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Abstract: Purpose

Diagnosis of ascending thoracic aortic aneurysm (ATAA) is based on the measurement
of the maximum aortic diameter, but size is not a good predictor of the risk of adverse
events. There is growing interest in the development of novel image-derived risk
strategies to improve patient risk management towards a highly individualized level.

Methods

In this study, the feasibility and efficacy of deep learning for the automatic
segmentation of ATAAs was investigated using UNet, ENet, and ERFNet techniques.
Specifically, CT angiography done on 72 patients with ATAAs and different valve
morphology (ie, tricuspid aortic valve, TAV, and bicuspid aortic valve, BAV) were semi-
automatically segmented with Mimics software (Materialize NV, Leuven, Belgium), and
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then used for training of the tested deep learning models. The segmentation
performance in terms of accuracy and time inference were compared using several
parameters.

Results

All deep learning models reported a dice score higher than 88%, suggesting a good
agreement between predicted and manual ATAA segmentation. We found that the
ENet and UNet are more accurate than ERFNet, with the ENet much faster than UNet.

Conclusions

This study demonstrated that deep learning models can rapidly segment and quantify
the 3D geometry of ATAAs with high accuracy, thereby facilitating the expansion into
clinical workflow of personalized approach to the management of patients with ATAAs.

Response to Reviewers: Manuscript Number: BMEL-D-20-00089
Article Title: Deep Learning Approach for the Segmentation of Aneurysmal Ascending
Aorta Journal Title: Biomedical Engineering Letters

COMMENTS FOR THE EDITOR:

Dear Editor

We thank the Editor for his consideration about our study submitted to BMEL. We have
taken reviewer comments into careful consideration when preparing the revised
manuscript and feel that the critiques led directly to an improved submission.

Please consider that, because of a mistake during the submission process, there is a
mismatch in the author order between the text and the metadata generated by web
system. We confirm that the first author is Dr. Albert Comelli, and we will fix this error
on author order during the submission of the revised manuscript.

Specific Editor comments

Editor comments #1: Please make sure to address all comments. The potential overlap
between training and test sets is a very important issue.
Authors: We thanks the Editor for this point. We clarified in the manuscript that no
cross-contamination between training and test sets was performed. As clarified to the
Reviewer #1, the set of CT image of the testing was different to that of training set. We
modified the text to clarify this critical point.

Editor comments #2: Although statement on IRB approval for this study is provided, the
full name of the IRB/ethics committee that approved the study should be provided in
the manuscript. Also, declaration on conflict of interest for all enlisted authors should
be provided in the manuscript (Giovanni Petrucci conflict is not provided).
Authors: The IRB approval was given by the local committee “Comitato Etico sezionale
IRCCS ISMETT” with the number IRRB_04_04. This information was added at the
beginning of the Section 2.1 “Study Population”. The declaration of conflict of interest
was added for Giovanni Petrucci.

 
Reviewer #1

We thank the reviewer for his or her valuable consideration about our study. We have
taken comments into careful consideration when preparing the revised manuscript and
feel that the critiques led directly to an improved submission. We hope that the
reviewer agrees. All changes in the text are highlighted in yellow

Reviewer #1: Summary: The authors present a comparison of aorta segmentation
networks from contrast enhanced ECG-gated CT scans. The reference standard on 72

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



patients is generated via semi-automated segmentation. Experiments are set up in a 5-
fold cross-validation setup. Three networks are compared: Unet, ENet and ERFNet
using the Tversky cost function for network optimization. ANOVA shows that the
performance of ENet and Unet are comparable and higher than that of the ERFNet,
being processing time with ENet less than half of that of the Unet.

Comments:
General comment:  this is a 3D segmentation problem solved in a per-axial slice basis.
One could easily envision 2.5D or 3D methods. Were they considered?
Authors: We have considered 3D segmentation. However, the computational cost of
3D networks is extremely prohibitive. One approach to deal with this is to down-sample
the data. Even with a good graphics card (NVIDIA QUADRO P4000 with 8 GB of
RAM), a 128x128x128 input model would be the highest resolution feasible. This
amount of down-sampling will seriously exacerbate the class imbalance problem and
introduce interpolation artifacts as well along with extremely high computational cost.
Another drawback of the 3D approach, especially in our case, is that a 3D network
would then mandate expanding the training dataset. We believe, even with data
augmentations our rather small dataset of 72 patients would not have been enough to
prevent overfitting. Once we saw clinically significant results with only a 2D network
and in light of the limitations of a 3D approach we decided to stick with 2D networks.
Starting with the small Enet network, 2.5D approaches could certainly be explored in
the future. Eventually, we wish to transfer our results to actual clinical use and
hardware constraints definitely come into play in such scenarios. Please also consider
that our approach follows 2D approach that is consistent with a similar study
(Fantazzini et al CVET 2020) that was published after our submission to this journal. A
comment on this interesting consideration was added in the “Discussion” section with
the following text:

“In this study, 3D segmentation was not adopted as this approach requires larger
dataset and is memory-demanding. One approach to deal with 3D segmentation
drawbacks is to down-sample the data or adapt 3D integration of 2D convolutional
neural networks trained on orthogonal planes to provide a final 3D segmentation. As
this study focused on the impact of different deep learning methods on the
segmentation accuracy of dilated aortas, the efficacy and accuracy of 3D approach will
be investigated in future studies.”

Section 2.5.2
-       It is unclear how the data is processed. According to line 20, 'we extracted
individual slices from all patient cases in the training fold and then used these
individual slices as input for our models'. The authors should be very careful by not
including slices from the same patient into the training and test sets. Slices from the
same patient are highly correlated among them. If slices from the same patient are
included into the training and the test set, then the segmentation results are artificially
inflated due to such correlation. Please clarify if slices from the same patient appear in
each fold's training and validation.
Authors: We are sorry for having confused the Reviewer but it is clear that image slices
are different between training and test datasets. The data was divided into 5 folds at
the patient level and not at slice level. So there was no cross-contamination between
training and test sets. Slices from the same patient were never used for both training
and testing the same model. We have clarified this aspect in “Training” Section with the
following text:

“In stratified five-fold cross-validation, the data set (72 patients) were divided into 5
equal patient subsets, and the holdout method repeated 5 times. Consequently, for
each of the three network models, we trained each single model 5 times. Each time,
one of the 5 subsets was used as the testing set, and the other 4 subsets as training
set. Slices from the same patient were never used for both training and testing
purpose. So, there was no cross-contamination between training and test sets.”

