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ABSTRACT 

Data processing techniques for Ground Penetrating Radar (GPR) image mining provide essential information to 

optimize maintenance management of Water Supply Systems (WSSs). These techniques aim to elaborate on 

radargrams to produce meaningful graphical representations of critical buried components of WSSs. These 

representations are helpful non-destructive evaluation tools to prevent possible failures in WSSs by keeping them 

adequately monitored. This paper proposes an integrated multi-criteria decision making (MCDM) approach to 

prioritize various data processing techniques by means of a ranking of their outputs, namely their resulting GPR 

image representations. The Fuzzy Analytic Hierarchy Process (FAHP) is applied to weight various evaluation 

criteria, with the purpose of managing vagueness and uncertainty characterizing experts’ judgments. Then, the 

ELimination Et Choix Traduisant la RÉalité III (ELECTRE III) method is used to obtain the final ranking. The 

findings offer a structured support in selecting the most suitable data processing technique to explore WSS 

underground, according to various evaluation criteria. On the theoretical point of view, the combination of two 

MCDM methods is significant to give a positive contribution in a crucial practical field as the one considered in the 

paper, also considering uncertainty characterizing human evaluation. On the practical point of view, data 

processing techniques based on the use of GPR are really useful in providing a graphic overview of the state of 

buried pipes and components. Since they are often critical for the good operation of WSSs, the role of maintenance 

is fundamental and the organization of suitable interventions is strategic. 
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1. Introduction and literature review 

Water Supply Systems (WSSs) support many daily human activities and, for this reason, their full availability 

has to be assured. A sudden lack of hydraulic supply may cause enormous inconveniences, both in civil and 

industrial environments. For this reason, the activities of maintenance for WSSs have critical importance, and 

interventions have to be adequately planned and implemented. Firstly, various parts of the networks need to be 

monitored and kept under control. Non-destructive techniques (NDTs) are useful tools of inspection to explore and 

obtain information about the underground without damaging it. NDTs make it easy the inspection of possible 

damages and the overall evaluation of WSSs, with the aim of optimizing maintenance and costs.  

A wide number of NDTs are reported in the literature (Liu et al., 2013; Hao et al., 2012) to locate damages in 

WSSs, the most popular being acoustic methods, thermography and ground penetrating radar (GPR) (Demirci et 

al., 2012; Dong et al., 2011). In particular, the GPR technique is more effective than the acoustic methods in 

locating water leaks occurring in plastic pipes (Bimpas et al., 2013). It is also more flexible than thermography 

approaches because it can be used in the various seasons of the year without being affected by temperature 

variations (Ayala-Cabrera et al., 2013). 

Moreover, the GPR technique reveals to be a useful tool in easily exploring hidden elements (Hoarau et al., 

2017; Gurbuz et al., 2012; Porsani et al., 2006) by means of radargrams. Radargrams provide graphical 

representation of contrasts existing between specific elements and the surrounding ground, due to their different 

dielectric characteristics (Crocco et al., 2010). The main difficulty in using radargrams derives from the big volume 

of information and the complexity of data interpretation, being necessary a high level of ability and experience by 

the involved personnel (Ayala-Cabrera et al., 2011; Thomson et al., 2009). For this reason, a plethora of process 

and analysis methods have been developed. These methods filter and mine GPR images to improve data 

visualization, with the aim of effectively identifying abnormal situations occurring underground.  

Beyond the analysis of raw images (Hunaidi and Giamou, 1998), this paper uses three image processing 

techniques, namely: multi-agent system, subtraction and variance filter. The former (Ayala-Cabrera et al., 2013)  

uses a multi-agent based system to identify elliptical shapes related to abnormal conditions in the system. The 

second (Ocaña-Levario, 2014; Ayala-Cabrera et al., 2014)  proposes a subtraction between two GPR images in 



order to discover hidden features in the explored area. Lastly, the latter (Ocaña-Levario et al., 2016) applies the so-

called variance filter to raw GPR images to analyse data variability. 

This paper deals with the possibility of managing results derived from the mentioned techniques through such 

tools as multi-criteria decision making (MCDM) methods. These tools are useful in supporting various kinds of 

decision problems (Carpitella et al., 2017a; Carpitella et al., 2016; Certa et al., 2015)  and, as expressed by Kumar 

et al. (2017), their crucial role is widely recognized in the literature. Mulliner et al. (2016) recommend these 

methods to achieve successful outcomes. In fact, various evaluation criteria, sometimes conflicting with each other, 

need to be taken into account for making decisions. The authors consider the support given by MCDM methods as 

valuable and capable of managing both qualitative and quantitative aspects when an evaluation concerning a set of 

alternatives is required. 

Moreover, a strategic integration among various MCDM methods would aim to exploit their strengths and to 

make the results of analyses more trustworthy. This kind of integration is supported in the literature (Zanakis et al., 

1998), and applied in several operational contexts. Mousavi-Nasab and Sotoudeh-Anvai (2017) underline the 

potential of MCDM methods to significantly improve complex decision processes. Their research proposes a 

comprehensive MCDM-based framework to deal with material selection problems. Løken (2007) highlights the 

high suitability of MCDM methods to face energy planning problems, when many decision makers and criteria are 

involved. Given that each method has both advantages and drawbacks, the authors recognize the combination of 

more than one method as a really good practice. As an example, Wang et al. (2016) discuss a case study centred on 

a facility layout selection problem proposing a hybrid approach based on the following methods: Simple Additive 

Weighting (SAW), Techniques for Order Preference by Similarity to an Ideal Solution (TOPSIS) (Certa et al., 

2013a) and Grey Relational Analysis (GRA). 

