a powerful tool for hydrodynamic simulations and predictions of 

both spacer-filled [178-181] and profiled bounded channels [121-123]. 2D and 

3D models have been developed and, in particular, 3D simulations have allowed 

considerable insight into fluid flow phenomena. The effects of the geometry of 

spacers or profiles and of their orientation with respect to the flow have also been 

investigated [123, 129, 181, 182].  

In this chapter, in order to evaluate the effects of membrane deformation on 

fluid dynamics and mass transport in deformed channels, CFD simulations were 

carried out in the undeformed, compressed and expanded channel configurations 

bounded by the periodic portion of OCF and RP profiled membranes investigated 

in Chapter V (see Figure 5. 9). Only one fluid channel at a time was simulated at 

the different TMP values and the governing equations were solved by the finite 

volume code Ansys-CFX®. From the numerical solution of these equations, 

velocity, pressure and electrolyte concentration fields are obtained. Raw results 

are then elaborated in order to calculate friction factor and Sherwood number.  
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6.2) Governing Equations and Definitions 

Assumptions of steady laminar flow and constant-property fluid were 

assumed for the fluid dynamics / mass transfer problem. The steady laminar flow 

is amply justified by the low Reynolds numbers investigated (<100 in most 

cases). Moreover, unsteadiness was observed only for Re>300 in experimental 

and direct numerical simulation studies conducted for spacer-filled channels 

[183], which geometry was closely related to that of the OCF profiled membrane 

type of Chapter V. In particular, a much lower pitch to height ratio P/H=2 was 

studied and thus larger values of the transitional Reynolds number can be 

expected for the geometry investigated. The same consideration can be also 

applied for the case of RP pillars, since round pillars have lower effects on the 

hydrodynamics of membrane bounded channels, as also pointed out in ref [123]. 

 As far as constant-property assumption is concerned, it is justified by the 

small concentration changes occurring in a generic portion of the channel (the 

assumption is also verified by the results shown in polarization coefficients 

/b wc c ranging from 0.97 to 1.03, in Sections 6.4.1.2 and 6.4.2.2).  

With regard to the ionic transport, it was simulated assuming the local 

electroneutrality condition in the whole fluid domain. Under this hypothesis, from 

the Nernst-Planck equations and the mass balances of the two ions of a binary 

electrolyte, a convective-diffusive transport equation can be derived [181, 184-

186]. This simplifies the calculations, requiring only the need for a choice 

concerning the boundary condition at the membrane-solution interface (uniform 

concentration, uniform flux, or mixed condition); however, the influence of the 

boundary conditions on the mass transfer coefficient is small [121, 187]. The 

potential is eliminated from the transport equation, and therefore the electric field 

and associated phenomena (e.g., Ohmic resistance) are not calculated by this 

simulation approach. Moreover, electroneutrality conditions are assumed and the 

electric double layer at the membrane-solution interface is not simulated, so that 

special conditions in which an extended space charge region occurs (e.g., 

electroconvection under overlimiting conditions) are not taken into consideration. 

Under these assumptions, three-dimensional continuity, Navier-Stokes and 

scalar transport equations were numerically solved.  
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The continuity equation (with implicit summation) is simply 

 0i

i

u

x





      (6.1)  

where 
iu is the i-th velocity component of the fluid. 

All simulations were carried out under the hypothesis of fully developed flow 

and concentration field, thus employing the Unit Cell approach [181]. In this 

approach, periodic boundary conditions are imposed to all variables between the 

inlet and outlet faces of the computational domain. At the same time, it is 

necessary to allow for the variation of pressure and bulk concentration along the 

main flow direction s , due to frictional losses and solute inflow or outflow 

through the channel walls, respectively. These apparently contradictory 

requirements are reconciled as follows. 

 Consider pressure p first. In the fully developed region of a channel, p can 

be decomposed into a periodic component p , whose spatial distribution 

repeats itself identically in each unit cell, and a large-scale component 

( )pK x s which decreases linearly along the main flow direction whose unit 

vector is s  ( x is the position vector of components xi). By substituting 

( )p p i ip K p K x s   x s  for p  in the i-th steady-state Navier-Stokes 

equation: 

 
j i i

j i j j

u u up

x x x x




  
  

   
 (6.2) 

(where  and   are the fluid’s density and viscosity), it becomes 

 
j i i

p i

j i j j

u u up
K s

x x x x




  
   

   
        (6.3) 

Eq. (6.3) is similar to Eq. (6.2), but (a) the “true” pressure p  is replaced by 

its periodic component p , and (b) a body force per unit volume (mean 

pressure gradient) acting along the main flow direction s  appears at the right 

hand side. If required, the “true” pressure p  can always be reconstructed 

from the simulation results as ( )pp p K  x s . 
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 In regard to the concentration c , by definition of fully developed conditions 

it can be decomposed into a periodic component c  and a large-scale 

component ( )cK x s , where 
cK  can now be either positive (net inflow of 

electrolyte into the channel) or negative (net outflow of electrolyte from the 

channel). By substituting  c c i ic K c K x s   x s   for c in the transport 

equation 

 j

Salt

j j j

u c c
D

x x x

  


  
  (6.4) 

(where 
SaltD  is the salt diffusivity), after some manipulation one obtains:  

 j

Salt c s

j j j

u c c
D K u

x x x

  
 

  
        (6.5) 

in which 
su  u s  is the local velocity component along the main flow 

direction s . The large-scale gradient 
cK  can be obtained by an elementary 

balance as: 

 c

s

A j
K

V u
        (6.6) 

in which j is the molar salt flux at walls (imposed in the simulation), A is the 

membrane surface active area in a fluid unit cell (so that jA is the molar flow 

per unit time, mol/s), V is the cell volume and su  is the volume average of 

su . 

In the present study, the (bulk) Reynolds number was conventionally defined 

as:  

 
2

Re
U H


        (6.7) 

i.e., it was based on the hydraulic diameter 2H of a void (profile-less) and 

undeformed channel of thickness H in the limit of indefinite width, and on the 

approach velocity 

 
Q

U
S

       (6.8) 
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in which Q is the volume flow rate through a cross section of the channel 

orthogonal to the main flow direction and S is the cross sectional area of a void 

(profile-less) and undeformed channel of thickness H. The above definitions of 

U and Re are consistent with those adopted in many works on undeformed spacer-

filled channels or profiled membranes [123, 129, 181, 182]. 

The Darcy friction coefficient Darcyf  was defined with reference to the above 

approach velocity U and hydraulic diameter 2H, i.e., as: 

 
2

4
Darcy

dp H
f

ds U
       (6.9) 

In the simulations, the driving pressure gradient Kp=|dp/ds| in Eq. (6.3) was 

imposed, while the flow rate was obtained as part of the solution. Please note that 

| / |dp ds can be expressed in terms of the friction velocity Reynolds number 

 Re
2

u H





           (6.10) 

in which u  is the friction velocity, 

 
2

H dp
u

ds



         (6.11) 

Therefore, in the parametrical analyses illustrated above, results were 

obtained for a given Re  (friction velocity Reynolds number) rather than for a 

given Re (bulk Reynolds number). Please note that according to the present 

definitions, between Re , Re  and  fDarcy the following relation holds: 

 

2
Re

128
Re

Darcyf  
  

 
     (6.12) 

To separate the effects of profile shape and channel deformation from the 

effects of varying the flow rate (and thus Re), the Darcy friction coefficient was 

normalized by that holding for parallel laminar flow in a void plane channel of 

indefinite width, i.e., 96/Re. Therefore, the following quantity (F-ratio) was 

reported: 

 
96 / Re

Darcyf
F        (6.13) 
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The local concentration polarization coefficient   was defined as:  

 b

w

c

c
          (6.14) 

where 
bc  is the molar bulk concentration and 

wc is the local molar concentration 

at the membrane surface. Please note that defining the average polarization 

coefficient in such a way that it is lower than 1 [123, 129, 181] the local 

polarization coefficient in Eq. (6.14) refers to the case of either a dilute channel 

of RED or a concentrate channel of ED, where the flux enters from membrane’s 

walls. 

The mass transfer coefficient was defined as  

 
 c

b w proj

jA
k

c c A



  (6.15) 

and the Sherwood number was defined as 

 
 

2 2
Sh c

Salt Saltb w proj

H jA H
k

D Dc c A
 


  (6.16) 

in which Aproj is the projected membrane surface area and (
wc ) is the area 

average of 
wc on the same membrane. Please note that the Sherwood numbers on 

the two membranes facing a channel may differ depending on the flow direction. 

 

6.3) Boundary Conditions and FV Mesh for CFD Simulations 

As mentioned in discussing the unit cell approach, translational periodicity 

was imposed for u , p and c between opposite inlet-outlet boundaries. At the 

membrane surfaces, no slip conditions were imposed for velocity and a uniform 

value of 2.6 × 10–4 mol/(m2s) for the molar salt flux entering the fluid, 

corresponding to a current density of 50 A/m2. An NaCl aqueous solution at a 

bulk concentration of 500 mol/m3 was considered (i.e., seawater, see physical 

properties reported in Table 6. 1). Please note that these choices on flux and bulk 

concentration affect directly the polarization coefficient (Eq. (6.14)), while, the 

Sherwood number depends only on geometry, Re and Schmidt (Sc), due to the 

linearity of the transport equation (6.5). 
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Table 6. 1 Physical properties of the 500 mol/m3 NaCl solution at 25 °C. 

Property Value Units 

Density, ρ 1017 kg m–3 

Viscosity, µ 0.931 × 10–3 N s m–2 

Salt diffusivity, SaltD  1.47 × 10–9 m2 s–1 

Schmidt number, ( / ) / D   622 - 

 

As far as computational details are concern, all simulations were conducted 

in double precision. The “High Resolution” (higher-order upwind) interpolation 

scheme was adopted for the advection terms. In regard to convergence, iterations 

were interrupted when the residuals of all variables became less than 10–10. 

 
6.3.1) FV Mesh for OCF  

Mainly hexahedral meshes were adopted in the CFD simulations of the OCF 

membrane type. Small regions at the corners of the domain were discretized by 

tetrahedra (4.4% of the total volumes), pyramids (0.13%) and wedges 

(0.03%). Grid dependence was evaluated for P/H = 8 in the undeformed 

configuration at Re  5, corresponding to a bulk Reynolds number of 20. 

Therefore, the test case selected for the grid-independence assessment lies well 

above the creeping flow range and close to the highest Reynolds numbers 

investigated. Results are shown in Table 6. 2, where the computed values of the 

Darcy friction coefficient fDarcy and of the Sherwood number Sh are reported as 

functions of the number of finite volumes. 

 
Table 6. 2 Grid dependence results for the OCF profiled membrane of P/H=8 computed for Reτ = 

5.2 and  F  = 0°. 

FV CFD Mesh No. Finite 

Volumes 

Darcy Friction 

Coefficient 

Sherwood 

Number  

(Upper Wall) 

Sherwood 

Number  

(Lower Wall) 

OCF-A 2.252×106 10.985 5.685 9.122 

OCF-B 3.833× 106 11.062 5.519 8.771 

OCF-C 7.502× 106 11.117 5.491 8.596 
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The mesh adopted for the final simulations (OCF-B) was characterized by 

about 4 million volumes. The channel height H was resolved by 40 finite 

volumes. Details of the same mesh are presented in Figure 6. 1. 

 
Figure 6. 1 Details of the mesh chosen for the OCF with P/H=8 (undeformed configuration). 

 

6.3.2) FV Mesh for RP  

In the case of RP profiled membranes almost completely hexahedral meshes 

were adopted in the CFD simulations. Only a minimal fraction (0.23%) of the 

volumes were wedges. Grid dependence was evaluated for P/H=10 in the 

undeformed configuration at Re 5, corresponding to a bulk Reynolds number 

of 30, well above the creeping flow range and close to the highest Reynolds 

numbers investigated. Results are shown in Table 6. 3, where the computed 

values of Darcy friction coefficient fDarcy and of the Sherwood number are 

reported as functions of the number of finite volumes. Please note that the 

distributions of all quantities on the upper and lower wall are identical due to 

symmetry reasons. 

 
Table 6. 3 Grid dependence results for the RP profiled membrane of P/H=10 computed for Reτ = 

5 and  F = 90°. 

FV CFD Mesh No. Finite 

Volumes 

Darcy Friction 

Coefficient 

Sherwood 

Number  

 

RP-A 2.576×106 6.941 13.769 

RP-B 4.142×106 6.965 13.719 

RP-C 6.091×106 6.976 13.689 
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The mesh selected for the final simulations (RP-B) consisted of 4 million 

volumes and 40 divisions along the channel height H. Details of the mesh are 

shown in Figure 6. 2.  

 
Figure 6. 2 Details of the mesh chosen for RP with P/H=10 (undeformed configuration). 

 

6.4) Results 

6.4.1) OCF profiled membrane type of P/H = 8 

Fluid investigation in deformed and the undeformed channel were carried 

out by investigating different flow attack angle 
F . Specifically, in the case of 

OCF profiled membrane type, 
F  is defined (Figure 5. 9) as the angle formed by 

the flow direction with the membrane ridges belonging to the upper wall of the 

channel under consideration. Three 
F  values of 0° , 45° and 90° were studied.  

 
6.4.1.1) Undeformed Configuration 

Figure 6. 3 shows 3-D streamlines and maps of the polarization coefficient 

  in the undeformed configuration characterized by P/H = 8 for a friction 

velocity Reynolds number Re = 5.2 (bulk Reynolds number Re  17.6, approach 
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velocity 4 cm/s) and all three values of the flow attack angle investigated. The 

flow direction is indicated by arrows.  

The streamlines show that the flow is regular and parallel at this low value 

of Re. The corresponding plots for 
F  = 0° and 

F = 90° are identical apart from 

a 90° rotation and a top-bottom reflection. For 
F = 45°, streamlines were shown 

in two colours according to the face from which they enter the unit cell; the graph 

shows that there is no mixing between the two inlet streams.  

The maps of   in the bottom row show that the case 
F = 45° provides a 

more uniform distribution of the wall salt concentration, while the other two cases 

exhibit a very strong spanwise non-uniformity; the concentration is lower in the 

central region of the wall, where it becomes less than the bulk value despite the 

net overall salt flux being into the channel, and larger in the lateral regions of the 

channel walls, where low fluid velocities (stagnation zones) occur. Please note 

that the distribution of   on the upper wall for 
F = 0°, once rotated by 90°, 

would become the corresponding lower wall distribution for 
F = 90° and vice 

versa. Also, remember that the values of the polarization coefficient depend on 

the flux imposed at the boundary and on the bulk concentration considered. 

Therefore, for example, much lower values would be obtained for dilute 

solutions. 
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Figure 6. 3 CFD results for the undeformed configuration of OCF with P/H = 8 at Re = 5.2 

(approach velocity 4 cm/s). Top row: sketches illustrating the flow direction; middle row: 3-D 

streamlines; bottom row: maps of the concentration polarization coefficient   = cb/cw on the upper 

wall. cb = 500 mol/m3, flux corresponding to a current density of 50 A/m2 entering the fluid domain 
(dilute channel of RED or concentrate channel of ED). 

 

6.4.1.2) Deformed Configurations  

For the sake of brevity, the influence of deformation on flow and mass 

transfer in OCF membranes with P/H = 8 is illustrated in Figure 6. 4 only for a 

friction velocity Reynolds number Re =5.2 (corresponding to bulk Reynolds 

numbers between 7 and 35, approach velocity 1.6 and 7.8 cm/s, depending 

on the load conditions) and a flow attack angle 
F = 90° (flow orthogonal to the 

profile ridges adjacent to the upper wall of the fluid channel), as evidenced in the 

inset.  

Three configurations are examined: compressed by a trans-membrane 

pressure TMP = +40 kPa (left column), undeformed (middle column), and 

expanded by a trans-membrane pressure TMP =   40 kPa (right column). The 
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top row reports contour plots of the velocity component along the main flow 

direction in the central cross section of the channel, while the middle and bottom 

rows report contour plots of the polarization coefficient   on both the upper and 

the lower wall of the fluid-filled channel, as clarified by the sketches in the 

rightmost part of the figure. The corresponding values of the F ratio and of the 

Sherwood number are also reported. In the deformed channels, the normalized 

axial velocity component exhibits larger maximum values, which are located 

closer to the longitudinal ridges in the case of the compressed channel. 

The F ratio increases from 2.04 to 4.96 with compression and decreases 

from 2.04 to 1.03 with expansion. In regard to the Sherwood numbers that on 

the upper wall (flow orthogonal to the profile ridges) increases significantly with 

compression (from 8.77 to 11.46, i.e., by 30%) and increases, but negligibly, 

also with expansion (from 8.77 to 8.92, i.e., by 2%). That on the lower wall 

(flow parallel to the profile ridges) increases significantly with compression 

(from 5.52 to 7.63, i.e., by 38%) and increases less, but still appreciably, also 

with expansion (from 5.52 to 6.17, i.e., by 12%).  
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Figure 6. 4 Influence of deformation on flow and mass transfer for OCF with P/H = 8, F = 90°. 

Left column: compressed (TMP = +40 kPa); middle column: undeformed; right column: expanded 

(TMP =   40 kPa). Top row: distribution of the streamwise velocity component in the central cross 

section of the channel (for symmetry reasons, only half map is shown); middle and bottom rows: 

distribution of the polarization coefficient on the upper and lower walls (see sketches on the right). 

cb = 500 mol/m3, flux corresponding to a current density of 50 A/m2 entering the fluid domain 
(dilute channel of RED or a concentrate channel of ED). F ratio and Sherwood number are also 

reported. 

