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Abstract
In this article, we investigate deformations of a Calabi-Yau manifold Z in a toric variety F, 
possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert 
functor HZ

F of infinitesimal deformations of Z in F to the functor of infinitesimal deforma-
tions of Z is smooth. This implies the smoothness of HZ

F at the corresponding point in the 
Hilbert scheme. Moreover, we give some examples and include some computations on the 
Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.
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1 Introduction

In this paper, we focus our attention on Calabi-Yau manifolds, i.e., projective manifolds 
with trivial canonical bundle and without holomophic p-forms. More precisely, if we focus 
on dimension greater than or equal to three, Z is a Calabi-Yau manifold of dimension n if 
the canonical bundle KZ ∶= Ωn

Z
 is trivial and H0(Z,Ω

p

Z
) vanishes for p in between 0 and 

n. Since the canonical bundle is trivial, Z has unobstructed deformations, i.e., the moduli 
space of deformations of Z is smooth. This is the famous Bogomolov-Tian-Todorov Theo-
rem [4, 5, 27, 28]. A more algebraic proof of this fact [17, 19, 24] shows that the func-
tor DefZ of infinitesimal deformations of Z is smooth too. In particular, the dimension of 
the moduli space at the point corresponding to Z is the dimension of H1(Z,TZ) , where TZ 
denotes the tangent bundle of Z. Although we know that the moduli space is smooth, we 
still miss a geometric understanding of it; for instance, the number of its irreducible com-
ponents is unknown. A famous conjecture by M. Reid claims that the moduli space of sim-
ply connected smooth Calabi-Yau threefolds is connected via conifold transitions [25]. The 
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general picture is still unknown but in some cases there has been quite a lot of progress. 
For example, the moduli spaces of complete intersection Calabi-Yau 3-folds in products of 
projective spaces are connected with each other by a sequence of conifold transitions (see 
[29] and references therein).

If Z is contained in an ambient manifold X, we can investigate the deformation func-
tor HX

Z
 of deformations of Z in X (fixed) and the forgetful functor � ∶ HX

Z
→ DefZ , which 

associates with an infinitesimal deformation of Z in X the isomorphism class of the 
deformation of Z. For example, if � is smooth we can conclude that all deformations 
of Z lie in X and, since DefZ is smooth, the functor HX

Z
 is also smooth [23, Proposition 

2.2.5].
For every Calabi-Yau manifold Z of dimension at least 3 in projective space, the 

embedded deformations of Z in ℙn are unobstructed. This follows from the vanish-
ing H1(Z,T

ℙn|Z) = 0 [15, Corollary A.2] that implies that the forgetful morphism 
� ∶ Hℙ

n

Z
→ DefZ is smooth, i.e., all deformations of Z as an abstract variety are contained in 

ℙ
n . Note that dimension at least 3 is fundamental, since in dimension 2 the same statement 

does not hold (see also Remark 2.3). Moreover, since DefZ is smooth, we can conclude that 
Hℙ

n

Z
 is also smooth. Note that this does not imply that any two Calabi-Yau manifolds of the 

same dimension in ℙn are deformation equivalent: for instance, explicit examples of three-
folds in ℙ6 that are not deformation equivalent are constructed in [2].

The projective space ℙn is a toric Fano manifold, i.e., a smooth toric variety with ample 
anticanonical bundle. Therefore, it is natural to investigate whether the previous results for 
ℙ
n can be generalised to any toric Fano variety F, not simply ℙn or the smooth ones. The 

interest in toric Fano varieties is motivated both from the mathematics and the physics 
viewpoint; indeed these varieties have an essential role in the Minimal Model Program and 
Mirror Symmetry (see, for instance, [26] for a recent work on the latter topic). In [21], the 
author investigates deformation theory of toric Fano varieties.

