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Abstract. In this paper we present a study on pulse noise sources characterized
by sub- and super-Poisson statistics. We make a comparison with their uncorre-
lated counterpart. i.e. pulse noise with Poisson statistics, while showing that the
correlation properties of sub- and super-Poisson noise sources can be efficiently
applied to population dynamics. Specifically, we consider a termite population,
described by a Langevin equation in the presence of a pulse noise source, and we
study its dynamics and stability properties for two models. The first one describes
a population of several colonies in a new territory with adverse environmental
conditions. The second one considers the development of a single colony under
the influence of attacks by predators.
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1. Introduction

During the last decades the effects of random fluctuations on the dynamics of natural
systems has been widely and deeply investigated [1–5]. The random behaviour of bio-
logical systems and the role played by noise include bioinformatics [6, 7], population
dynamics [8–11], infective desease and epidemics [12–14]. The presence of stochastic
processes, which affect the dynamics of natural ecosystems [1, 2, 13, 15], the bacterial
growth in food products [16], the inception and development of diseases due to genetic
mutations [17–19], have been taken into account. It is worth noting that in popula-
tion dynamics experimental data can be correctly reproduced by modeling the random
fluctuations through multiplicative noise sources [20–34]. A pulse noise source, usually
obtained as a Poisson white noise, has been already used to study thermal ratchets [36],
noise-induced phase transitions [37], and population dynamics [38, 39]. In this paper we
deepen this aspect, presenting a study, in the context of population dynamics, on the
role played by the correlated pulse noise in the stability of a system. More in detail,
we consider sub- and super-Poisson pulse noise sources and analyze their effects on the
dynamics of a termite population [40–48].

When approaching population dynamics of termites, one has to consider that their
modeling is more complicated than that of other animals, since they live in colonies
(superorganisms). Appearance and growth of new colonies (termitary) can be considered
as a jump up in number of individuals, since a new colony grows rapidly [49, 50].

These jumps or pulses in the population size are random with some kind of correla-
tion. Therefore, the increase in population size is a random discrete jump process. These
processes are usually modeled in the population dynamics as a random pulse process
with short time correlations [15, 51]. Statistics of this pulse sequence defines population
dynamics. Meanwhile, the decrease in population size is determined by the death of
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Figure 1. Sample realization of population dynamics.

Figure 2. Renewal pulse process.

individuals and can be described as a continuous deterministic process [see figure 1(a)].
The correlated process which describes the starting of a new colony is a renewal process.
This kind of process is described by a sequence or recurrent events, whose effect is to
reset to zero the system’s memory [52–58]. As a consequence, the interpulse distances or
waiting times (WT’s) are mutually independent random variables and the waiting time
probability density function is the only basic property needed to define the process. The
positive correlation between the pulses means that the presence of a pulse at a certain
time instant increases the probability that another pulse appears during the imme-
diately successive time interval. In this case, the pulse sequence includes subsequent
pulses close to each other and far from each other. The variance of WT’s is larger than
for a Poisson process with the same average WT. This corresponds to super-Poisson
statistics [see figure 2(a)]. Conversely, a sub-Poisson distribution is characterized by a
smaller variance and a negative correlation [see figure 2(b)], for example, the dead-time
Poisson noise [35].

In this paper a termite population in a new territory with adverse environmental
conditions is studied from the point of view of the stability. Specifically, in order to
determine the conditions under which the population tends to increase (instability)
over the time or to decrease (stability) we use stochastic differential equation [4, 16,
59–61].

We also consider the case of only one large termite colony in the presence of
favourable environmental conditions, i.e., sufficient food resources and optimal climatic
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situation, but subject to adverse biological conditions, i.e., predators, such as anteater or
an army of ants, which could attack the termite colony, reducing the number of its indi-
viduals. These attacks can be described as a stochastic process modeled by a sequence
of random negative pulses, which could also represent human attempts to regulate the
termite population.

Finally we note that, unlike our previous works [13, 35], here the population
shows over time a slow deterministic growth and a random pulse-down-decrease [see
figure 1(b)].

The paper is organized as follows. In section 2, the renewal pulse process with sub-
and super-Poisson statistics is described. In section 3, the stochastic deferential equation
for the termite population is written and studied analytically. Results of numerical
simulations are presented and discussed in section 4. Section 5 is devoted to concluding
remarks.

