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We report on InAlN underlayer (UL) to improve the efficiency of near ultraviolet (NUV) light emitting diodes (LEDs). While InGaN UL is commonly
used in high-efficiency blue LEDs it may absorb light for shorter wavelengths. InAlN lattice-matched to GaN exhibits a bandgap of 4.6 eV. This
allows alleviating absorption issues in NUV LEDs. We demonstrate that the internal quantum efficiency of 405 nm single InGaN/GaN quantum well
LEDs with InAlN UL is ∼70% compared to less than 10% for LEDs without UL. Excellent I–V characteristics are achieved thanks to polarization
charge screening with high doping level at the InAlN/GaN interface. © 2019 The Japan Society of Applied Physics

B
lue light emitting diodes (LEDs) based on III-nitride
materials are used in many application nowadays1–3)

and can reach internal quantum efficiency of about
90%.4–7) A closer look at the LED structure reveals the
presence of an InGaN underlayer (UL) underneath the
InGaN/GaN quantum well (QW) active region,8–10) including
on semi-polar planes.11) The actual mechanism supporting
the use of an InGaN UL is still debated in the
literature.8–10,12–18) We recently proposed that indium atoms
react with surface defects (SDs), resulting in their incorpora-
tion in the UL.10,19) Otherwise, those defects would have
been incorporated in the InGaN/GaN QWs, reducing thereby
their efficiency due to the concomitant introduction of non-
radiative recombination centers (NRCs).9,19) We also demon-
strated that In atoms are the key ingredient, since they
efficiently capture SDs.19) Therefore, InAlN is a desirable
material due to the high In content (17%) for lattice-matched
(LM) condition to GaN.20) A schematic view of the role of
the InAlN UL mechanism is depicted in Fig. 1. SDs are
present at the surface after the high-temperature GaN buffer
layer growth, [Fig. 1(a)]. They segregate at the surface even
for low temperature (LT) GaN growth, [Fig. 1(b)]. Then, SDs
are incorporated in InGaN QW layers due to a reaction with
indium atoms creating NRCs, [Fig. 1(c)]. The role of the
InAlN UL is thus to trap SDs, [Fig. 1(d)], leading to defect-
free InGaN/GaN QWs, [Fig. 1(e)].
InGaN UL works perfectly in blue LEDs, as testified by

their impressive performance. In the case of near ultraviolet
(NUV) LEDs, light absorption in the InGaN UL could be
significant and affect the external efficiency of the devices.
This could be alleviated by reducing the In composition in
the InGaN UL. However, as the trapping of SDs directly
depends on the total amount of In atoms, one would need a
very thick InGaN layer.19) Such a thick UL may cause a
degradation of the surface morphology and result in longer
growth times. For instance, setting the In composition to
0.5% would require 450 nm thick InGaN UL to incorporate
all SDs.19) An alternative, and attractive, solution is to move
to an InAlN UL, since it would ensure transparency in NUV
range with a bandgap of ∼4.6 eV for LM condition.20) Also
the thickness can be strongly reduced thanks to the high In
content.

In this paper, we demonstrate that a thin (50 nm) InAlN
UL strongly improves the efficiency of NUV (≈405 nm)
single (S)-QW LEDs. We also show that an InAlN/GaN
short-period superlattice (SL) allows for excellent I–V
characteristics.
The LED samples are grown in an Aixtron 200/4 RF-S

metalorganic vapor phase epitaxy reactor. Figure 2 depicts the
different sample structures. The substrate is c-plane sapphire.
After a LT GaN buffer, 2 μm of GaN is deposited at 1000 °C
using trimethylgallium (TMGa) with H2 as a carrier gas. Then,
the temperature is decreased to 770 °C, and the carrier gas
switched to N2 for the growth of the In0.17Al0.83N (bulk or
SL), using trimethylindium (TMIn) and trimethylaluminum
(TMAl), or in the case of sample A, for the growth of the 5 nm
GaN UL using triethylgallium (TEGa). TEGa is also used for
the GaN layer in the InAlN/GaN SL. A 20 nm GaN spacer is
grown at the same temperature with TEGa and with Si doping
around 1 × 1018 cm−3. The InGaN/GaN SQW is 2.7 nm thick

Fig. 1. (Color online) (a) Surface defects (SDs) are formed during GaN
growth at high-temperature. (b) These defects strongly segregate even during
low temperature growth of GaN. (c) SDs react with In atoms and are
eventually trapped in the InGaN QW where they create non-radiative
recombination centers. (d) InAlN underlayer in which SDs are trapped due to
their interaction with In atoms. (e) After the InAlN underlayer, the GaN
surface is free of defects leading to high-efficiency InGaN/GaN QW.

