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P -SPACES AND THE VOLTERRA PROPERTY

SANTI SPADARO

Abstract. We study the relationship between generalizations of P -spaces and
Volterra (weakly Volterra) spaces, that is, spaces where every two dense Gδ

have dense (non-empty) intersection. In particular, we prove that every dense
and every open, but not every closed subspace of an almost P -space is Volterra
and that there are Tychonoff non-weakly Volterra weak P -spaces. These re-
sults should be compared with the fact that every P -space is hereditarily
Volterra. As a byproduct we obtain an example of a hereditarily Volterra
space and a hereditarily Baire space whose product is not weakly Volterra.
We also show an example of a Hausdorff space which contains a non-weakly
Volterra subspace and is both a weak P -space and an almost P -space.

1. Introduction

A real-valued function f is called pointwise discontinuous if the set of all points
where it is continuous is dense. In 1881, eighteen years before René-Louis Baire
published the Baire category theorem [1], a twenty years old student of the Scuola
Normale Superiore di Pisa named Vito Volterra proved that there are no two point-
wise discontinous real-valued functions on R such that the set of all points of con-
tinuity of one is equal to the set of all discontinuity points of the other [17] (see
also [5]). Volterra’s theorem has inspired an interesting generalization of the Baire
property.

Given f : X → R, let C(f) be the set of all continuity points of f .

Definition 1.1. [7] A topological space X is called Volterra (respectively, weakly
Volterra) if for every pair of pointwise discontinuous functions f : X → R and
g : X → R the set C(f) ∩C(g) is dense in X (respectively, non-empty).

Thus Volterra’s theorem can be rephrased by stating that the real line is a
Volterra space. Gauld and Piotrowski proved the following internal characterization
of Volterra and weakly Volterra spaces. Recall that a set is called a Gδ set if it can
be represented as a countable intersection of open sets.

Proposition 1.2. [7] A space is Volterra (respectively, weakly Volterra) if and
only if for every pair G and H of dense Gδ subsets of X, the set G ∩H is dense
(respectively, non-empty).

Recall that a space is Baire if every countable intersection of dense open sets is
dense. From the above characterization it’s clear that every Baire space is Volterra.
The problem of when a Volterra space is Baire has been studied extensively (see [3]
and [8]).
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This note was inspired by the simple observation that every P -space (that is,
a space where every Gδ set is open) is hereditarily Volterra. Weak P -spaces and
almost P -spaces are the two most popular weakenings of P -spaces. We compare
these properties with the notions of Volterra and weakly Volterra space. We find
that every dense subset and every open subset of an almost P -space is Volterra,
while weak P -spaces may fail to be weakly Volterra. Our example of a non-weakly
Volterra weak P -space shows that the product of a hereditarily Baire space and a
hereditarily Volterra space may fail to be weakly Volterra. Finally, we introduce
the class of pseudo P -spaces, a natural new weakening of P -spaces and construct
a Hausdorff Baire pseudo P -space with a non-weakly Volterra subspace. The exis-
tence of a Tychonoff space with the same properties is left as an open question.

2. P -spaces and generalizations

Definition 2.1.

(1) A space X is called a P -space if every countable intersection of open subsets
of X is open.

(2) A space X is called an almost P -space if every non-empty Gδ subset of X
has non-empty interior.

(3) A space X is called a weak P -space if every countable subset of X is closed
(and discrete).

Every P -space is an almost P -space and a weak P -space. Examples of almost P -
spaces which are not P -spaces abound. Walter Rudin [15] proved that the remainder
of the Čech-Stone compactification of the natural numbers, ω∗, is an almost P -
space. Since infinite weak P -spaces cannot be compact, ω∗ provides an example
of an almost P -space which is not a weak P -space. Steve Watson managed to
construct in [18] even a compact almost P -space where every point is the limit of
a non-trivial convergent sequence.

Definition 2.2. Let P be a property of subsets of a topological space X. We say that
X is P-hereditarily Volterra (Baire) if every subspace of X satisfying P is Volterra
(Baire). A space is hereditarily Volterra (Baire) if each one of its subspaces is
Volterra (Baire).

Contrast our Definition 2.2 with the common habit of calling a space hereditar-
ily Baire if each of its closed subsets is Baire. For example, the real line is not
hereditarily Baire according to our definition.

Since every subspace of a P -space is a P -space, the following proposition is clear.