Among the wide number of MCDM methods existing in the literature (Sipahi and Timor, 2010), the most 

popular is the Analytic Hierarchy Process (AHP) technique, developed by Saaty (1977). The AHP easily carries out 

a ranking of decision alternatives (Chen et al., 2014). The method is able to calculate the vector of weights of 

involved criteria on the basis of the opinions formulated by a single expert or a group of decision makers. However, 

Büyüközkan et al. (2011) observe the inability of the AHP in correctly reflecting the vagueness of the decision 

makers’ perception and thus, in many real cases, linguistic assessment is necessary, instead of just crisp numbers, 

to represent the real situation. 

A further – and possibly more reliable – development of the AHP method consists in a fuzzy extension. The 

Fuzzy Analytic Hierarchy Process (FAHP), firstly proposed by Van Laarhoven and Pedrycz (1983), takes 

advantage of the fuzzy set theory (Zadeh, 1965; Klir and Yuan, 1995) for adequately managing uncertainty often 

characterizing judgments expressed by experts. Kubler et al. (2016) present a wide review of many applications of 

FAHP. The authors analyse 190 papers published between the years 2004 and 2016 and classify them on the basis 

of their main features and application fields. According to the survey carried out by the authors, the FAHP is 

commonly used in the literature for calculating criteria weights and then it is combined with other MCDM 

methods, for instance FTOPSIS (Kutlu and Ekmekçioğlu, 2012; Büyüközkan and Çifçi, 2012), to rank the 

alternatives under evaluation. 

In particular, FAHP may be well integrated with methods belonging to the ELimination Et Choix Traduisant la 

RÉalité (ELECTRE) family (Figueira et al., 2013). They support analysts in a wide range of decision problems 

(Muñoz-Porcar et al., 2015; Abedi et al., 2012; Hatami-Marbini and Tavana, 2011; Hokkanen et al., 1995; Jun et 

al., 2014; Proulx et al., 2007) and enable to accomplish various kinds of results including selection of the best 

option, and ranking and clustering of alternatives. Examples of integration between FAHP and ELECTRE may be 

found in the literature. Kaya and Kahraman (2011) propose a combined FAHP-ELECTRE approach to evaluate the 

environmental impact in the context of urban industrial planning. Ka (2011) suggests the same combination to 

make decisions concerning the optimal selection among dry ports construction projects. 

Among the different ELECTRE versions, the ELECTRE III effectively permits to rank alternatives related to 

different contexts (Certa et al., 2013b; Certa et al., 2009; La Scalia et al., 2015). As shown by Govindan and Jepsen 

(2016), ELECTRE III is the most used method of the ELECTRE family and the main fields of its application are 

natural resources and environmental management, energy management, and water management. 

Dealing with the field of maintenance of water supply networks, the present research seeks to prioritize 

techniques of data processing to prevent and discover eventual damages or water losses occurring in buried pipes. 

Such evaluation is supported by means of an integrated MCDM approach. Actually, this paper is a substantial 

extension of a previous work (Carpitella et al., 2017b), in which the ELECTRE I method was proposed to select the 

best alternative belonging to a set of four GPR images resulting from the application of four different data 

processing techniques. Four crisp evaluation criteria were considered, namely visualization, interpretation, 

identification of features, and extraction of information. We are now interested in carrying out, in a fuzzy context, a 

further in-depth analysis of various data processing methods and in drawing up a ranking of resulting GPR images 

by considering a fifth evaluation criteria, namely the affordability of the analyses. To such aim, an integration 

process between the FAHP and the ELECTRE III methods is proposed. The FAHP reveals to be helpful to 



calculate criteria weights by effectively managing uncertainty of experts’ opinions. In its turn, the ELECTRE III 

provides decision makers with a ranking of alternatives and, consequently, with a proper support to optimize 

maintenance of WSSs, taking also into account the uncertainty of data by means of the use of appropriate 

thresholds. 

The remainder of the paper is organized as follows. Section 2 illustrates some useful data processing techniques, 

aimed at elaborating on GPR images of WSSs. In particular, beyond the raw material analysis, the following 

techniques are considered: multi-agent based pre-processing algorithm, subtraction method and variance filter. 

Section 3 presents the proposal of integration between the two mentioned MCDM methods. The steps to apply the 

FAHP and the ELECTRE III methods are also described. Section 4 discusses a real case study in which GPR 

images obtained from the application of the above-mentioned data processing techniques are considered and then 

ranked. Section 5 closes the research with the conclusions. 

 

2. Data processing techniques to obtain GPR images of water networks 

This section aims to briefly describe some GPR image processing methods and how to apply them to handle 

GPR images obtained from surveys in WSS. These results graphically represent critical parts (either hidden 

infrastructure or developed abnormalities, such as leaks) of the WSS under analysis and provide analysts with 

important information concerning scheduling of maintenance activities. The ranking of the obtained images is a 

helpful driver to choose the more suitable technique as a trade-off among different evaluation criteria. 

The procedures used to carry out diverse data processing techniques are described next. In Carpitella et al. 

(2017b) images coming from four data processing techniques were considered, namely, the raw material analysis 

(note that no processing is used here), the multi-agent based pre-processing algorithm, the subtraction method, and 

the variance filter. Their descriptions are herein summarized. 

 

2.1. Raw images 

This kind of analysis cannot be considered as a proper method. In fact, it works directly on data matrices 

obtained via GPR surveys. However, these analyses are widely used to identify various features in the networks 

(Ocaña-Levario, 2014), which have proved to be sometimes successful. 

Raw images are sets of data obtained by means of GPR surveys, and visualized as radargrams. These data are 

stored in raw radargram matrices, 𝑀𝑅𝑗, 𝑗 = 1, … , 𝑠 corresponding to the s performed measurements. These 

matrices are made up of 𝑚-vectors, 𝑏𝑘
(𝑗)

, where 𝑘 = 1, … , 𝑛 denotes the trace of each radargram. Traces represent 

changes in depth of electromagnetic properties of the soil. In particular, matrices can be represented by columns, 

𝑀𝑅𝑗 = (𝑏1
(𝑗)

, 𝑏2
(𝑗)

, … , 𝑏𝑛
(𝑗)

). The length 𝑚 of vector 𝑏𝑘
(𝑗)

 corresponds to the volume of registered data for each trace 

k. It depends on the characteristics of the signal emitted by the used equipment.  

