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the least cardinality of a non-empty open set in X . We prove that no Baire metric space
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show a ZFC example of a regular Baire σ -space and a consistent example of a normal
Baire Moore space which can be covered by a small number of discrete sets. We finish
with some remarks on linearly ordered spaces.
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1. Introduction

We will assume all spaces to be Hausdorff. Crowded is Eric van Douwen’s apt name for a space without isolated points.
All undefined notions can be found in [3,6,8]. Let dis(X) be the least number of discrete sets required to cover the space X .
The cardinal function dis(X) is introduced by Juhász and van Mill in [9], where the authors provide some lower bounds for
dis(X) and ask whether dis(X) � c, for any crowded compact space X . Gruenhage [5] shows that this is the case, by proving
that dis(X) cannot be raised by perfect mappings. In [10] Juhász and Szentmiklóssy prove that if X is a compact space such
that χ(x, X) � κ for every x ∈ X , then dis(X) � 2κ , thus generalizing both Gruenhage’s result and the classical Čech–Pospišil
theorem (in which the cardinality of X takes the place of dis(X)). Let Δ(X) be the dispersion character of X , that is, the least
cardinality of a non-empty open set in X . Since in a compact space where every point has character at least κ we have
Δ(X) � 2κ , Juhász and Szentmiklóssy ask the following natural question.

Question 1.1. (See [10].) Is dis(X) � Δ(X) for any compact space X?

Our work on the above question led us to investigate for what kind of Baire spaces, other than the compact ones, Juhász
and Szentmiklóssy’s inequality could be true. In this note we prove that dis(X) � Δ(X) for two classes of Baire generalized
metric spaces which satisfy a mild separation-type property. Moreover, we construct examples of very good Baire spaces for
which dis(X) < Δ(X).

✩ Research partially supported by National Science Foundation grant DMS-0405216 (Principal Investigator—Dr. Gary Gruenhage).
E-mail address: spadasa@auburn.edu.
0166-8641/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2008.09.009

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:spadasa@auburn.edu
http://dx.doi.org/10.1016/j.topol.2008.09.009


722 S. Spadaro / Topology and its Applications 156 (2009) 721–727
In the last section we prove that dis(X) = |X | for every locally compact Lindelöf linearly ordered space (LOTS) and show
an example of a hereditarily paracompact Baire LOTS for which the gap between dis(X) and Δ(X) can be arbitrarily large.

2. Generalized metric spaces

Given a collection G of subsets of X , set st(x, G) = ⋃{G ∈ G : x ∈ G} and ord(x, G) = |{G ∈ G : x ∈ G}|. Recall that a se-
quence {Gn: n ∈ ω} of open covers of X is said to be a development if {st(x, Gn): n ∈ ω} is a local base at x for every x ∈ X .
A space is called developable if it admits a development. A regular developable space is called a Moore space.

Definition 2.1. Let κ be a cardinal. We call a space κ-expandable if every closed discrete set expands to a collection of open
sets G such that ord(x, G) � κ for every x ∈ X .

The following theorem is new even for all complete metric spaces.

Theorem 2.2. Let X be a Baire ω1-expandable developable space. Then dis(X) � Δ(X).

Proof. Fix a development {Gn: n ∈ ω} for X and suppose by contradiction that τ = dis(X) < Δ(X). Since the inequality
dis(X) � ω1 is true for every crowded Baire space X we can assume that τ � ω1. Set X = ⋃

α<τ Dα , where each Dα is
discrete. Define Dα,n = {x ∈ Dα: st(x, Gn) ∩ Dα = {x}} and set Xn = ⋃

α∈τ Dα,n .

Claim. For every x ∈ Xk there is a neighbourhood G of x such that |G ∩ Xk| � τ .