Proposition 2.3. Every P -space is hereditarily Volterra.

Proposition 2.4. Every almost P -space is dense-hereditarily Volterra and open-
hereditarily Volterra.

Proof. Let X be an almost P -space. We claim that X is Volterra. Indeed, let G

and H be dense Gδ subspaces of X . We claim that Int(G)∩H is a dense set. Since

H is dense and Int(G) is open we have that Int(G) ∩H = Int(G). So if Int(G)∩H

were not dense then X \ Int(G) would be a non-empty open set, and thus it would

have to meet G. Therefore, G ∩ (X \ Int(G)) would be a non-empty Gδ set with
empty interior. But that contradicts the fact that X is an almost P -space.
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To prove the statement of the proposition it now suffices to recall a result of R.
Levy [12] stating that every open set and every dense set of an almost P -space is
an almost P -space. �

Almost P -spaces need not be hereditarily Volterra.

Example 2.5. There is a Baire regular almost P -space with a closed non-weakly
Volterra subspace.

Proof. R. Levy [11] constructed a Baire regular almost P -space containing a closed
copy of the rational numbers, and the rational numbers are not weakly Volterra. �

On the other hand, weak P -spaces need not even be weakly Volterra. The
construction of our counterexample will exploit the density topology on the real
line. We recall its definition.

Definition 2.6. A measurable set A ⊂ R has density d at x if the limit:

lim
h→0

m(A ∩ [x− h, x+ h])

2h

exists and is equal to d. We denote by d(x,A) the density of A at x and let
φ(A) = {x ∈ R : d(x,A) = 1}.

Definition 2.7. The family of all measurable sets A ⊂ R such that φ(A) ⊃ A

defines a topology on R called the density topology and denoted by Rd.

Since the density topology is finer than the Euclidean topology on the real line,
every point is a Gδ set in Rd. Moreover, every measure zero set is easily seen to be
closed in Rd. In particular, the density topology is a weak P -space (see [16] for a
comprehensive study of the density topology).

Recall that a space is resolvable if it contains two disjoint dense sets. Dontchev,
Ganster and Rose [4] proved that the density topology is resolvable (this was later
improved by Luukkainen [13] who proved that Rd even contains a pairwise disjoint
family of dense sets of size continuum). In the following lemma we review all
properties of the density topology that are relevant to us here.

Lemma 2.8. Rd is a Tychonoff resolvable weak P -space with points Gδ.

We also need the following lemma of Gruenhage and Lutzer.

Lemma 2.9. [8] Suppose U is a point-finite collection of open subsets of a space X

and that each U ∈ U contains a Gδ set G(U). Then
⋃
{G(U) : U ∈ U} is a Gδ set.

Example 2.10. There is a non-weakly Volterra Tychonoff weak P -space.

Proof. Let X = {f ∈ 2ω1 : |f−1(1)| < ω} with the topology inherited from the
countably supported product topology on 2ω1 . Let Un = X \ {f ∈ 2ω1 : |f−1(1)| ≤
n}, and note that Un is an open dense set in X .

Use Lemma 2.8 to fix disjoint dense sets D1 and D2 inside Rd.
Since Rd is a weak P -space and X is even a P -space, X ×Rd is a weak P -space.

Note that the family {Un × Rd : n < ω} is point-finite and Un × {x} is a Gδ set
contained in Un ×Rd for every x ∈ Rd. Thus, by Lemma 2.9,

⋃
x∈D1

Un × {x} and⋃
x∈D2

Un × {x} are disjoint dense Gδ sets in X × Rd. �

Since every subspace of Rd is Baire (see [16]), Example 2.10 shows that the
product of a hereditarily Volterra space and a hereditarily Baire space may fail to
be weakly Volterra. This suggests the following question:
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Question 2.11. Are there hereditarily Baire spaces X and Y such that X × Y is
not weakly Volterra?

Note that there are metric Baire spaces whose square is not weakly Volterra (see
[6], Example 3.9), but if an example answering 2.11 in the positive exists, none of its
factors can be metric. Indeed, the product of a Baire space and a closed-hereditary
Baire metric space is Baire (see [14]).

3. A new weakening of P -spaces

Definition 3.1. We call a space X a pseudo P -space if it is both an almost P -space
and a weak P -space.

Example 3.2. There are regular pseudo P -space which are not P -spaces.