 

For greater readability of the results, the dimensioned values of the approach 

velocity U and of the mass transfer coefficient k for the three conditions in Figure 

6. 4 (TMP = 0 or ±40 kPa) are summarized in Table 6. 4. In all three cases the 

friction velocity Reynolds number Re is 5.2, corresponding to an inlet-outlet 

pressure drop in a unit cell (1.6 mm in side) of 34.36 Pa.  
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Table 6. 4 Approach velocity and mass transfer coefficients for the load conditions in Figure 6. 4. 

Quantities Compressed 

+40 kPa 

Undeformed Expanded 

 –40 kPa 

[cm/s] 1.6 4 7.8 

(kc), upper wall [m/s] 3.72 × 10–5 2.84 × 10–5 2.89 × 10–5 

(kc), lower wall [m/s] 2.47 × 10–5 1.78 × 10–5 2.00 × 10–5 

 

Distributions of the polarization coefficient   are deeply affected by 

deformation. In the compressed configuration, both on the upper and on the lower 

wall the region of high   (i.e., low concentration) observed in the undeformed 

case splits into two smaller regions, symmetrically located about the midline 

parallel to the flow direction, whereas the central region of the wall close to this 

midline exhibits low values of   (i.e., high values of concentration). In the 

expanded configuration, the concentration distribution on the lower wall remains 

similar to that observed in the undeformed case, with a single large central strip 

where cw < cb, which is consistent with the fact that the longitudinal velocity 

exhibits a single central maximum as in the undeformed case (see top row). The 

  distribution on the upper wall becomes flat, with two shallow   maxima (i.e., 

cw minima) symmetrically located about the longitudinal midline. 

By comparing the polarization coefficient maps and the velocity maps in 

Figure 6. 4, it can be observed that under the present assumption of mass flux 

entering the channel, higher concentration levels on the wall correspond to 

stagnation regions, whereas low values of concentration occur in regions of high 

streamwise velocity as an effect of axial advection. 

 

6.4.1.3) Global Parameters 

Among the performance parameters of greatest interest which can be 

affected by deformation, the friction coefficient and the Sherwood number were 

taken into account [129, 182]. 

 Figure 6. 5 reports the normalized Darcy friction coefficient, i.e., the F 

ratio, as a function of Re for OCF membranes with P/H = 8 at different values of 

U
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TMP. Graph (a) is for flow attack angles 
F  of 0° or 90° (equivalent in regard to 

friction), while graph (b) is for 
F = 45°. Please note that the results of each series 

of simulations performed at a given Re  appear as an inclined row of symbols 

since they correspond to different values of Re. 

 

 

 (a)  (b) 

Figure 6. 5 Normalized Darcy friction coefficient (F ratio) as a function of Re for OCF with P/H 
= 8, different values of the trans-membrane pressure TMP and two values of the flow attack angle 

F . (a) F = 0° or 90°; (b) F = 45°. 

For any 
F  and applied TMP, F is flat up to Re10, indicating that inertial 

effects are negligible (self-similar flow). A significant departure from the void 

channel behavior is observed only for Re»10. The influence of TMP is to enhance 

friction under compression and to reduce it under expansion. This effect is 

expected because, for any given Re, in a compressed channel the cross section is 

reduced, local velocities increase and thus pressure drops are higher (the opposite 

occurs in an expanded channel). For the same absolute value of TMP, the 

influence of compression is slightly larger than that of expansion: TMP = +40 

kPa leads to an increase in F by a factor of 2.5, while TMP =   40 kPa leads 

only to a halving of F. The influence of the angle 
F  is negligible (graphs (a) and 
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(b) are practically identical), indicating a substantial isotropy of the profiled 

membrane lattice in terms of hydraulic friction. This behavior is typical in the 

case of low Reynolds numbers, as largely documented in the literature [121, 129, 

181, 182].   Figure 6. 6 reports the Sherwood number on the upper channel wall, 

for P/H = 8 as a function of the Reynolds number and for different values of the 

trans-membrane pressure. Graphs (a), (b) and (c) are for flow attack angles 
F  

of 0°, 45° and 90°, respectively. Please note that the cases 
F = 0° and 90° are 

equivalent in regard to friction but not in regard to mass transfer on a specified 

wall. However, for symmetry reasons, the Sherwood number on the lower wall 

of the channel at a given 
F  is identical to that on the upper wall at the 

complementary flow attack angle 
F 90° (also the distributions of wall quantities 

such as concentration and mass transfer coefficient would be the same, apart from 

rotations and reflections). Therefore, values of Sh for the lower wall were not 

separately reported. 

 

 

 (a)  (b)  (c) 

Figure 6. 6 Sherwood number on the upper wall as a function of the Reynolds number for OCF 

with P/H = 8 and different values of the trans-membrane pressure and of the flow attack angles. (a) 

F = 0°; (b) F = 45°; (c) F = 90°. 

When 
F = 0°, Figure 6. 6 (a), for any applied TMP the Sherwood number 

on the upper wall changes little with Re up to 10, while for 
F = 90°, Figure 6. 

6 (c), the departure from this flat behavior occurs earlier (Re  2). For 
F = 0° or 

90°, the Sherwood number at low Reynolds numbers ranges between 3 and 7 
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and thus is less than the theoretical value for a void plane channel of indefinite 

width (8.24 under uniform mass flux conditions [187]). This indicates that in 

this Reynolds number range, the “shadow” effects of the profiles hinder mass 

transfer. The behaviour of Sh is different for a flow attack angle of 45°, Figure 6. 

6 (b), for which, even at very low Reynolds numbers, Sh increases with Re and 

is larger than in a void channel for all compressed configurations, while it 

becomes slightly lower only for the expanded ones. Under all conditions, Sh 

increases rapidly as Re exceeds some critical value and, at Re  30–100, it 

becomes much larger than in a void channel. The most peculiar behaviour is 

exhibited by the upper wall Sherwood number in the expanded cases and 
F = 

90°, which jumps to very high values (up to 40 for TMP =   40 kPa) as Re 

exceeds 50 due to the increasing importance of flow recirculation. 

The influence of trans-membrane pressure on Sh is more complex than that 

on F. On the whole, compression enhances mass transfer and expansion reduces 

it; the influence of channel deformation on mass transfer is less marked than on 

friction. Some anomalous behaviour of Sh is observed only in the cases 

characterized by 
F = 90° and Re > 50, in which the highest values of Sh are 

obtained for the largest expansion. Under all deformation conditions, the flow 

orientation 
F = 45° yields the highest values of Sh. This is in contrast with the 

behaviour of the friction coefficient, see Figure 6. 5, which is only minimally 

affected by the flow attack angle. 

 

6.4.2) RP pillar type of P/H = 10 

In the case of RP profiled membrane type, also three values of the flow attack 

angle 
F  were investigated: 

F =0° (flow parallel to the longer diagonal), 
F

=30° (flow parallel to two of the sides) and 
F =90° (flow parallel to the shorter 

diagonal). 
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6.4.2.1) Undeformed Configuration  

Figure 6. 7 shows 3-D streamlines and distributions of the polarization 

coefficient   for the RP profiled membrane of P/H=10 undeformed configuration 

at a friction velocity Reynolds number of 2.5 (the resulting bulk Reynolds number 

was Re=5.1) and all three flow attack angles investigated (
F =0°, 30° and 90°). 

The flow direction is shown in the top row. 

 

Figure 6. 7 Sketches illustrating the flow direction (top row), 3-D streamlines (middle row) and 

maps of the concentration polarization coefficient  =cb/cw on either of the walls (bottom row) for 

the RP with P/H=10 undeformed configuration and a friction velocity Reynolds number of 2.5 

(Re=5.1). cb = 500 mol/m3, flux corresponding to a current density of 50 A/m2 entering the fluid 

domain (dilute channel of RED or concentrate channel of ED). 

 

The streamlines show that the flow is regular at this low value of Re. In the 

cases 
F =0° and 

F =90°, streamlines were shown in different colors according 

to the face from which they enter the fluid domain; the graphs show that there is 

essentially no mixing between the two inlet streams, as expected. In regard to the 

maps of  =cb/cw (bottom row), it should be observed that the distributions of all 

quantities on the upper and lower wall are identical due to symmetry reasons and 

to the boundary conditions adopted. The comparison of the   maps relevant to 
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the three angles investigated shows that the case 
F =0° provides a fairly uniform 

distribution of the wall salt concentration, while for 
F =90° the wall 

concentration is strongly non-uniform in the lateral (spanwise) direction and 

becomes lower than the bulk concentration in two curved regions, symmetrically 

located about the flow direction, despite the net overall salt flux being into the 

channel. The case 
F =30° exhibits a non-uniform distribution, with one S-

shaped central region characterized by large values of  . The significant non-

uniformity of the polarization coefficient maps exhibited by the cases with flow 

attack angle 
F =30° and 

F =90° are associated to inhomogeneous distributions 

of the fluid velocity. The occurrence of marked stagnant regions and restricted 

zones with high fluid velocity, results in uneven   distributions. 

 

6.4.2.2) Deformed Configurations 

Figure 6. 8 illustrates an example of the effect of deformation on flow and 

mass transfer. The cases at Re  =2.5 and 
F =90° (flow parallel to the shorter 

diagonal of the unit rhombus) are shown, as evidenced in the inset. Only the 

undeformed (middle column, Re=5.1), the most compressed (TMP = +40 kPa, 

left column, Re=2.4) and the most expanded (TMP =   40 kPa, right column, 

Re=8.9) configurations are examined.  
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Figure 6. 8 Influence of deformation on flow and mass transfer for RP with P/H=10, F =90°, Re
=2.5. Left column: compressed (TMP = +40 kPa, Re=2.4); middle column: undeformed (Re=5.1); 

right column: expanded (TMP =  40 kPa, Re=8.9). Top row: distribution of the streamwise 
velocity component in the central cross section of the channel (for symmetry reasons, only half map 

is shown); bottom row: distribution of the polarization coefficient on either of the walls. cb = 500 

mol/m3, flux corresponding to a current density of 50 A/m2 entering the fluid domain (dilute channel 

of RED or a concentrate channel of ED). F ratio and Sherwood number are also reported. 

The top row reports contour plots of the velocity component along the main 

flow direction in the central cross section of the channel (for symmetry reasons, 

only the left half of this section is shown), while the bottom row reports contour 

plots of the polarization coefficient  =cb/cw on either of the walls of the fluid-

filled channel (see above discussion on the symmetry between upper and lower 

wall). The corresponding values of the normalized Darcy friction coefficient (F 

ratio) and of the Sherwood number are also indicated. 

In the central cross section, the maximum values of normalized axial velocity 

component occur approximatively in the same region in all the three 

configuration examined, close to the lateral pillars, but exhibit larger values going 

from the expanded channel to the undeformed and the compressed ones. It can be 

observed that the F ratio increases more than twice (from 1.54 to 3.26) with 

compression and decreases, but less markedly (from 1.54 to 0.89), with 

expansion. The Sherwood number increases by 70% (from 5.05 to 8.56) with 
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compression and increases slightly (from 5.05 to 5.14) with expansion. 

Distributions of   become much more uniform with compression and only 

slightly more uniform with expansion. 

 

6.4.2.3) Global quantities   

Also for RP membrane case, the friction coefficient and the Sherwood 

number were investigated. The normalized Darcy friction coefficient, i.e. the F 

ratio as defined by Eq. (6.13), is reported as a function of the Reynolds number 

for different values of TMP in Figure 6. 9. Graph (a) is for a flow attack angle 

F  of 0°, graph (b) is for 
F =30° and graph (c) is for 

F =90°. For any applied 

TMP and 
F , F remains practically constant with Re up to Re10-20, which 

indicates that, in this range, inertial effects are negligible and the flow is self-

similar. A marked departure from the void channel behavior occurs only for 

Re>20. The influence of trans-membrane pressure is to enhance friction under 

compression conditions and to reduce it (but to a lesser extent) under expansion 

conditions. For example, a value of TMP of +40 kPa leads to a more than twofold 

increase in F, while a value of -40 kPa leads only to a 40% decrease. 

 

 

 (a) (b)  (c) 

Figure 6. 9 Normalized Darcy friction coefficient (F ratio) for RP with P/H=10 as a function of the 
Reynolds number for different values of the trans-membrane pressure and three values of the flow 

attack angle F . a) F =0°; b) F =30°; c) F =90°. 
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In the range of Re investigated, the flow attack angle does not influence 

hydraulic friction (i.e., graphs (a), (b) and (c) are practically identical), indicating 

a substantially isotropic behavior of the profiled membrane lattice for the pressure 

drop. Figure 6. 10 reports the Sherwood number on either of the channel walls, 

defined by Eq. (6.16), as a function of the Reynolds number for different values 

of TMP. Graphs (a), (b) and (c) are for a flow attack angle 
F  of 0°, 30° and 90°, 

respectively. As already stated, the Sherwood numbers on the upper and lower 

walls are practically identical for symmetry reasons. 

 

 

 (a) (b)  (c) 

Figure 6. 10 Sherwood number on either of the walls as a function of the Reynolds number for RP 

with P/H=10 at different trans-membrane pressures and flow attack angles. a) F =0°; b) F =30°; 

c) F =90°. 

At the left end of the Re interval investigated (up to a few units), Sh changes 

little with Re and ranges between 3 and 8, thus being lower than the theoretical 

Sh for a void plane channel of indefinite width (8.24 under uniform mass flux 

conditions). These results suggest that, in this low Re range, the “shadow” effect 

of the profiles hinders mass transfer. On the other hand, for Re larger than a few 

units, Sh increases significantly. Only in the most expanded configurations (TMP 

= 30 and  40 kPa), the increase of Sh with Re is less marked, especially for 

F =0°. 

In regard to the influence of trans-membrane pressure, for all flow attack 

angles Sh increases with compression and decreases with expansion; the 
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influence of compression is larger than the influence of expansion at low 

Reynolds numbers, while the opposite is true at higher Re. For 
F =0°, the 

reduction of Sh caused by expansion at high Re is particularly significant. The 

behaviours of Sh for 
F =30° and 90° are less sensitive to TMP and are similar 

to each other. Unlike the case of the F ratio, the flow attack angle affects the 

Sherwood number at any Re. 

 

6.4.3) Comparison between OCF and RP profiled membranes 

A comparison between the influence of TMP on the RP profiled membranes 

with P/H=10 and on the OCF ones with P/H=8,  is reported in Table 6. 5. 

Approach velocity, Darcy friction factor and mass transport coefficient for both 

the upper and the lower wall are listed for a flow attack angle of 
F =90° and 

Re =2.5. The definition of 
F  for the two geometries is shown in Figure 5. 9.  

 

Table 6. 5 Approach velocity, Darcy friction factor and mass transfer coefficients for the 

undeformed, +40 kPa compressed and  40 kPa expanded configurations for RP with P/H=10 and 

OCF with P/H=8 geometries for F =90° and Re  =2.5. 

Quantities Compressed +40 kPa Undeformed Expanded –40 kPa 

 RP OCF RP OCF RP OCF 

U [cm/s] 0.5 0.4 1.1 1.0 2.0 2.0 

Darcyf   
129.0 260.5 28.9 43.2 9.5 10.3 

kc [m/s] 

upper wall 
3.2·10–5 2.6·10–5 1.9·10–5 1.9·10–5 1.9·10–5 2.2·10–5 

kc [m/s]  

lower wall 
3.2·10–5 2.6·10–5 1.9·10–5 1.4·10–5 1.9·10–5 1.1·10–5 

 

In the undeformed configuration, the RP arrangement exhibits lower friction 

coefficients than the OCF one. As TMP varies, the friction coefficient varies 

slightly less than in the OCF arrangement.  
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With regard to the mass transport properties, in the undeformed 

configuration the RP arrangement exhibits mass transport coefficients kc similar 

to the OCF. Under compression, the kc coefficients increase more than in the 

OCF; under expansion, they remain about unchanged, while kc vary in a complex 

way in the OCF (increasing on the upper wall and decreasing on the lower one). 
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CHAPTER VII 

 

FLOW REDISTRIBUTION IN ED AND RED 

CHANNELS IN THE PRESENCE OF LOCAL 

MEMBRANE DEFORMATIONS 

 

7.1) Introduction 

The CFD investigation presented in the Chapter VI has shown that 

membrane deformation induced by TMP may significantly affects the 

hydrodynamics and mass transport properties in ED and RED channels. The 

study was conducted at a small scale of a periodic portion of a profiled membrane 

bounded channel. In order to investigate the deformation effect at the higher scale 

of the entire channel dimension level, CFD applicability is limited due to the large 

computational effort and long computation time required by a very fine 

discretization in the presence of geometrical complexities in the whole channels. 

Some authors, e.g. Dirkse et al. [188], Kostoglou and Karabelas [189, 190], 

Kodým et al. [191] and Pánek et al. [192], have proposed simplified models 

allowing the simulation of an entire channel of different membrane systems. 

However, the hydrodynamic in those channels has been investigated assuming 

undeformed (reference, or nominal) geometries.  

In the present chapter a novel iterative Fluid-Structure Interaction model is 

presented to predict flow redistribution in channels where local membrane 

deformation occurs. In particular, the continuity and Darcy equations are solved 

in two adjacent channels by treating them as porous media and using the previous 

results of the CFD analysis of Chapter VI to express their hydraulic permeability 

as a function of the local TMP.  
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7.2) From a small- to a large-scale description of membrane-

bounded channels 

In the following section, some of the quantities already defined in Chapters 

V and VI are recalled tougher with the introduction of new ones, which are 

needed to scale up the analysis of ED and RED channels from a small to a large 

scale. 