Proof. Let G ∈ Gk be such that x ∈ G . Then G hits each Dα,k in at most one point: indeed, if y, z ∈ G ∩ Dα,k with y �= z, we
would have both st(y, Gk) ∩ Dα,k = {y} and z ∈ st(y, Gk) ∩ Dα,k , which is a contradiction. �

Now X = ⋃
n∈ω Xn , so, by the Baire property of X , there is k ∈ ω such that U ⊂ Xk for some non-empty open set U . By

the claim we can assume that |U ∩ Xk| � τ . So |U ∩ (Xk \ Xk) ∩ Dα, j | > τ for some α < τ and j ∈ ω.
Notice that the set Dα, j is actually closed discrete: indeed suppose y /∈ Dα, j were some limit point. Let V ∈ G j be a

neighbourhood of y and pick two points z, w ∈ V ∩ Dα, j . By definition of Dα, j we have st(z, G j) ∩ Dα, j = {z}. But w ∈ V ⊂
st(z, G j), which leads to a contradiction.

Observe now that also S := U ∩ (Xk \ Xk) ∩ Dα, j is closed discrete and hence we can expand it to a collection U =
{Ux: x ∈ S} of open sets such that ord(y, U ) � ω1 for every y ∈ X . Set V x = Ux ∩ st(x, G j) ∩ U and observe that V x �= V y

whenever x �= y and if we put V = {V x: x ∈ S} then we also have that ord(y, V ) � ω1 for every y ∈ X . For every x ∈ S pick
f (x) ∈ V x ∩ Xk: the mapping f has domain of cardinality > τ , range of cardinality � τ and fibers of cardinality � ω1, which
is a contradiction. �
Corollary 2.3. dis(X) � Δ(X), for every Baire collectionwise Hausdorff (or meta-Lindelöf ) developable space X.

Corollary 2.4. dis(X) � Δ(X), for every Baire metric space X.

Recall that a network is a collection N of subsets of a topological space such that for every open set U ⊂ X and every
x ∈ U there is N ∈ N with x ∈ N ⊂ U . A σ -space is a space having a σ -discrete network.

Our next aim is proving that dis(X) � Δ(X) for every regular Baire ω1-expandable σ -space. We could give a more direct
proof, but we feel that the real explanation for that is the following probably folklore fact, a proof of which can be found
in [2].

Lemma 2.5. Every regular Baire σ -space has a dense metrizable Gδ subspace.

Call dis∗(X) the least number of closed discrete sets required to cover X . Clearly dis(X) � dis∗(X). In a σ -space, one can
use a σ -discrete network to split every discrete set into a countable union of closed discrete sets. So the following lemma
is clear.

Lemma 2.6. If X is a crowded σ -space then dis(X) = dis∗(X).

The next lemma and its proof are essentially due to the anonymous referee.

Lemma 2.7. Let X be an ω1-expandable crowded Baire space such that dis∗(X) � κ , and A ⊂ X with |A| � κ . Then |A| � κ .
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Proof. Since X is Baire crowded we can assume that κ � ω1. Let X = ⋃
α<κ Dα , where each Dα is closed discrete. Let

Bα = A ∩ Dα . Then Bα is closed discrete, so we may expand it to a family of open sets Uα such that ord(x, Uα) � ω1 for
every x ∈ X . Then |Uα | = |Bα | and for all U ∈ Uα , U ∩ A �= ∅. Fix some well-ordering of A and define a function f : Uα → A
by:

f (U ) = min{a ∈ A: a ∈ U }.
We have that | f −1(a)| � ℵ1 for every a ∈ A, and therefore |Bα | = |Uα | � |A| · ℵ1 � κ .
Since A = ⋃

α∈κ Bα it follows that |A| � κ . �
The statement of the next theorem is due to the anonymous referee, and improves our original theorem where X was

assumed to be paracompact.

Theorem 2.8. Let X be a regular ω1-expandable Baire σ -space. Then dis(X) � Δ(X).

Proof. Fix some dense metrizable Gδ subspace M ⊂ X and suppose by contradiction that dis∗(X) = dis(X) < Δ(X). Then
Lemma 2.7 implies that Δ(M) � Δ(X) and, since M is Baire metric, by Corollary 2.4 we have dis(X) � dis(M) � Δ(M). So
dis(X) � Δ(X), and we are done. �
Corollary 2.9. For every paracompact Baire σ -space X (in particular, for every stratifiable Baire space), we have dis(X) � Δ(X).

