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INCREASING CHAINS AND DISCRETE REFLECTION OF

CARDINALITY

SANTI SPADARO

Abstract. Combining ideas from two of our previous papers ([24] and [25]), we
refine Arhangel’skii Theorem by proving a cardinal inequality of which this is a spe-
cial case: any increasing union of strongly discretely Lindelöf spaces with countable
free sequences and countable pseudocharacter has cardinality at most continuum.
We then give a partial positive answer to a problem of Alan Dow on reflection of
cardinality by closures of discrete sets.

1. Introduction and notation

All spaces are assumed to be Hausdorff. A set is discrete if each one of its points is
isolated in the relative topology. While structurally very simple, discrete sets play an
important role in Set-theoretic Topology. For example, by an old result of De Groot,
the cardinality of every topological space where discrete sets are countable cannot
exceed 2c, where c denotes the cardinality of the continuum.

If discrete sets have a strong influence on cardinal properties of topological spaces,
their closure are often true mirrors of global properties of a topological space (see [2]
and [3]). A classical result of Arhangel’skii says that a topological space X is compact
if and only if the closures of its discrete sets are compact. Whether this remains true
when compactness is replaced by the Lindelöf property is a well-known open question
of Arhangel’skii. Partial answers to this question have been provided in [1] and [22].

Another well-studied open problem, also due to Arhangel’skii, is whether closures
of discrete sets reflect cardinality in compact spaces. More precisely, Arhangel’skii
asked whether |D| = |X| for every compact space X and discrete set D ⊂ X . Dow
provided consistent counterexamples to this question in [10], while Efimov [11] proved
that compact dyadic spaces reflect cardinality. In answer to a question of Alan Dow,
Juhász and Szentmiklóssy [18] proved that under a slight weakening of the GCH,
compact spaces of countable tightness also reflect cardinality.
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2 SANTI SPADARO

Aurichi noted in [3], that if X is an L-space, left separated in order type ω1, then
|D| < |X|, for every discrete set D ⊂ X , so, by Justin Moore’s construction of a ZFC
L-space, there are non-discretely reflexive Tychonoff spaces in ZFC. But as far as we
know, the ZFC existence of a non-discretely reflexive compact space is still open.

Arhangel’skii’s question continues to inspire attempts at partial positive solutions.
In particular, the following question of Alan Dow is still open.

Question 1.1. ([10]) Is g(X) = |X| for every compact separable space X?

Where g(X) is defined as the supremum of the cardinalities of the closures of
discrete sets in X . We will provide a partial positive answer to the above question in
the final part of our paper.

One of the most central results in the theory of cardinal invariants is Arhangel’skii’s
Theorem, which solved a 50 year old question of Alexandroff (see [15] for a survey).

Theorem 1.2. Let X be a Lindelöf first-countable space. Then |X| ≤ c.

Arhangel’skii’s original proof of his theorem made use of a particularly strong kind
of discrete set called free sequence. A set {xα : α < κ} is called a free sequence if

for every β < κ we have {xα : α < β} ∩ {xα : α ≥ β} = ∅. In [25] we showed how
the supremum of the sizes of free sequences in the space X (F (X)) could replace
the tightness in a generalization of the Arhangel’skii Theorem due to Juhász. With
some additional help from the technique of elementary submodels, this resulted in a
considerably shorter proof of Juhász’s Theorem.

Theorem 1.3. ([25]) Let {Xα : α < λ} be an increasing chain of topological spaces
such that F (Xα) · L(Xα) · ψ(Xα) ≤ κ, for every α < λ. Then |

⋃
α<λXα| ≤ 2κ.

Given a topological space (X, τ), L(X) (the Lindelöf number of X) is the minimum
cardinal κ such that every cover of X has a subcover of cardinality κ and ψ(X) (the
pseudocharacter of X) is defined as follows ψ(X) = sup{ψ(x,X) : x ∈ X}, and
ψ(x,X) = min{κ : (∃U ∈ [τ ]κ)(

⋂
U = {x})}.

The above theorem has been generalized by various authors, especially with the
aim of improving it in a non-regular setting and to provide bounds for the cardinality
of power-homogeneous spaces (see, for example, [4], [5] and [7] and [8]). Here we
present a new refinement in a completely different direction. Putting together ideas

from [24] and [25] we are able to replace the Lindelöf number with its supremum on
closures of free sequences (FL(X)) in Theorem 1.3. As a byproduct we obtain that
the cardinality of the union of an increasing chain of a strongly discretely Lindelöf
spaces of countable pseudocharacter with countable free sequences does not exceed
the continuum. Although in [1], Arhangel’skii and Buzyakova proved that L(X) ≤
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F (X) ·FL(X) for every Tychonoff space X , their proof uses the Tychonoff separation
axiom in an essential way (they consider a compactification of X), while we are only
assuming X to be Hausdorff. Notation and terminology follow [12] for Topology and
[19] for Set Theory.