First, the channel thickness H is defined under undeformed conditions as the 

distance between the plane regions of opposite membranes. The equivalent 

channel thickness h is defined as the ratio of the fluid volume in the small periodic 

portion bounded by profiled membranes to the projected membrane area (P2 for 

a square-planform unit cell). Note that, in an undeformed channel, one has h H  

due to the volume occupied by the membrane profiles; in a compressed channel 

h is always <H; in an expanded channel, one can have h<H, h=H or even h>H. 

Values of h under different load conditions are reported in Table B1 of Appendix 

B. 

The superficial velocity 
sU  along a generic direction s is defined, in 

accordance with Eq. (6.8), as the ratio between the flow rate through a cross 

section of the channel orthogonal to s, having width W, and its undeformed and 

void area HW. The interstitial velocity ,ints erU along the same generic direction s 

is defined as the volume average of the s-component of the actual fluid velocity 

in the unit cell portion and can be computed as /sU H h . It takes into account 

both the presence of membrane profiles and the possible deformation 

(compression or expansion) of the channel. 

The analysis is carried out for channels bonded by the OCF profiled 

membranes of P/H=8 presented in the previous Chapters V and VI. 

The investigation at the small scale of the friction characteristics of the 

channel bounded by OCF profiled membranes (see, Figure 6. 5) showed that up 

to Re100 the equivalent friction coefficient varied in a negligible way with the 

flow attack angle 
F  , thus exhibiting an isotropic behaviour, and that no pressure 

gradient orthogonal to the main flow direction arose. Moreover, up to Re10 the 
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equivalent friction coefficient was proportional to Re-1 (i.e., the relation between 

velocity and pressure drop was linear), indicating a regime of creeping flow 

characterized by the self-similarity of the flow field. At higher Re, the 

dependence of the pressure drop on the velocity became nonlinear due to inertial 

effects. 

At the larger scale of a whole stack, the flow can be described as flow in a 

porous medium [171, 189]. Under the assumption of flat channels, the generic 

channel can be treated as a two-dimensional domain. In view of the above-

discussed invariance of the equivalent friction coefficient with the flow attack 

angle, the permeability can be assumed to be isotropic and the relation between 

the pressure gradient and the superficial velocity is a generalized Darcy equation: 

 s

app

p
U

s K


 


  (7.1) 

where 𝜇 is the fluid viscosity and Kapp is a (scalar) apparent permeability, 

independent of the flow direction s. At low Reynolds numbers (i.e. < 10) Kapp 

attains a constant value K, independent of the velocity 
sU , and Eq. (7.1) takes 

the form of the classical Darcy law. At higher Reynolds numbers, when inertial 

effects occur, the Darcy law is replaced by the Darcy-Forchheimer equation: 
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   (7.2) 

containing two characteristics of the porous medium, namely a Darcy 

permeability K and a Forchheimer coefficient CF [193]. Eq. (7.2) can still be 

expressed in the form of Eq. (7.1) provided the apparent permeability is expressed 

as (1 / )app sK K KFU   . 

The apparent permeability is related to the friction factor 𝑓𝐷𝑎𝑟𝑐𝑦 by: 

 
4 1

app

s Darcy

H
K

U f




   (7.3) 

The value of Kapp deduced from the friction coefficient using Eq. (7.3) can 

then be employed in Eq. (7.1) to estimate the superficial velocity associated with 

a given pressure gradient in the fluid domain. A straightforward solution of Eq. 

(7.1) is not possible if the channel permeability varies in space as a function of 
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the local trans-membrane pressure. Therefore, a novel mathematical model was 

developed which adopts an iterative approach to deal with this issue, thus 

computing the steady-state fluid distribution in the channels in the presence of 

membrane deformation.  

 

7.3) Computational domain and modelling assumptions 

The model simulates two adjacent channels, a diluate (DIL, low electrolyte 

concentration) and a concentrate (CON, high electrolyte concentration), together 

with the associated AEM and CEM membranes (the “cell pair”). Figure 7. 1 

shows a schematic representation of a cell pair equipped with Overlapped 

Crossed Filaments (OCF) profiled membranes and a sketch of the computational 

“molecules” adopted in the present model for the formulation of balance 

equations in discrete form. 

 

 
Figure 7. 1 Sketch of a cell pair with dilute (DIL) and concentrate (CON) channels. Membranes 

are shown only for the sake of clarity, but are not part of the computational domain. The bottom 
row reports a representation of the computational “molecules” adopted for the formulation of 

discrete balance equations in both channels. 
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Membranes are not actually included in the computational domain. The 

hydrodynamic effects of the profiled membranes and of their deformation are 

taken into account using constitutive equations expressing the channel’s apparent 

permeability as a function of trans-membrane pressure and superficial velocity.  

As discussed above, such equations can be derived using Eq. (7.3) and the 

results of the friction factor obtained from the investigation at the lower scale 

level of a periodic unit cell (Figure 6. 5). The apparent permeability Kapp of the 

concentrate channel is reported in Figure 7. 2  as a function of the superficial 

velocity 𝑈𝑠 for different TMP values. 

It can be observed that the assumption of Darcyan flow (i.e., of a linear 

dependence of velocity on pressure gradient, with K independent of 𝑈𝑠) is well 

satisfied only for velocities of the order of a few cm/s (Re10 for H=200 µm), 

which are common in RED but rather low in ED. 

 

 
Figure 7. 2 Apparent permeability Kapp of the concentrate channel as a function of the equivalent 

velocity 𝑈𝑠 at different values of the trans-membrane pressure for OCF profiled membranes with 

P/H= 8. The sign convention for TMP adopted is the same of that used in Chapter V and VI: TMP 

is positive if the concentrate channel is compressed and negative if the concentrate channel is 

expanded. 
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The other assumptions made in the model are:  

a) The flow field is steady. 

b) The fluid properties are constant and are the same in both channels 

both the DIL and the CON channels (see Table 6. 1). 

c) AEM and CEM membranes share the same mechanical properties and 

profiles geometry, so that the same correlation for the channel 

apparent permeability applies to both channels. 

d) Trans-membrane water transport (due to osmotic flow and electro-

osmotic drag) is neglected. Therefore, the inlet flow rate coincides 

with the outlet flow rate. This assumption is justified by the fact that 

the trans-membrane water flow rate is much less than the main water 

flow rate along the channels. For example, even in the extreme case 

of ED with a large concentration gradient (seawater-freshwater), a 

high current density (100 A/m2), a large channel length/thickness ratio 

(3000, e.g. L=0.6 m, H=200 μm), a low superficial velocity (1 cm/s) 

in both channels, a large membrane osmotic permeability (10 ml/(m2 

h bar)) and a hydration number of 7 (water molecules/ion), the total 

trans-membrane water flow rate estimated by elementary balances is 

less than 8% of the axial flow rate of each solution. 

 

In addition, the following conventions are adopted: 

I.   Flow rates exiting a computational block are assumed positive, while 

flow rates entering a block are assumed negative.  

II.  The TMP is calculated as the difference between the local pressures in 

the DIL and CON compartments (𝑇𝑀𝑃𝑖,𝑗 = 𝑃𝑖,𝑗
𝐷𝐼𝐿 − 𝑃𝑖,𝑗

𝐶𝑂𝑁𝐶), so that, 

as mentioned above, it is positive when DIL is expanded and CON 

compressed. By definition, if the CON compartment locally 

experiences a given value of TMP, at the corresponding location the 

DIL compartment is subjected to -TMP. The convection is in 

accordance with the TMP definition used in Chapter V and VI. 

The model was implemented in the Matlab® environment. 
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7.4) Discretized governing equations 

 
7.4.1) Discretized continuity equation 

In the model each of the two coupled CON and DIL channels, of overall size 

LW, are assumed divided into 
x

BlockN 
y

BlockN  rectangular blocks of size 

/ x

Blockx L N  , / y

Blocky W N  , where L and W are the length and the width of 

the channels. Each channel is treated as a continuous, porous, two-dimensional 

medium, and the block size, being an arbitrary computational construct, is 

unrelated to the size of the individual periodic fluid portion. 

For either channel, considering a steady state flow regime and making 

reference to the sketch in Figure 7. 1, the continuity equation at the generic 

computational block 𝑖, 𝑗 can be written as: 

 , , 1, , 1

, 1 1, , , 0i j i j i j i j

i j i j i j i jU U U U 

       (7.4) 

in which each U is the volume flow rate through the corresponding block 

interface divided by H x  or H y  (undeformed and void-channel area of the 

same interface). Superscripts indicate the grid block from which the flow exits, 

while subscripts indicate the block into which the flow is entering. Signs are 

attributed according to convention I. 

 

7.4.2) Discretized Darcy equation for the case of low velocity 

In the limit of low 
sU , the apparent permeability in Figure 7. 2 becomes a 

function of trans-membrane pressure only and is shown in Figure 7. 3. 
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Figure 7. 3 Permeability K at sU 0 as a function of trans-membrane pressure for OCF profiled 

membranes with P/H=8. 

 

The function K(TMP) can well be approximated by a quadratic function: 

 
13 2 11 92.405 10 TMP 3.4 10 TMP 1.656 10K            (7.5) 

in which K is in m2 and TMP in kPa.  

The non-Darcyan range of higher velocities, in which Kapp depends not only 

on TMP but also on 
sU , requires a slightly more complex treatment and it is 

separately discussed in Section 7.4.3. 

By approximating the derivatives in the Darcy equation (7.1) with reference 

to the block sizes x  or y , the superficial velocities of the fluid can be 

expressed as: 

 
, , 1 ,,

, 1

i j i j i ji j

i j

K P P
U

x






  


  

 
, 1, ,,

1,

i j i j i ji j

i j

K P P
U

y






  


  (7.6-7) 

By substituting Eqs. (7.6) and (7.7) into Eq. (7.4), and considering for 

simplicity x y   , the pressure in the block ( ,i j ) can be expressed as: 

 
, 1, , , 1 1, 1, , 1 , 1

,

1, , , 12

i j i j i j i j i j i j i j i jCalc

i j

i j i j i j

K P K P K P K P
P

K K K

     

 

      


 
   (7.8) 
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The steady-state pressure distribution in deformed channels must 

simultaneously satisfy Eq. (7.8) (which was derived from the continuity and 

Darcy equations) and the constitutive law, e.g. Eq. (7.5), expressing the 

dependence of the channel’s permeability on the local TMP. An iterative 

algorithm was developed in order to perform this coupling; its flow chart is 

schematically shown in Figure 7. 4. 

First, a guess for pressure is imposed in both channels at each grid block (

,

Guess

i jP ). Random values distributed between -40 and +40 kPa were used in the 

present applications. Then, the local TMP is calculated by using convention II, 

and the ,i jK  values in both channels are determined by using Eq. (7.5). A new 

pressure value .

,

Calc

i jP  is computed at each block ( ,i j )  by using Eq. (7.8). Finally, 

under-relaxation is applied before starting a new iteration:  

 .

, , , ,( )New Calc

i j i j r i j i jP P c P P     (7.9) 

where 
rc is an under-relaxation factor for which a value of 0.7 was chosen as a 

reasonable trade-off between computing time and convergence stability. The 

algorithm terminates when the maximum difference between old and new 

pressures over all grid blocks becomes less than a prescribed small value, i.e. 10-

9 kPa. Once convergence is attained, superficial velocities are computed from 

Eqs. (7.6)-(7.7). The model was implemented in the Matlab® environment. 
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Figure 7. 4 Flow chart of the iterative algorithm for the case of low velocity.  

 

7.4.3) Model adjustment for non-Darcyan flow regime 

Industrial electro-membrane processes, especially ED, often experience fluid 

velocities larger than a few cm/s and channel thicknesses larger than 200 μm 

[114, 117]. Under these conditions, yielding Reynolds numbers of the order of 

102, the linear relation between velocity and pressure gradient expressed by the 

Darcy law is no longer valid, i.e. Kapp depends on 
sU . For the sake of clarity, the 

relation between velocity and pressure gradient is reported in Figure 7. 5 for the 

undeformed case; in the presence of deformation, a similar graph applies for each 

value of TMP. The blue solid line represents the 
sU  vs. p/s relation computed 
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by CFD, while the dotted red line represents the linear extrapolation of the 

behaviour observed in the limit of low velocity. A significant departure from the 

linear behaviour is observed for velocities larger than ~10 cm/s. Therefore, in 

order to investigate higher flow regimes without excessively modifying the 

proposed model, a piecewise linear fitting (represented in Figure 7. 5 by red line 

segments separated by symbols) was applied to capture the dependence of the 

apparent channel permeability on the velocity. Each linear segment is identified 

by its slope K’/μ and its intercept a’ as shown in Figure 7. 5, with K’=K and a’=0 

in the first segment.   

 

Figure 7. 5 Dependence of superficial velocity on pressure gradient for the undeformed channel 

case (solid blue line). The dotted red line represents the linear relation valid at low velocities. The 
straight red segments separated by symbols represent a piecewise linear fitting. As an example, the 

intercept 𝑎′ and the slope 𝐾′/  of the 4th segment are indicated. 

 

The same procedure was repeated for all the values of TMP investigated 

between -40 and +40 kPa; Tables B2.1 and B2.2 in Appendix B report the slopes 

and intercepts of each straight line segment. 

Accordingly, the Darcy equation (7.1) can be replaced by: 

 
'

's

K p
U a

s

 
    

 
  (7.10) 
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in which K’ and a’ are constant for each segment of the piecewise linear 

approximation. 

In discretized form, Eqs. (7.6) and (7.7) are modified as follows: 

 

',

, , 1 ,, ',

, 1 , 1 , ,sgn( )
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i j i j i ji j x

i j i j i j i j
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     
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i j i j i ji j y

i j i j i j i j

K P P
U P P a

y



 


     


  (7.11-12) 

where the terms ',

,

x

i ja , ',

,

y

i ja and ',

, /x

i jK  , ',

, /y

i jK  are the intercepts and the slopes 

of the straight line segments, respectively. The terms ',

,

x

i ja and ',

,

y

i ja  are multiplied 

by the sign of the pressure difference between two consecutive computational 

blocks to account for the direction of the flow. The terms ',

,

x

i jK  and ',

,

y

i jK may be 

different despite the isotropy of the medium because of the different values of the 

velocity along x and y. At low velocity both ',

,

x

i jK  and ',

,

y

i jK  reduce to ,i jK , which 

is the proportionality constant of the Darcy equation (7.1), while the terms '

,i ja  

vanish. 

Substituting Eqs. (7.11) and (7.12) into Eq. (7.4), and considering for 

simplicity x y   , one obtains: 

', ', ', ',

, 1, , , 1 1, 1, , 1 , 1

, ', ', ', ',

1, , , , 1
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 
 
 
 
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 (7.13) 

Eq. (7.13) must be employed instead of Eq. (7.8) to evaluate the pressure 

value at each computational block in either channel. It requires an initial 

distribution of ',

,

x

i ja , ',

,

y

i ja and ',

,

x

i jK , ',

,

y

i jK to calculate the flow velocity at each 

computational block. Therefore, some additional steps must be added to the 

algorithm, as illustrated by the flowchart in Figure 7. 6. 
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First, initial (guess) values ,

Guess

i jP , ',

,

Guess

i jK and ,

Guess

i ja  of pressures and non-

Darcyan parameters are set in both channels at each grid block and the 

corresponding TMP and velocities are calculated by using convention II and Eqs. 

(7.11) -(7.12), respectively. On the basis of the local TMP and superficial 

velocities, new ',

,

x

i ja , ',

,

y

i ja and ',

,

x

i jK , ',

,

y

i jK are computed by linear interpolation of 

data reported in using Tables B2.1 and B2.2. Then, pressures .

,

Calc

i jP are calculated 

by using Eq. (7.13). Finally, after applying under-relaxation using Eq. (7.9) (as 

in the Darcyan case), the error is evaluated and, until it decreases below the 

prescribed value, a new iteration is performed. Guess values ',

,

Guess

i jK and ',

,

Guess

i ja  

too far from the equilibrium values may hinder the convergence of the algorithm. 

Therefore, the guess pressure distribution ,

Guess

i jP  was obtained by running the 

simplified (Darcyan) model, while the guess ',

,

x

i ja and ',

,

y

i ja values were set to zero 

at each block and the guess ',

,

x

i jK  and ',

,

y

i jK  values were assumed equal to the ,i jK

values of the simplified model. 
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Figure 7. 6 Algorithm flow chart in the case of non-Darcyan flow regime 

 

7.5) Flow arrangement and boundary conditions 

Three are the most common fluid flow arrangements employed in RED and 

ED applications: (i) parallel flow, (ii) counter flow and (iii) cross flow. 

Advantages and disadvantages of these layouts have amply been discussed in the 

literature [114, 163]. Parallel flow assures the lowest TMP values between fluid 

channels, thus minimizing leakages and membrane deformation issues (ideally 

TMP=0 if the two solutions share the same velocity and physical properties and 

the channels share the same geometrical configuration). On the other hand, the 
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parallel flow arrangement suffers from a strong axial variation of concentration 

difference, which, in its turn, reduces the driving force in RED and increases the 

energy consumption in ED. Counter flow is characterized by a more uniform 

distribution of the concentration difference along the channel length, but exhibits 

the largest TMP. Finally, the cross flow layout has shown a more uniform electric 

current distribution and promising process performances in RED [194].  