We can consider raw images as those obtained from a preliminary inspection, in which hyperbolae are mainly 

sought. Hyperbolae indicate the likely existence of objects or abnormalities in WSSs, suggesting the 

implementation of further and deeper analyses. We use analyses of raw images for comparison purposes, aiming at 

showing various difficulties of visualization when compared with images obtained from other methods. 

 

2.2. Multi-agent-based pre-processing algorithm 

This GPR image pre-processing algorithm was proposed in (Ayala-Cabrera et al., 2013) and was termed agent 

race. The algorithm is based on the game theory and uses the multi-agent paradigm (Shoham and Leyton-Brown, 

2009). 

The input of this algorithm is the resulting radargram of the GPR prospection, which consists of an 𝑚 × 𝑛-sized 

matrix. The 𝑛 traces of length 𝑚 generated are used as parallel tracks for the 𝑛 agents to run. The race is an 

endurance test for the competing agents, the prize for each agent being a movement step forward for each 

performed effort. Those efforts are based on wave amplitude value changes in each column of the radargram. The 

agent race includes two phases: a) warming-up, and b) competition. The race takes the following total time: 

 

𝑡𝑡 = 𝑡𝑤 + 𝑡𝑟 = 𝑚;           (1) 

 

𝑡𝑤 being the warming-up time and 𝑡𝑟 the competition time. The displacements of the agents during time 𝑡𝑟 are 

conditioned by the trend change of the wave amplitude on the trace that is being run. The race ends when time 𝑡𝑡 

has elapsed, and the race winner is the agent who has obtained the largest displacement during this time. 

The first output (Output A in Figure 1) of this process consists of an 𝑚1 × 𝑛 matrix, 𝑚1 being the maximum 

number of displacements. The columns in this matrix describe the movement of the agents related to the 

competition. The movements obtained by the agents are called time lines. At the end of the race, time lines are 



sorted according to the time spent by each agent. Finally, these time lines are normalized, thus obtaining the second 

output (Output B in Figure 1), which is the final visualization matrix of this method. 

 

 

Fig. 1. Scheme for the agent-race algorithm 

 

2.3. Subtraction method 

The strengths of this method are both its simplicity of use and its effectiveness in obtaining results. Its 

application consists in performing a subtraction between a reference image and a GPR image obtained upon 

inspection. This kind of subtraction is aimed at highlighting the main features of interest. 

The input of this method (see Figure 2) is the raw image (raw matrix) obtained from the GPR survey, denoted 

by 𝑀𝑅𝑗, previously described in section 2.1. Moreover, a new image (i.e. matrix) has to be created, that is called 

reference matrix or white matrix, 𝑀𝑊. The calculation of this matrix is developed as follows. From the set of 

measurements, {𝑀𝑅1, … , 𝑀𝑅𝑠}, an average column vector of size 𝑚, called 𝑏𝑐, is calculated: 

 

𝑏𝑐 =
∑ ∑ 𝑏𝑘

(𝑗)𝑛
𝑘=1

𝑠
𝑗=1

𝑛·𝑠
.           (2) 

 

Matrix 𝑀𝑊 is built by consecutively accumulating this vector 𝑛 times. Matrix 𝑀𝐶𝑗, called subtraction matrix, is 

calculated as: 

 

𝑀𝐶𝑗 = 𝑎𝑏𝑠(𝑀𝑅𝑗 − 𝑀𝑊).          (3) 

 

The images obtained through these matrices are analysed in detail, to iteratively select a range of colour to 

highlight significant features in the images. The purpose consists in exploring information concerning certain 

system components and its boundary conditions (Ayala-Cabrera et al., 2014). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 
a) Raw 

image, 𝑴𝑹𝒋 matrix, (b) white matrix, 𝑴𝑾, (c) subtraction matrix, 𝑴𝑪𝒋, and (d) selection of color range for the subtraction 

matrix 

 

2.4. Variance filter 

The variance filter enables to demark boundaries among different materials existing in images, highlighting 

them and allowing a clearer visualization of changes. This helps in the location and posterior extraction of 

abnormalities.  

A variance filter is directly applied to GPR images, and modifies the images according to data variability. The 

basic principle of the variance filter consists in calculating the variance around each pixel 𝑢(𝑖, 𝑗) of the image. 

Firstly, the window size (number of pixels to work with) is defined. In our study, the proposed size of the window 

has been selected after several tests. The size results to be 3 × 1, which is the best result with relation to the 

visualization of images. The variance filter formulation is defined by 

 

�̅�𝑖𝑗 =
1

𝑛
∑ 𝑢𝑖𝑗

𝑛
𝑖=1 ;           (4) 

𝜎𝑖𝑗
2 =

1

𝑛
∑ (𝑢𝑖𝑗 − �̅�𝑖𝑗)

2𝑛
𝑖=1 .           (5) 

 

The mean, defined by (4), is firstly estimated for the chosen window; n is herein the number of pixels in our 

window and 𝑢𝑖𝑗 is the pixel value of the GPR image. Secondly, the variance 𝜎𝑖𝑗
2  (5) is calculated with the pixels 

inside the selected window and the value obtained in (4). The result is associated to the centre pixel of the window 

in a new image, and this is repeated for all pixels of the initial GPR image, giving a new image of lower dimension.  

 

3. Integration of MCDM methods to manage results of data processing analyses 

In this section, a structured framework that combines two MCDM methods is proposed. Integration of these 

methods aims to prioritize different data processing techniques by ranking their relative outputs, i.e. resulting GPR 

images. The achieved solution offers effective support since it represents a valid tool to optimize the maintenance 

management of WSSs. Indeed, a highly reliable technique visually representing critical parts of the network can be 

easily selected and applied, depending on the involved evaluation criteria. The proposed approach is created 

through the integration of FAHP and ELECTRE III methods. In the present section these methods are described 

and successively applied to a real case study. 