-       Data augmentation - horizontal flips. The heart is not symmetrical with respect to
the horizontal axis. I am surprised such augmentation plays any effect on the
performance.
Authors: In general, data augmentations are used for preventing overfitting by
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expanding the training dataset. We recognize that the heart is not symmetric with
respect to the horizontal axis (or vertical flips) so that flipping of slices will likely
produce the same data. However, the fact is that not symmetric data augmentation
forces the model to learn to detect the same features in different orientations and this
helps to stabilize and regularize the network. Nothing was changed in the manuscript if
this is permitted by the Reviewer.

-       Cost function (line 49) - how were the parameters \alpha and \beta selected?
Authors: The values of alpha and beta were used as suggested by the work proposed
by Salehi and collaborators (see reference 20). They reported that an alpha=0.3 and
beta=0.7 lead to the best results. These values are derived from deep learning of
multiple sclerosis lesion segmentation. The sentence was rephrased with the following
text:

“We also adopted a batch size of 8 slices for all experiments and adopted a Tversky
loss function with α = 0.3 and β = 0.7 as reported by Salehi et al. [20]. These values for
the loss function demonstrated to be effective for training deep neural networks for
sclerosis lesion segmentation.”

Figure 3. There are errors are the end of the segmentation of the descending aorta. Is
this due to the reference standard? It is also impossible to see false negatives in these
images. Maybe consider adding transparency to the reference standard depiction.
Authors: Figure 6 was modified adding transparency to the models. The errors at the
end of the segmentation are caused by the boundary of the standard reference
segmentation while the deep learning models still recognize this end of the vessel as a
region deserving segmentation. Thus, the errors are caused by the reference model
rather than the proposed deep learning algorithms. The sentence at the end of
“Results” section was re-written as a follow”

“Implemented algorithms segmented the whole CT sequence, while the manually
reference standard stopped earlier. For this reason, the distal ends of the segmented
vessels were wrong due to lack of standard references. Nonetheless, all deep learning
models were able to capture the shape of the aortic valve at fully-opened shape.”

 
Reviewer #2

We thank the reviewer for his or her valuable consideration about our study. We have
taken comments into careful consideration when preparing the revised manuscript and
feel that the critiques led directly to an improved submission. We hope that the
reviewer agrees. All changes in the text are highlighted in yellow

Reviewer #2: The Authors compared the performance of UNet, ENet, and ERFNet on
the task of segmentation of aneurysmal ascending aorta. The novelty of this work is
really limited, but it can be treated as work on the application side.

Major issues:
1.      It's better to add a figure to compare the structure difference of different
networks.
Authors: Figure 1, 2 and 3 were added to shows the different architecture of deep
learning models. These figures are related to the text of Sections 2.2, 2.3, and 2.4.

2.      In terms of metrics, please show average symmetric surface distance along with
Dice, since dice is always affected by the size of the target volume.
Authors: The average symmetric surface distance (ASSD) has been added (see Table
1). Moreover, the formulation to compute the ASSD was added in the text of the
Section 2.5.3 as done for other metrics.

3.      Section 3 Results, 2nd paragraph "Nevertheless, the computational cost
highlighted that the ENet is much faster than UNet." Change the 3X3 filters to 5x5 for
UNET can increase the computational cost for it. If this work is mainly about comparing
the performance of several existing network, then using the original setup is better.
Meanwhile for the task studied in this work, it's unclear whether this filter size increase
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is necessary or not.
Authors: It was decided to use 5x5 filters instead of 3x3 in the UNet model based on
the past experience of the authors in conducting segmentation tasks for various
applications. We tried a version of UNet with all 5x5 convolution filters replaced by 3x3
version on the first training/testing fold. The average DICE score on test fold 1 was
92.09% with a standard deviation of 3.05%. In comparison, the 5x5 version produced
an average DICE score of 93.26% with standard deviation of 2.53%. Although the
results are close, the 5x5 version produces better results with less variance. In terms of
computational complexity, the 3x3 version is obviously smaller. However, even with
3x3 filters, the UNet model has 1,946,338 total trainable parameters compared to ENet
with only 362,992 parameters. That's still a fairly significant difference of a factor
greater than 5 times. This aspect was clarified with the following text in the Result
section:

“It is clear that the utilize of 5x5 filters in our UNet architecture implementation is more
memory demanding than the 3x3 convolution filter in the original UNet. In terms of
DSC, we observed, on the first training/testing fold, that the difference on the utilize of
3x3 filters versus the 5x5 filter were 92.09±3.05% and 93.26±2.53%, respectively.
Although the results are close, the 5x5 version produces better results with less
variance. In terms of computational complexity, the 3x3 version is obviously smaller.
However, even with 3x3 filters, the UNet model has 1,946,338 total trainable
parameters compared to ENet with only 362,992 parameters. That's still a fairly
significant difference with a factor greater than 5 times.”

4.      Please zoom in the target region in fig 2. It's hard to see the difference
Authors: The figure has been modified following the reviewer’s suggestion.

5.      For the ANOVA, please report the F statistic for the whole one-way ANOVA first,
and then do the multiple comparison. Also, the authors should use multiple comparison
correction techniques.
Authors: Table 2 has been modified to report the F statistic for the whole one-way
ANOVA. Table 3 has been added to show multiple comparisons using three different
correction techniques (Tukey HSD, Scheffé and Bonferroni /Holm).

Minor issues:
1.      No page #
Authors: Page numbers was added in the manuscript.
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comments into careful consideration when preparing the revised manuscript and feel that the critiques led 

directly to an improved submission. 

 

Please consider that, because of a mistake during the submission process, there is a mismatch in the author 

order between the text and the metadata generated by web system. We confirm that the first author is Dr. 
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between training and test sets was performed. As clarified to the Reviewer #1, the set of CT image of the 

testing was different to that of training set. We modified the text to clarify this critical point. 
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not provided).  