In the following section, fluid flow distribution in a square stack of 0.6 m 

side was analysed in the cross flow and counter flow arrangements. For the 

aforementioned reasons, parallel flow does not pose significant TMP issues and 

therefore was not investigated. A channel length of 0.6 m allows the investigation 

of superficial velocities up to 10 cm/s with an inlet-outlet pressure drop below 

40 kPa, corresponding to the highest TMP value for which correlations for K were 

obtained. This size is close to that of square prototype stacks that have actually 

been used in RED applications [194, 195]. The choice of a square stack simplifies 

the calculations and the interpretation of the results obtained. Of course, the 

model could also be applied to rectangular geometries, which are often employed 

in industrial ED units [143]. 

The two flow arrangements investigated are shown in Figure 7. 7. In cross 

flow, fluid enters and exits each channel through two opposite slots of height H 

in the lateral gasket located beside the channel area where membrane profiles are, 

running through the whole width W of each channel. In the case of counter flow, 

inlets and outlets are shorter slots connecting the channels with manifolds 

orthogonal to the membranes; they were simulated as straight segments, three at 

the inlet and two at the outlet. The inlet slots were placed 3 cm away from the 

upper and lower side walls and the outflow ones 14 cm away. All slots were 10 

cm wide and the distance between adjacent slots was 12 cm. 
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 (a) (b) 

Figure 7. 7 Flow arrangements analysed: (a) cross flow; (b) counter flow. The insets in the top row 

show the actual geometry of inlets and outlets. The second and third rows report the approximated 

geometry simulated which apply to the two solutions (e.g., concentrate and diluate). The broken 
lines in the middle graphs are those along which velocity and pressure profiles obtained with 

different grids have been compared (Appendix C). 

In all cases, pressure was set to zero at the outlet boundaries and to a uniform 

value Pin at the inlet boundaries. In the cross-flow case, values of 3.12, 16.29 and 

34.3 kPa were set for Pin, yielding superficial velocities in the undeformed 

channels of 1, 5 and 10 cm/s, respectively. Only the value Pin=34.3 kPa was 

investigated in the case of the counter flow configuration, where it yielded a 

superficial velocity in the undeformed channels of 8.5 cm/s. 

In regard to the side boundaries, where neither inlet nor outlet boundaries 

were specified, the most physically appropriate boundary condition would be the 

no slip one. However, since no slip conditions are not fully consistent with the 
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Darcy approximation, pressure symmetry conditions were used instead. CFD 

simulations for the counter flow configuration were performed in which either 

symmetry or no-slip wall conditions were imposed on the side boundaries, and 

discrepancies of less than 1% were observed in the computed pressure 

distribution. 

Grid dependence, i.e. the effect of the number of channel blocks on the 

model’s results, was analysed by comparing five grids of increasing resolution. 

Results for a single undeformed channel were also compared with the CFD 

predictions obtained using the Ansys-CFX code. Results show that, for the case 

of cross-flow, 2-D grids with just 60×60 blocks are sufficient to yield satisfactory 

results. For the case of counter-flow, the presence of small details in the geometry 

of the inlets and outlets made finer grids, e.g. 120×120 blocks, necessary. Details 

of these comparisons are reported in Appendix C. 

 

7.6) Results 

 
7.6.1) Cross Flow arrangement  

 

7.6.1.1) Low velocity case (Us≈1 cm/s) 

Pressure maps and TMP for cross flow configuration with an inlet pressure 

of 3.12 kPa (yielding 
sU ≈1 cm/s, being s either x for the CON channel or y for 

the DIL channel) are shown in Figure 7. 8 for the case in which membrane 

deformation effects are not taken into account.  
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Figure 7. 8 Results for a cross flow stack of 0.6 m side at Pin-Pout=3.12 kPa (Us=1 cm/s) in the 
absence of membrane deformation: relative pressure maps for the CON (a) and DIL (b) channels, 

and TMP (c). 

In each channel, pressure decreases linearly along the flow direction. The 

resulting TMP exhibits an anti-symmetric behaviour about the descending 

diagonal of the channel, attaining its lowest value at the bottom left corner and 

the highest value at the top right corner. Velocity maps are not shown since a flat 

distribution exists. Results obtained for the same cross flow stack of Figure 7. 8, 

but taking membrane deformation into account, are shown in Figure 7. 9. Note 

that, at the low velocity considered here, the behaviour of the channel regarded 

as a porous medium is purely Darcyan (see Figure 7. 5). The effects of membrane 

deformation are too small to be seen in the pressure maps (a), (b), and also the 

TMP is almost the same as in the undeformed case, Figure 7. 8(c). Figure 7. 9 (d) 

reports the equivalent height h of the concentrate channel, which exhibits an anti-

symmetric trend about the channel’s descending diagonal (as TMP), but attains 

its lowest value at the top right corner and its highest value at the bottom left 

corner (opposite to TMP), and changes by only about ±2% with respect to the 

undeformed channel equivalent height (180 µm). This modest membrane 
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deformation affects only slightly the distribution of the streamwise superficial 

velocity component (Ux), which is shown in map (e) for the concentrate channel. 

This quantity exhibits a stratification in the direction orthogonal to the main flow 

direction, with a mean value (Ux) of 0.976 cm/s (almost the same as in the 

undeformed case) and a variation of about ±3%. For the sake of completeness, 

also the superficial velocity component along the direction orthogonal to the main 

flow (Uy) is reported in map (f). Uy is ~4 orders of magnitude lower than the 

streamwise component Ux and exhibits a symmetric distribution about the 

channel’s descending diagonal. Finally, map (g) reports the interstitial velocity. 

This quantity presents relative variations of about ±3-4%, similar to those 

observed for the superficial velocity, but a different distribution, which results 

from the combined variations of superficial velocity Us and channel equivalent 

height h. 
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Figure 7. 9 Results for a cross flow stack of 0.6 m side at Pin-Pout=3.12 kPa (Us=1 cm/s) in the 

presence of membrane deformation: relative pressure maps for the CON (a) and DIL (b) channels, 
TMP (c), and concentrate channel equivalent height (d), superficial velocity components along the 

x (e) and y (f) directions, and interstitial velocity along the x direction (g). 
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7.6.1.2) Higher velocity case (Us=10 cm/s) 

The same cross flow configuration considered above, see Figures 7. 8 and  7. 

9, was also investigated for an inlet pressure of 34.3 kPa, yielding Us ≈10 cm/s 

along the main flow direction.  

Results for the case in which membrane deformation effects are not taken 

into account are shown in Figure 7. 10. In the absence of membrane deformation, 

the pressure in the channels decreases linearly along the flow directions as in the 

lower velocity case, and TMP shows the same anti-symmetric behaviour about 

the descending diagonal of the channel. 

 
Figure 7. 10 Results for a cross flow stack of 0.6 m side at Pin-Pout=34.3 kPa (Us=10 cm/s) in the 

absence of membrane deformation: relative pressure maps for the CON (a) and DIL (b) channels, 

and TMP (c). 

Results for the case in which membrane deformation effects are taken into 

account are reported in Figure 7. 11. In this case, the behaviour of the channel 

regarded as a porous medium is significantly non-Darcyan, as can be observed in 

Figure 7. 5. 
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Membrane deformation significantly affects the pressure distribution in the 

channels, as can be seen in maps (a) and (b). Specifically, the pressure distribution 

is not linear, but the pressure gradient increases as the fluid approaches the outlet 

regions. The TMP, map (c), is still anti-symmetric about the descending diagonal, 

but now the iso-TMP lines are no more parallel to this diagonal, but converge 

towards the bottom right corner. 

Map (d) reports the concentrate channel’s equivalent height h, which varies 

by about ±20% with respect to that of the undeformed channel (180 µm). As 

shown in map (e), the higher membrane deformation (compared to the low 

velocity case) enhances the stratification along y of the superficial velocity Ux, 

with a mean value 〈Ux〉 of 9.82 cm/s (1.8% reduction with respect to the 

undeformed case) and a maximum variation of +39% in the lower region of the 

stack (close to y=0.6 m) and -27% in the upper region (close to y=0). Map (f) 

reports the secondary superficial velocity component along the direction 

orthogonal to the main flow direction (Uy, in the concentrate channel). This 

quantity is now only two-three orders of magnitude lower than the streamwise 

component Ux and exhibits a more complex distribution than in the lower velocity 

case of Figure 7. 9 (f).  

Finally, map (g) reports the interstitial velocity. It shows a similar trend as 

for the Us =1cm/s case, but presents much larger relative variations (about ±35%) 

and a much more non-uniform gradient. 
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Figure 7. 11 Results for a cross flow stack of 0.6 m side at Pin-Pout=34.3 kPa (Us=10 cm/s) in the 

presence of membrane deformation: relative pressure maps for the CON (a) and DIL (b) channels, 
TMP (c), and concentrate channel equivalent height (d), superficial velocity components along the 

x (e) and y (f) directions, and interstitial velocity along the x direction (g). 
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For the same test case (cross flow at Us10 cm/s in the presence of membrane 

deformation), a better understanding of the behaviour of the different quantities 

in Figure 7. 11 can be achieved by considering the profiles of different variables 

along the main flow direction (x for the concentrate channel). Figure 7. 12 reports 

such profiles as obtained at two spanwise locations, namely, y=0.05 m (upper 

region of the maps in Figure 7. 12) and y=0.55 m (lower region of the same maps).  

 

Figure 7. 12 Results for a cross flow stack of 0.6 m side at Pin-Pout=34.3 kPa (Us=10 cm/s) in the 

presence of membrane deformation: profiles of TMP (a), and concentrate channel equivalent height 
(b), apparent permeability (c), pressure gradient (d), superficial velocity (e) and interstitial velocity 

(f) along the x direction at y=0.05 m and 0.55 m. Corresponding results would be obtained for the 

diluate channel. 

The trans-membrane pressure TMP (graph a) increases along the x direction 

at both y locations, and varies from about zero to about 28 kPa along the line 

y=0.05 m and from about -34 kPa to zero along the line y=0.55 m. As a 
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consequence, the concentrate channel equivalent height, graph (b), decreases 

from ~180 μm to ~145 μm, i.e. from undeformed to compressed, at y=0.05 m, 

and from ~215 μm to ~180 μm, i.e. from expanded to undeformed, at y=0.55 m. 

Thus, the channel is compressed in the upper region of the stack and expanded in 

the lower one. 

As shown in graph (c), the channel’s apparent permeability decreases along 

the x direction following the trend of the channel’s equivalent height, in 

accordance with Figure 7. 2. The streamwise pressure gradient, graph (d), 

increases along the flow direction x (by about the same amount at both y 

locations) to compensate for the decreasing permeability while the mass flow rate 

remains constant. The superficial velocity Us, graph (e), can be calculated as the 

product of the pressure gradient by the channel’s apparent permeability. As a 

result, Us is lower at y=0.05 m than at y=0.55 m, since the pressure gradient is 

almost the same at the two locations while the permeability is lower in the upper-

compressed region of the channel than in the lower-expanded one. 

Graph (f) shows profiles of the interstitial velocity, i.e. UsH/h. This quantity 

increases along the flow direction x at both y locations because the superficial 

velocity, graph (e), varies much less than the channel equivalent height, graph 

(b). Moreover, the interstitial velocity is lower at y=0.05 m (upper, compressed 

region of the channel) than at y=0.55 m (lower, expanded region) because the 

superficial velocity varies along y more than the equivalent channel height. 

 

7.6.1.3) Pressure profiles for all cross flow cases 

Pressure profiles along the x direction near the lower edge of the 

concentrate channel (y=0.6 m) are shown in Figure 7. 13 for Us values of 

1, 5 and 10 cm/s. Both the undeformed and the deformed conditions are 

considered. 
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Figure 7. 13 Pressure profiles along the x-direction near the lower edge (y=0.55 m) of the 

concentrate channel for the cross flow configuration and 
sU =1, 5 and 10 cm/s. Profiles are 

reported both in the presence and in the absence of membrane deformation. 

 

Note that the same pressure drops are imposed in undeformed and deformed 

conditions. The reduction of the mean fluid velocity sU   under deformed 

conditions is small (1.8% for Pin-Pout = 34.3 kPa, as mentioned in section 7.6.1.2, 

and practically negligible for lower pressure drops).  

In the absence of deformation, pressure decreases linearly with x. At  sU

≈1 cm/s, membrane deformation is small, as already discussed in Section 7.6.1.1, 

and does not significantly affect the pressure profile. As the velocity, and thus the 

TMP, increases, pressure profiles depart from the linear trend. Cubic polynomial 

functions are found to fit well the pressure profiles when membrane deformation 

becomes considerable. 

 

7.6.2) Counter Flow arrangement  

In the counter flow arrangement, only one pressure inlet value (34.3 kPa) 

was investigated. This pressure value is the same used for the cross flow case 

discussed in Section 7.6.1.2, where it yielded Us10 cm/s. In the present case, 

due to the different inlet-outlet geometry of inlet and outlet regions (see Figure 7. 
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7), the resulting superficial velocity in the absence of membrane deformation is 

Us 8.5 cm/s (with s corresponding to x). Note that pressure changes due to abrupt 

area variations, present in this configuration, are not taken into account by the 

model, but this is not a severe limitation because, at the present low velocity, 

these terms (proportional to the kinetic pressure ρUs
2 /2) are negligible compared 

to the distributed losses (order of 0.01 kPa, compared to the imposed inlet-outlet 

pressure variation of 34.3 kPa). This conclusion is also supported by the 

comparison with CFD results in Appendix C. 

For the case of no membrane deformation, maps of pressure in both 

channels, TMP, and superficial velocity along the main flow direction in the 

concentrate channel are shown in Figure 7. 14. In each channel, inlet and outlet 

regions can be observed in which the geometry of the openings significantly 

affects the pressure distribution, see maps (a) and (b); outside these regions, p is 

mainly stratified with a uniform gradient along the flow direction x. Of course, 

the two distributions are identical apart from a reflection about the vertical 

midline. As a result, TMP in map (c) is anti-symmetric with respect to the vertical 

midline and ranges from negative to positive values spanning an interval twice 

that exhibited by pressure in each of the separate channels. The streamwise 

superficial velocity in the concentrate channel, map (d), exhibits complex details 

in the inlet and outlet regions and is about flat in the central region. 
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Figure 7. 14 Results for a cross flow stack of 0.6 m side at Pin-Pout=34.3 kPa (
sU =8.5 cm/s) in 

the absence of membrane deformation: maps of relative pressure in the CON (a) and DIL (b) 

channels, TMP (c) and superficial velocity along the x direction in the concentrate channel (d). 

 

Figure 7. 15 reports results obtained in the presence of membrane 

deformation. Pressure distributions (see maps (a) and (b)) show that the pressure 

gradient along x increases towards the outlet regions, where the channel is 

compressed. In each channel, a larger pressure non-uniformity is observed near 

the (two) outlet openings than near the (three) inlet ones. The non-uniform 

pressure gradient trends partially compensate when the pressure difference, i.e. 

TMP, is computed, yielding a more uniform gradient, map (c). Note that the shape 

of the TMP iso-lines reflects the geometry of the outlets more than that of the 

inlets. The channel equivalent height in the concentrate compartment exhibits the 

opposite trend as TMP, decreasing from its highest value of 218 μm in the inlet 

region to its lowest value of 144 μm in the outlet region. The superficial velocity 

distribution, map (e), is qualitatively similar to that obtained in the undeformed 
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case, Figure 7. 15 (d), but its mean value sU  is now 7.5 cm/s, 12% lower 

than that computed in the undeformed case (8.5 cm/s). This result can be 

attributed to the asymmetric behaviour of the hydraulic permeability, which 

varies less under compression than under expansion.  

Finally, map (f) shows the interstitial velocity in the concentrate channel. 

This quantity changes slightly with respect to the superficial velocity without 

significantly fluid redistribution phenomena. 

 

Figure 7. 15 Results for a cross flow stack of 0.6 m side at 
sU =7.5 cm/s in the presence of 

membrane deformation: maps of relative pressure in the CON (a) and DIL (b) channels; TMP (c); 
and channel equivalent height (d), superficial velocity (e) and interstitial velocity (f) along the x 

direction in the concentrate channel.  
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CHAPTER VIII 

 

IMPACT OF MEMBRANE DEFORMATION ON 

THE PERFORMANCES OF CROSS-FLOW 

ELECTRODIALYSIS UNITS FOR WATER 

DESALINATION  

 

8.1) Introduction 

Several modelling approaches have been proposed to describe RED and ED 

processes and predict the process’s performances, spanning from simple models 

based on empirical correlations, to advanced comprehensive process models 

[114].  

The first category consists of simplified models, where many assumptions 

are generally made and lumped parameters are considered for a preliminary 

design [196] or to study a very specific system relying on experimentally 

determined parameters [197].  

The second category is represented by advanced models, which account for 

a number of non-ideal phenomena. Advanced models can also be divided into 

two sub-categories: theoretical and semi-empirical models. Theoretical models 

aim to describe key phenomena based on the solution of rigorous equations [198-

202] (i.e. Nerst-Planck, or even the more complex Stefan-Maxwell equations). 

However, these models require a large amount of computational power and a 

number of thermodynamic and electrochemical parameters that cannot be easily 

determined. Thus, they are often applied for the analysis of simplified geometries 

or to study specific phenomena.  

On the other hand, semi-empirical models are fast, comprehensive and robust 

simulation tools, based on some empirical information such as the membrane’s 
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properties (e.g., transport numbers, ohmic resistance, salt permeability, osmotic 

permeability, etc.) and require a lower computational effort. 

Thus, they are more suitable for the investigation of channels with complex 

configurations and for simulations of entire stack operation.  