 

3.1. The FAHP technique 

The fuzzy set theory represents a valid support to manage uncertainty affecting human judgments. Indeed, 

linguistic variables could be expressed through fuzzy numbers rather than crisp values, and have associated a 

degree of membership, 𝜇(𝑥), varying between 0 and 1. There are various types of fuzzy numbers. The most 

common ones are triangular fuzzy numbers (TFN) and trapezoidal fuzzy numbers (TrFN) (Zimmermann, 1985; 



Kubler et al., 2016). A generic TFN (6) �̃� is defined by three numerical values, 𝑎, 𝑏 and 𝑐, respectively called the 

lower, the medium and the upper value of the fuzzy number, where 𝑎 ≤ 𝑏 ≤ 𝑐. A generic TrFN (7) �̃� is defined by 

four numerical values, 𝑑, 𝑒, 𝑓 and 𝑔, respectively called the lower, the two medium and the upper values of �̃�; 

here 𝑑 ≤ 𝑒 ≤ 𝑓 ≤ 𝑔: 

 

�̃� = (𝑎, 𝑏, 𝑐);           (6) 

�̃� = (𝑑, 𝑒, 𝑓, 𝑔).           (7) 

 

Algebraic operations can be accomplished among fuzzy numbers. For instance, considering two TFNs �̃�1 and 

�̃�2, the following operations may be defined: 

 

�̃�1 ⊕ �̃�2 = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2,  𝑐1 + 𝑐2);        (8) 

�̃�1 ⊙ �̃�2 = (𝑎1 × 𝑎2, 𝑏1 × 𝑏2,  𝑐1 × 𝑐2);        (9) 

�̃�1
−1 = (

1

𝑐1
,

1

𝑏1
,

1

𝑎1
).                                              (10) 

 

Based on the use of fuzzy numbers, the FAHP method is the fuzzy development of the AHP technique, and its 

application can be summarized through this three following steps (Durán and Aguiló, 2006): 

 building the hierarchy structure that represents the problem under analysis; 

 collecting fuzzy pairwise comparisons with relation to decision alternatives with respect to each evaluation 

criterion; 

 ranking alternatives to prioritize them or to select the best one. 

Concerning the collection of fuzzy pairwise comparisons, the purpose is to build a fuzzy pairwise comparison 

matrix (FPCM), �̃�. In this matrix, the linguistic judgments attributed by the expert(s) correspond to fuzzy numbers. 

For example, given a number 𝑛 of criteria (or alternatives) to be pairwise compared, one can build the square, 

reciprocal matrix 

 

�̃� = [
�̃�11 ⋯ �̃�1𝑛

⋮ ⋱ ⋮
�̃�𝑛1 ⋯ �̃�𝑛𝑛

];   (11) 

 

in which a generic element �̃�𝑖𝑗 expresses the degree of preference of criterion (or alternative) 𝑖 with respect to 

criterion (or alternative) 𝑗 with a certain level of uncertainty. Moreover, reciprocity implies that for each pairwise 

comparison judgment �̃�𝑖𝑗 = (𝑥1, 𝑥2, 𝑥3) one has that �̃�𝑗𝑖 = (
1

𝑥3
,

1

𝑥2
,

1

𝑥1
).   

As said before, linguistic variables are used by an analyst (or decision maker) to express pairwise comparisons 

about the relative importance between two elements. In particular, these variables refer to the fuzzy version of the 

Saaty scale, shown in Figure 3, and can be stated as: equal (EQ), moderate (M), strong (S), very strong (VS) and 

extreme (EX) importance.  

The associated TFNs are respectively: (1,1,2), (2,3,4), (4,5,6), (6,7,8) and (8,9,9). The TFNs (1,2,3), (3,4,5), 

(5,6,7) and (7,8,9) correspond to the intermediate values. 

 

Fig. 3. Fuzzy version of the Saaty scale 



 

Once built the FPCM �̃�, several approaches are proposed in the literature to obtain the relative weights. In 

particular, Chang (1996) proposes to derive crisp weights from the matrix, by exploiting the extent analysis 

method. The value of fuzzy synthetic extent with relation to the ith element of the matrix �̃� can be calculated as 

follows: 

 

𝑆𝑖 = ∑ �̃�𝑖𝑗 ⊙ [∑ ∑ �̃�𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 ]

−1𝑚
𝑗=1 ,         (12) 

 

being, in our case, 𝑛 = 𝑚 because the FPCM �̃� is a square matrix.  

Let us consider two fuzzy pairwise comparisons, e.g. two TFNs noted as �̃�1 = (𝑎1, 𝑏1, 𝑐1) and �̃�2 = (𝑎2, 𝑏2, 𝑐2). 

We are interested in establishing the degree of possibility that �̃�1 ≥ �̃�2, defined as (Kutlu and Ekmekçioğlu, 2012): 

 

𝑉(�̃�1 ≥ �̃�2) = 𝜇(𝑥∗) = {

1                                    𝑖𝑓 𝑏1 ≥ 𝑏2

0                                    𝑖𝑓 𝑎2 ≥ 𝑐1
𝑎2−𝑐1

(𝑏1−𝑐1)−(𝑏2−𝑎2)
            otherwise

;      (13) 

 

where 𝑥∗ is the ordinate of the highest intersection point 𝑃 between 𝜇�̃�1
 and 𝜇�̃�2

, as we can observe in Figure 4. In 

order to compare the two TFNs �̃�1 and �̃�2, it is necessary to calculate both values 𝑉(�̃�1 ≥ �̃�2) and 𝑉(�̃�2 ≥ �̃�1). 