Authors: The IRB approval was given by the local committee “Comitato Etico sezionale IRCCS ISMETT” 
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Reviewer #1 

 

We thank the reviewer for his or her valuable consideration about our study. We have taken comments into 

careful consideration when preparing the revised manuscript and feel that the critiques led directly to an 

improved submission. We hope that the reviewer agrees. All changes in the text are highlighted in yellow 

 

Reviewer #1: Summary: The authors present a comparison of aorta segmentation networks from contrast 

enhanced ECG-gated CT scans. The reference standard on 72 patients is generated via semi-automated 

segmentation. Experiments are set up in a 5-fold cross-validation setup. Three networks are compared: Unet, 

ENet and ERFNet using the Tversky cost function for network optimization. ANOVA shows that the 

performance of ENet and Unet are comparable and higher than that of the ERFNet, being processing time 

with ENet less than half of that of the Unet. 

 

Comments: 

General comment:  this is a 3D segmentation problem solved in a per-axial slice basis. One could easily 

envision 2.5D or 3D methods. Were they considered? 

Authors: We have considered 3D segmentation. However, the computational cost of 3D networks is 

extremely prohibitive. One approach to deal with this is to down-sample the data. Even with a good graphics 

card (NVIDIA QUADRO P4000 with 8 GB of RAM), a 128x128x128 input model would be the highest 

resolution feasible. This amount of down-sampling will seriously exacerbate the class imbalance problem 

and introduce interpolation artifacts as well along with extremely high computational cost. Another 

drawback of the 3D approach, especially in our case, is that a 3D network would then mandate expanding the 

training dataset. We believe, even with data augmentations our rather small dataset of 72 patients would not 

have been enough to prevent overfitting. Once we saw clinically significant results with only a 2D network 

and in light of the limitations of a 3D approach we decided to stick with 2D networks. Starting with the small 

Enet network, 2.5D approaches could certainly be explored in the future. Eventually, we wish to transfer our 

results to actual clinical use and hardware constraints definitely come into play in such scenarios. Please also 

consider that our approach follows 2D approach that is consistent with a similar study (Fantazzini et al 

CVET 2020) that was published after our submission to this journal. A comment on this interesting 

consideration was added in the “Discussion” section with the following text: 

 

“In this study, 3D segmentation was not adopted as this approach requires larger dataset and is memory-

demanding. One approach to deal with 3D segmentation drawbacks is to down-sample the data or adapt 3D 

integration of 2D convolutional neural networks trained on orthogonal planes to provide a final 3D 

segmentation. As this study focused on the impact of different deep learning methods on the segmentation 

accuracy of dilated aortas, the efficacy and accuracy of 3D approach will be investigated in future studies.”  

 

 

Section 2.5.2 

-       It is unclear how the data is processed. According to line 20, 'we extracted individual slices from all 

patient cases in the training fold and then used these individual slices as input for our models'. The authors 

should be very careful by not including slices from the same patient into the training and test sets. Slices 

from the same patient are highly correlated among them. If slices from the same patient are included into the 

training and the test set, then the segmentation results are artificially inflated due to such correlation. Please 

clarify if slices from the same patient appear in each fold's training and validation. 

Authors: We are sorry for having confused the Reviewer but it is clear that image slices are different 

between training and test datasets. The data was divided into 5 folds at the patient level and not at slice level. 

So there was no cross-contamination between training and test sets. Slices from the same patient were never 

used for both training and testing the same model. We have clarified this aspect in “Training” Section with 

the following text: 

 

“In stratified five-fold cross-validation, the data set (72 patients) were divided into 5 equal patient subsets, 

and the holdout method repeated 5 times. Consequently, for each of the three network models, we trained 



each single model 5 times. Each time, one of the 5 subsets was used as the testing set, and the other 4 subsets 

as training set. Slices from the same patient were never used for both training and testing purpose. So, there 

was no cross-contamination between training and test sets.” 

 

-       Data augmentation - horizontal flips. The heart is not symmetrical with respect to the horizontal axis. I 

am surprised such augmentation plays any effect on the performance. 

Authors: In general, data augmentations are used for preventing overfitting by expanding the training 

dataset. We recognize that the heart is not symmetric with respect to the horizontal axis (or vertical flips) so 

that flipping of slices will likely produce the same data. However, the fact is that not symmetric data 

augmentation forces the model to learn to detect the same features in different orientations and this helps to 

stabilize and regularize the network. Nothing was changed in the manuscript if this is permitted by the 

Reviewer.  

 

 

-       Cost function (line 49) - how were the parameters \alpha and \beta selected? 

Authors: The values of alpha and beta were used as suggested by the work proposed by Salehi and 

collaborators (see reference 20). They reported that an alpha=0.3 and beta=0.7 lead to the best results. These 

values are derived from deep learning of multiple sclerosis lesion segmentation. The sentence was rephrased 

with the following text: 

 

“We also adopted a batch size of 8 slices for all experiments and adopted a Tversky loss function with α = 

0.3 and β = 0.7 as reported by Salehi et al. [20]. These values for the loss function demonstrated to be 

effective for training deep neural networks for sclerosis lesion segmentation.” 

 

Figure 3. There are errors are the end of the segmentation of the descending aorta. Is this due to the reference 

standard? It is also impossible to see false negatives in these images. Maybe consider adding transparency to 

the reference standard depiction. 

Authors: Figure 6 was modified adding transparency to the models. The errors at the end of the segmentation 

are caused by the boundary of the standard reference segmentation while the deep learning models still 

recognize this end of the vessel as a region deserving segmentation. Thus, the errors are caused by the 

reference model rather than the proposed deep learning algorithms. The sentence at the end of “Results” 

section was re-written as a follow” 

 

“Implemented algorithms segmented the whole CT sequence, while the manually reference standard stopped 

earlier. For this reason, the distal ends of the segmented vessels were wrong due to lack of standard 

references. Nonetheless, all deep learning models were able to capture the shape of the aortic valve at fully-

opened shape.” 