Some advanced semi-empirical models are based on a multi-scale approach 

treating the lower scale fluid flow and mass transfer phenomena (Darcy friction 

factor, Sherwood number and, thus, concentration polarization) by means of 

empirical information [143, 203-205] or small-scale theoretical analysis, e.g. by 

means of Computational Fluid Dynamics tools [121, 129, 165, 206]. 

Semi-empirical models can be based either on lumped or distributed 

parameters. The former have limited prediction capabilities, while the latter 

models are more accurate, but at the cost of a large computational effort. A few 

2-D models have been developed for the study of (R)ED systems [194]. In 

particular, a 2-D approach allows studying different stack configurations beside 

the classical parallel-flow and counter-flow arrangements. Moreover, neither 

simplified or advanced models have been presented to account for the effects of 

membrane/channel deformation, induced by a transmembrane pressure (TMP) 

difference between fluid channels, on the ED process’ performance. In the 

following chapter, a novel semi-empirical, multi-scale 2-D model is presented to 

address the performance of ED cross-flow configurations in the presence of local 

membrane deformations. The model is combined with the method presented in 

the previous chapter (VII) to take into account the fluid flow and the channel 

height distributions induced by local membrane deformations.  

 

8.2) 2-D process simulator of ED units: model and methods 

The 2-D process model which was developed allows for the investigation of 

ED units in the presence and in the absence of local membrane deformation in 

different stack configurations, e.g. parallel-, counter- and cross- flow. In 

particular, the model simulates transport and electrochemical phenomena 

occuring in ED units, computing the distribution of the main variables in a cell 

pair ( and thus in a stack) and assessing process’ performance, e.g. the energy 

consumption.  
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 The 2-D process model is based on a multi-scale approach and employs 

results presented in Chapters V, VI and the fluid redistribution algorithm 

introduced in Chapter VII. Specifically: 

(i) at the lowest scale, CFD results regarding the friction factor, Sherwood 

number and channel equivalent height as functions of the 

transmembrane pressure (TMP) in the fluid channels are employed to 

evaluate the overall pressure drop, polarization phenomena and 

electrical channel resistances.  

(ii) at a higher scale, considering the entire channel dimension; mass 

balances, transport phenomena, solutions properties and electrical 

parameters are addressed in a single repeating unit of the ED stack, i.e. 

the cell pair (see, Figure 5. 1), taking into account flow redistribution in 

channels with local deformation.  

(iii) Finally, at the highest scale, the performances of ED stacks are predicted 

for any number of cell pairs, taking into account the resistance of the 

electrode compartments.  

 

The following assumptions are used in the model:  

1. Salt solutions of NaCl are simulated; 

2. Steady-state regime is assumed;  

3. All cell pairs behave in the same way and are subject to the same constant 

voltage drop; 

4. Limiting current density conditions are not considered;  

5. The effect of parasitic currents via manifolds is not considered;  

6. Pressure drops in the manifolds are neglected. 

 

8.2.1) Mass balances and fluxes 

In a two-dimensional approach, the distribution of the variables is evaluated 

over the length (L) and width (W) of a channel. Considering a cross-flow 

arrangement, as shown in Figure 8. 1, the concentrate solution (CON) may be 

assumed to flow ideally from the left to the right side of its channel, parallel to 
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the x-axis, while the diluate solution (DIL) may be assumed to flow from the top 

to the bottom of its channel ideally parallel to the y-axis. 

 

Figure 8. 1 Computational domain of the developed model for a 2-D cross-flow configuration. 

 

Under the assumption of constant solution density, differential mass balances 

for the salt and water species in the concentrate and diluate channel can be written 

as:  

 
( ( , ) ( , ))

( , )
CON CON

TOT

SALT

Q x y C x y
J x y

x y


 

 
;   

 
( ( , ))

( , )
CON

TOT

WATER

Q x y
J x y

x y


 

 
; 

  
( ( , ) ( , ))

( , )
DIL DIL

TOT

SALT

Q x y C x y
J x y

x y


 

 
  

 
( ( , ))

( , )
DIL

TOT

WATER

Q x y
J x y

x y


 

 
   (8.1-4) 

where ( , )CONQ x y  and ( , )DILQ x y  are the flow rates of the CON and DIL 

solutions; ( , )CONC x y  and ( , )DILC x y  are the salt concentrations in the CON and 

DIL solutions; ( , )TOT

SALTJ x y  and ( , )TOT

WATERJ x y are the total transmembrane salt and 

water fluxes, respectively, which pass through the two membranes. 
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The total transmembrane water flux accounts for both osmotic ( , )OSM

WATERJ x y  

and electro-osmotic
. ( , )E OSM

WATERJ x y  transport mechanisms: 

 
.( , ) ( , ) ( , )TOT OSM E OSM

WATER WATER WATERJ x y J x y J x y     (8.5) 

The osmotic term describes the water transport due to the interfacial osmotic 

pressure gradient between concentrate and diluate solutions over the membranes:  

 
,

,

( , ) ( ( , ) ( , ))

                      ( ( , ) ( , ))

OSM CON DIL

WATER p AEM CEM AEM

CON DIL

p CEM CEM AEM

J x y L x y x y

L x y x y

 

 

  

 
  (8.6) 

where ,p IEML  is the water permeability coefficients of the generic Ion Exchange 

Membrane (IEM), i.e. either the cation- or the anion-exchange membrane (CEM 

or AEM), whose value is usually given in ml/(m2 h bar), but in SI units is m3/(m2 

s Pa). ( , )SOL

IEM x y  is the osmotic pressure related to the interfacial solution (SOL) 

concentration at the generic IEM membrane. Osmotic pressure can be calculated 

by employing the van’t Hoff law [165], in which osmotic coefficients can be 

accurately estimated by Pitzer’s correlations [207, 208]. However, in the present 

model, the osmotic coefficients were considered to be unitary. 

The second transport mechanism, i.e. electro-osmosis, refers to the water 

transport coupled with the ions’ movement. The electro-osmotic term can be 

expressed as: 

 
. ( , ) ( , )E OSM TOT w

WATER h SALT

w

M
J x y n J x y


   (8.7) 

Where 
hn  is the hydration number, here assumed to be equal to 7; ( , )TOT

SALTJ x y  is 

the total salt flux through the membranes; 
wM and

w  are the water molecular 

weight and density. 

As far as the total salt flux ( , )TOT

SALTJ x y  is concerned, it accounts for 

conductive flux .( , )TOT

CondJ x y  and diffusive ( , )TOT

DiffJ x y  flux:  

 . .( , ) ( , ) ( , )TOT TOT TOT

SALT Cond DiffJ x y J x y J x y     (8.8) 

The conductive flux represents the main salt transport contribution, which is 

proportional to the local ionic current density ic. For monovalent ions, under the 
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assumption of perfect membrane perm-selectivity, the Na+ ions flux ( .( , )Na

CondJ x y


) through a CEM, or the Cl- ions flux ( .( , )Cl

CondJ x y


) through an AEM, can be 

written as:  

 .

( , )
( , )Na orCl c

Cond

FaradayNa orCl

i x y
J x y

z F

 

 

   (8.9) 

where FaradayF  is the Faraday constant, ( , )ci x y is the local current density and  

Na orCl
z   is the ion valence, i.e. +1 and -1 for Na+ and Cl-, respectively. In a cell 

pair the total salt conductive flux coincides with the Na+ or Cl- ion flux, thus    

. . .( , ) ( , ) ( , )TOT Na Cl

Cond Cond CondJ x y J x y J x y
 

   .  

The diffusive flux describes the salt back-diffusion through the membrane 

due to the concentration difference between the channels. The diffusive flux 

through a single membrane can be written as:  

 ( , ) ( ( , ) ( , ))
IEM

IEM
IEM CON DILSalt
Diff IEM IEM

D
J x y C x y C x y

H
    (8.10) 

where 
IEM

SaltD  is the salt diffusion permeability in a generic IEM membrane of a 

thickness IEMH . ( , )SOL

IEMC x y  is the generic salt concentration at the membrane 

interface, solution side. As for the conductive flux, two diffusive fluxes, one at 

the AEM and one at the CEM, have to be taken into account, thus 

( , ) ( , ) ( , )TOT AEM CEM

Diff Diff DiffJ x y J x y J x y  . 

 

8.2.2) Electric variables, ohmic and non-ohmic resistances  

The overall voltage drop over a cell pair ( cpV ) can be expressed as:  

 ( , ) ( , ) ( , )cp TOT cV x y R x y i x y     (8.11) 

The term ( , )x y  is the non-ohmic voltage drops and ( , ) ( , )TOT cR x y i x y is the 

ohmic losses in the cell pair. 
TOTR  is the total areal resistance of the cell pair, that 

can be expressed as 

  ( , ) ( , ) ( , ) ( , ) ( , )CEM AEM DIL CON

TOTR x y R x y R x y R x y R x y      (8.12) 
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where ( , )CEMR x y and ( , )AEMR x y  are the areal electrical resistances of the 

membranes; ( , )DILR x y  and ( , )CONR x y  are the areal electrical resistances of the 

channels. 

By following the results of the experimental measurements performed by 

Galama et al. [209], ( , )IEMR x y  can be approximated as: 

 ( , ) ( ( , ))
IEMIEM IEM IEM DIL c

IEMR x y a b C x y     (8.13) 

where aIEM, bIEM, cIEM are constants, which can be empirically determined. In the 

present simulations, a is equal to 1.89 and 1.77 Ω cm2, for the CEM and AEM 

membranes, respectively. These values are the areal membrane resistances 

measured at the standard concentration of 0.5M NaCl. Moreover, b and c are 

equal to 7 ⨯10-3 and 1.25, for both AEM and CEM membranes. The constants 

for AEM and CEM membranes were taken from [165]. ( , )DIL

IEMC x y  is the diluate 

concentration at the interface of a generic membrane. 

With regard to the channel resistance, it can be estimated by:  

 
( , )

( , )
( , )

SOL
SOL

SOL

h x y
R x y

x y
   (8.14) 

where hSOL(x, y) is the equivalent channel thickness (defined in Section 7.2) 

and ( , )SOL x y is the electrical conductivity of the solution, which is a function of 

the local salt concentration (here estimated by using a correlation proposed in 

[129]). Note that, hSOL accounts for the deformed channel height in the case of 

membrane deformation, while it corresponds to the equivalent undeformed 

channel height in the absence of local deformations. In Eq. (8.14), hSOL takes into 

account the so-called shadow factor
shadowf , which estimates the increase of the 

channel resistance due to the presence of spacer filaments or membrane profiles. 

In general, the 
shadowf  is  simply calculated as the reciprocal of the channel 

volume porosity. 

In the present chapter, OCF profiled membranes with P/H=8 (see first row 

of  Figure 5. 9) like those of chapters V, VI and VII are simulated. For the sake 

of simplicity, OCFs were considered non-conductive for the calculation of 
shadowf
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. This assumption is well justified by the fact that the present OCF geometry is 

characterized by a channel porosity close to 0.9, thus the filaments occupy a very 

small portion of the channels.  

The non-ohmic voltage drop ( , )x y  (Eq.(8.11)), given by the back electro-

motive force originated from the salt concentration gradient over the perm-

selective membranes, can be divided into two contributions associated with (i) 

the concentration gradient between the two solutions bulks ( , )x y and (ii) its 

increment due to concentration polarization phenomena ( , )BL x y . 

Therefore, the total non-ohmic voltage drop can be written as: 

 ( , ) ( , ) ( , )BLx y x y x y       (8.15) 

The first contribution for a single membrane IEM is calculated as: 

 
( , ) ( , )

( , ) ( ) ln
( , ) ( , )

CON CON

Bulk
IEM IEM DIL DIL

Faraday Bulk

x y C x yRT
x y

F x y C x y


 



 
  

 
   (8.16) 

where 
IEM is the perm-selectivity of a generic membrane, which is correlated to 

the ability of the membrane to block the passage of co-ion through itself (assumed 

constant in the model); T is the temperature; R is the gas constant; 
CON and 

DIL  

are the salt activity coefficients in the CON and DIL solutions, which depend on 

the solution bulk concentration ( ( , )CON

BulkC x y  and ( , )DIL

BulkC x y ). Taking into account 

both AEM and CEM membranes, one has: ( , ) ( , ) ( , )AEM CEMx y x y x y    . 

As far as the concentration polarization phenomena are concerned, they are 

caused by the different kinetics of transport in solutions and in membranes. In 

particular,  polarization phenomena can be defined as: “the concertation profile 

that has a higher (or lower) level of solute nearest to the upstream membrane 

surface compared with the more-or-less well-mixed bulk fluid far from the 

membrane surface” [164]. In the case of the ED process, the resulting increase of 

salt concentration at the membrane surface in the concentrate channel and the 

reduction of the salt concentration at the membrane surface in the diluate channel 

cause a reduction of the process’ performance.  
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The non-ohmic voltage drop due to concentration polarization can be 

calculated as the sum of the contributions of the four boundary layers in a cell 

pair:  

 ( , ) ( , ) ( , ) ( , ) ( , )CON CON DIL DIL

BL AEM CEM AEM AEMx y x y x y x y x y           (8.17) 

where the voltage drop ( , )SOL

IEM x y at the generic IEM membrane, i.e. AEM or 

CEM, in contact with the generic solution SOL (CON or DIL), can be calculated 

as: 

 ( , ) ln( ( , ))SOL SOL

IEM IEM IEM

Faraday

RT
x y x y

F
       (8.18) 

where ( , )SOL

IEM x y is the so-called polarization coefficient determined at the 

membrane-solution interface as:  

 
( , )

( , )
( , )

CON
CON Bulk
IEM CON

IEM

C x y
x y

C x y
   and 

( , )
( , )

( , )

DIL
DIL IEM
IEM DIL

Bulk

C x y
x y

C x y
     (8.19) 

where ( , )CON

BulkC x y and ( , )DIL

BulkC x y  are the CON and DIL bulk concentrations, 

( , )CON

IEMC x y  and ( , )DIL

IEMC x y  are the solution concentrations at the generic IEM 

membrane-solution SOL (CON or DIL) interface. Note that, ( , )CON

IEM x y and 

( , )DIL

IEM x y  are always smaller than one. Moreover, the effects of polarization on 

the activity coefficients are neglected. Introducing the Sherwood number as  

[129]: 

 
 .( , ) 0.5 ( , ) 2

Sh ( , )
( ( , ) ( , )) ( , )

IEM TOT SOL

Diff CondSOL

IEM SOL SOL SOL

Bulk IEM Salt

J x y J x y H
x y

C x y C x y D x y

 



   (8.20) 

where 
SOLH is the channel thickness of a generic solution (SOL) and ( , )SOL

SaltD x y  

is the salt diffusivity in the generic solution SOL. It has to note that the term 

 .( , ) 0.5 ( , )IEM TOT

Diff CondJ x y J x y  represents the diffusive salt flux in the generic 

solution SOL in contact with the generic membrane IEM, which can be found by 

taking into account the flux continuity at the solution-membrane interface. 
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Therefore, the polarization coefficients for the two solutions can be 

calculated by [129]:  

 
 .( , ) 0.5 ( , ) 2

( , ) 1 / 1
( , ) ( , ) ( , )

IEM TOT CON

Diff CondCON

IEM CON CON CON

IEM Bulk Salt

J x y J x y H
x y

Sh x y C x y D x y


  
  
  

  (8.21) 

    
 .( , ) 0.5 ( , ) 2

( , ) 1
( , ) ( , ) ( , )

IEM TOT DIL

Diff CondDIL

IEM DIL DIL DIL

IEM Bulk Salt

J x y J x y H
x y

Sh x y C x y D x y


 
     (8.22) 

Thus, the voltage drop ( , )SOL

IEM x y of Eq. 8.18 can be obtained.  

  

8.2.3) Stack simulation 

In the ED system, a potential voltage drop AplliedV  is applied by a power 

supply to the electrodes in order to obtain the desired desalination degree of the 

diluate (DIL) feed solution. In the model, the potential voltage drop AplliedV   is 

assumed to be constant (i.e. independent of x and y). At the stack level, the 

number of cell pairs and the electrode compartments have to be taken into account 

in order to simulate the whole electrical circuit.  

The local generated current density ( , )ci x y can be expressed as (Kirchhoff’s 

second law): 

 
( , )

( , )
( , )

Apllied cp

c

blank TOT cp

V x y N
i x y

R R x y N





   (8.23) 

where AplliedV  is the voltage drop applied by a power supply to the electrodes, cpN

is the total number of cell pairs and 
blankR  is the electric resistance of the electrode 

compartments.  

The total power consumption of the process 
elP  can be expressed as:  

 
, ,

CON CON DIL DIL

tot TOT av tot TOT av

el Applied

Pump

p Q p Q
P V I



  
     (8.24) 

where I is the overall current calculated as the integral of the current density (ic) 

over the active area of the membrane. 
CON

totp and 
DIL

totp are the total pressure 
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drops in the CON and DIL channels and Pump  is the efficiency of the pump. 

,

CON

TOT avQ and ,

DIL

TOT avQ  are the average solution flow rates calculated as the integral 

of the flow rate  over one channel and multiplied by the total number of cell pairs 

(Ncp).  

The distributed pressure drops of a generic solution SOL are evaluated as:  

 
2

.

0 0

1 ( ( , ))
( , )

2 2

L W SOL
Sol SOL

dist Darcy SOL

U x y
p f x y dxdy

H
      (8.25) 

where, ( , )Darcyf x y is the Darcy friction coefficient and ( , )SOLU x y is the 

superficial velocity. These quantities were already introduced in Chapter VI. 

SOL is the density of the generic solution. Please note that, in the simulations 

where membrane deformation is taken into account, .