 

Fig. 4. Representation of the degree of possibility that �̃�𝟏 ≥ �̃�𝟐 

 

Furthermore, the possibility degree that a fuzzy number �̃� is greater than 𝑘 fuzzy numbers �̃�𝑖(𝑖 = 1 … 𝑘) 

corresponds to: 

 

𝑉(�̃� ≥ �̃�1, �̃�2, … , �̃�𝑘) = 𝑉[(�̃� ≥ �̃�1) and (�̃� ≥ �̃�2) and … and(�̃� ≥ �̃�𝑘)] = min 𝑉(�̃� ≥ �̃�𝑖), 𝑖 = 1 … 𝑘.   (14) 

 

Then, it is possible to link each criterion (or alternative) 𝑋𝑖 considered in the FPCM �̃� to the relative value of 

fuzzy synthetic extent and to define: 

 

𝑥∗′(𝑋𝑖) = min 𝑉(𝑆𝑖 ≥ 𝑆𝑘);           (15) 

 

for 𝑘 = 1 … 𝑛, 𝑘 ≠ 𝑖. The vector of crisp and not normalized weights is lastly given by: 

 

𝑊′ = (𝑥∗′(𝑋1), 𝑥∗′(𝑋2), … , 𝑥∗′(𝑋𝑛))
𝑇
.        (16) 

 

Let us observe that these obtained weights have to be normalized with respect to their total so that their sum 

equals one; the vector of normalized crisp weights will be: 

 

𝑊 = (𝑥∗(𝑋1), 𝑥∗(𝑋2), … , 𝑥∗(𝑋𝑛))
𝑇
.         (17) 

 

The last operation consists in checking the consistency ratio (CR) of the collected comparisons. To such aim, 

each fuzzy value �̃�𝑖𝑗 of the matrix is defuzzified and transformed into a crisp value 𝑥𝑖𝑗 by means of the graded 

mean integration approach: 



 

𝐺(�̃�𝑖𝑗) = 𝑥𝑖𝑗 =
𝑥1+4𝑥2+𝑥3

6
.          (18) 

 

After having defuzzified each value of the matrix, consistency can be easily verified with the proper threshold 

(Saaty, 1977). 

 

3.2. The ELECTRE III to rank results of data processing analyses 

Originally born in France during the end of the 1960s (Roy, 1968), ELECTRE methods are fundamentally based 

on the so called outranking approach (Roy, 1991), seeking to establish outranking relations by pairwise comparing 

alternatives. These relations need to be examined and confirmed by means of two tests, namely the concordance 

and the discordance tests, aimed at calculating the concordance and discordance indices. The concordance index 𝐶𝑖𝑗 

quantitatively expresses, referring to a specific criterion, the agreement degree about the fact that alternative 𝐴𝑖  

outranks or equals alternative 𝐴𝑗 . The discordance index 𝐷𝑖𝑗 quantitatively expresses, referring to a specific 

criterion, the agreement degree about the fact that alternative 𝐴𝑖  has a worst score compared to alternative 𝐴𝑗. 

Various versions of the ELECTRE methods have been proposed (Rogers et al., 2013). 

The ELECTRE III method is herein applied to rank different GPR images (i.e. alternatives) to effectively 

support the maintenance management of WSSs. This method considers a fuzzy outranking; it is neither expressed 

as a certain outranking nor as a certain non-outranking for each pair of compared alternatives. It has actually 

associated the function 𝛿(𝐴𝑖, 𝐴𝑗), varying into the range [0,1], to express the degree of credibility related to the 

preference of alternative 𝐴𝑖 with respect to alternative 𝐴𝑗. The ELECTRE III method requires the preliminary 

collection of the following input data: 1) set of alternatives, 𝐴𝑖 , to be evaluated; 2) evaluation criteria, 𝐵𝑘; 3) vector 

of criteria weights, 𝑤𝑘; 4) numerical evaluation of alternatives with respect to the considered criteria, 𝑢𝑘(𝐴𝑖).  

Moreover, three numerical thresholds (Table 1) have to be fixed for each criterion. These thresholds enable to 

take into account data uncertainty affecting alternatives. They refer to the difference 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖), which is the 

difference between numerical evaluation of two alternatives 𝐴𝑖  and 𝐴𝑗 under the criterion 𝐵𝑘. 

The condition 𝐼𝑘 ≤  𝑆𝑘 ≤ 𝑉𝑘 has always to be verified. Once collected input data in a matrix and fixed the 

mentioned thresholds for all criteria, the development of the procedure is organized in two phases.  

 
Table 1 

Thresholds of the ELECTRE III method 

Symbol Threshold Meaning 

𝐼𝑘 Indifference 
the minimal difference considered significant to express a 

preference between two alternatives; 

𝑆𝑘 Strong Preference  
the minimal difference to express a strong preference between two 

alternatives; 

𝑉𝑘 Veto 
if this minimal difference is overcome, the two alternatives are 

considered not comparable. 

The 1st PHASE is made up of four steps explained next. 

 1.1. Construction of the matrices 𝐶𝑘(𝐴𝑖, 𝐴𝑗) of concordance indices, one for each criterion. 

Concordance indices are determined by following these rules: 

 

if 𝑢𝑘(𝐴𝑖) ≥ 𝑢𝑘(𝐴𝑗), then 𝐶𝑘(𝐴𝑖 , 𝐴𝑗) = 1;        (19) 

if 𝑢𝑘(𝐴𝑖) < 𝑢𝑘(𝐴𝑗), then 𝐶𝑘(𝐴𝑖, 𝐴𝑗) = {

1
[𝑢𝑘(𝐴𝑖)+𝑆𝑘−𝑢𝑘(𝐴𝑗)]

𝑆𝑘−𝐼𝑘

0

    

if 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖) ≤ 𝐼𝑘 ;          

if 𝐼𝑘 < 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖) ≤ 𝑆𝑘;

if 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖) > 𝑆𝑘 .         

  (20) 

 

The output of the first step will be a number of square matrices equal to the number of criteria, and, in each 

matrix, the concordance indices 𝐶𝑘(𝐴𝑖, 𝐴𝑗) are obtained for each pairwise comparison. 