 

  



Reviewer #2 

 

We thank the reviewer for his or her valuable consideration about our study. We have taken comments into 

careful consideration when preparing the revised manuscript and feel that the critiques led directly to an 

improved submission. We hope that the reviewer agrees. All changes in the text are highlighted in yellow 

 

Reviewer #2: The Authors compared the performance of UNet, ENet, and ERFNet on the task of 

segmentation of aneurysmal ascending aorta. The novelty of this work is really limited, but it can be treated 

as work on the application side. 

 

Major issues: 

1.      It's better to add a figure to compare the structure difference of different networks. 

Authors: Figure 1, 2 and 3 were added to shows the different architecture of deep learning models. These 

figures are related to the text of Sections 2.2, 2.3, and 2.4. 

 

2.      In terms of metrics, please show average symmetric surface distance along with Dice, since dice is 

always affected by the size of the target volume. 

Authors: The average symmetric surface distance (ASSD) has been added (see Table 1). Moreover, the 

formulation to compute the ASSD was added in the text of the Section 2.5.3 as done for other metrics.  

 

3.      Section 3 Results, 2nd paragraph "Nevertheless, the computational cost highlighted that the ENet is 

much faster than UNet." Change the 3X3 filters to 5x5 for UNET can increase the computational cost for it. 

If this work is mainly about comparing the performance of several existing network, then using the original 

setup is better. Meanwhile for the task studied in this work, it's unclear whether this filter size increase is 

necessary or not. 

Authors: It was decided to use 5x5 filters instead of 3x3 in the UNet model based on the past experience of 

the authors in conducting segmentation tasks for various applications. We tried a version of UNet with all 

5x5 convolution filters replaced by 3x3 version on the first training/testing fold. The average DICE score on 

test fold 1 was 92.09% with a standard deviation of 3.05%. In comparison, the 5x5 version produced an 

average DICE score of 93.26% with standard deviation of 2.53%. Although the results are close, the 5x5 

version produces better results with less variance. In terms of computational complexity, the 3x3 version is 

obviously smaller. However, even with 3x3 filters, the UNet model has 1,946,338 total trainable parameters 

compared to ENet with only 362,992 parameters. That's still a fairly significant difference of a factor greater 

than 5 times. This aspect was clarified with the following text in the Result section: 

 

“It is clear that the utilize of 5x5 filters in our UNet architecture implementation is more memory demanding 

than the 3x3 convolution filter in the original UNet. In terms of DSC, we observed, on the first 

training/testing fold, that the difference on the utilize of 3x3 filters versus the 5x5 filter were 92.09±3.05% 

and 93.26±2.53%, respectively. Although the results are close, the 5x5 version produces better results with 

less variance. In terms of computational complexity, the 3x3 version is obviously smaller. However, even 

with 3x3 filters, the UNet model has 1,946,338 total trainable parameters compared to ENet with only 

362,992 parameters. That's still a fairly significant difference with a factor greater than 5 times.” 

 

4.      Please zoom in the target region in fig 2. It's hard to see the difference 

Authors: The figure has been modified following the reviewer’s suggestion.  

  

5.      For the ANOVA, please report the F statistic for the whole one-way ANOVA first, and then do the 

multiple comparison. Also, the authors should use multiple comparison correction techniques. 

Authors: Table 2 has been modified to report the F statistic for the whole one-way ANOVA. Table 3 has 

been added to show multiple comparisons using three different correction techniques (Tukey HSD, Scheffé 

and Bonferroni /Holm). 

 



 

Minor issues: 

1.      No page # 

Authors: Page numbers was added in the manuscript. 
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 2 

Abstract.  

Purpose: Diagnosis of ascending thoracic aortic aneurysm (ATAA) is based on the measurement of 

the maximum aortic diameter, but size is not a good predictor of the risk of adverse events. There is 

growing interest in the development of novel image-derived risk strategies to improve patient risk 

management towards a highly individualized level. Methods: In this study, the feasibility and 

efficacy of deep learning for the automatic segmentation of ATAAs was investigated using UNet, 

ENet, and ERFNet techniques. Specifically, CT angiography done on 72 patients with ATAAs and 

different valve morphology (ie, tricuspid aortic valve, TAV, and bicuspid aortic valve, BAV) were 

semi-automatically segmented with Mimics software (Materialize NV, Leuven, Belgium), and then 

used for training of the tested deep learning models. The segmentation performance in terms of 

accuracy and time inference were compared using several parameters. Results: All deep learning 

models reported a dice score higher than 88%, suggesting a good agreement between predicted and 

manual ATAA segmentation. We found that the ENet and UNet are more accurate than ERFNet, 

with the ENet much faster than UNet. Conclusions: This study demonstrated that deep learning 

models can rapidly segment and quantify the 3D geometry of ATAAs with high accuracy, thereby 

facilitating the expansion into clinical workflow of personalized approach to the management of 

patients with ATAAs.  

 

Keywords: Deep Learning; segmentation; Aorta; Aneurysm; Aortic Valve. 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 3 

1 Introduction 

An ascending thoracic aortic aneurysm (ATAA) represents a permanent vessel dilatation of the 

aorta leading to adverse events and death. Nearly 10 out of 100,000 persons per year are affected by 

ATAA [1], with the congenital bicuspid aortic valve (BAV) having a reported prevalence of the 

aortopathy in the range of 20-84% [2]. Indeed, patients with BAV have an 80-fold higher risk of 

developing an ATAA than the general population with the morphologically-normal tricuspid aortic 

valve (TAV) [3]. If left untreated, an ATAA can lead to fatal complications such as an aortic 

rupture or dissection. Elective surgery to avoid aortic complications is indicated when the aortic 

diameter exceeds 5.5 cm since the yearly risk of dissection or rupture rises from 3 to 7% with 

aneurysms > 6 cm [4]. Although diagnostic imaging is an essential step to measure the critical 

aortic diameter of an ATAA, rupture and dissection may occur at aortic size not falling within 

surgical guidelines so additional metrics not based on size are needed to improve the clinical 

decision-making process [5]. Manual or semi-automatic segmentation from computerized 

tomography (CT) or magnetic resonance imaging (MRI) data is usually performed for aortic size 

evaluation. It is also important to remember that size is not the only important imaging marker; 

aortic shape matters as well as the loss of the normal “waist” of the aorta at the sinotubular junction.  