Kunen’s book [19] contains a good introduction on elementary submodels submodel.
Dow’s article [9] is the most comprehensive survey on applications of elementary
submodels to Topology. Other good introductions to this last topic are [13] [14], [15]
and [26].

2. Closures of discrete sets and increasing chains

The proof of Theorem 2.1 does not present significant changes from that of the case
λ = 1 in Theorem 1.3, as presented, for example, in [23]. We nevertheless include it,

for the reader’s convenience.

Theorem 2.1. (Juhász, essentially) Let (X, τ) be a space. Then |X| ≤ 2FL(X)·ψ(X)·F (X)

Proof. Let FL(X) · ψ(X) · F (X) = κ and M be a κ-closed elementary submodel of
H(θ) where θ is a large enough regular cardinal, such that X, τ, κ ∈ M , κ ⊂ M and
|M | = 2κ.

We claim that X ⊂M . Suppose this is not the case and let p ∈ X \M . For every
x ∈ X ∩M use the fact that ψ(x,X) ≤ κ to pick a κ-sized family Ux ∈M such that⋂

Ux = {x}. We actually have Ux ⊂ M (see, for example, Theorem 1.6 of [9]), and
we can use that to pick Ux ∈ Ux such that x ∈ Ux and p /∈ Ux.

Let U = {U ∈ M ∩ τ : x ∈ U ∧ p /∈ U}. Then U covers X ∩M . Suppose that for
some β < κ+ we have constructed points {xα : α < β} ⊂ X ∩M and subcollections

{Uα : α < β} of U such that |Uα| ≤ κ for every α < β and {xα : α < γ} ⊂
⋃⋃

α≤γ Uα
for every γ < β.

Let A ⊂ X be a κ-sized free sequence. Note that |A| ≤ 2κ. Indeed, the set RC(X)
of all regular closed sets of A has cardinality at most 2κ. The closed pseudocharacter of
a Hausdorff space is bounded by the product of the pseudocharacter and the Lindelöf
number, so ψc(A) ≤ κ. Now, for every x ∈ A choose a κ-sized family Ux ⊂ RC(X)
such that x ∈ Int(F ) for every F ∈ Ux and

⋂
Ux = {x}. The map x→ Ux is injective

and hence |A| ≤ (2κ)κ = κ. From this observation it follows that if A ∈ M and
|A| ≤ κ then A ⊂M .

In particular, since M is κ-closed we have that {xα : α < β} ∈ M and hence

{xα : α < β} ⊂M . Therefore, we can choose a κ sized subcollection Uβ of U covering

{xα : α < β}. If
⋃
α≤β Uα does not cover X∩M pick a point xβ ∈ X∩M \

⋃
α≤β Uα. If

we didn’t stop before reaching κ+, then {xα : α < κ+} would be a free sequence of size
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κ+ in X . Therefore, there is V ⊂ U of size κ such that X∩M ⊂
⋃

V. Note that since
M is κ-closed we have V ∈M .Therefore M |= X ⊂

⋃
V and hence H(θ) |= X ⊂

⋃
V.

So there is V ∈ V such that p ∈ V , which is a contradiction. �

The proof of the increasing chain version of Theorem 2.1 relies on the following
Lemmas.

Lemma 2.2. Let X be a space such that FL(X) ≤ κ and U be an open cover for X.
Then there is a free sequence F ⊂ X and a subcollection V ⊂ U such that |V| = |F | ·κ
and X = F ∪

⋃
V.

Proof. Suppose you have constructed, for some ordinal β, a free sequence {xα : α < β}

and κ-sized subcollections {Uα : α < β} of U such that {xα : α < γ} ⊂
⋃
α≤γ

⋃
Uα

for every γ < β.

Let Uβ be a κ-sized subcollection of U covering the subspace {xα : α < β} and, if
you can, pick a point xβ ∈ X \

⋃
α≤β

⋃
Uβ . Let µ be the least ordinal such that

{xα : α < µ} ∪
⋃

α<µ

⋃
Uα = X.

Then F = {xα : α < µ} is a free sequence and if we set V =
⋃
α<κ

⋃
Uα we have

|V| = |F | · κ. �

Lemma 2.3. For every x ∈ X we have that FL(X \ {x}) ≤ FL(X) · ψ(X).