 1.2. Construction of the aggregated concordance matrix 𝐶(𝐴𝑖 , 𝐴𝑗). 

The output of the second step will be a single square matrix 𝐶(𝐴𝑖, 𝐴𝑗) in which the elements are obtained by 

aggregating and weighting the relative elements belonging to the former matrices of concordance indices. 

 1.3. Construction of the matrices 𝐷𝑘(𝐴𝑖, 𝐴𝑗) of discordance indices, one for each criterion. 

Discordance indices are determined by following these rules: 



 

𝐷𝑘(𝐴𝑖 , 𝐴𝑗) = {

0
[𝑢𝑘(𝐴𝑗)−𝑢𝑘(𝐴𝑖)−𝑆𝑘]

𝑉𝑘−𝑆𝑘

1

    

if 𝐶𝑘(𝐴𝑖 , 𝐴𝑗) ≠ 0;                        

if 𝑆𝑘 ≤ 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖) < 𝑉𝑘;

if 𝑢𝑘(𝐴𝑗) − 𝑢𝑘(𝐴𝑖) ≥ 𝑉𝑘.         

      (21) 

 

The output of the third step will be a number of square matrices equal to the number of criteria; in each matrix, 

the discordance indices 𝐷𝑘(𝐴𝑖, 𝐴𝑗) are obtained for each pairwise comparison. 

 1.4. Construction of the outranking credibility matrix 𝛿(𝐴𝑖 , 𝐴𝑗). 

The last step of the 1st PHASE requires the calculation of the outranking credibility matrix, 𝛿(𝐴𝑖, 𝐴𝑗). The rules 

to build this matrix are the following: 

 

if ∀ 𝑘 𝐷𝑘(𝐴𝑖 , 𝐴𝑗) = 0, then 𝛿(𝐴𝑖 , 𝐴𝑗) = 𝐶(𝐴𝑖 , 𝐴𝑗);       (22) 

if ∃ 𝑘 for which  𝐷𝑘(𝐴𝑖 , 𝐴𝑗) > 0, then 𝛿(𝐴𝑖 , 𝐴𝑗) = 𝐶(𝐴𝑖, 𝐴𝑗) if ∀ 𝑘 𝐷𝑘(𝐴𝑖 , 𝐴𝑗) < 𝐶(𝐴𝑖 , 𝐴𝑗);   (23) 

if ∃ 𝑘∗ for which  𝐷𝑘∗(𝐴𝑖 , 𝐴𝑗) ≥ 𝐶(𝐴𝑖 , 𝐴𝑗), then 𝛿(𝐴𝑖 , 𝐴𝑗) = 𝐶(𝐴𝑖 , 𝐴𝑗)· ∏
[1−𝐷𝑘∗(𝐴𝑖,𝐴𝑗)]

[1−𝐶(𝐴𝑖,𝐴𝑗)]𝑘∗  ∀𝑘∗.  (24) 

The output will be a square matrix in which elements express the degree of credibility related to the preference 

of the alternative 𝐴𝑖 with respect to 𝐴𝑗. 

Once the 1st PHASE is accomplished, the 2nd PHASE is composed of three steps. 

 2.1. Determination of the minimal value of outranking credibility, 𝛿0. 

The minimal value of outranking credibility corresponds to: 

 

𝛿0 =  𝛿𝑚𝑎𝑥 − 𝑠(𝛿𝑚𝑎𝑥);           (25) 

 

where 𝛿𝑚𝑎𝑥 is the maximum numerical value of the elements belonging to the outranking credibility matrix 

𝛿(𝐴𝑖, 𝐴𝑗), and 𝑠(𝛿𝑚𝑎𝑥), called discrimination threshold, is obtained by: 

 

𝑠(𝛿𝑚𝑎𝑥) = −0.15 · 𝛿𝑚𝑎𝑥 + 0.3;         (26) 

  

 2.2. Construction of the Boolean matrix 𝑇(𝐴𝑖, 𝐴𝑗). 

This Boolean matrix is built on the basis of the following test: 

 

𝑇(𝐴𝑖 , 𝐴𝑗) = {
1

0
  

if 𝛿(𝐴𝑖 , 𝐴𝑗) ≥ 𝛿0 and 𝛿(𝐴𝑖 , 𝐴𝑗) − 𝛿(𝐴𝑗 , 𝐴𝑖) > 𝑠(𝛿𝑚𝑎𝑥)

otherwise                                                                                  
.       (27) 

 

The purpose is to define the qualification degree of the alternatives and build the ranking. 

 2.3. Qualification degree of alternatives and construction of the final ranking. 

The qualification of alternative 𝐴𝑖, 𝑞(𝐴𝑖), corresponds to the difference between the number of alternatives 

outranked by 𝐴𝑖 and the number of alternatives outranking 𝐴𝑖. Finally, two rankings have to be built by means of 

two procedures of distillation (ascending and descending distillation chains, Vincke, 1992), which consist in 

deleting the row and column from the outranking credibility related to the alternative characterized by the highest 

and lowest qualification degree, respectively, and in reiterating the 2nd PHASE until all the alternatives have been 

assigned in both rankings. With relation to the two procedures of distillation, if two alternatives are characterized 

by the same qualification degree, a distillation procedure would have to be carried out just for the two rows and 

columns related to the two alternatives of the outranking credibility matrix 𝛿(𝐴𝑖, 𝐴𝑗). To obtain a ranking of the 

entire alternative set, these two rankings must coincide. If they were not equal, it would mean that incomparability 

among alternatives occurs.  

 

4. Case study 

In the previous work of research (Carpitella et al., 2017b)  the ELECTRE I method was applied to select the 

best alternative with relation to a set of four GPR images (HF1, HF2, HF3, HF4), presented in Figure 5 and 

representing the outputs of the data processing techniques previously described in section 2. The present case study 

aims to achieve the final ranking of the same alternatives, by considering one more evaluation criterion, namely the 

economic aspect in carrying out different data processing analyses. 