 

Deep learning methods are emerging for vascular segmentation and remains a challenging area of 

research [6-10]. These techniques have shown tremendous success in the last 5 years for image 

classification and segmentation tasks in various fields, especially for neuroimaging for small vessel 

segmentation [11]. In general, the deep learning approach requires i) any medical images (e.g. MRI, 

or CT images), ii) a volume of interest according to the desired classification output, iii) the training 

and testing of the deep learning algorithm and iv) the validation of semantic segmentation. Deep 

learning techniques may appear simpler and more flexible than machine learning but require more 

quantities of labelled data for the training process and are usually more complex and less 

transparent (the so-called ‘black box’). This has limited the widespread adoption of deep learning in 
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 4 

clinical practice. However, several different categories of deep learning models have been proposed 

for image segmentation with the UNet being the most adopted technique for biomedical imaging 

analysis [12]. In a different way, efficient neural network (ENet) [13] and the efficient residual 

factorized convnet (ERFNet) [14] are commonly used in mobile applications where hardware 

availability is limited and accurate segmentation is very critical. 

 

This study aims to develop a deep learning framework for the segmentation of the aneurysmal aorta 

and its valve. Specifically, deep learning vessel segmentation was developed using 72 CT scans of 

patients with ATAAs and different aortic valve morphology (ie, BAV and TAV). Three different 

deep learning models including the UNet, ENet, and ERFNet were investigated to account for 

accurate vessel segmentation, fast training time, low hardware requirements for inference, and low 

training data requirements. Cross-validation strategy was applied for training. The three deep 

learning models were compared to reveal accurate segmentation of ATAAs with a small sample 

size.  

 

2 Materials and Method 

2.1 Study Population and CT Imaging 

After internal review board approval (IRRB_04_04 released by Comitato Etico sezionale IRCCS 

ISMETT) and informed consent, a total of 72 ATAAs collected from patients underwent 

electrocardiographic-gated computed tomography (ECG-gated CT) angiography for aortic size 

evaluation were enrolled. For all patients, ECG-gated CT scans were done after intravenous 

injection of contrast agent to improve image quality. The CT examination was carried out on a GE 

VCT 64-channel scanner (GE Medical Systems, Milwaukee, Wisconsin) with gantry rotation 

velocity of 0.5 m/s and spiral pitch of 0.984. This allowed us to obtain 10-phase ECG-gated 

thoracic data sets of the entire cardiac cycle with a resolution of 512x512, and slice thickness of 

0.625 mm. In this study, we selected the cardiac phase showing the aortic valve at fully opened 
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shape, which frequently occurs at 50–100 ms after the R peak. Aortic valve morphology (ie, BAV 

versus TAV) was assessed by an experienced radiologist using images reconstructed parallel to the 

aortic valve plane.  

 

For training of deep learning networks, semi-automatic thresholding of the contrast-enhanced 

images followed by manual cropping and morphologic operations was performed to generate 3D 

virtual masks of whole aorta using Mimics software (Materialize NV, Leuven, Belgium). This was 

performed by a 10-year experienced user as previously done by our group [15-17]. All 3D 

segmented masks had size characterized by isotropic voxel size of 1x1x1 mm3 and matrix resolution 

of 512x512. Segmentation masks were resampled using nearest neighbour interpolation and 

converted to binary values with 0 for background and 1. We then implemented UNet (Section 2.2), 

ENet (Section 2.3) and ERFNet (Section 2.4) networks and Tversky loss using Keras with 

Tensorflow (Section 2.5) in the open-source mathematical programming language Python 

(www.python.org).  

 

2.2 UNet Model 

Several changes were made to the original UNet architecture to improve segmentation results [12], 

as showed in Figure 1. All 3x3 convolutions were replaced by larger 5x5 convolution operators. 

Each convolution was followed by a drop out [18] layer with rate of 10%. Dropout layers help to 

regularize the network and avoid overfitting. While the original UNet architecture does not use 

padding when applying convolution operators, we adopted zero padding to ensure that the size of 

the output feature map is the same as the input size. The original UNet has a 2D size of 32x32 along 

with 1024 feature maps at the final layer of the contraction path. In a different way, we used an 

input size of 512x512 with 32 filters on the first contraction path layer, with doubling of feature 

maps after each max pool and stopping at 256 feature maps and 2D size of 64x64.  
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2.3 ENet Model 

The ENet represents optimized neural network developed for fast inference and high accuracy, 

which typically occur in augmented reality and automotive [13]. The ENet architecture was based 

on building blocks of residual networks, with each block consisting of three convolutional layers. 

These were a 1x1 projection that reduces dimensionality, with a regular convolutional layer and a 

1x1 expansion along with batch normalization and surpassing human-level performance. ENet 

adopted several types of convolutions to build an encoder/decoder style image segmentation 

network. In some layers, ENet had asymmetric convolutions characterized by separable 

convolutions with sequence of 5x1 and 1x5 convolutions. The 5x5 convolution had 25 parameters 

while the corresponding asymmetric convolution had only 10 parameters to reduce the network 

size. Finally, the ENet used a single initial block in addition to different variations of the bottleneck 

layer. Figure 2 shows the ENet architecture [13]. 

 

2.4 ERFNet Model 

Inspired by residual networks and ENet, ERFNet was optimized to improve accuracy and efficiency 

in image segmentation with respect to ENet [14]. This leads to more accurate segmentations for 

urban scenario. The basic building block module of ERFNet segmentation network was referred to 

as a non-bottleneck-1D layer (see Figure 3) and comprised of two sets of factorized (separable or 

asymmetric) convolutions of size 3x1 followed by the 1x3 with rectified linear unit non-linearity. 

The input feature map of the main convolution path was added element-wise to the output of the 

convolution path, which represented the input of the next layer after applying the rectified linear 

unit non-linearity. Size of ERFNet input was 512x512 while the down-sampler block was similar to 

that of ENet architecture. This architecture was based on dilated convolutions with different sizes in 

the Non-bt-1D layers as well as spatial dropout as regularizer. 