In [3], we investigated Calabi-Yau manifolds that are anticanonical divisors in toric 
Fano manifolds of dimension greater than or equal to 4. In particular, we proved that the 
forgetful morphism � ∶ HF

Z
→ DefZ is smooth, i.e., all deformations of Z as abstract variety 

are contained in F [3, Proposition 1].
In this paper, we generalise these results considering as ambient space a projective sim-

plicial toric Fano variety F and as subvariety a Calabi-Yau manifold Z embedded in the 
Zariski open set of regular points of F. Under this assumption we investigate the forgetful 
morphism � ∶ HF

Z
→ DefZ . In particular, the following holds (Theorem 3.5).

Theorem 1.1 Let F be a projective simplicial toric Fano variety with KF = −
∑

�∈Σ(1) D� its 
canonical bundle and Z ⊂ F a Calabi-Yau sumbanifold of dimension greater than or equal 
to 3, embedded in the Zariski open set of regular points of F. If for all � ∈ Σ(1) we have

then, the forgetful morphism � ∶ HF
Z
→ DefZ is smooth.

In particular, if Z is a Calabi-Yau manifold, of dimension greater than or equal to 3, 
which is a complete intersection of very ample divisors, then the previous theorem applies 
if the restriction of all D� to Z are nef divisors (Corollary 3.8). We prove Theorem  3.5 
by showing the vanishing H1(Z,TF|Z) = 0 , which is a sufficient condition for the smooth-
ness of the forgetful morphism � ∶ HF

Z
→ DefZ . This implication is well known for the 

smooth case , see for example [23, Proposition 3.2.9]. It can be also proved via Horikawa’s 

H1(Z,OF(D𝜌)⊗OZ) = 0,
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co-stability theorem for the inclusion morphism Z ↪ F [14] or [23, Section  3.4.5]. For 
the reader’s convenience, we give an explicit proof of this fact under our assumptions (see 
Theorem 2.1). Note that the vanishing H1(Z,TF|Z) = 0 is not a necessary condition for the 
smoothness of the forgetful morphism � ∶ HF

Z
→ DefZ (Remark 2.4).

In [2], the author also focuses her attention on Calabi-Yau threefolds of codimension 4 
in ℙ7 with Picard number equals to 1. Using Commutative Algebra methods, new exam-
ples are built and their Hodge numbers are investigated. Then, following this approach, 
we devote our attention to the computation of Hodge numbers of Calabi-Yau submani-
folds Z in a toric Fano variety F. In particular, our calculations focus on the cases with 
H1(Z,TF|Z) = 0 and dimZ = 3, 4 (Sect. 4). These includes some examples of Calabi-Yau 
threefold in weighted projective spaces (Sect. 4.1).

Throughout the paper, we work over the field of complex numbers. If not otherwise 
stated, by a toric variety F we mean a projective simplicial toric Fano variety F. We denote 
by Z a sumbanifold of F embedded in the Zariski open set of regular points of F; thus, Z 
can be covered by smooth affine open sets.

In Sect. 2 we collect some results on toric Fano varieties and we prove the main theorem 
on the smoothness of the forgetful functor (Theorem 2.1). Section 3 is devoted to exam-
ples of Calabi-Yau submanifolds Z in toric Fano variety F, such that the forgetful functor 
is smooth. Finally, Sect. 4 contains some computations on the Hodge numbers of Calabi-
Yau threefolds and fourfolds in a toric Fano variety. In particular, we describe examples of 
Calabi-Yau threefolds in weighted projective spaces and complete intersections fourfolds.

2  Embeddings in Fano varieties

In this section, we will follow the notation of the book [6], we refer the reader to this book 
and especially to Chapter 4 for further details. Let F be a projective simplicial toric variety 
with no torus factors, i.e., {u� |� ∈ Σ(1)} spans N

ℝ
 , where Σ is the fan of F in N

ℝ
 and Σ(1) 

denotes the 1-dimensional cones of Σ . We recall that F is simplicial when every � ∈ Σ is 
simplicial, meaning that the minimal generators of � are linearly independent over ℝ [6, 
pag.180].

Moreover, for any strongly convex cone � ∈ N
ℝ
 , we denote by �(1) its rays. Also, 

under our assumptions it makes sense to talk about the canonical divisor KF , which can 
be written as KF = −

∑
�∈Σ(1) D� (for further details, we refer the reader to [6, Chapter 4]). 