Notice that in the proofs of Theorems 2.2 and 2.8 all one needs is that X be dis(X)-expandable.
Also, while we did not use any separation other than Hausdorff in Theorem 2.2, regularity seems to be essential in

Theorem 2.8, since one needs a σ -discrete network consisting of closed sets to prove Lemma 2.5. This suggests the following
question.

Question 2.10. Is there a collectionwise Hausdorff or meta-Lindelöf (non-regular) Baire σ -space X such that dis(X) < Δ(X)?

3. Good spaces with bad covers

We now offer two examples to show that ω1-expandability is essential in Theorem 2.8. The first one is a modifica-
tion of an example of Bailey and Gruenhage [1]. We will need the following combinatorial fact which slightly generalizes
Lemma 9.23 of [8]. It must be well known, but we include a proof anyway since we could not find a reference to it.

Lemma 3.1. Let κ be any infinite cardinal. There is a family A ⊂ [κ]cf (κ) of cardinality κ+ such that |A ∩ B| < cf (κ) for every A, B ∈ A.

Proof. We begin by showing that there is a family F of functions from cf (κ) to κ such that |F | = κ+ and |{α ∈ cf (κ):
f (α) = g(α)}| < cf (κ), for any f , g ∈ F . Indeed, suppose we have constructed { fα: α < κ} with the stated property. Let
κ = supα<cf (κ) κα . Define f : cf (κ) → κ in such a way that f (τ ) �= fα(τ ), for every α < κτ and τ ∈ cf (κ). Fix α ∈ κ : if
τ < cf (κ) is such that f (τ ) = fα(τ ) we must have κτ � α < κ . Hence |{τ ∈ cf (κ): f (τ ) = fα(τ )}| < cf (κ).

Now for A we can take (on cf (κ) × κ ) the family of graphs of functions in F . �
Example 3.2. (ZFC) A regular Baire σ -space P for which dis(P ) < Δ(P ).

Proof. Fix an almost disjoint family A ⊂ [c]cf (c) such that |A| = c+ . For every partial function σ ∈ c<ω such that dom(σ ) = k
let Lσ = { fσ ,A: A ∈ A} where fσ ,A : cf (c) → c<ω is defined as follows: dom( fσ ,A(α)) = k + 1, fσ ,A(α) � k = σ for every
α ∈ cf (c) and { fσ ,A(α)(k): α ∈ cf (c)} is a faithful enumeration of A.

When f ∈ Lσ we will refer to ρ f = σ as the root of f , and set k f = dom(σ ).
Let now L = ⋃

σ∈c<ω Lσ and B = cω . We are going to define a topology on P = B ∪ L that induces on B its natural
topology. For every σ ∈ c<ω , let [σ ] = {g ∈ B: g ⊃ σ } and

B(σ ) = [σ ] ∪ { f ∈ L: ρ f ⊇ σ }.
Let {An: n ∈ ω} be a partition of c into sets of cardinality c.

For f ∈ L, δ ∈ cf (c) and k ∈ ω let

Bδ,k( f ) = { f } ∪
⋃
γ >δ

{
B
(

f (γ )
)
: f (γ )(k f ) ∈

⋃
n>k

An

}
.

The set B = {B(σ ), Bδ,k( f ): σ ∈ c<ω, δ ∈ cf (c), k ∈ ω} is a base for a topology on P , as items (2) and (3) in the following
list of claims show.
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(1) For σ1, σ2 ∈ c<ω , B(σ1) ∩ B(σ2) = ∅ if and only if σ1 and σ2 are incompatible.
(2) Suppose B(σ ) ∩ Bδ,k( f ) �= ∅. Then σ ⊆ ρ f or ρ f ⊆ σ . If σ ⊆ ρ f then B(σ ) ∩ Bδ,k( f ) = Bδ,k( f ). If σ � ρ f , then the

intersection is B(σ ).
(3) If Bδ, j( f ) ∩ Bδ′,k(g) �= ∅ and ρg � ρ f then the intersection is either Bδ, j( f ) or a set of the form B(σ ), for some

σ ∈ { f (γ ), g(γ ′): γ > δ, γ ′ > δ′}.
(4) If Bδ, j( f ) ∩ Bδ′,k(g) �= ∅ and ρg = ρ f then the intersection is a union of less than cf (c) sets of the form B(σ ) where

σ ∈ ran( f ) ∩ ran(g).