 

2.5 Training Methodology 
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2.5.1 Loss Function 

Deep learning methods generally suffer from imbalanced data problems [19]. This problem is 

common in biomedical image segmentation where the anatomy of interest may be very small 

compared to the background consisting of connective tissue with a wide range of intensity grey 

values. In such imbalanced data problems, the network tends to simply predict most voxels as 

belonging to the background class. Loss functions can be adopted to solve the class imbalance 

problem and provide a large weight to foreground voxels.  

 

To overcome imbalanced data problem, we adopted Tversky loss function [20] assuming the dice 

similarity coefficient (DSC) as:  

𝐷𝑆𝐶 =  
2|𝑃 ∩ 𝐺|

|𝑃| + |𝐺|
 (1) 

where P and G are the set of predicted and ground truth labels, respectively. To make better 

adjustment of the weights of false positive (FP) and false negative (FN), we adapted a penalty 

approach as a follow:  

𝑆(𝑃, 𝐺; 𝛼 𝛽) =
|𝑃 ∩ 𝐺|

|𝑃 ∩ 𝐺| + 𝛼|𝑃\𝐺| + 𝛽|𝐺\𝑃|
 (2) 

where 𝛼 and 𝛽 control the magnitude of penalties of FPs, and FNs and P\G is the relative 

complement of G on P. Therefore, the Tversky loss function can be defined as:  

𝑇(𝛼 𝛽) =
∑ 𝑝0𝑖 𝑔0𝑖

𝑁
𝑖=1

∑ 𝑝0𝑖 𝑔0𝑖
𝑁
𝑖=1 + 𝛼 ∑ 𝑝0𝑖 𝑔1𝑖

𝑁
𝑖=1 + 𝛽 ∑ 𝑝1𝑖 𝑔0𝑖

𝑁
𝑖=1

 (3) 

where the output of the final layer of the network (soft-max layer), p0i is the probability of voxel i to 

be part of ATAA wall and p1i is the probability of it belonging to the background. Also, the ground 

truth training label g0i is 1 for ATAA wall and 0 for everything else (background) and vice-versa for 
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the g1i. By adjusting the parameters, 𝛼 and 𝛽, the trade-off can be controlled between FPs and FNs. 

Setting 𝛼 = 𝛽 = 0.5 leads to the familiar DSC while setting 𝛼 + 𝛽 = 1 leads to a set of 𝐹𝛽 scores, 𝛽′s 

larger than 0.5 weight recall higher than precision by placing more emphasis on FNs leading to 

better segmentation in slices with small foreground area. 

 

2.5.2 Training  

In stratified five-fold cross-validation, the data set (72 patients) were divided into 5 equal patient 

subsets, and the holdout method repeated 5 times. Consequently, for each of the three network 

models, we trained each single model 5 times. Each time, one of the 5 subsets was used as the 

testing set, and the other 4 subsets as training set. Slices from the same patient were never used for 

both training and testing purpose. So, there was no cross-contamination between training and test 

sets.  

 

Data augmentation was used to train neural network models to reduce overfitting. This was applied 

by randomly rotating and translating in both x and y directions, and then applying shearing, 

horizontal flip and zooming to the input training image slices. Additionally, data standardization or 

normalization was performed as a pre-processing step to prevent the weights from becoming too 

large and thus avoid numerical instability. For each fold, 2D pixel-wise mean and standard 

deviation were computed using all training data. Specifically, each patient data was standardized 

subtracting the mean and dividing by the standard deviation. An initial set of 16 patients for 

determining the best learning rates for each of three models was used. A learning rate of 0.0001 for 

ENet model and 0.00001 for ERFNet and UNet models with Adam optimizer were adopted [21]. 

We also adopted a batch size of 8 slices for all experiments and adopted a Tversky loss function 

with 𝛼 = 0.3 and 𝛽 = 0.7 as reported by Salehi et al. [20]. These values for the loss function 

demonstrated to be effective for training deep neural networks for sclerosis lesion segmentation.  
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All models were trained with a maximum of 100 epochs; particularly, an automatic stopping 

criterion ending the training step when loss decreased upon 10 epochs was implemented.  

 

A high-end HPC system equipped with a GPU (NVIDIA QUADRO P4000 with 8 GB of RAM) 

was used to train all networks and run inference. 

 

2.5.3 Data Analysis 

For each clinical case, sensitivity, positive predictive value (PPV), Dice score (DSC), volume 

overlap error (VOE), relative volume difference (VD), and average symmetric surface distance 

(ASSD) were computed to compare the performance of each deep learning network [22, 23]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
 (4) 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(5) 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(6) 

𝑉𝑂𝐸 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(7) 

𝑉𝐷 =  
|𝐹𝑁 − 𝐹𝑃|

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(8) 

𝐴𝑆𝑆𝐷(𝑋, 𝑌) =
{𝐴𝑆𝐷(𝑋, 𝑌) +  𝐴𝑆𝐷(𝑌, 𝑋)}

2
 

(9) 

where: 
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𝐴𝑆𝐷(𝑋, 𝑌) = ∑ 𝑚𝑖𝑛𝑦𝜖𝑌
𝑥𝜖𝑋

𝑑(𝑥, 𝑦)

|𝑋|
 

 

(10) 

Analysis of variance (ANOVA) on the DSC was used to assess statistical differences among 

network. Statistical significance was considered for ≤0.05. 

 

3. Results 

Table 1 shows the performance of ATAA segmentation computed using the ENet, UNet and 

ERFNet methods. It can be observed that the ENet had the highest DSC module (91.2±8.9%) as 

compared to those of both UNet (91.1±10.2%) and ERFNet (88.4±9.9%).  

 

At analysis of variance, the p-value corresponding to the F-statistic of one-way ANOVA was lower 

than 0.05, suggesting that the one or more treatments were significantly different (see Table 2). This 

was demonstrated by the statistical difference in the DSC comparison between deep learning 

methods (see Table 2, and Table 3 where three different multiple comparison correction techniques 

were used). Nevertheless, the computational cost highlighted that the ENet is much faster than 

UNet; Table 4 shows the comparison of computational complexity and performance for each model. 