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

© 2019 The Japan Society of Applied Physics034002-1

Applied Physics Express 12, 034002 (2019) LETTER
https://doi.org/10.7567/1882-0786/ab0147

https://crossmark.crossref.org/dialog/?doi=10.7567/1882-0786/ab0147&domain=pdf&date_stamp=2019-02-12
https://orcid.org/0000-0002-8602-4016
https://orcid.org/0000-0002-8602-4016
mailto:camille.haller@epfl.ch
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.7567/1882-0786/ab0147


and the In content 9%. It is capped by an undoped GaN spacer.
Then the carrier gas is switched back to H2 and the
temperature raised to 1000 °C for the growth of the p-type

layers. The latter consists of 20 nm Al0.2Ga0.8N:Mg electron-
blocking layer, 200 nm GaN:Mg layer, and 25 nm p+ contact
layer.
Three samples are compared: a reference sample without

InAlN UL [Fig. 2, structure (A)], a sample with 50 nm thick
bulk InAlN UL [Fig. 2, structure (B)], and a last one with
24× InAlN(2.1 nm)/GaN(1.75 nm) SL UL [Fig. 2, structure
(C)]. Note that the total thickness of In0.17Al0.83N in the SL
corresponds to 50 nm, which is equivalent to the thickness of
the bulk InAlN UL. This is aimed at incorporating the same
amount of SDs.19) The samples were processed into
300× 300 μm2 LEDs with Ti/Al/Ti/Au stack layer for the
n-type contact and Pd/Au for the p-type contact. The I–V
characteristics reported later on correspond to our most
significant data set. The electroluminescence intensity of
the LEDs was recorded on wafer with a calibrated photodiode
placed at the backside of the devices. The external quantum
efficiency was computed from the L–I curve. The maximum
IQE was determined from raw data based on the method
proposed by Ref. 6 and Ref. 21.
LEDs without UL exhibit a maximum IQE of 9% 5% at

a current density of 280 A cm−2. In contrast, devices fea-
turing an InAlN bulk UL have a maximum IQE of 21% 5%
at a current density of 110 A cm−2, [Fig. 3(a)]. Thus, adding
an InAlN UL increases the efficiency of the InGaN/GaN
SQW, however the gain is moderate. One reason could be the
InAlN material quality, which rapidly degrades when in-
creasing the thickness.22–24) Especially V-pits could form and
affect the overall performance of the devices. In order to keep
a smooth surface and a high structural quality, the InAlN bulk
layer was replaced by an InAlN/GaN SL.
Another potential drawback of InAlN UL deals with the

I–V characteristics of LEDs. As shown in Fig. 3(b), the turn-
on voltage is increased by about 0.1 V on bulk InAlN UL
LEDs compared to reference LEDs, i.e. 3.26 V and 3.16 V at
20 mA, respectively. This increase is attributed to the

Fig. 2. (Color online) Sketch of NUV SQW-LEDs with various epilayer
structures: without UL (A), with InAlN bulk UL (B), and with InAlN/GaN
SL UL (C).

Fig. 3. (Color online) (a) IQE as a function of the current density for LEDs with structure (A) (blue), (B) (orange) and (C) (brown). (b) Current as function of
the forward voltage for each LED type. The emission wavelength of those LEDs is ∼405 nm and the device size is 300 × 300 μm2.
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spontaneous polarization mismatch at the second InAlN/GaN
interface. This leads to a negative fixed charge density of

2 10 cm ,13 2~ ´ - which creates a barrier for electrons. To
alleviate this electrostatic barrier,25) we introduced very high
Si doping levels ( 1 10 cm20 3> ´ - ) into the layers close to
the interface, see Fig. 2, structure (C).
Scanning transmission electron microscopy and energy

dispersive X-ray (EDX) analysis were performed on the
24× InAlN(2.1 nm)/GaN(1.75 nm) SL UL LED sample. The
results are shown in Fig. 4. The SL is clearly visible with
sharp interfaces between InAlN and GaN layers [Fig. 4(a)].
Interestingly, the last two periods, which are over-doped with
Si, have less defined interfaces. The EDX profile clearly
shows intermixing between InAlN and GaN, see [Fig. 4(b)].
Notice that the effect of Si impurities on layer intermixing
has already been observed in AlN/AlGaN SL26) and other
semiconductor materials.27,28)

The I–V characteristics of InAlN/GaN SL UL NUV LEDs
are comparable to those measured on reference LEDs
[Fig. 3(b)]. The voltage at 20 mA is 3.18 V and 3.16 V,
respectively.
The maximum IQE of NUV SQW-LEDs with an InAlN/

GaN SL UL is 68% 5% for a current density of
16 A cm−2, see Fig. 3. This is a significant improvement
(about 8×more) over the reference LEDs. Combined with
excellent I–V characteristics, this validates InAlN as a
suitable material to trap SDs and increase the efficiency of
InGaN/GaN QWs.
In conclusion, we demonstrated that InAlN can act as an

efficient UL for InGaN/GaN LEDs. This allows increasing

the IQE without introducing any optical loss thanks to the
large bandgap. This might be a key asset for NUV LEDs in
the 370–410 nm range. We also show that an UL made of a
short-period InAlN/GaN SL is superior to a bulk InAlN layer.
Finally, excellent I–V characteristics can be achieved pro-
vided that a high doping level is introduced at the InAlN/GaN
interface in order to compensate the polarization-induced
charges. The large band gap of InAlN UL opens new device
designs for NUV InGaN based optoelectronics. This would
promote the development of white LEDs based on red/green/
blue phosphors.29,30)
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