2. Renewal process

2.1. Process with Gamma distribution for inter-pulse intervals

Let us consider the stochastic process

ξ(t) =
∑
j

f0 δ(t− tj), (1)

consisting of δ-shape pulses with constant amplitude f0, which, without any loss of
generality, is convenient for both analytical and numerical study. Here tj, which is a
random variable, represents the time of the pulse appearance. The distances, or WT’s,
between two neighboring pulses, ϑj = tj − tj−1, are independent identically distributed
random variables. The mean of WT’s, 〈ϑ〉 = T , is the conditional period of the process.

In the following, we use Gamma distribution for inter-pulse intervals ϑ with n
as shape parameter, α as scale parameter, 〈ϑ〉 = T = αn, and σ2

ϑ = α2n. If n > 1,
equation (1) provides a process with sub-Poisson statistics. On the other side, n < 1
corresponds to a process governed by a super-Poisson statistics.

The spectral density of the process η(t) = ξ(t)− 〈ξ〉 is

Sη(ω) =
f 2
0

T

(1 + α2ω2)n − 1

(1 + α2ω2)n + 1− 2(1 + α2ω2)n/2 cos(n arccos((1 + α2ω2)−1/2))
. (2)

In view of using this kind of processes in a stochastic differential equation and mod-
eling some population dynamics, e.g., time evolution of termite colonies, the following
expression is obtained:

Sη(0) =
f 2
0

Tn
. (3)

For the case of Poisson statistics (n = 1) we get a constant solution.
The spectral densities and their properties are illustrated in figure 3(a) for n � 1.

The larger n the more periodical the process is. The super-Poisson case is presented in
figure 3(b) for n < 1. Note that the main part of the plot is approximately horizontal.
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Figure 3. Spectral density of the sub- and super-Poisson processes for different
values of the shape parameter (T = 1, f0 = 1).

2.2. Strongly super-Poisson process replaced by the corresponding Poisson one

In the case of a strongly super-Poisson process the pulses arrive as clusters, that is
as packages consisting of several pulses close to each other. These clusters can be eas-
ily distinguished since the distances between them are quite large in comparison with
their size. In figure 2(a) two such clusters are presented with three and five pulses. There-
fore, we can replace the super-Poisson process of single pulses with the corresponding
Poisson sequence of large pulses-clusters, for which the spectral density is constant. That
corresponds well to the horizontal plot in figure 3(b). Let N be the average number of
pulses in a cluster. In this case, the amplitude of this large pulses-cluster is fP = Nf 0

and the average distance between the clusters is T P = NT . The main characteristic of
a pulse process is the variance of the WT’s. For this process, characterized by the pres-
ence of pulse-clusters, σ2

P = T 2
P = N 2T , since the WT’s are distributed exponentially.

This variance is equal to the variance of the initial super-Poisson process σ2
ϑ = T 2/n.

As a result, N = n−1/2. The spectral density for the Poisson process in accordance with
equation (2) is

SP(ω) =
f 2
P

TP
=

f 2
0

T
√
n
. (4)

This spectral density at ω = 0 is less than Sη(0) in equation (3).

3. Stability of the population under the influence of non-Poisson noise

The simplest equation to describe a stable-unstable system reads

ẋ = −ax+ xξ(t), (5)

where x(t) is the number of species and ξ(t) is the pulse process (1) characterised by
the noise intensity (3).

In the case of a > 0 and f0 > 0 [see figure 1(a)], this equation describes two processes:
(i) deterministic exponential decrease in population, consisting of many colonies, with
the rate a describing the entire population dynamics except the appearance of new
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colonies; (ii) the building up process and development of new termitaries, which is
presented as the pulse process ξ(t) given by equation (1).

In the case of a < 0 and f0 < 0 [see figure 1(b)], this equation describes development
of a single colony under the influence of attacks by predators or humans. The rate a
represents an increase in the colony size. At the beginning of a new colony develop-
ment, the population increases exponentially [63]. The queen physogastry develops by a
positive feed-back mechanism: as more ovarioles become functional, more eggs are laid,
more workers emerge, more forage is collected for the colony, and more food is brought to
the queen [41]. This model with pulse-like decrease of single colony does not contradict
to the previous model for a large number of colonies, since these attacks are uncorrelated
and their results are small in comparison with the large many-colonies population.