 

Figure 4 shows the profiles of training DSC and Tversky loss function for one fold. Both DSC and 

Tversky loss profiles indicate that the ENet model converges much faster than both the ERFNet and 

UNet, with the ENet model reaching a training DSC of nearly 0.9 in less than 15 epochs. This 

suggests that training could be obtained faster with ENet. The fact that the training loss of UNet 

model is lower than both the ENet and ERFNet suggests the presence of overfitting, although the 

number of UNet filters in each layer was reduced.  

It is clear that the utilize of 5x5 filters in our UNet architecture implementation is more memory 

demanding than the 3x3 convolution filter in the original UNet. In terms of DSC, we observed, on 

the first training/testing fold, that the difference on the utilize of 3x3 filters versus the 5x5 filter 
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were 92.09±3.05% and 93.26±2.53%, respectively. Although the results are close, the 5x5 version 

produces better results with less variance. In terms of computational complexity, the 3x3 version is 

obviously smaller. However, even with 3x3 filters, the UNet model has 1,946,338 total trainable 

parameters compared to ENet with only 362,992 parameters. That's still a fairly significant 

difference with a factor greater than 5 times. 

Figure 5 displays contours of automatically segmented aorta for different height of the CT axial 

plane of the aneurysmal aorta. Differences in the capability of all models to segment the whole 

aorta can be observed. For one representative patient case, Figure 6 highlights segmented dilated 

aorta and its valve at fully opened shape as obtained by each deep learning models. Implemented 

algorithms segmented the whole CT sequence, while the manually reference standard stopped 

earlier. For this reason, the distal ends of the segmented vessels were wrong due to lack of standard 

references. Nonetheless, all deep learning models were able to capture the shape of the aortic valve 

at fully-opened shape. The regions of pronounced curvature changes exhibited geometrical changes 

between predicted and manually-segmented ATAAs. 

 

4. Discussion 

In this study, the feasibility and efficacy of three deep learning models for the segmentation of the 

aneurysmal ascending aorta was assessed accounting for accurate vessel segmentation, fast training 

time, low hardware requirements for inference, and low training data requirements. Using ECG-

gated CT angiography of 72 patients with ATAA and different valve morphologies, all deep 

learning models were able to accurately segment the dilated aortas when compared to those 

obtained by manual segmentation. Among tested deep learning models, the key differences are 1) 

the ENet and UNet result more accurate than ERFNet, with the ENet faster than UNet; 2) the ENet 

model converges faster than both the ERFNet and UNet. Although validation in large image dataset 

is warrant, the clinical application of deep learning may revolutionize the way we diagnose the 
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aneurysmal ascending aorta and open the way towards clinical decision-support system for risk 

stratification and patient management.   

 

A deep learning model for multiple structures would be consistent and fast to reproduce the same 

result every time. It is recognized that certain segmentation outputs of our ATAA models revealed 

lower DSC, but on further inspection, this was due to ground truth annotation error by human 

readers or artifacts caused by the high heart rate that is common in the bicuspid patient population 

[2]. Furthermore, the agreement between deep learning predictions and manual segmentations is 

comparable to that usually reported for the inter- and intra-reader agreements by manual operators 

[24]. To the best of our knowledge, this is the first study that adopted ENet and ERFNet for the 

cardiovascular medical imaging analysis. These models are developed for real-time applications and 

are therefore smaller and faster than the UNet model used in other studies for cardiovascular 

segmentation [8, 9, 25, 26]. The ENet model has an order of magnitude fewer parameters than both 

ERFNet and UNet while ERFNet has less than half the number of parameters compared to UNet. 

Using a fair GPU hardware, we found that the ENet needs only 15.2 s for the ATAA segmentation 

as compared to the slower 39.1 s shown by the UNet. However, when computations are performed 

on CPU, the size of the ATAA model has a remarkable impact on the performance of deep learning 

model, with ENet and UNet, which respectively employ on average about 122.5 s and 1398.2 s to 

segment the CT data set of a patient with ATAA. 

 

The fact that the proposed deep learning models were able to accurately segment the dilated aortas 

on the basis of a small training dataset is due to an ad-hoc pre-processing that was previously 

developed by our group [23, 27, 28, 22]. In general, deep learning methods suffer when applied to 

class imbalanced data and tends to predict most voxels as belonging to a background class. To 

overcome this issue, we used a custom version of Tversky loss function [20] to provide a larger 

weight to the target voxels and thus to learn the foreground object representation more effectively. 
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Moreover, a five-fold cross-validation strategy using 2D slices from all patient cases as model input 

was used to overcome the limit of the small training dataset while the overfitting was reduced by six 

different types of data augmentation techniques. In other deep learning studies, the number of data 

for training was remarkable [26, 8, 9, 6]. With regards to cardiovascular anatomies, Baskaran et al. 

[9] applied a UNet-inspired deep learning model to segment cardiac structures and great vessels 

from 206 patients who underwent coronary CT angiography. They obtained an overall median DSC 

of 0.820. For the abdominal aorta, Roth et al [26] trained a deep learning model using 331 CT scans 

to obtain a DSC of 0.79. Another study based on convolutional neural networks segmented three 

parts of the thoracic aorta, with DSC ranging from 0.83 to 0.88 [25]. Using an ad-hoc pre-

processing strategy, we were able not only to reduce the need for a big training dataset but also 

improved the segmentation accuracy as the DSC was greater than 0.88 with all deep learning 

models. 

 

The clinical decision-making process for the management of patients with ATAAs is based on the 

maximum aortic size normalized by the patient body size index or height. However, size is not a 

good predictor of aortic rupture or dissection [4]. Phenotypic classification has evinced that ATAAs 

confined to the aortic root grow differently by aneurysm shapes involving the tubular portion of the 

ascending aorta, thereby demonstrating the lack of predictive capability of the single aortic size 

measurement [29]. There is therefore an emerging interest in the development of image-derived 

strategies to improve ATAA risk definition to highly individualized level [30]. These novel 

strategies rely on flow analysis computed by in-vivo 4D Flow MRI [31], computational predictions 

based on rupture potential indices of the ATAA wall [32], combination of computational analyses 

and plasma-based biomarkers [15, 33, 34]. Recently, few research groups have proposed machine 

learning and statistical shape analysis to investigate the relationship between shape features and 

numerically predicted risk variables of ATAAs [35, 36]. On the other hand, aortic strain for 

stiffness-based risk predictions is increasing the interest of many researchers because this metric 
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can be easily obtained by echocardiographic imaging without the need of in-silico simulations and 

assumptions on ATAA material properties. We recently developed a mathematical algorithm to 

quantify the full-field aortic strain of the ATAA wall from ECG-gated CT angiography and 

predicted the aneurysm risk by a stiffness-based parameter [37]. This approach was time-consuming 

because it was based on manual segmentations of the ATAA wall at ten cardiac phases. The 

combination of the proposed deep learning models with mathematical algorithms for strain analysis 

can be easily implemented in the clinical framework to provide stiffness-based risk prediction and 

tailor personalized approach to ATAA management. Therefore, this study adds another brick 

towards the implementation of fully-automatic risk strategies for patients with ATAAs. 