Proof of items (1)–(4). Item (1) is easy. For item (2), observe that Bδ,k( f ) ⊆ B(ρ f ), so B(ρ f ) ∩ B(σ ) �= ∅ which implies that
ρ f and σ are compatible. If σ ⊆ ρ f then for each γ > δ we have σ ⊆ f (γ ) and f ∈ B(σ ), so Bδ,k( f ) ⊆ B(σ ).

If σ � ρ f then let γ > δ be the unique ordinal such that B(σ )∩ B( f (γ )) �= ∅. Since σ and f (γ ) are compatible we must
have f (γ ) ⊂ σ , from which B(σ ) ⊂ B( f (γ )) follows, and hence the claim.

To prove item (3) observe that if Bδ, j( f ) ∩ Bδ′,k(g) �= ∅ and ρg � ρ f then g /∈ Bδ, j( f ) and, as the range of f consists
of pairwise incompatible elements we have that [g(τ )] ∩ [ρ f ] �= ∅ for at most one τ ∈ cf (c). Therefore, Bδ, j( f ) ∩ Bδ′,k(g) =
B(g(τ )) ∩ Bδ, j( f ), and the rest follows from item (2).

Item (4) follows from almost-disjointness of the ranges. �
Claim 1. The base B consists of clopen sets.

Proof. To see that Bδ, j( f ) is closed pick g ∈ L \ Bδ, j( f ) and let γ be large enough so that f /∈ Bγ , j(g). Suppose that
Bδ, j( f )∩ Bγ , j(g) �= ∅. Then there are α > δ and β > γ such that f (α) and g(β) are compatible. Now we must have ρg = ρ f
or otherwise we would have either ρ f ⊃ g(β) and hence f ∈ Bγ , j(g), or ρg ⊃ f (α), which would imply g ∈ Bδ, j( f ). So,
by item (4) we have Bδ, j( f ) ∩ Bγ , j(g) = ⋃

τ∈C B(g(τ )) where |C | < cf (c) and hence, if we let θ > sup(C), then Bθ, j(g) ∩
Bδ, j( f ) = ∅.

Now, let p ∈ B \ Bδ, j( f ) and i = k f + 2. We claim that B(p � i) ∩ Bδ, j( f ) = ∅. Indeed, if that were not the case then f (γ )

and p � i would be compatible, for some γ . So f (γ ) ⊂ p � i ⊂ p, which implies p ∈ Bδ, j( f ), contradicting the choice of p.
To see that B(σ ) is clopen, observe that B is dense in P and the subspace base is clopen, so we can restrict our attention

to limit points of B(σ ) in L. Suppose that f ∈ L \ B(σ ) is some limit point, then, for all δ ∈ cf (c) and all j ∈ ω we have
Bδ, j( f ) ∩ B(σ ) �= ∅. So ρ f and σ are compatible; moreover ρ f � σ or otherwise f ∈ B(σ ). Now there is at most one δ′
such that f (δ′) and σ are compatible, whence the absurd statement Bδ′+1,0( f ) ∩ B(σ ) = ∅. �
Claim 2. P is a σ -space.

Proof. For each σ ∈ c<ω let h(σ ) ∈ ω<ω be defined by σ(i) ∈ A j iff h(σ )(i) = j. For every s ∈ ω<ω put Bs = {B(σ ):
h(σ ) = s}. We claim that Bs is a discrete collection of open sets. Notice that the elements of Bs are all disjoint. Now if
x ∈ B \⋃

Bs , let j = dom(s); then either x � ( j + 1) extends (at most) one σ such that h(σ ) = s or x � ( j + 1) is incompatible
with every such σ . So B(x � ( j + 1)) will hit at most one element of Bs . If f ∈ L then let l = max(ran(s)): we claim that
B0,l( f ) hits at most one element of Bs . Indeed, for fixed α such that f (α)(k f ) ∈ ⋃

n>l An either f (α) is incompatible with
every σ such that h(σ ) = s or there is exactly one such σ which is compatible with f (α). In the latter case we cannot have
σ ⊃ ρ f because f (α)(k f ) /∈ ran(s), hence we have σ ⊂ ρ f , which implies B0,l( f ) ⊂ B(σ ).