Proof. Set κ = FL(X) ·ψ(X) and let F ⊂ X \ {x} be a free sequence in X \ {x}. Let
U be a κ-sized family of open neighbourhood of x such that

⋂
U = {x}. Note that

F ⊂
⋃
{X \ U : U ∈ U}, F \ U is a free sequence in X \ U , and FL(X \ U) ≤ κ for

every U ∈ U . Now ClX\{x}(F ) =
⋃
U∈U F \ U . Therefore L(ClX\{x}(F )) ≤ κ and we

are done. �

Theorem 2.4. Let (X, τ) be a topological space and {Xα : α < λ} be an increasing
chain of subspaces of X such that X =

⋃
α<λXα and FL(Xα) · F (Xα) · ψ(Xα) ≤ κ.

Then |X| ≤ 2κ.

Proof. If λ ≤ 2κ then we are done by Theorem 2.1, so we can assume that λ = (2κ)+.

Let µ be a large enough regular cardinal and choose an elementary submodel M ≺
H(µ) such that [M ]κ ⊂ M , |M | = 2κ, and {X, τ, κ, λ} ∪ κ ⊂M .

Call a set C ⊂ X bounded if |C| ≤ 2κ.

Claim 1. If C ∈ [X ∩M ]≤κ, then C is bounded.
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Proof of Claim 1. Claim 1 will be proved if we can show that C ⊂ X ∩ M . So,
suppose that this is not true and choose p ∈ C \M . Choose θ large enough, so that
C ∩ M ⊂ Xθ. By ψ(Xθ) ≤ κ we can find open neighbourhoods {Uα : α < κ} of
the point p such that Xθ \ {p} =

⋃
α<κXθ \ Uα. By Lemma 2.2 we can find a free

sequence Dα ⊂ Xθ \ Uα and relative open sets {Vαβ : β < κ} in Xθ \ Uα such that
Xθ \ Uα ⊂ Dα ∪

⋃
β<κ Vαβ for every α < κ. By FL(Xθ \ Uα) ≤ κ we can find relative

open sets {Gαβ : β < κ} in Xθ \ Uα such that Dα ⊂
⋃
β<κGαβ, for every α < κ.

Note that p /∈ Vαβ ∪ Gαβ, for every α, β < κ. Setting Cαβ = Vαβ ∩ C and Eαβ =
Gαβ ∩ C we then have:

C ∩Xθ \ {p} =
⋃

α,β<κ

(Cα,β ∪ Eα,β) ∩Xθ

Note now that by κ-closedness of M , Cαβ ∈ M and Eαβ ∈M , for every α, β and θ.

We have:

C ∩M =
⋃

α,β<κ

(Cα,β ∪ Eα,β) ∩M

So:

M |= C =
⋃

α,β<κ

(Cα,β ∪ Eαβ)

Which implies:

H(µ) |= C =
⋃

α,β<κ

(Cαβ ∪ Eαβ)

But that is a contradiction, because:

H(µ) |= p ∈ C \
⋃

α,β<κ

(Cα,β ∪ Eα,β)

△

Now we claim that X ⊂ M . Suppose not and choose p ∈ X \M .

Claim 2. The collection U = {U ∈M ∩ τ : p /∈ U} is an open cover of X ∩M .

Proof of Claim 2. Fix x ∈ X ∩M and let V = {V ∈ τ : x /∈ V }. Note that V ∈ M
and V covers X \ {x}. Suppose you have constructed subcollections {Vα : α < β}
of V such that Vα ∈ M , |Vα| ≤ κ for every α < β and a free sequence {xα : α <



6 SANTI SPADARO

β} ⊂ X ∩M such that ClX\{x}({xα : α < γ}) ⊂
⋃
α<γ Vα for every γ < β. The

set ClX\{x}({xα : α < β}) is bounded, so we can find an ordinal λβ < λ such that
ClX\{x}({xα : α < β}) ⊂ Xλβ . Since FL(Xλβ) · ψ(X) ≤ κ, by Lemma 2.3 we have
that the Lindelöf number of ClX\{x}({xα : α < β}) is at most κ and hence we can
pick a family Vβ ∈ [V]≤κ such that ClX\{x}({xα : α < β}) ⊂

⋃
Vβ. If

⋃
α≤β Vβ covers

X \{x} we stop, otherwise we pick xβ ∈ (X \{x}∩M)\
⋃
α≤β Vβ. If we carried this on

for κ+ many steps, then F = {xα : α < κ+} would be a free sequence of cardinality
κ+ in X \ {x}. Since F is bounded, we can choose θ < λ such that F ⊂ Xθ. So
L(ClXθ

(F )) ≤ κ. But F cannot converge to x, because every set of cardinality κ+ of
a space of Lindelöf number κ has a complete accumulation point. Therefore there is
an open neighbourhood U of x which misses κ+ many points of F . Therefore F \ U
is a free sequence in X of cardinality κ+, but that contradicts F (Xθ) ≤ κ.