 

There are a number of limitations in this work. The number of patients used for training and 

validation may have limited the accuracy of deep learning models. The different patterns of aortic 

dilatation (ie, aortic root vs tubular aortic dilatations) and bicuspid phenotypes (ie, anterior vs 

posterior) may have increased the variability in the investigated CT image dataset. As more patients 

will be recruited, the training and validation of deep learning models will be re-evaluated by 

grouping patients according to similar shape features or aortic valve phenotypes. In this study, 3D 

segmentation was not adopted as this approach requires larger dataset and is memory-demanding. 

One approach to deal with 3D segmentation drawbacks is to down-sample the data or adapt 3D 

integration of 2D convolutional neural networks trained on orthogonal planes to provide a final 3D 

segmentation. As this study focused on the impact of different deep learning methods on the 

segmentation accuracy of dilated aortas, the efficacy and accuracy of 3D approach will be 

investigated in future studies. Finally, the accuracy of trained deep learning models is likely 

confined to our CT scanner, and extension to healthy non-aneurysmal aortas could be not 

straightforward. 

 

5. Conclusion 
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 15 

This study demonstrated the feasibility and efficacy of deep learning for the segmentation of 

ATAAs as collected from ECG-gated CT angiography. The tested deep learning models highlighted 

a good segmentation accuracy with DSC of 88% in all models (ie, UNet, ENet and ERFNet), with 

differences related to the training time and data requirements. The clinical application of deep 

learning for automatic vessel segmentation can improve not only the diagnosis of ATAAs but can 

also improve the management of patients towards personalized risk strategies. 
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Figure Legends 

 

Figure 1: Comparison between the original UNet architecture (a) [12] and our UNET 

implementation (b). Each blue box is a multi-channel feature map with the number of channels 

denoted at the top of the box. The x-y size is denoted at the bottom lower left edge of the box. 

White boxes represent copied low-resolution features.  

 

Figure 2: ENet architecture [13]. (a) ENet initial block with 2x2 max pooling with a stride of 2 and 

convolution has 15 filters, summing to 16 feature maps after concatenation. (b) ENet bottleneck 

module. ‘conv’ is either a regular, dilated, or full convolution (deconvolution) with 3x3 filters, or a 

5x5 convolution decomposed into two asymmetric (separable) ones. 

 

Figure 3: Basic building block layer of ERFNet network called Non-bottleneck-1D (Non-bt-1D) 

[14]. 

 

Figure 4: Plot the training DSC and loss function Tversky loss for each of three models for one 

particular fold. 

 

Figure 5: Comparison of segmentation performance for the three architectures in 8 different slices. 

The manual segmentation (yellow), ENet (red), ERFNet (blu) and U-Net (green) are superimposed.  
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Figure 6: Comparison of 3D segmentation of prostate using the three Net architectures. The manual 

segmentation (yellow), ENet (red), ERFNet (blu) and U-Net (black) are superimposed.  
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Table 1: Performance segmentation using the ENet, UNet and ERFNet methods.  

 Sensitivity PPV DSC VOE VD ASSD 

ENet 

Mean 92.69% 90.67% 91.22% 15.22% 2.83% 4.46 

± std 11.13% 9.49% 8.97% 11.62% 14.47% 4.54 

± CI (95%) 2.57% 2.19% 2.07% 2.68% 3.34% 1.05 

UNet 

Mean 91.63% 91.79% 91.09% 15.30% 0.12% 5.48 

± std 12.14% 7.21% 10.18% 11.76% 16.09% 4.67 

± CI (95%) 2.80% 1.66% 2.35% 2.72% 3.72% 1.08 

ERFNet 

Mean 89.01% 88.94% 88.41% 19.56% 0.92% 5.48 

± std 12.46% 10.33% 9.94% 13.88% 16.87% 4.67 

± CI (95%) 2.88% 2.39% 2.30% 3.21% 3.90% 1.08 
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Table 2: ANOVA on the DSC showed statistical differences between segmentation methods.  

ANOVA F value F critic value P-value 

ENet vs ERFNet vs UNet 3.667 3.038 0.027 

ENet vs ERFNet 5.520 3.907 0.020 

ERFNet vs UNet 4.474 3.907 0.036 

ENet vs UNet 1.270 3.907 0.261 
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Table 3: Tukey HSD, Scheffé and Bonferroni/Holm tests (post-hoc tests) were used as multiple 

comparison correction techniques. 

Tukey HSD Q-statistic P-value 

ENet vs ERFNet 2.451 0.019 

ERFNet vs UNet 2.3413 0.022 

ENet vs UNet 0.109 0.189 

Scheffé T-statistic P-value 

ENet vs ERFNet 1.733 0.022 

ERFNet vs UNet 1.656 0.026 

ENet vs UNet 0.077 0.199 

Bonferroni/Holm T-statistic P-value 

ENet vs ERFNet 1.733 0.025 

ERFNet vs UNet 1.656 0.030 

ENet vs UNet 0.077 0.282 
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Table 4: Comparison of computational complexity and performance of the three models. 

Model Name Number of Parameters Size on disk 

[MB] 

Inference Times 

[s] 

  Trainable Non-Trainable   CPU GPU 

Enet 362992 8352 5.8  122.56 15.23  

ERFNet 2056440 0 25.3  157.53  16.64 

Unet 5403874 0 65.0  1398.23  39.11 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 28 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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