Now we claim that L is a σ -closed discrete set. Indeed, for every s ∈ ω<ω , set Ls = { f ∈ L: h(ρ f ) = s}. If g ∈ Ls then
every fundamental neighbourhood of g hits Ls in the single point g . If g /∈ Ls then either ρg is incompatible with every ρ f
such that f ∈ Ls , in which case every fundamental neighbourhood of g misses Ls , or there is f ∈ Ls such that ρg and ρ f are
compatible. If ρg � ρ f then let l = s(kg): we have B0,l(g) ∩ Ls = ∅. If ρ f ⊂ ρg , then the root of every function of L which is
in a fundamental neighbourhood of g has domain strictly larger than dom(s) and hence every fundamental neighbourhood
of g misses Ls . �

Observe now that P is Baire, because B ⊂ P is a dense Baire subset. Also, dis(P ) = c < c+ = Δ(P ). �
One of the properties of Bailey and Gruenhage’s example that was lost in the modification is first-countability. This

suggests the following question.

Question 3.3. Is there in ZFC a first-countable regular σ -space X for which dis(X) < Δ(X)?

The reason why we insist on a ZFC example, is that we already have a consistent answer to the previous question. In fact,
the space we are now going to exhibit is first-countable, normal and shows that ω1-expandability cannot be weakened to
ω2-expandability in Theorem 2.2. Our original motivation for constructing this example was showing that paracompactness
could not be weakened to normality in Corollary 2.9.

Recall that a Q -set is an uncountable subset of a Polish space whose every subset is a relative Fσ , and a Luzin set is an
uncountable subset of a Polish space P which meets every first category set of P in a countable set. The existence of Q -sets
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and Luzin sets in the reals is known to be independent of ZFC (see, for example, [12]). Fleissner and Miller [4] constructed
a model of ZFC where there are a Q -set of the reals of cardinality ℵ2 and a Luzin set of the reals of cardinality ℵ1.

Lemma 3.4. Let C be some Polish space having a base B = {Bn: n ∈ ω} such that Bn is homeomorphic to C for every n ∈ ω. Given a
Q -set of cardinality ℵ2 in C , there is one which is dense and has dispersion character ℵ2 . Given a Luzin set in C , there is one which is
locally uncountable and dense.

Proof. Let X be a Q -set in C . Let B′ = {B ∈ B: |B ∩ X | < ℵ2}. Then Y = X \⋃
B′ is a Q -set such that Δ(Y ) = ℵ2. Set n0 = 0

and let Z0 be a homeomorphic copy of Y inside Bn0 . Set Z = Z0 and let n1 be the least integer such that Bn1 ∩ Z = ∅:
clearly n1 > n0. Now let Z1 ⊂ Bn1 be a homeomorphic copy of Y and set Z = Z0 ∪ Z1. Now suppose you have constructed
a Q -set Z such that Z ∩ Bi �= 0 for every 1 � i � nk−1 and let nk be the least integer such that Z ∩ Bnk = ∅; let Zk ⊂ Bnk

be a homeomorphic copy of Y into Bnk . At the end of the induction let Z = ⋃
n∈ω Zn , then Z is a Q -set with the stated

properties. The second statement is proved in a similar way. �
Example 3.5. A normal Baire Moore space X for which dis(X) < Δ(X).

Proof. Take a model of ZFC where there are a Luzin set L′ ⊂ R and a Q -set Z ⊂ R with the properties stated in Lemma 3.4.
Let f : R \ Q → (R \ Q)2 be any homeomorphism. Then L = f (L′ \ Q) is a Luzin subset of (R \ Q)2, and by Lemma 3.4
we can assume that it is locally uncountable and dense. Let Q = {qn: n ∈ ω} be an enumeration and set Zn = Z × {qn}.
Set T = ⋃

n∈ω Zn and define a topology on X = L ∪ T as follows: points of L have neighbourhoods just as in the Euclidean
topology on the plane, while a neighbourhood of a point of x ∈ Zn is a disk tangent at x to Zn , and lying in the upper half
plane relative to that line. Notice that L is dense in X so X is a Baire space. Moreover Δ(X) = ℵ2 > ℵ1 = dis(X).