Sol

distp is simply the 

difference between the imposed boundary pressure at the inlet (Pin) and outlet 

(Poutlet) of the generic channel, as described in Chapter VII. Therefore, Eq. (8.25) 

is evaluated only in the case of undeformed channels. 

Finally, two other important parameters can be introduced to quantify the 

efficiency of an ED stack:  

1) The energy consumption per unit volume of product specE  (kWh/m3): 

 
,

el
spec DIL

TOT OUTLET

P
E

Q
   (8.26) 

where ,

DIL

TOT OUTLETQ is the overall diluate outlet flowrate, calculated as the mean 

flow rate at the outlet of the diluate channel and multiplied by the total number 

of cell pairs (Ncp). 

2) The apparent product flux pJ  (l/m2 h): 

 
,

2

DIL

TOT OUTLET

p

cp

Q
J

LWN
   (8.27) 

which can be useful in order to calculate the area required to obtain a certain 

flowrate of desalinated water. 
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For the sake of clarity, Table 8. 1 summarises all the constants employed for 

membrane and channels features. Moreover, the correlations used for the physical 

and transport properties of NaCl solutions are reported in the Appendix D. 

 
Table 8. 1 Values of the quantities employed in the model. 

Quantity Value Unit 

Nominal channel height (DIL and CON) 20010-6 m 

Rblanck 210-3 [210] Ω m2 

Membrane thickness (AEM and CEM) 12010-6 m 

Salt permeability (AEM and CEM) 4e-12 [210] m2/s 

AEM permselectivity (constant) 0.97 [210] - 

CEM permselectivity (constant) 0.98 [210] - 

Water permeability (AEM and CEM) 8 [210] ml/m2 h bar 

Shadowf   1.11 - 

8.3) Algorithm of solution  

In order to solve Eqs. (8.1-23), an approach similar to that presented in 

Section 7.4 was adopted. Each of the two coupled CON and DIL channels, of 

overall size LW, is divided into 
x

BlockN 
y

BlockN rectangular blocks of size 

/ x

Blockx L N  , / y

Blocky W N  .  

With reference to the computational molecules presented in Figure 7. 1, the 

mass balances (Eqs. (8.1-4)) at the generic ,i j  block are discretized as:   

 

; , ; , ; , ; ,

; , 1 , 1 ; 1, 1,

; , 1 ; , 1 ; 1, ; 1,

; , , ; , , ; , 0

CON i j CON i j CON i j CON i j

Bulk i j i j Bulk i j i j

CON i j CON i j CON i j CON i j TOT

Bulk i j i j Bulk i j i j SALT i j

C Q C Q

C Q C Q J x y

   

   

   

       
  

 ; , ; , ; , 1 ; 1,

, 1 1, , , ; , 0CON i j CON i j CON i j CON i j TOT

i j i j i j i j WATER i jQ Q Q Q J x y 

         

; , ; , ; , ; ,

; , 1 , 1 ; 1, 1,

; , 1 ; , 1 ; 1, ; 1,

; , , ; , , ; , 0

DIL i j DIL i j DIL i j DIL i j

Bulk i j i j Bulk i j i j

DIL i j DIL i j DIL i j DIL i j TOT

Bulk i j i j Bulk i j i j SALT i j

C Q C Q

C Q C Q J x y

   

   

   

       
  

 ; , ; , ; , 1 ; 1,

, 1 1, , , ; , 0DIL i j DIL i j DIL i j DIL i j TOT

i j i j i j i j WATER i jQ Q Q Q J x y 

         (8.28-31) 
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Superscripts indicate the grid block from which the flow exits, while 

subscripts indicate the block which the flow is entering. As in Chapter VII, signs 

are in accordance with convention I of Section 7.3: flow rates exiting a 

computational block are assumed positive, while flow rates entering a block are 

assumed negative.  

Under the assumption of negligible components of the velocity along the 

direction orthogonal to the main flow direction, and taking into account the flow 

configuration of Figure 8. 1, Eqs.(8.28-31) can be rewritten as:  

 ; , ; , ; , 1 ; , 1

; , 1 , 1 ; , , ; , 0CON i j CON i j CON i j CON i j TOT

Bulk i j i j Bulk i j i j SALT i jC Q C Q J x W 

           

 ; , ; , 1

, 1 , ; , 0CON i j CON i j TOT

i j i j WATER i jQ Q J x W

       

 ; , ; , ; 1, ; 1,

; 1, 1, ; , , ; , 0DIL i j DIL i j DIL i j DIL i j TOT

Bulk i j i j Bulk i j i j SALT i jC Q C Q J y L 

          

 ; , ; 1,

1, , ; , 0DIL i j DIL i j TOT

i j i j WATER i jQ Q J y L

           (8.32-35) 

This assumption is justified even in the presence of considerable membrane 

deformations, as shown by the results reported in Section 7.6.1.2. In particular, 

the secondary superficial velocity component along the direction orthogonal to 

the main flow direction was still three orders of magnitude lower than the 

streamwise component. 

With regard to Eqs. (8.5-23), these are algebraic equations that are evaluated 

at each grid block taking into account the local value of the solution 

concentrations.   

To couple Eqs. (8.1-4) and (8.5-23), thus determining the steady-state 

distributions of all variables for a chosen ED unit configuration, an iterative 

procedure was employed. The algorithm can be divided into three main steps:  

I. The flow and channel height distributions are calculated by using the 

simplified (Darcyan) model of Section 7.4.2 and employing Eq. (B1) 

of Annex B, which gives the dependence of the channel height as 

function of the TMP values. Velocities up to 5 cm/s were 

investigated, which do not require the more accurate, yet more 

complex non-Darcyan model (Section 7.4.3). 
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II. All the other distributed variables are then computed by the ED 

process model solving Eqs. (8.5-23) and (8.32, 8.34) for the chosen 

value of the applied voltage and of the number of cell pairs. 

III. Flow rates of step I are adjusted taking into account the 

transmembrane water fluxes calculated in step II.  

IV. Finally, the process’ performances are evaluated by solving Eqs. 

(8.24-8.27) 

Step I is performed following the algorithm previously illustrated in Figure 

7. 4. Then Steps II and III are iteratively solved until a desired convergence 

criterion is attained, as depicted by the flow chart of Figure 8. 2. 

First, uniform block concentrations, equal to the inlet values (
DIL

InletC ,
CON

InletC ) 

are imposed in both channels at each grid block, and the same values are also 

assumed for the membrane-solution interfacial concentrations ( no concentration 

polarization). 

Then, the solution’s properties and activity coefficients are calculated by 

equations in Annex 1 [129]. Consequently, channels’ ohmic resistances are 

evaluated by Eq. (8.14), taking into account the channel height distribution of 

step I. Moreover, membranes resistances are calculated by Eq. (8.13) and thus the 

cell pair resistance can be obtained by Eq. (8.12). Then, the non-ohmic voltage 

drop ( , )x y  is evaluated by Eq. (8.16) at each grid block. Note that the voltage 

drop due to concentration boundary layers 
BL  and also ( , )x y  are zero at the 

first iteration, since bulk and interfacial concentrations are the same. 

Consequently, the local current density 
ci  can be found by Eq. (8.23). 

By knowing the current density and solution concentrations, total salt and 

water fluxes are calculated using Eqs. (8.5-10). Thus, polarization factor 

coefficients and  
BL  can be found by Eqs. (8.17-22).  

Finally, rearranging Eqs. (8.32) and (8.34), new concentration values at each 

,i j  block can be found. Step II terminates when the maximum difference 

between old and new concentrations over all grid blocks (
SOL SOL

New Olde C C  ) 

becomes less than 10-3 M.  
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At this point, step III begins and new values for the solution flow rates are 

calculated using Eqs. (8.33) and (8.35), considering water and salt fluxes of step 

II.  Then, the solution concentrations are again calculated from the mass balances 

of Eqs. (8.32) and (8.34), taking into account the new flow distribution. Finally, 

the difference between the new concentration values and those of step II are 

calculated over all grid blocks using the same equation as was used to find the 

error e. If the maximum difference is higher than 10-3 M, the flow distribution is 

updated in step II and new concentrations are found. Otherwise, the final solution 

is attained. The algorithm terminates when step II and step III are fulfilled. It is 

should be noted that, in a more complete procedure, membrane deformation 

would be updated (step I) considering the calculated flow rate of step III, which 

take into account water transmembrane fluxes. However, this step has been 

neglected following the assumption d of Section 7.3, which points out the small 

influence of the trans-membrane water flow rate with respect to the main water 

flow rate along the channels. 

The procedure was implemented in the Matlab environment.  
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Figure 8. 2 Flow chart of steps II and III of the iterative algorithm used for the 2-D process model 

of ED units. 

 

8.4) Grid dependence analysis and model validation for the 

parallel flow configuration 

The proposed model has been validated comparing results with those 

obtained using the model presented in ref [129] for a parallel flow configuration. 
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It has to be noted that no membrane deformation effects were taken into 

consideration, since the model in ref [129] has been developed for undeformed 

channels only, thus step I is not computed. Since parallel flow is investigated, 

diluate and concentrate solutions are both assumed to flow ideally from the left 

to the right of their channels. Consequently, Eqs. (8.32-35) become:  

 ; ; ; 1 ; 1

; 1 1 ; ; 0CON j CON j CON j CON j TOT

Bulk j j Bulk j j SALT jC Q C Q J xW 

         

 ; ; 1

1 ; 0CON j CON j TOT

j j WATER jQ Q J xW

      

 ; ; ; 1 ; 1

; 1 1 ; ; 0DIL j DIL j DIL j DIL j TOT

Bulk j j Bulk j j SALT jC Q C Q J xW 

        

 ; ; 1

1 ; 0DIL j DIL j TOT

j j WATER jQ Q J xW

          (8.36-39) 

All the other equations do not need any adjustment, since they only depend 

on the concentration of the solutions at each j  block.  

The comparison was carried out considering:  

 Inlet solution concentrations of 513.34 mol/m3, i.e. seawater 

concentration. 

 Length and width of the stack of 0.6 m. 

 400 cell pairs. 

 Inlet solution flow rates of 57.60 l/min. 

 Non-conductive spacers with 
shadowf  value of 1.33.  

 A voltage drop applied AppliedV  able to desalinate the diluate solution up 

to an outlet concentration of 7.94 mol/m3, corresponding to a salt 

concentration of almost 500 ppm, which is considered to be a standard 

for potable water.  

Parameters in Table 8. 1 were used except for the 
shadowf .  

First, to assess the accuracy of the present model, a grid dependence analysis 

was conducted and results are reported in Table 8. 2 . In particular, six grids were 

analysed with 40, 80, 120, 180, 240 and 480 blocks, respectively.  
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Table 8. 2 Grid dependence for the parallel flow configuration case. 

Quantities 40 80 120 180 240 480 

CON

OUTLETC  [M] 937.53 938.80 939.21 939.48 939.61 939.81 

Discrepancy % -0.24 -0.11 -0.06 -0.03 -0.02  

,

CON

TOT OUTLETQ   [l min-1] 62.63 62.55 62.52 62.50 62.49 62.48 

Discrepancy % 0.25 0.11 0.06 0.04 0.02  

,

DIL

TOT OUTLETQ   [l min-1] 52.57 52.65 52.68 52.70 52.71 52.72 

Discrepancy % -0.29 -0.13 -0.08 -0.04 -0.03  

AppliedV  [V] 133.75 131.14 130.26 129.73 129.44 129.04 

Discrepancy % 3.52 1.60 0.94 0.53 0.31  

ci [A m-2] 349.91 341.83 339.20 337.48 336.61 335.33 

Discrepancy % 4.17 1.90 1.14 0.64 0.38  

 

The highest discrepancy of 4.17 % with respect to the finest discretization is 

detected by using the 40-block grid. By increasing the grid discretization, the 

discrepancies reduce at the cost of higher computational effort. Therefore, the 80-

block grid was selected as representative of the best compromise which satisfies 

the trade-off between model accuracy and computational effort. 

As far as the model validation is concerned, the comparison between the 

voltage drop AplliedV , the overall current density ci ,  the concentrate outlet 

concentration CON

OUTLETC and diluate and concentrate outlet flow rates 
/

,

CON DIL

TOT OUTLETQ , 

computed using the present model and the model in ref [129], are reported in 

Table 8. 3. Eighty blocks were used in the simulations, i.e. 80x

BlockN  . 

Concentrate and diluate concentration, non-ohmic voltage drop ( ( , )x y ) and 

current density profiles along the channel length are also reported in Figure 8. 3. 
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Table 8. 3 Comparison between results of the present model and the model in ref [129].  

Quantity Model in  [129] 

Present model 

with 80x

BlockN   
Discrepancy % 

AppliedV   128.96 [V] 131.13 [V] 1.66 

ci  338.96 [A m-2] 341.82 [A m-2] -0.83 

CON

OUTLETC   918.54 [M] 938.80 [M] 2.16 

,

DIL

TOT OUTLETQ  51.28 [l/min] 52.65 [l/min] -2.67 

,

CON

TOT OUTLETQ  63.92 [l/min] 62.55 [l/min] -2.14 

  

In Table 8. 3, ,

CON

TOT OUTLETQ and ,

CON

TOT OUTLETQ are the overall outlet flowrates of the 

concentrate and diluate solutions, obtained by multiplying the outlet flow rate by 

the total number of cell pairs (Ncp). 

 

Figure 8. 3  Comparison between results of the present model and the model in ref [129]; 

concentrate and diluate bulk concentrations, non-ohmic voltage drop   and current density profiles 

along the channel length. 

 

Results show a very good agreement between the two models’ predictions. 
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8.5) Grid dependence analysis for the Cross Flow configuration 

In order to determine the most suitable grid size that satisfies the trade-off 

between computing time and accuracy in the simulation of cross-flow 

configurations, a sensitivity analysis of the model predictions on the grid 

resolution was carried out. In this grid dependence analysis, membrane 

deformation effects were taken into account. Six grids were investigated: 40 x 40, 

80 x 80, 120 x 120, 180 x 180, 240 x 240 and 480 x 480 blocks. OCF membranes 

of the same type as in Chapters V, VI and VII were simulated.  

The comparison was carried out, considering:  

 Inlet solutions concentrations of 513.34 mol/m3. 

 A length and a width of the stack of 0.6 m. 

 Inlet mean concentrate and diluate velocities of 5 cm/s.  

 400 cell pairs. 

 A voltage drop applied AplliedV  able to desalinate the diluate solution up 

to an outlet diluate concentration of 8.5 mol/m3.  

Parameters in Table 8. 1 were used. Table 8. 4 and Figure 8. 4 present the 

results of the above mentioned grid analysis. 

 
Table 8. 4 Grid dependence for the cross-flow configuration. 

 40 80 120 180 240 480 

CON

OUTLETC  [M] 969.41 966.59 965.76 965.21 964.93 963.39 

Discrepancy % 0.62 0.33 0.25 0.19 0.16  

,

CON

TOT OUTLETQ  [l min-1] 151.16 152.52 152.96 153.27 153.43 152.71 

Discrepancy % -1.02 -0.34 0.04 0.30 0.43  

,

DIL

TOT OUTLETQ  [l min-1] 130.11 131.67 132.16 132.51 132.69 132.11 

Discrepancy % -1.54 -0.12 0.16 0.37 0.47  

AppliedV  [V] 260.15 254.99 253.70 252.90 252.50 250.00 

Discrepancy % 3.90 1.96 1.46 1.15 0.99  

ci [A m-2] 839.75 831.52 828.73 827.19 826.43 820.24 

Discrepancy % 2.32 1.36 1.02 0.84 0.75  
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Please note that, 
CON

OUTLETC is calculated as the mean concentration value at the outlet 

of the concentrate channel; ,

CON

TOT OUTLETQ is the overall concentrate outlet flowrate, 

calculated as the mean flow rate at the outlet of the channel and multiplied by the 

total number of cell pairs (Ncp). 

 

 

Figure 8. 4 Comparison among results of the present model obtained with different discretization 

degrees: concentration, pressure and flow rate profiles of the concentrate solution along a line 
placed at 2.5 cm from the top of the channel. Quantities in the region of the channel between 0.4 

and 0.5 m are reported.  

 

Results show that the 80 x 80 grid can be employed, as discrepancies lower 

than 3% are obtained with respect to the finest grid. This is in accordance with 

the grid dependence conducted for the fluid redistribution model (see Appendix 

C).  
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8.6) Results 

8.6.1) No membrane deformation 

A sensitivity analysis was carried out to investigate the process’ 

performances of cross-flow stacks changing the size and the operating conditions 

and neglecting deformation effects. In particular, the length (L) and the width      

(W) of the stack were let to vary between 0.1 and 0.6 m. Moreover, the inlet 

velocity of the concentrate, 
cv , and diluate, 

dv ,  solutions were changed between 

1 and 5 cm/s. The number of cell pairs was fixed at 400 for each case. The total 

voltage drop over the stack electrodes AplliedV  suitable to reach an outlet diluate 

concentration of 8.5 mol/m3 was assessed in each simulated case. Parameters in 

Table 8. 1 were used. In all cases OCF membranes of the same type as used in 

Chapter V, VI and VII were simulated. 

Eight different cases were investigated:  

1) L =0.2 m, W =0.6 m, 
cv =5 cm s-1, 

dv =1 cm s-1; 

2) L =0.4 m, W =0.6 m, 
cv =5 cm s-1, 

dv =1 cm s-1; 

3) L =0.6 m, W =0.6 m, 
cv =5 cm s-1, 

dv =1 cm s-1; 

4) L =0.6 m, W =0.35 m, 
cv =5 cm s-1, 

dv =1 cm s-1; 

5) L =0.6 m, W =0.15 m, 
cv =5 cm s-1, 

dv =1 cm s-1; 

6) L =0.6 m, W =0.6 m, 
cv =3 cm s-1, 

dv =1 cm s-1; 

7) L =0.6 m, W =0.6 m, 
cv =1 cm s-1, 

dv =1 cm s-1; 

8) L =0.6 m, W =0.6 m, 
cv =1 cm s-1, 

dv =3 cm s-1. 