Under conditions |f0| � x and T � |a|−1, the analytical solution to equation (5) is
obtained

〈x (t)〉 = x0 e−at

〈
exp

{∫ t

0

ξ (τ) dτ

}〉
. (6)

Now we define a new random variable, W (t)=
∫ t

0
ξ(τ)dτ . According to the central limit

theorem, this variable has a Gaussian distribution. Its statistical properties therefore
can be fully described by the first moment, defined by the average number of pulses for
large enough t, and the variance which read, respectively,

〈W (t)〉 =
〈∫ t

0

ξ(τ)dτ

〉
= f0〈m〉 = f0

T
t (7)

and

σ2
W (t) =

〈∫ t

0

(
ξ(τ ′)− f0

T

)
dτ ′

∫ t

0

(
ξ(τ ′′)− f0

T

)
dτ ′′

〉
. (8)

Using the definition of correlation function Kη(τ
′′ − τ ′) after a change of variables we

obtain

σ2
W (t) = 2

∫ t

0

(t− τ)Kη(τ)dτ. (9)

Here we are interested in the final outcome of the population development, which
depends on the stability/instability condition of the system. In our analysis we therefore
consider a time t large respect to the correlation time. Under this condition, we get

σ2
W (t) ≈ t

∫ ∞

−∞
Kη(τ)dτ = Sη(0)t =

f 2
0σ

2
ϑ

T 3
t = f 2

0σ
2
m. (10)

Using the definition of characteristic function C(ω) of the Gaussian distribution, from
equation (6) we obtain

〈x(t)〉 = x0 e
−atC(−i) = x0 exp

{(
f0
T

+
f 2
0σ

2
ϑ

2T 3
− a

)
t

}
. (11)
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Equation (11) indicates that the system is stable for a > acr, where

acr =
f0
T

+
f 2
0σ

2
ϑ

2T 3
=

f0
T

+
f 2
0

2Tn
(12)

is the critical value of the relaxation parameter.

4. Results and discussion

In this section, we present the results obtained by solving numerically equation (5) and
compare them with the analytical findings obtained in section 3 for the sub- and super-
Poisson random process. To generate a delayed pulse train with a Gamma distribution
we use the Marsaglia and Tsang method [65]. As a pseudorandom number generator we
exploit the Mersenne twister method [66]. The averaging is performed over 107 stochastic
realizations in each analysed case. In all subsequent calculations the mean pulse distance
is T = 1 and the initial condition is set at x0 = 1. The simulation time is Tmax = 4× 105.

For the parameter a we introduce a critical value, acr, defined as the value of a for
which the stability-instability transition is observed. Then we investigate the behaviour
of the critical value of the relaxation parameter acr as a function of the parameters of
the system. Figure 4 shows the dependence of acr (a > 0) on n for the process with a
pulse-shaped increase and a slow decrease [see figure 1(a)]. The analytical results
obtained from equation (12) are represented by solid lines, those obtained from numer-
ical approach are shown as black squares for f0 = 0.0101 and red circles for f0 = 0.01.
A good agreement with the sub-Poisson processes (n > 1) is observed. On the other
side, for noise sources with a strongly super-Poisson statistics (n < 1) a noticeable dis-
agreement appears. This can be explained noting that in this case the conditions used
to get the analytical solution [see equation (6)] are not satisfied. The pulses indeed
arrive together, forming clusters with several pulses very close to each other (see sub-
section 2.2). As a result, the dynamics of x(t) is far from being continuous. Dashed lines
represent approximated results obtained by using the corresponding Poisson processes
in accordance with equations (4) in (10) and (12). We note that, for a super-Poisson
process with n � 1, the pulse-cluster approximation matches numerical results better
than the single-pulse model.

As a conclusion, the main result is that the population is more stable in the case of
sub-Poisson noise than for super-Poisson. In other words, positive correlations (S(0) > 1)
in new colonies appearances lead to faster increase in the population size than nega-
tive ones (S(0) > 1), if all other parameters are fixed. Positive correlations describe,
for example, a situation in which a new colony produces new couples and, as a con-
sequence, the initiation of new colonies. The first colony can also attract symbionts
that contribute to the development and survival of the successive colony. The first
colony can also contribute more directly, for example, by digging in the wood tunnels
which improve the possibility of development of a second colony. As a consequence of
such mechanisms of positive correlations, population density increases exponentially. On
the other hand, negative correlation (sub-Poisson statistics) can play a crucial role. A
competition evidently causes an anticorrelation between the new colonies. Competition
between two colonies always comes into play as an agonistic behaviour, resulting in a
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Figure 4. Plot of the critical relaxation parameter acr vs the shape parameter n for
the process with a pulse-shaped increase and a slow decrease for different values of
pulse amplitude, namely f0 = 0.0101 (black), f0 = 0.01 (red). Analytical [solid lines
from equation (12), dashed lines from equation (4)] and numerical (dots) results
are compared.