To prove that X is normal let H and K be disjoint closed sets. It will be enough to show that H has a countable open
cover, such that the closure of every member of it misses K (see Lemma 1.1.15 of [3]). Fix n ∈ ω. We have H ∩ Zn = ⋃

j∈ω H j ,
where H j is closed in the Euclidean topology on Zn for every j ∈ ω. Fix j ∈ ω. For each x ∈ H j let D(x, rx) be a disk tangent
to Zn at x such that D(x, rx) ∩ K = ∅ and rx = 1

k for some k ∈ ω. Let U = ⋃
x∈H j

D(x, rx). First of all, we claim that no point

of K ∩ Zn is in U : indeed if x ∈ K ∩ Zn then let Ix be an interval containing x and missing H j , then the closest that a point
of H j can come to x is one of the endpoints of Ix so there is room enough to separate x from U by a tangent disk.

Now U = ⋃
n∈ω Un , where Un = ⋃{D(x, rx): rx = 1

n }. Let Vn = ⋃{D(x, rx
2 ): rx = 1

n }. We claim that V n ∩ K \ Zn = ∅:
indeed, if some point x ∈ K \ Zn were limit for Vn then we would have a sequence of disks of radius 1

2n clustering to it. But
then x ∈ Un , which contradicts U ∩ K = ∅.

To separate points of H \ T from K just choose for each such point an open set whose closure misses K and use second
countability of L. That shows how to define the required countable open cover of H .

Finally, a development for X is provided by Gn = {D(x,n): x ∈ X} where D(x,n) = B(x, 1
n ) \ ⋃

i<n Zi if x ∈ L, while if
x /∈ L, D(x,n) is a tangent disk of radius less than 1

n which misses
⋃{Zi: i < n and x /∈ Zi}. �

The cardinal ℵ2 can be replaced by any cardinal not greater than c, under proper set theoretic assumptions (see [4]). So
the previous example shows that the gap between dis(X) and Δ(X) for normal Baire Moore spaces can be as big as the gap
between the first uncountable cardinal and the continuum.

Since normal Moore spaces are, consistently, metrizable, there is no chance of getting in ZFC a space with all the prop-
erties of Example 3.5. Nevertheless, the following question remains open.

Question 3.6. Is there in ZFC a normal Baire σ -space X for which dis(X) < Δ(X)?

Using a Q -set on a tangent disk space to get normality is an old trick (see for example [14]). Also, to get a regular
Baire Moore space X for which dis(X) < Δ(X) it actually suffices to assume the negation of CH along with the existence of
a Luzin set.

A potential way of weakening the set theoretic assumption in Example 3.5 would be to replace Luzin set with Baire subset
of cardinality ℵ1, but even such an object would be inconsistent with MA + ¬CH, while the presence of CH would make the
whole construction worthless, so we have no clue even about the following.

Question 3.7. Is there, at least under MA + ¬CH or under CH, a normal Baire σ -space X for which dis(X) < Δ(X)?

Also, notice that no regular Baire σ -space X for which dis(X) < Δ(X) can be separable under CH. That is because any
regular separable space with points Gδ has cardinality � c. (Fix any dense countable set D , then, the map taking any closed
neighbourhood to its intersection with D is one-to-one. So there are no more than c closed neighbourhoods in the space,
but every point in a regular space with Gδ points is the intersection of countably many closed neighbourhoods.) Thus
dis(X) = ℵ1 � Δ(X) if CH holds.
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4. Linearly ordered spaces

Recall that a space is called a GO space if it embeds in a LOTS. We denote by m(X) the minimum number of metrizable
spaces needed to cover X . The following result is due to Ismail and Szymanski.

Lemma 4.1. (See [7].) Let X be a locally compact Lindelöf GO space. Then w(X) � ω · m(X).

Theorem 4.2. Let X be a locally compact Lindelöf GO space. Then dis(X) = |X |.