Therefore, alternatives are now evaluated on the basis of five criteria (B1, B2, B3, B4, B5): visualization, 

interpretation, identification of features, extraction of information and affordability. All evaluation criteria have to 



be maximized and their weights are herein obtained by means of the FAHP technique, in order to better manage 

uncertainty of evaluations. Upon the FAHP, the ELECTRE III is applied to rank the four GPR images. 

 

4.1. The FAHP to calculate criteria weights 

An expert in image mining processing analyses was asked to draw up a matrix (five first columns in Table 2) by 

pairwise comparing criteria and attributing judgments by means of the linguistic variables previously defined in 

Figure 3.  

Table 2  

Fuzzy Pairwise Comparison Matrix 

�̃� B1 B2 B3 B4 B5 weights 

B1 (1, 1, 2) (1, 2, 3) (3, 4, 5) (1, 2, 3) (1, 2, 3) 0.2934 

B2 (
1

3
, 

1

2
, 1) (1, 1, 2) (2, 3, 4) (1, 2, 3) (

1

3
, 

1

2
, 1) 0.2226 

B3 (
1

5
, 

1

4
, 

1

3
) (

1

4
, 

1

3
, 

1

2
) (1, 1, 2) (1, 2, 3) (

1

3
, 

1

2
, 1) 0.1380 

B4 (
1

3
, 

1

2
, 1) (

1

3
, 

1

2
, 1) (

1

3
, 

1

2
, 1) (1, 1, 2) (

1

3
, 

1

2
, 1) 0.1109 

B5 (
1

3
, 

1

2
, 1) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 1, 2) 0.2351 

 

 
Fig. 5. GPR images resulting from: raw image analysis (HF1), multi-agent system (HF2), subtraction method (HF3), variance 

filter (HF4) 
 

The values of fuzzy synthetic extent for each criterion can be calculated by using formula (12): 

 

𝑆1 = (7.00, 11.00, 16.00) ⊙ (
1

51.82
,

1

32.58
,

1

21.12
) = (0.14, 0.34, 0.76); 

𝑆2 = (4.67, 7.00, 11.00) ⊙ (
1

51.82
,

1

32.58
,

1

21.12
) = (0.09, 0.21, 0.52); 

𝑆3 = (2.78, 4.08, 6.83) ⊙ (
1

51.82
,

1

32.58
,

1

21.12
) = (0.05, 0.13, 0.32); 

𝑆4 = (2.33, 3.00, 6.00) ⊙ (
1

51.82
,

1

32.58
,

1

21.12
) = (0.05, 0.09, 0.28); 

𝑆5 = (4.33, 7.50, 12.00) ⊙ (
1

51.82
,

1

32.58
,

1

21.12
) = (0.08, 0.23, 0.57). 

 

These values have to be compared and the relative degrees of possibility, summarized in Table 3, are calculated 

by means of formula (13). 

 



Table 3 

Degrees of possibility to compare values of fuzzy synthetic extent 

𝑉(𝑆1 ≥ 𝑆2) 1 𝑉(𝑆2 ≥ 𝑆1) 0.7586 𝑉(𝑆3 ≥ 𝑆1) 0.4704 𝑉(𝑆4 ≥ 𝑆1) 0.3778 𝑉(𝑆5 ≥ 𝑆1) 0.8013 
𝑉(𝑆1 ≥ 𝑆3) 1 𝑉(𝑆2 ≥ 𝑆3) 1 𝑉(𝑆3 ≥ 𝑆2) 0.7229 𝑉(𝑆4 ≥ 𝑆2) 0.6126 𝑉(𝑆5 ≥ 𝑆2) 1 
𝑉(𝑆1 ≥ 𝑆4) 1 𝑉(𝑆2 ≥ 𝑆4) 1 𝑉(𝑆3 ≥ 𝑆4) 1 𝑉(𝑆4 ≥ 𝑆3) 0.8739 𝑉(𝑆5 ≥ 𝑆3) 1 
𝑉(𝑆1 ≥ 𝑆5) 1 𝑉(𝑆2 ≥ 𝑆5) 0.9661 𝑉(𝑆3 ≥ 𝑆5) 0.6959 𝑉(𝑆4 ≥ 𝑆5) 0.5922 𝑉(𝑆5 ≥ 𝑆4) 1 

 

The components of the non-normalized vector of weights 𝑊′ = (𝑥∗′(𝐵1), 𝑥∗′(𝐵2), 𝑥∗′(𝐵3), 𝑥∗′(𝐵4), 𝑥∗′(𝐵5))
𝑇

 

are calculated through (15): 

 

𝑥∗′(B1) = 𝑉(𝑆1 ≥ 𝑆2, 𝑆3, 𝑆4, 𝑆5) = min(1; 1; 1; 1) = 1; 

𝑥∗′(B2) = 𝑉(𝑆2 ≥ 𝑆1, 𝑆3, 𝑆4, 𝑆5) = min(0.7586; 1; 1; 0.9661) = 0.7586; 

𝑥∗′(B3) = 𝑉(𝑆3 ≥ 𝑆1, 𝑆2, 𝑆4, 𝑆5) = min(0.4704; 0.7229; 1; 0.6959) = 0.4704; 

𝑥∗′(B4) = 𝑉(𝑆4 ≥ 𝑆1, 𝑆2, 𝑆3, 𝑆5) = min(0.3778; 0.6126; 0.8739; 0.5922) = 0.3778; 

𝑥∗′(B5) = 𝑉(𝑆5 ≥ 𝑆1, 𝑆2, 𝑆3, 𝑆4) = min(0.8013; 1; 1; 1) = 0.8013. 

 

The obtained normalized vector of weights 𝑊 = (0.2934, 0.2226, 0.1380, 0.1109, 0.2351)𝑇 is given in Table 2. 