So there is a family W ∈ [U ]≤κ such that X \ {x} ⊂
⋃
W. By elementarity, we

can assume that W ∈ M and hence W ⊂ M . Let now W ∈ W be such that p ∈ W .
Then the set U := X \W ∈M is a neighbourhood of x which misses p. △

Suppose that for some β < κ+ we have constructed a free sequence {xα : α <
β} ⊂ X ∩M and subcollections {Uα : α < β} of U such that Uα ∈ M , |Uα| ≤ κ and

{xγ : γ < α} ⊂
⋃⋃

γ<α Uα, for every α < β. Since {xα : α < β} is bounded, we have

that L({xα : α < β}) ≤ κ and hence we can find a subcollection Uβ of U of size κ

such that {xα : α < β} ⊂
⋃

Uβ. If
⋃
α≤β Uα does not cover X ∩M we can find a point

xβ ∈ X∩M\
⋃
α≤β Uα. If we didn’t stop before reaching κ+, then {xα : α < κ+} would

be a κ+-sized free sequence in X . But this can’t happen, because {xα : α < κ+} is
bounded. So there is a V ∈ [U ]≤κ such that X ∩M ⊂

⋃
V. But since M is κ-closed

we have that V ∈ M and hence M |= X ⊂
⋃

V. Therefore H(µ) |= X ⊂
⋃
V, and

hence there is V ∈ V such that p ∈ V , which is a contradiction.

�

As a corollary, we find a result related to discrete reflection of cardinality, which
will be the main subject of the next section.

Lemma 2.5. [24] Let κ be an infinite cardinal and X be a space where |D| ≤ κ for
every discrete D ⊂ X. Then ψ(X) ≤ κ.

Proof. Let x ∈ X . Now let V = {V ⊂ X : V is open and x /∈ V }. Then V covers
X \{x} and hence we can find a discrete D ⊂ X \{x} and a subcollection U ⊂ V with
|U| = |D| such that X \{x} ⊂

⋃
U ∪D. So (

⋂
x∈D\{x}X \{x})∩(

⋂
U∈U X \U) = {x},

which implies that ψ(x,X) ≤ κ. �

Corollary 2.6. Let {Xα : α < λ} be an increasing chain of spaces such that |D| ≤ κ
for every discrete set D ⊂ Xα and every α < λ. Then |

⋃
α<λXα| ≤ 2κ.
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3. A reflection theorem for hereditarily normal spaces

In [9], Dow asked whether compact separable spaces reflect cardinality. It is at
present unknown even the following special case. Suppose that in some compact
space X , the closure of every discrete set has size bounded by the continuum. Is then
|X| ≤ c? We are going to prove that this is the case if X is hereditarily normal.
As a matter of fact, the only feature of compactness that we need is the fact that
pseudocharacter equals character at every point, and separability can be relaxed to
the ccc.

A cellular family is a family of pairwise disjoint non-empty open sets. The cellular-
ity of X is defined as follows: c(X) = sup{|U| : U is a cellular family in X}. Recall
that a π-base in a topological space X is a set P of non-empty open sets such that
for every open set U ⊂ X there is P ∈ P with P ⊂ U . The π-weight of X (πw(X))
is defined as the minimum cardinality of a π-base for X .

Given a cardinal µ, the logarithm of µ is defined as follows log(µ) = min{κ : 2κ ≥
µ}. We need a well-known, often used and easily proven lemma of Shapirovskii.

Lemma 3.1. (Shapirovskii) Let X be a space and U be a cover of X. Then there is a
discrete set D ⊂ X and a subcollection V ⊂ U such that |D| = |V| and X = D∪

⋃
V.

Theorem 3.2. Let X be a hereditarily normal space such that ψ(x,X) = χ(x,X) for
every point x ∈ X and |D| ≤ 2c(X) for every discrete set D ⊂ X. Then |X| ≤ 2c(X)

Proof. Set κ = log (2c(X))+. Let M be a < κ-closed elementary submodel of H(θ), for
large enough regular θ such that |M | = 2c(X) and M contains everything we need.

Claim 1. For every x ∈ X ∩M we have χ(x,X) ≤ 2κ.