Proof. Suppose by contradiction that there exists λ < |X | such that X = ⋃{Dα: α ∈ λ} where each Dα is discrete. Then
|Dα | � w(X) � ω · m(X) � λ, for every α ∈ λ. So |X | � sup{|Dα |: α ∈ λ} · λ � λ < |X |. �

In the previous theorem we cannot weaken locally compact Lindelöf to paracompact Baire, as the following example
shows. Recall that a space is called non-archimedean if it has a base such that any two elements are either disjoint or one
is contained in the other. Every non-archimedean space has a base which is a tree under reverse inclusion (see [13]), and
from this it is easy to see that it is (hereditarily) paracompact.

Example 4.3. There is a Baire non-archimedean (and hence hereditarily paracompact) LOTS X such that dis(X) < Δ(X).

Proof. Let κ and λ be infinite cardinals such that cf (κ) � λ but λ < κ . Let W = {−1} ∪ κ . Define an order on W by
declaring −1 to be less than every ordinal. Let X = { f ∈ Wλ+

: supp( f ) < λ+}, where supp( f ) = min{γ < λ+: f (α) = 0 for
every α � γ }. Now take the topology induced on X by the lexicographic order.

Claim 1. X is a strong Choquet space (and hence Baire).

Proof. We are going to describe a winning strategy for player II in the strong Choquet game (see [11]). In his first move
player I chooses any open set B1 and a point f1 ∈ B1. Player II then chooses points a1,b1 ∈ X such that f1 ∈ (a1,b1) ⊂ B1.
Let now α1 = max{supp( f1), supp(a1), supp(b1)} and fα1 = ( f1(γ ): 0 � γ < α1). Define f −

1 = fα1

�
(−1,0, . . . ,0) and f +

1 =
fα1

�
(1,0, . . . ,0).

Clearly a1 < f −
1 < f1 < f +

1 < b1. Now in her first move player II chooses the open set A1 = ( f −
1 , f +

1 ).
Player I responds by choosing any open set B2 ⊂ A1 and a point f2 ∈ B2. Player II proceeds as before. Notice that fn+1

thus constructed agrees with fn up to αn and that the point h = (
⋃

fαn )
�

(0,0, . . . ,0) is in
⋂

n�1 An . So II has a winning
strategy. �
Claim 2. X is the union of λ+ many discrete sets.

Proof. For every α ∈ λ+ , let Dα = { f ∈ X: supp( f ) = α}. Then X = ⋃
α∈λ+ Dα and each Dα is discrete. Indeed, let f ∈ Dα

and define:

f −(β) =
{ f (β) if β < α,

−1 if β = α,

0 if β > α.

(1)

Similarly define:

f +(β) =
{ f (β) if β < α,

1 if β = α,

0 if β > α.

(2)

Then ( f −, f +) ∩ Dα = { f }. �
Claim 3. X is non-archimedean.

Proof. Let B = {[σ ]: σ ∈ Wα for some α ∈ λ+}, where [σ ] = { f ∈ X: σ ⊂ f }. Then B is a basis for our space. Every element
of B is open: indeed, if f ∈ [σ ] then let α = max{dom(σ ), supp( f )} and f + and f − be defined as in the proof of Claim 2.
Then f ∈ ( f −, f +) ⊂ [σ ].

Now let c ∈ (a,b). Then there are ordinals α and β such that a(α) < c(α), c(β) < b(β), while a(γ ) = c(γ ) and c(τ ) = b(τ )

for every γ < α and every τ < β . Set θ = max{α,β} + 1. We have that [c � θ] ⊂ (a,b).
Now given two elements of B, either one is contained in the other, or they are disjoint. Therefore X is non-

archimedean. �
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To complete the proof observe that Δ(X) � κλ > κ > λ+ � dis(X). �
Since for fixed λ there are arbitrarily big cardinals κ having cofinality λ, the former example shows that the gap between

dis(X) and Δ(X) can be arbitrarily big for hereditarily paracompact Baire LOTS.
Notice that the Lindelöf number of the previous space is � κ , in particular X is never Lindelöf.

Question 4.4. Is dis(X) � Δ(X) true for every (Lindelöf, hereditarily paracompact) Čech complete LOTS X?

Finally, we would like to mention that we recently applied our result on metric spaces to give several partial answers to
Juhász and Szentmiklóssy’s original question about compact spaces. They will be the subject of another paper.
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