Results in terms of specific energy consumption specE , apparent flux pJ , 

overall electric current I , voltage drop AplliedV  and diluate outlet flow rate 

,

DIL

TOT OUTLETQ  are reported in Table 8. 5. 
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Table 8. 5  Specific energy consumption specE , apparent flux pJ , electric current I , voltage drop 

AplliedV  and diluate outlet flow rate 
,

DIL

TOT OUTLETQ for eight cross-flow cases.  

Case 
specE

[kWh/m3] 

pJ  

[l/m2 h] 

I  

 [A] 

AppliedV  

[V] 

,

DIL

TOT OUTLETQ  

[l min-1] 

#1 3.34 5.40 20.18 84.99 8.64 

#2 3.34 5.39 40.38 85.06 17.26 

#3 3.35 5.41 60.79 85.17 25.95 

#4 4.13 9.39 60.19 107.80 26.30 

#5 7.87 22.79 61.66 209.38 27.35 

#6 3.43 5.35 60.84 85.33 25.90 

#7 3.43 5.35 61.08 86.42 25.67 

#8 6.41 16.38 180.82 167.14 78.65 

 

Results suggest that, the stack length ( L , which is the length of the 

concentrate channel and the width of the dilaute channel) does not significantly 

affect process performances ( specE  and pJ ). In fact, specE  and pJ  are almost the 

same for the cases #1-3. However, the diluate outlet flow rate ,

DIL

TOT OUTLETQ  

changes, since the diluate width varies (see Figure 8. 1), while the inlet fluid 

velocity is fixed.  

The stack width (W , which is the width of the concentrate channel and the 

length of the dilaute channel) considerably influences the process’ parameters, 

see results of the cases #3-5. Specifically, specE  and pJ are found to increase as 

the stack width W decreases. 

Finally, the specific energy consumption and the apparent flux slightly 

change by varying the concentrate solution velocity 
cv , the cases #3, 6-7. 

Conversely, specE  and pJ are significantly affected by the diluate velocity 
dv   

(cases #7-8). The effects of 
dv  show an opposite trend with respect to that of the 

stack width W . Specifically, an increase of the diluate velocity causes a 

reduction of both specE  and pJ . 



  Chapter VIII 

 

218 

 

8.6.2) Effects of membrane deformation  

The ED process’ performances analysed for the above presented eight cases 

were also investigated taking into account membrane deformation effects. In 

particular, two membrane deformation conditions were investigated: (i) mild 

deformation effects and (ii) heavy deformation effects. In all cases OCF 

membranes as Chapters V, VI and VII were simulated. 

 

8.6.2.1) Mild deformation effects 

Flow and channel height distributions were evaluated for the above 

mentioned eight cross-flow cases by following step I of Section 8.3, before 

performing steps II and III. Interestingly, membrane deformation does not 

significantly impair process’ performance. Specifically, the specific energy 

consumption and the apparent flux increase only by almost 2 % in deformed 

channels with respect to the values found for undeformed configurations reported 

in Table 8. 5. 

In this sub-section, only results for the case #2, which was considered to be 

the most representative among those analysed, will be reported. Moreover, for 

the sake of brevity, only diluate concentration and current density maps are 

shown in Figure 8.5, comparing undeformed and deformed channels, as these 

variables are the most affected by the membrane deformation phenomena. 
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Figure 8. 5 Diluate concentration (
DIL

BulkC ) and current density (ic) maps for the cross-flow case #2: 

a) without membrane deformation; b) with membrane deformation. 

 

As can be seen in Figure 8. 5, concentration and current density isolines are 

not straight anymore in presence of deformation. In particular, iso-lines show a 

significant deflection close to the channel outlet. To better understand this 

behaviour, diluate superficial velocity, along the main flow direction (y-axis), and 

channel height maps in the presence of membrane deformation are shown in 

Figure 8. 6.  
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Figure 8. 6 Diluate superficial velocity (a) along the main flow direction ( y-axis) and channel 

height (b) maps for the cross-flow case #2 in the presence of  membrane deformation. 

 

The superficial velocity is 18% lower in the left side of the channel with 

respect to the right side. As a consequence, the residence time is higher in the left 

part of the stack compared to the right part. This favours the desalination process 

in the left side, where local concentrations are lower than those of the right side 

(see, Figure 8. 5 b), since the voltage drop applied by a power supply is assumed 

to be equal over all the channel, as would occur at an electrode. As a result, the 

overall electrical resistance of the diluate channel increases, thus requiring higher 

applied voltage at the electrodes.  

 

8.6.2.2) Heavy deformation effects  

Based on previous results, it may be concluded that membrane deformation 

has a small effect under the conditions simulated in terms of mechanical 

properties and geometrical features of the OCF profiled membrane investigated 

in chapters V-VII. However, more severe deformations can occur in other 

profiled membrane configurations with a lower membrane Young’s modulus and 

thickness. In order to avoid the large computational effort that would be required 

by further numerical simulations for solid and fluid mechanics (see Chapter V 

and VI), a preliminary study of severe membrane deformation effects was 
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performed assuming a fictitious correlation between the hydraulic permeability 

(Kapp) in deformed channels and the TMP. In particular, the Kapp values at TMP 

of ±30 kPa of Eq. (7.5) were assumed to occur for TMP of ±10 kPa.  

In this case, only results for the case #4, which showed the highest membrane 

deformation effects, will be reported. Table 8. 6 reports the specific energy 

consumption specE , the apparent flux pJ , the overall electric current I , the 

voltage drop AppliedV  and the diluate outlet flow rate ,

DIL

TOT OUTLETQ  computed either 

in the absence or in the presence of membrane effects. Diluate concentration and 

current density maps are also reported in Figure 8. 7.  

 
Table 8. 6 Specific energy consumption specE , apparent flux pJ   , overall electric current I  , 

applied voltage drop AplliedV  and diluate outlet flow rate  
,

DIL

TOT OUTLETQ for the cross-flow case #4 

either in the absence or in the presence of severe membrane effects. 

 UNDEFORMED DEFORMED Variation % 

specE  [kWh/m3] 4.13 4.39 6.07 

pJ   [l/m2 h] 9.39 9.51 1.21 

I  [A] 60.19 60.75 0.91 

AppliedV  [V] 107.80 115.21 6.44 

,

DIL

TOT OUTLETQ [l min-1] 26.30 26.62 1.21 

 

Results in Table 8. 6 show that heavy membrane deformation conditions can 

significantly impair the process’ performances. Specifically, the voltage drop 

increases by 6.44% in the presence of deformations, along with an increase of 6% 

of the specE . The reason for this behavior relies on the strong redistribution of the 

fluid velocity. In fact, the diluate superficial velocity along the y-axis is found to 

be almost two times higher in the right side of the channel with respect to the left 

side, thus strongly influencing the residence time. As a result, concentration and 

current density iso-lines are much more deflected in a stack suffering severe 

deformations. 
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Figure 8. 7 Diluate concentration (
DIL

BulkC  ) and current density (ic) maps for the cross-flow case #4 

in the absence (a) or in the presence of severe membrane effects (b).  
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CONCLUSIONS 

 

ED and RED are two promising membrane-based technologies for saline 

water desalination and electric energy harvesting from renewable resources, 

respectively. A pressure difference between adjacent channels (transmembrane 

pressure, TMP) may arise in many ED and RED applications, e.g. non-parallel 

arrangements, thus causing membrane/channel deformations. Despite the 

relevance of membrane deformations, this phenomenon has always been 

neglected in the design of ED and RED systems.  

In this PhD thesis, for the first time, the impact of membrane deformation on 

the performance of Electrodialysis (ED) and Reverse Electrodialysis (RED) 

processes was assessed.  

To this aim, knowledge of solid mechanics, fluid dynamics and 

electrochemistry was combined to investigate profiled membrane-bounded fluid 

channels of ED and RED systems. First, thin plates have been studied developing 

novel tools for the analysis of isotropic and orthotropic arbitrarily shaped thin 

plates with small and large deflections (membranes). Then, membrane behaviour 

in ED and RED channels was investigated by developing a multi-scale model.  

In chapter II an innovative method was presented for the analysis of isotropic 

plates of arbitrary shapes and boundary conditions. The method does not require 

any boundary or domain discretization and employs only line integrals. In the 

procedure, the deflection function of the plates is approximated by a series 

expansion in terms of harmonic polynomials. The procedure was applied for the 

analysis of various plate configurations, for which exact solutions are available. 

The exact analytical solutions were detected using only a few expansion 

coefficients. Further, plates of complex geometries, subjected to arbitrary 

boundary conditions were also analysed and the results were compared with those 

obtained by finite element code. A very good agreement was found, thus proving 

the accuracy of the proposed procedure. 

In Chapter III, the pb2-Rayleigh Ritz method, commonly employed for the 

study of isotropic thin plates, was extended for the analysis of orthotropic 

arbitrarily shaped plates. Two-dimensional integrals were converted into line 
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integrals by taking advantage of the Green Lemma. The method was employed 

to determine the modal parameters of an elliptical clamped orthotropic plate and 

a triangular plate with mixed boundary conditions. Discrepancies between 

calculated frequencies and those found in literature of less than 2% were detected, 

thus showing the accuracy of the method. 

In Chapter IV, the abovementioned method was combined with a Particle 

Swarm Optimization algorithm to identify the mechanical parameters of 

orthotropic thin plates based on vibration data. To primarily assess the 

procedure’s reliability, the mechanical parameters of the plate configurations 

from chapter III were investigated and compared with literature data. Very 

satisfactory results were obtained, especially when ten frequencies were 

considered with discrepancies between model and literature data lower than 10%.  

To further assess the algorithm’s reliability, an extensive experimental 

campaign was conducted at the Laboratory of Experimental Dynamics of the 

University of Palermo. Specifically, the modal parameters of different 

structurally thin plates made by 3D printer were identified. The comparison 

between results obtained from experimental testing, finite element analysis and 

the proposed procedure highlighted the accuracy of the proposed procedure. 

In Chapter IV attention was also focused on the analysis of membranes. 

Specifically, an optimization procedure was presented to identify the mechanical 

characteristics of orthotropic membranes based on bulge test measurements. In 

this case, the principle of minimum energy was combined with an optimization 

genetic algorithm. A finite element code was used to obtain virtual bulge test data 

of two orthotropic membranes. An excellent agreement was found between 

identified membrane properties and those from literature with discrepancies 

lower than 10%. 

Based on the aforementioned studies, in Chapter V, attention was focused on 

the analysis of membrane deformation in ED and RED systems.  

Specifically, membrane deformation was investigated in a periodic portion 

of two adjacent membranes through finite element three-dimensional 

simulations. Two different profiled membranes were studied: one with 

Overlapped Cross Filaments (OCF) and another with Round Pillars (RP). The 
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model employed the membrane’s mechanical characteristics determined by 

conducting uniaxial tensile tests at the Laboratory of FujiFilm Europe B.V. 

Further, the model was also validated by performing experimental and analytical 

comparisons. 

First, a high (conservative) transmembrane pressure value (TMP) of 80 kPa 

was considered and the largest profiled membrane configuration, which was able 

to withstand to this TMP value without the two membranes touching each other, 

was determined. The largest configuration with a pitch over channel height ratio 

(P/H) of 8 and 10 was found for OCF and RP configurations, respectively. 

The identified configurations were then studied under applied TMP values 

of ±40 kPa. The fluid volume bounded by the two the adjacent membranes was 

found to vary by almost ±25% in the most compressed and expanded 

configurations with respect to the volume of the undeformed channel. 

In Chapter VI, fluid dynamics and mass transport properties were fully 

addressed through finite volume three-dimensional simulations in the periodic 

region of the fluid channel bounded by the two adjacent membranes, whose 

deformations were determined in chapter V. The Darcy friction factor was found 

to almost double in the most compressed configurations and to decrease by almost 

50% in most expanded channels, with respect to the friction characteristics of the 

undeformed configuration. The Sherwood number increased in compressed 

channels and reduced in expanded ones, but with a more complex behaviour 

compared to that of the friction coefficient. 

In Chapter VII an original fluid-structure two-dimensional model was 

developed to determine the flow redistribution in ED and RED channels at the 

higher scale of the entire channel dimensions. The model, based on the Darcy and 

continuity equations, used results obtained in chapter VI for the dependence of 

fluid channel properties as a function of TMP. A significant fluid redistribution 

is detected for cross-flow square stacks of 0.6 m sides fed by a mean superficial 

velocity of 10 cm/s. The superficial velocity was found to stratify along the main 

flow direction and locally vary between -27% and +39% with respect to the mean 

superficial velocity value. 
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Finally, in Chapter VIII electrochemical and transport phenomena of ED and 

RED processes were simulated by a two-dimensional multi-scale process model 

which was coupled with the fluid-structure model of the previous chapter. Mass 

balances, water and salt fluxes, and electrical parameters were considered to 

investigate the performance of ED systems in the presence and in the absence of 

membrane deformation considering also the electrode compartments. Mild 

membrane deformations altered the process’ performance slightly. However, 

heavy membrane deformations were found to significantly affect ED process’ 

performance. The specific energy consumption was 6% higher than that of the 

corresponding ED unit without deformation. 

Overall, in Chapters V-VIII a novel tool was presented to fully study and 

design profiled membranes and to address their application in RED and ED 

processes. The tool can also be easily employed for the analysis of spacer-filled 

channels. 

The largest pitch over height ratio (P/H) of a profiled membrane or a net 

spacer can be assessed in order to reduce pressure drops in channels, without 

causing excessive membrane deformation.  

Moreover, large P/H values can reduce both the amount of membrane area 

covered by spacers, decreasing the shadow effect, and the amount of material for 

making the profiles on the membranes, decreasing membrane cost. On the other 

hand, the effects on mass transport in the channels have to be taken into account. 

In fact, large P/H ratios may lead to a poor mixing in the channels, thus increasing 

the concentration polarization phenomena.  

All of these considerations have to be taken in mind during the design and 

fabrication of spacers and especially for the case of profiled membranes. In 

particular, attention has to be focused on both membrane thickness and 

membranes’ mechanical characteristics. For example, the adoption of thinner 

membranes can reduce the electrical resistance of a stack, but membranes will be 

much more prone to deform under the action of a TMP. Therefore, manufacturers 

should improve membrane properties (Young’s modulus) or change 

spacer/profiled membrane geometries if thinner membranes would be employed. 



  Conclusions 

 

227 

 

The effects of membrane deformation analysed in this thesis call for future 

studies on the development of experimental approaches to further validate the 

models developed for the analysis of the effects of membrane deformation on 

RED and ED systems at large scale, considering the total dimensions of an ED or 

RED unit. 

Moreover, the membrane deformation could be also assessed in net-spacers 

filled channels and a sensitivity analysis in terms of both geometries and 

membrane features (thickness and mechanical characteristics) can be carried out 

to address the effects of membrane deformation in several conditions.  

Finally, the limiting current density phenomenon in both undeformed and 

deformed channels could be also considered by introducing empirical 

correlations in the model. 
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Appendix A: Expression of the Boundary Conditions in 

terms of Harmonic Polynomials 

In this appendix, the compact form expressions of the BCs used in Eqs. 

(2.73)-(2.76) of the Chapter II are reported. Specifically, taking into account Eq. 

(2.72) and the properties of the harmonic polynomials in Eqs. (2.15) and (2.16), 

it is possible to directly give explicit expressions of the BCs in terms of the 

previously introduced functions. In this regard, let the deflection function in Eq. 

(2.72) can be rewritten as 

    , , ,m p iw x y w x y r μ η   (A.1) 

where 
mr  is a row vector containing the harmonic polynomials, as given in Eq. 

(2.44), while μ  is a column vector of coefficients, given as 

 1 1

,

1

N

m m m i i

i



 



  μ Q λ Q Q ξ   (A.2) 

In this manner, omitting henceforth variable dependence, derivatives of the 

deflection function can be expressed as 
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and 
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μ   (A.4) 

Recalling the properties of the harmonic polynomials as in Eq. (2.16), Eqs. 

(A.3) and (A.4) can be directly expressed in compact form as 
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And 
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where 
 1

xZ  and 
 1

yZ  are diagonal matrices of coefficients given respectively as 

 1
0 1 12x m mZ  and 

   1
0 1 1 2y m m Z , while  1

,m xr  and  1

,m xr  are 

vectors containing the corresponding derivatives of 
mr , given as 

    1

, 1 1 0 1m x m mP P Q Q  r   (A.7) 

and 

 
   1

, 1 1 0 1m y m mQ Q P P  r  (A.8) 

On this base, second order derivatives can be directly obtained as 
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p
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where      2
1 0 1 0 1 1x m m   Z  and 

     2
1 0 1 0 1 1y m m     Z , while 

    2

, 2 2 1 2m x m mP P Q Q   r   (A.12) 

 
   2

, 2 2 1 2m xy m mQ Q P P   r  (A.13) 

and 
   2 2

, ,m y m xr r . 

Finally, third order derivatives can be rewritten as 
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where      3
2 1 2 1 0 2x m m     Z  and 

     3
2 1 2 1 0 2y m m    Z .  