Proof of Claim 1. Fix x ∈ X∩M . Subclaim: for every p ∈ X\M we can find an open
U ∈M such that x ∈ U and p /∈ U . If that were true, then we could find a family S of
open neighbourhoods of x such that |S| ≤ 2κ and

⋂
S ⊂ X ∩M . Now |X ∩M | ≤ 2κ,

so x would have pseudocharacter 2κ in X , and since pseudocharacter and character
in X we would be done. To prove the subclaim, let U be the set of all open sets
U ⊂ X such that x /∈ U . Then U ∈ M and U covers X \ {x}. By Shapirovskii’s
lemma we can find a subcollection W ⊂ U and a discrete set D ⊂ X \ {x} such that
W ∈M , D ∈M |W| = |D| ≤ 2κ and X \ {x} ⊂ D∪

⋃
W. Observe that D ∈M and

|D| ≤ 2κ and hence D ⊂ X ∩M . Therefore p /∈ D and hence there is W ∈ W such
that p ∈ W . Now W ∈M and x /∈ W therefore X \W ∈M is a neighbourhood of x
which misses p. △

Claim 2. The set X ∩M is dense in X .
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Proof of Claim 2. Suppose that is not the case. Then there is an open set V ⊂ X
such that V ∩X ∩M = ∅. Let now x ∈ X ∩M and choose an open set U0 ∈M such
that U0 ∩ V = ∅. Suppose we have constructed, for some β ∈ κ+ a cellular family
{Uα : α < β} ⊂ M such that Uα ∩ V = ∅ for every α < β. Then X \

⋃
α<β Uα ∈ M

and given y ∈ X \
⋃
α<β Uα ∩M we can find an open set neighbourhood Uβ of y such

that Uβ ∩ V = ∅. Now replace Uβ with its intersection with X \
⋃
α<β Uα, which is

still in M as the intersection of two elements of M . Eventually, {Uα : α ∈ κ+} would
be a κ+-sized cellular family in X , which is a contradiction. △

Putting together Claim 1 and Claim 2 we get that πw(X) ≤ 2κ.

We now claim that X ⊂ M . Indeed, suppose that this is not the case and let
p ∈ X \M .

Claim 3. For every x ∈ X ∩M , there is an open set V ∈ M such that x ∈ V and
p /∈ V .

Proof of Claim 3. Fix x ∈ X ∩ M and let U = {V ∈ M : x /∈ V }. The set U
covers X \ {x}. Use Shapirovskii’s Lemma to find a discrete set D ⊂ X ∩M such
that X \ {x} ⊂ D ∪

⋃
{Ux : x ∈ D}. By Shapirovskii’s bound for the number of

regular open sets (see [17] or [20] or [6] for a game-theoretic proof) we have that
ρ(X) ≤ πw(X)c(X) ≤ (2κ)κ = 2κ. Moreover, since by Jones Lemma ρ(X) ≥ 2|D|

in every hereditarily normal space X , we must have |D| < κ and hence D ∈ M .
Therefore D ∈ M . From |D| ≤ 2c(X) we get that D ⊂ X ∩M and thus p /∈ D. This
implies that there is x ∈ D such that p ∈ Ux. By letting V = X \ Ux we get that V

is a neighbourhood of x such that V ∈M and p /∈ V . △

If we now let V = {U ∈M : p /∈ U}, we see that V is an open cover of X∩M . Using
Shapirovskii’s Lemma again, we obtain the existence of a discrete set E ⊂ X ∩M
such that X ∩M ⊂ E ∪

⋃
{Ux : x ∈ E}, where Ux ∈ V and x ∈ Ux. By the same

reasoning as in the proof of the Claim we have that E ⊂ X∩M . The closure property
of M implies that E ∪

⋃
{Ux : x ∈ E} ∈M and hence M |= X ⊂ E ∪

⋃
{Ux : x ∈ E}.

By elementarity, we get that H(θ) |= X ⊂ E ∪
⋃
{Ux : x ∈ E} and therefore there is

x ∈ E such that p ∈ Ux, but that contradicts the definition of V.

Therefore X ⊂M and we are done. �

Recall the definition of the depth of X : g(X) = {|D| : D ⊂ X discrete}.

Corollary 3.3. Let X be a compact hereditarily normal ccc space such that g(X) ≤ c.
Then |X| ≤ c,
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Note that there are consistent examples of compact hereditarily normal hereditarily
separable spaces of cardinality 2c (for example, Fedorchuk’s compact S-space), and
this shows that the condition about the depth is essential in Corollary 3.3.
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