Figure 5. Plot of the critical relaxation parameter acr vs the shape parameter n for
the process with a pulse-shaped decrease and a slow increase for different values of
pulse amplitude, namely f0 = −0.0101 (black), f0 = −0.01 (red). Analytical [solid
lines from equation (12), dashed lines from equation (4)] and numerical (dots)
results are compared.

fight between the two colonies. This fight can cause mortality on both sides and, in
some cases, the gain or loss of territory [62]. As a result, the appearance of a colony
contributes negatively to the appearance of another colony in a very short time, mak-
ing its ‘emergence’ less likely respect to the uncorrelated case (Poisson statistics). This
mechanism introduces a certain periodicity in the population dynamics and prevents
exponential growth.

Figure 5 shows the behaviour of acr (a < 0) as a function of n for the process with
a pulse-shaped decrease and a slow increase [see figure 1(b)]. The analytical results
obtained from equation (12) are represented by solid lines, those obtained from numerical
simulations are shown as black squares for f0 = −0.0101 and red circles for f0 = −0.01.
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As in figure 4, dashed lines represent approximated results obtained by the cor-
responding Poisson processes in accordance with equation (4). Also in this case we
note that, for a super-Poisson process with n � 1, the pulse-cluster approximation
matches numerical results better than the single-pulse model.

This analysis allows to conclude that, for fixed values of the parameter a, the noise
amplitude f0 and the noise period T , larger values of the parameter n (sub-Poisson
statistics) produce a greater stability of the system.

We note that the attacks can be negatively correlated in the following way: after
exhausting a colony in a given area, predator may be obliged to move to other areas,
allowing the previously attacked colony to recover [64]. Such periodical attacks maintain
the population density stable or even constant.

On the contrary, positive correlation can correspond to multiple attacks by the same
predator and, in particular, to the fact that the first attack destroys the termitary
while reducing the possibility of defense, with a consequent increase in the probabil-
ity of undergoing other attacks also by different predators. In comparison with the
case of periodical attacks characterized by the same values of the other parameters,
including the average WT, T , these positively correlated negative pulses lead to an
exponential increase in population size. The constant T corresponds to long WT’s after
several successive attacks. During these long time, the population increases exponen-
tially. This can give practical advice for human efforts to reduce the termite population.
These works are more effective if they are performed regularly.

We wish also note that the choice of termites for this study is based on the follow-
ing motivations: (i) termite colonies consist of numerous individuals, which allows to
get results statistically significative; (ii) they can be counted by colonies, therefore a
clear relationship between the termitary size and the number of individuals exists. For
example, a correlation was established between the nest volume and the logarithm of
the total population [63].

Moreover, the model analyzed in this work combines a continuous description for
the size of each colony, represented through its population concentration, with a dis-
crete description for the number of colonies. Finally we notice that this model can
also be applied to different context of population dynamics, such as the growth of a
virus population, which is typically counted in terms of number of colonies, with
each colony corresponding to an infected person. Epidemiological equations, which are
usually written for the number of infected people [15], could be modified by taking
into account the number of virus units, i.e., the viral load, for each infected person.
Suitable modifications of equation (5) could therefore allow to develop more realistic
epidemiological models.

5. Conclusions

In this paper we studied the stability conditions for the dynamics of a termite popula-
tion. The effect of these correlations can be estimated by using a stochastic differential
equation with a noise source modeled as a renewal process with a suitable statistics.
Starting from a previous study [35], where the stability of such a system was inves-
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tigated in the presence of a multiplicative positive-defined sub-Poisson pulse process,
we extended here the analysis to the case of a super-Poisson noise source and negative-
defined pulse processes. Specifically, we analyzed the dynamics of the termite population
in the presence of a noise source with different statistical properties, ranging from sub- to
super-Poisson processes, in two different cases: (i) positive-defined pulses; (ii) negative-
defined pulses. From a mathematical point of view the statistics of the WT’s is described
by Gamma distribution, with n being the shape parameter, responsible for the specific
statistics. As one can argue, the stability of the termite population depends on the
statistics of the pulse process which describes the sharp changes in the population
density. In particular, we observed that, as n decreases, which corresponds to positive
correlations among pulses, the system becomes less stable.
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