Further 

    3

, 3 3 2 3m x m mP P Q Q   r   (A.18) 
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while 
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, ,m yx m yr r  

In this manner, taking into account Eqs. (1.42-44) and (1.57-58) and 

manipulating yields the bending and twisting moments as 
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while the shearing forces are given as 
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Further, normal stresses 
x  and y , given as 
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and 
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can be directly expressed as 
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Similarly, shear stresses   
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can be given as 
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Note that Eqs. (A.3), (A.4), (A.20) -(A.24) are then useful to directly express 

the BCs in Eqs. (1.85)-(1.90) in terms of harmonic polynomials. These 

expressions can be then used in the functionals in Eqs. (2.73)-(2.76). 
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Appendix B: Dependence of equivalent channel height 

and channel hydraulic permeability on TMP 

 

In this appendix, the dependence of equivalent channel height and channel 

hydraulic permeability as a function of TMP discussed in the Chapter VII are 

reported.  

 

B1) Equivalent channel height  

As discussed in Section 7.2, the equivalent channel height is defined here as 

the ratio between fluid volume and projected area. Table B1 reports fluid volumes 

and corresponding equivalent channel heights for the periodic portion of channels 

delimited by OCF profiled membranes characterized by H=200 μm, P=1600 μm 

(P/H=8, projected area P2=2.56 mm2) for TMP varying between -40 and +40 kPa. 

Channel height values were fit by a second-order polynomial, which was 

implemented in the Matlab® program (h is in μm, TMP in kPa):  

4 2 76.0025 10 TMP 1.1285 10 TMP 180h            (B1) 

Table B1 Channel fluid volume and equivalent height as a function of TMP. 

TMP [kPa] V [mm3] h [μm] 

40 0.349 136 

30 0.376 147 

20 0.404 158 

10 0.432 169 

0 0.462 180 

-10 0.491 192 

-20 0.521 203 

-30 0.550 215 

-40 0.579 226 
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B2) Channel permeability for non-Darcyan flow 

The slopes and intercepts of each linear segment of the piecewise linear 

fitting (discussed in Section 7.4.3) used to capture the dependence of the channel 

permeability on the velocity at different values of TMP are reported in Tables 

B2.1 and B2.2.  

Table B2.1 Slopes and intercepts for superficial velocity ranging between 0 cm/s and 7 cm/s. 

 0 <𝑈< 3 cm/s 3 <𝑈< 7 cm/s 

TMP [kPa] 𝑲 [m2] a’[cm/s] 𝑲′ [m2] a’[cm/s] 

40 6.754· 10−10 0 6.289· 10−10 0.20677 

30 8.651· 10−10 0 8.052· 10−10 0.20784 

20 1.088· 10−9 0 1.012· 10−9 0.20885 

10 1.356· 10−9 0 1.261· 10−9 0.20938 

0 1.670· 10−9 0 1.553· 10−9 0.20934 

-10 2.034· 10−9 0 1.891· 10−9 0.20973 

-20 2.439· 10−9 0 2.271· 10−9 0.20753 

-30 2.893· 10−9 0 2.693· 10−9 0.20727 

-40 3.397· 10−9 0 3.163· 10−9 0.20678 

 

Table B2.2 Slopes and intercepts for superficial velocity ranging between 7 cm/s and 20 cm/s. 

 7<𝑈< 12 cm/s 12<𝑈<20 cm/s 

TMP [kPa] 𝑲′ [m2] a’ [cm/s] 𝑲′ [m2] a’ [cm/s] 

40 5.777· 10−10 0.7598 5.169· 10−10 1.9422 

30 7.393· 10−10 0.7634 6.612· 10−10 1.9506 

20 9.287· 10−10 0.7668 8.302· 10−10 1.9584 

10 1.158· 10−9 0.7686 1.034· 10−9 1.9625 

0 1.425· 10−9 0.7684 1.274· 10−9 1.9622 

-10 1.735· 10−9 0.7697 1.551· 10−9 1.9651 

-20 2.085· 10−9 0.7623 1.865· 10−9 1.9483 

-30 2.473· 10−9 0.7615 2.213· 10−9 1.9462 

-40 2.905· 10−9 0.7598 2.600· 10−9 1.9425 
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Appendix C: Grid dependence and validation against 

CFD results 

In this appendix, details of the grid dependence carried out for the fluid 

redistribution model of Chapter VII are described. 

 

C1) Grid dependence 

As mentioned in Section 7.5, the effect of the number of channel divisions (

x

BlockN and 
y

BlockN ) on the model’s results was systematically addressed by 

comparing 5 grids characterized by: A) 30×30; B) 60×60; C) 120×120; D) 

240×240; E) 480×480 blocks, with a total number of 900, 3600, 14,400, 57,600 

and 230,400 blocks, respectively.  

For the cross flow configuration at Pin=34.3 kPa, Figure C1.1 reports profiles 

of the x-velocity component along a line orthogonal to the main flow direction 

and located 2 cm away from the inlet side, see left broken line in Figure 7. 7 (a). 

The inset shows an enlarged portion of the same plot. It can be observed that 

maximum differences (grids A vs. E) are less than 0.25 cm/s, and grids C-E yield 

practically identical results. The discrepancies between consecutive grids 

decrease with the number of blocks, indicating an asymptotic convergence. 

 

Figure C1.1 Cross flow configuration at Pin=34.3 kPa: profiles of the x velocity component along 

a line orthogonal to the main flow direction and located 2 cm away from the inlet, see Figure 7. 7 

(a). Results obtained with five grids of increasing resolution are reported. The inset shows a 

magnified portion of the same plot. 
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A similar comparison for the counter flow configuration is reported in Figure 

C1.2, which shows profiles of the x-velocity component along a line orthogonal 

to the main flow direction and located 2 cm upstream of the outlet side, see right 

broken line in Figure 7. 7 (b). The maximum grid-dependent differences (grids A 

vs. E) are higher than for the cross flow case (up to 4 cm/s), but are concentrated 

near the outflow slots. Grids C-E yield very similar results, with maximum 

differences of 0.5 cm/s (3%). 

 

Figure C1.2 Counter flow configuration at Pin=34.3 kPa: pressure profiles along a line orthogonal 

to the main flow direction and located 2 cm upstream of the outlet, see Figure 7. 7 (b). Results 

obtained with five grids of increasing resolution are reported. 

As far as the computing time is concerned, it typically increased from a few 

seconds for grid A to 80 h for grid E when simulations were run on a desktop 

computer equipped with an Intel Core i7-6700 CPU with 32 GB memory. The 

computing time was significantly lower (about 50%) in the absence of 

deformation. 

  

C2) Comparison with CFD results 

The reliability of the present mathematical model was verified by comparing 

results for undeformed channel configurations (TMP=0) with those provided by 

computational fluid dynamics (CFD) simulations. The commercial software 
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Ansys CFX® 18.1 was employed. Both cross-flow and counter-current 

configurations were simulated. The CFD settings were as follows: 

 The porous media model was assumed and steady state simulations were 

performed.  

 Values of the permeability and of the resistance loss coefficient were 

determined by means of a quadratic regression of the undeformed channel 

characteristics (Figure 7. 5). The permeability was set to 1.65·10-9 m2 and 

the resistance loss coefficient to 989 m-1. 

 Free slip wall boundary conditions were set at the upper and lower walls of 

the channel (representative of membrane surfaces). The latter condition was 

imposed to avoid viscous fluid-wall interaction, which would lead to 

erroneous results; in fact, the friction characteristics of the membrane 

surfaces and profiles are already taken into account by the permeability and 

resistance coefficients.  

 Symmetry or no slip boundary conditions were imposed at the lateral edges 

of the domain. 

 In the case of cross-flow configuration, mean inlet flow velocities of 1, 5 and 

10 cm/s were investigated. For the counter flow arrangement, only a mean 

inlet flow velocity of 10 cm/s was considered. 

CFD predictions for pressure and velocity were evaluated and compared with 

the results of the present model. For example, Figure C2 reports profiles of the 

relative pressure computed along a line orthogonal to the main flow direction and 

located 2 cm away from the inlet of a channel in the counter flow configuration 

at Pin=18.64 kPa. Only the three finest grids C, D and E were considered. It can 

be observed that CFD predictions are practically coincident with the results 

provided by the finest grid (E, 480×480 blocks) but agree fairly well also with 

those obtained by coarser (120×120 or 240×240) grids. A similar agreement was 

obtained also for other locations, the other configuration (i.e. cross flow) and 

various flow velocities, thus confirming the reliability of the present model. 
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Figure C2. Single undeformed channel in counter flow configuration at Pin=18.64 kPa: pressure 

profiles along a line orthogonal to the main flow direction and located 2 cm away from the inlet, 

see Figure 7. 7 (b). Results obtained with three grids of increasing resolution are compared with 

CFD predictions. 
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Appendix D: Correlations used for the physical and 

transport properties of NaCl solutions.  

This appendix reports the correlations for the physical and transport properties of 

NaCl solutions, used in the model presented in Chapter VIII. In the following 

equations, the quantities referred to a generic solution SOL, e.g. salt 

concentration SOLC , are shortened avoiding the superscripts, thus SOLC becomes 

C. 

 Solution density   (kg/m3),  from [129]: 

11 3 6 2 25.94 10 1.032 10 4.097 10 997C C C           

 Solution electrical conductivity  (S/m) , from [129]: 

3 2

10 10 10

10

log ( ) 0.0027373(log ( )) 0.0059675(log ( ))

0.98994(log ( )) 1.9074

C C

C

    

 
 (C1000) 

3 2

10 10 10

10

log ( ) 1.3893(log ( )) 13.252(log ( ))

41.277(log ( )) 43.011

C C

C

    

 
  (C1000) 

 Salt diffusion
SaltD  (m2/s) , from [129]: 

9 9 2 ( /70)1.47 10 0.13 10 C

SaltD C e        ( 400)C   

21 3 17 2

15 9

2.87262 10 2.03219 10

           8.44113 10 1.4705 10

SaltD C C

C

 

 

     

   
 ( 400)C   

 Salt activity coefficients   (dimensionless), from [129]: 

/260 /200.64 0.189 0.1605                                             ( 1200)C Ce e C     
       

 

/260 /20 -7 1.80.64 0.189 0.1605 +1.051 10 ( -1200)      ( 1200)C Ce e C C      



 Nomenclature 

 

239 

 

NOMENCLATURE 
 

A  Area of midplane or membrane active area 

kA  Unknown  coefficients 

Aproj Projected membrane surface area 

a  Side of plate 

a  Vector of unknown coefficients  

a’ Intercepts of piecewise linear approximations 

ka , ka  Unknown coefficients 

B  Effective torsional rigidity 

b Side of plate 

b  Vector of unknown coefficients 

kb , kb , kB  Unknown coefficients 
DILC ,

CONC  Concentration of DIL and CON solutions 

SOL

BulkC , SOL

IEMC     Concentration of generic solution SOL in the bulk and at 

the membrane-solution interface of a generic IEM 

c , c  Concentration and periodic concentration component  

,b wc c  Bulk and wall concentrations 

ic , kc  Unknown constants 

D  Flexural rigidity of isotropic plate 

xD , 
yD  Plate flexural rigidities associated with x and y directions, 

respectively 

SaltD   Salt diffusivity in solution 

IEM

SaltD , SOL

SaltD  Salt diffusivity in a generic membrane IEM and in the 

generic solution SOL 

tD  Torsional rigidity of plate 

kd  Unknowns coefficients 

E  Young’s modulus of elasticity 

specE  Energy consumption per unit volume of product 

xE ,
yE , zE  Young’s modulus of elasticity associated with x, y, z 

directions, respectively 

F  Darcy coefficient normalized to that of void plane channel 
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Darcyf  Darcy coefficient  

kf  Plate frequencies  

shadowf  Shadow factor 

G, Gxy, Gxz, Gyz Shear modulus 

H   Undeformed spacer-less channel thicknesses  

HIEM, HSOL Generic IEM membrane and solution SOL thickness 

h  Thickness of plates and membranes  
SOLh     Equivalent fluid channel thickness of generic solution SOL 

I  Overall current  

ic Ionic current density 

.

TOT

CondJ  Total conductive salt flux  
TOT

DiffJ  Total diffusive salt  flux 

pJ  Apparent product flux 

TOT

SALTJ   Total salt flux 

TOT

WATERJ  Total water flux 

.E OSM

WATERJ  Electro-osmotic flux 

OSM

WATERJ  Osmotic water flux 

K  Stiffness Matrix 

Kapp, K Apparent permeability and Hydraulic permeability  
'

,i jK      Slopes of piecewise linear approximations 

pK , cK  Large-scale components 

k Positive integer 

ck       Mass transfer coefficient 

L Fluid channel length 

,p IEML   Water permeability constant 

l  Generic length  

M  Mass matrices 

wM  Water molecular weight 

xM
yM xyM  Bending and twisting moments of plates 

M, M  Moment sum functions 

m     Positive integers  

xN ,
yN , 

,xy yxN N  

In-plane forces 
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0

xN ,
0

yN , 
0 0,xy yxN N  

Initial in-plane forces 

N  Positive integers 

x

BlockN , y

BlockN   Number of rectangular block 

cpN  Total number of cell pair 

pN  Number of points of the deflection functions 

n  Outward normal vector  

n , n  Positive integers 

fn  Number of frequencies 

hn  Hydration number 

xn , 
yn  Components of the unitary vector n  

P   Profiled membrane pitch 

elP  Electric power consumption  

,i jP  Pressure value at i,j computing block 

intP , extP , 
,c extP  Internal, external and concentrated external forces 

np  Vector of harmonic polynomials 

p , p  Pressure and periodic pressure component 

Q  Solution volume flow rate 

Q  Concentrated load 

CONQ , DILQ  CON and DIL solution flow rates  

,

CON

TOT avQ and 

,

DIL

TOT avQ   

Average CON and DIL solution flow rates 

kQ  Harmonic polynomials 

,

DIL

TOT OUTLETQ  Overall diluate outlet flow rate 

nq  Vector of harmonic polynomials 

q  Vertical distributed load 
 ,d e p q

R  Matrix of elements of partial derivatives of Ritz functions 

CONR , DILR , SOLR  Areal resistance of CON, DIL and generic SOL solutions 

CEMR AEMR , IEMR  Areal resistance of CEM, AEM and generic IEM 

membranes 

TOTR , blankR   Total areal resistance of a cell pair and electrode 

compartments 

Re  Reynolds number 
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Re  Friction velocity Reynolds number 

Sc Schmidt number 

Sh Sherwood number 

s  Main flow direction 

T  Temperature or Kinetic energy 

t time 

U  Superficial or Approach fluid velocity 

pre stressU 
 External energy of pre-tensioning forces 

sU  Superficial velocity associated with s direction 

,ints erU  Interstitial velocity associated with s direction 

StrainU  Strain energy 

Ux,  Uy Superficial velocity associated with x and y directions, 

respectively 

u  displacements component 

0u  Initial extensions of the body 

W Fluid channel Width  

extW , intW  Work of external and internal forces 

w  Displacements components (deflection) 

x  Position vector  

x  Component of Cartesian coordinate system 

y  Component of Cartesian coordinate system 

V  Volume of plates or of fluid channels 

AplliedV   Potential voltage drop applied by a power supply 

cpV     Overall voltage drop over a cell pair 

xV , 
yV  Shear forces 

v  Displacements components of plates 

0v  Initial extensions of the body 

cv , dv  Velocity of the CON and DIL solutions 

z  Component of Cartesian coordinate system 

 

Greek symbols 

α  Intrinsic angle of RP profiled membranes 

IEM  Perm-selectivity of a generic IEM membrane 
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   Angle of twist rotation 

  Curvilinear abscissa 

CON

IEM , DIL

IEM   Salt activity coefficients in CON and DIL solutions at the 

interface of a generic IEM membrane  

F  Flow attack angle 

xy xz
yz  Shear strains 

x ,
y  Normal strains in x and y directions 

η , η  Vectors of unknown coefficients  

 , SOL

IEM  Non-ohmic voltage drop 

    Angle 

  Polarization coefficient  

SOL  Electrical conductivity of the generic SOL 

  Eigenvalues 

 µ Fluid viscosity 

 , 
xy , xz ,

yz  Poisson ratios 

ξ , iξ  Vector of unknown coefficients 

     Osmotic pressure 

  Fluid or plate density  

   Angle  

x , 
y  Normal stresses in x and y directions 

 , 
xy , xz ,

yz  Shear stresses 

  Non-ohmic voltage drop due to fluid concentration gradient 

j  pb-2 Rayleigh-Ritz functions 

x ,
y ,

xy  Curvature of the midplane 

  Prandtl function 

  Warping function 

  Angular frequency of vibration 

   Generic contour 

x , y  Length and width of rectangular blocks 

CON

totp , DIL

totp     Total pressure drops in the CON and DIL channels 

.

SOL

distp     Distributed pressure drops of a generic solution SOL 

tot  Total potential energy 

  Area of domain 
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ext  Potential of external forces 

 

Acronyms 

AEM Anion Exchange membranes 

BEM Boundary element method 

BL Related to concentration boundary layer 

Blank Electrode compartments 

CD Cross direction 

CEM Cation Exchange Membranes 

CFD Computational fluid dynamics 

CON Concentrate solution  

CP Cell pair 

DIL Diluate solution 

ED Electrodialysis 

FEM Finite Element Method 

IEM Generic Ion Exchange Membrane (AEM and CEM) 

LEM Line Element-less Method 

MD Machine direction 

PSO Particle Swarm Optimization 

RED Reverse Electrodialysis 

SOL Generic Solution (CON and DIL) 

TMP Transmembrane pressure 

XD Tensile test at 45° degree direction 
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