Proof. For one example, let X be the subspace of all weak P -points of ω∗. In [10],
Kunen proved that X is a dense subset of ω∗ and hence it is an almost P -space.
Clearly X is a weak P -space. Since there is a weak P -point which is not a P -point
in ω∗, X is not a P -space though.

Another example was essentially presented in [9]. Let X be a Lindelöf P -space
without isolated points. Van Mill (see Lemma 3.1 of [9]) proved that there is a
point p ∈ βX \X such that p is not in the closure of any countable subset of X .
Then X ∪ {p} is a weak P -space. But, from the fact that X is a P -space it follows
that X ∪ {p} is an almost P -space. Now, X ∪ {p} is not a P -space, or otherwise
it would be a Lindelöf P -space, and thus each of its Lindelöf subspaces should be
closed. But X is a non-closed Lindelöf subspace of X ∪ {p}.

�

Pseudo P -spaces are in some sense very close to P -spaces, closer than almost
P -spaces, so that suggests the following question.

Question 3.3. Is there a regular pseudo P -space which is not hereditarily weakly
Volterra?

The following example provides a partial answer to this question.

Example 3.4. There is a Hausdorff (non-regular) Baire pseudo P -space which is
not hereditarily weakly Volterra.

Proof. Let X = {f ∈ 2ω1 : |f−1(1)| ≤ ℵ0}. Let C be the set of all countable partial
functions from a countable subset of ω1 to 2. For every σ ∈ C let [σ] = {f ∈ 2ω1 :
σ ⊂ f}. Moreover, for every n < ω let Xn = {f ∈ 2ω1 : |f−1(1)| = n}. Define a
topology on X by declaring {[σ] \Xn : σ ∈ C, n < ω} to be a subbase.

Claim 1 X is a pseudo P -space.

Proof of Claim 1. The topology on X is a refinement of the countably supported
box product topology on 2ω1 and thus X is a weak P -space. To prove that X is
an almost P -space, let G =

⋂
{Un : n < ω} be a non-empty Gδ set and x ∈ G. For

every n < ω, choose αn and a finite set Fn ⊂ {Xk : k < ω} such that Vn := [x ↾

αn] \
⋃
Fn ⊂ Un. Let h ∈

⋂
n<ω

Vn be a function with infinite support and β < ω1

be an ordinal such that β ≥ supn<ω αn. Then [h ↾ β] ⊂
⋂

n<ω
Vn ⊂

⋂
n<ω

Un. △

Claim 2 The space X is Baire.
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Proof of Claim 2. We prove that every meager set is nowhere dense. Let {Nn : n <

ω} be a countable family of nowhere dense subsets ofX . Let σ be a countable partial
function with domain α < ω1 and k be an integer: we are going to prove that the
basic open set [σ]\

⋃
{Xn : n ≤ k} is not contained in the closure of

⋃
n<ω

Nn. Since
N0 is nowhere dense there must be a countable partial function σ0 extending σ with
domain α0 > α and an integer k0 < ω such that ([σ0] \

⋃
{Xk : k ≤ k0}) ∩N0 = ∅.

Suppose we’ve found an increasing sequence of countable partial functions {σi :
i < n} and an increasing sequence of integers {ki : i < n}. Since Nn is nowhere
dense there must be a countable partial function σn extending σn−1 and an integer
kn > kn−1 such that [σn] ∩ Nn = ∅. Let σω =

⋃
i<ω

σi. Then ([σω ] \
⋃
{Xk : k <

ω})∩
⋃

n<ω
Nn = ∅ and ∅ 6= [σω] ⊂ ([σ]\

⋃
{Xn : n ≤ k}). Thus [σ]\

⋃
{Xn : n ≤ k}

is not contained in
⋃

n<ω
Nn and since the choice of σ and k was arbitrary, this

shows that
⋃

n<ω
Nn is nowhere dense. △

Claim 3 Let Y =
⋃

n<ω
Xn ⊂ X . Then Y is not weakly Volterra.

Proof of Claim 3. Let G =
⋂
{X \Xk : k is even } and H =

⋂
{X \Xk : k is odd

}. Then G and H are dense Gδ subsets of Y with empty intersection. △

�

As pointed out by Gary Gruenhage, Example 3.4 is not regular. For example,
the closed set X1 and the null function cannot be separated by disjoint open sets.
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