The last step consists in verifying consistency upon having defuzzified the FPCM by means of the graded mean 

integration approach (20). In our case, consistency is perfectly acceptable, being the CR index equal to 0.0639. 

  

4.2. The ELECTRE III to rank alternatives 

Beyond criteria weights, the input data required to apply the ELECTRE III methodology were collected with the 

support of the expert mentioned in the former section and are given in Table 4. The scale of evaluations of 

alternatives under the various criteria is one-to-ten. The flowchart presented in Figure 6 summarizes the whole 

application of the ELECTRE III method. 

 



 

Fig. 6. Flowchart representing the application of ELECTRE III 
 

The output (Table 5) of the 1st PHASE of the ELECTRE III is the outranking credibility matrix δ(HF𝑖, HF𝑗), 

which enables to calculate the minimal value of outranking credibility, that is 𝛿0 = 0.85, with the purpose of 

building the Boolean matrix 𝑇(HF𝑖, HF𝑗). 

The last step of the 2nd PHASE consists in determining the qualification of alternatives 𝑞(HF𝑖) for the final 

ranking to be built. These results are reported in Table 6. Since the two distillation procedures (Tables 7 and 8) do 

not give the same ranking, sub-distillation between HF1 and HF2 is necessary. Thus, the final ranking is reported in 

Table 9. Both alternatives HF3 and HF4 occupy the first position of the ranking. It means that there is not a 

significant difference among them. Then, under the perspective of the considered criteria, the application of the 



subtraction method or of the variance filter is indifferent for supporting and optimizing maintenance activities of 

WSSs. 
 

Table 4 

Input data of the ELECTRE III 

 B1 B2 B3 B4 B5 

weights 0.2934 0.2226 0.1380 0.1109 0.2351 

𝑰𝒌 - 𝑺𝒌 - 𝑽𝒌 2-4-6 1-3-5 1-2-3 1-2-3 1-3-5 

HF1 3 2 6 5 8 

HF2 8 5 7 8 4 

HF3 7 7 9 5 6 

HF4 8 7 8 5 6 

 
Table 5 

Outranking credibility matrix 

δ(𝐇𝐅𝒊, 𝐇𝐅𝒋) HF1 HF2 HF3 HF4 

HF1 - 0 0 0 

HF2 0,7649 - 0,63315 0,77155 

HF3 0,88245 0 - 1 

HF4 0,88245 0 1 - 

 
Table 6 

Qualification of alternatives  

Alternatives 𝒒(𝐇𝐅𝒊) 

HF1 -2 

HF2 0 

HF3 1 

HF4 1 

 

 

Table 7 

Ascending distillation results  

Alternatives Position 

HF2, HF3, 

HF4 
1° 

HF1 2° 

 

 

Table 8 

Descending distillation results  

Alternatives Position 

HF3, HF4 1° 

HF2 2° 

HF1 3° 



 
Table 9 

Final ranking  

Alternatives Position 

HF3, HF4 1st 

HF2 2nd 

HF1 3rd 

 

5. Conclusions 

The paper proposes a structured framework based on the combination of two MCDM methods, namely the 

FAHP and the ELECTRE III, to provide support in selecting the most suitable data processing technique to explore 

WSS underground and thus help improve the maintenance management of WSSs. This kind of management can be 

effectively led by using GPR radargrams as NDT drivers of critical parts of the networks. The purpose of the 

research consists in analysing, using a multi-criteria perspective, GPR images obtained from diverse types of data 

processing analyses.  

On the theoretical point of view, being the combination of two MCDM methods a well-established and reliable 

practice, it can be significant to give a positive contribution in a crucial practical field as the one considered in the 

paper, also considering uncertainty characterizing human evaluation. On the practical point of view, data 

processing techniques based on the use of GPR are really useful in providing a graphic overview of the state of 

buried pipes and components. Since they are often critical for the good operation of WSSs, the role of maintenance 

is fundamental and the organization of suitable interventions is strategic. 

To this aim, upon having established a set of evaluation criteria, the proposed approach makes firstly use of the 

FAHP technique to determine criteria weights by taking into account and thus reducing uncertainty of human 

judgments. Additionally, it is suggested the use of ELECTRE III, which is considered as the most reliable in 

literature among the methods belonging to the ELECTRE family. Actually, the ranking of GPR radargrams 

evaluated through ELECTRE III provides interesting information concerning which data processing method is 

more suitable to optimize the maintenance management of WSSs. 

The proposed structured approach has been applied to a real case study, whose alternatives have been derived 

from four kinds of data processing analyses, namely, raw image analysis, multi-agent system, subtraction method 

and variance filter. Five evaluation criteria are aimed at considering these analyses both under the technical and the 

economic point of view. The two most suitable alternatives, both in the first position of the final ranking, are the 

GPR images reached by the variance filter and the subtraction methods. This ranking demonstrates that the 

application of the variance filter or the subtraction method equivalently represents the best trade-off among the 

considered criteria. 

The present paper is an extension of a previous research (Carpitella et al., 2017b), in which the ELECTRE I 

method was applied to select the best alternative (all that this method permits), which resulted to be the image 

obtained through the variance filter. Moreover, in (Carpitella et al., 2017b)  the weights were merely attributed by 

the expert. Now, by means of the application of the FAHP we asked the expert to attribute judgments about the 

importance between pairs of criteria and considered a wider set of criteria by taking into consideration the presence 

of uncertainty. As a result, another solution, namely the subtraction method, may be considered as the most 

suitable, as shown in Table 9. 

Results even more accurate and meaningful can be achieved by adequately combining different methods of data 

processing analysis. Indeed, such integration would permit to exploit strengths of different analyses and to sharpen 

the process of abnormality location in WSSs.  

Possible developments of this research could consider the application of other different GPR techniques and the 

elaboration of a detailed scheduling of maintenance activities on the basis of a further integration between the 

already proposed MCDM approach and a multi-objective optimization point of view. 
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