The variety F is Fano if its anticanonical divisor −KF is ample. Note that in this case F 
has no torus factors. Let Ω̂1

F
 be the sheaf of Zariski 1-differentials. Recall that Ω̂1

F
 is the 

double dual of the sheaf of Kähler differentials Ω1

F
 . Moreover, as proved for instance 

in [22, p. 56], the dual of Ω̂1

F
 and the dual of Ω1

F
 are isomorphic and we denote it by 

TF ∶= Hom(Ω̂1

F
,OF) = Hom(Ω1

F ,OF).
The hypothesis that F is a simplicial toric variety with no torus factors is needed for the 

existence of a generalized Euler exact sequence [6, Theorem 8.1.6], as in the case for pro-
jective spaces; namely:

where CL(F) denotes the divisor class group of F.

(2.1)0 → Ω̂1

F
→

⨁

𝜌∈Σ(1)

OF(−D𝜌) → CL(F)⊗
ℤ
OF → 0,
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Theorem 2.1 Let F be a simplicial toric Fano variety and Z a smooth subvariety embedded 
in the Zariski open set of regular points of F. Then, the deformation functor � ∶ HF

Z
→ DefZ 

is smooth if H1(Z,TF |Z) = 0.

Proof We follow the usual approach. Consider the generalized Euler exact sequence (2.1):

Note that the divisor class group CL(F) of F is a finitely generated abelian group that can 
have torsion [6, p. 172]. We denote by t the rank of CL(F). Consider the dual of the above 
exact sequence (2.1), i.e., apply the functor HomOF

(−,OF) to obtain

Note that the sheaf Ext1
OF

(CL(F)⊗
ℤ
OF ,OF) = 0 . Since CL(F) is a finitely generated 

group, the torsion subgroup is a finite abelian group, so it is a finite sum of cyclic groups of 
prime power order r = ph . Thus, tensoring by OF over ℤ , we have

Since ℤr ⊗ℤ
OF is a torsion sheaf, applying HomOF

(−,OF) , we get

Moreover, the map on the LHS is an isomorphism of sheaves, we conclude that the sheaf 
Ext1

OF

(ℤr ⊗Z OF ,OF) = 0.
In addition, as mentioned before, TF = Hom(Ω̂1

F
,OF) = Hom(Ω1

F ,OF) , i.e., the tangent 
sheaf of the Fano variety. Then, the exact sequence (2.2) reduces to

Let Z be a smooth variety contained in the smooth locus of the variety F such that the 
inclusion j ∶ Z ↪ F is a closed embedding with ideal sheaf I ⊂ OF . Since Z is smooth 
and embedded in the Zariski open set of regular points of F, the ideal I∕I2 is locally free 
by [9, Exercise 17.12]. Then, under these assumptions, the conormal sequence is exact [23, 
Theorem C.15. (iii)], namely:

Now, consider the dual of the exact sequence (2.4),

Since Z is smooth, the sheaf Ω1

Z
 is locally free and so Ext1

OZ

(Ω1

Z
,OZ) = 0 . Therefore, we 

have the usual normal exact sequence

The induced exact sequence in cohomology is given by

0 → Ω̂1

F
→

⨁

𝜌∈Σ(1)

OF(−D𝜌) → CL(F)⊗
ℤ
OF → 0.

(2.2)

0 → O
⊕t

F
→

⨁

𝜌∈Σ(1)

OF(D𝜌) → HomOF
(Ω̂1

F
,OF) → Ext1

OF
(CL(F)⊗

ℤ
OF ,OF)⋯ .

0 → rℤ⊗
ℤ
OF → OF → ℤr ⊗ℤ

OF → 0.

0 → HomOF
(OF ,OF) → HomOF

(rℤ⊗
ℤ
OF ,OF) → Ext1

OF
(ℤr ⊗Z OF ,OF) → 0.

(2.3)0 → O
⊕t

F
→

⨁

𝜌∈Σ(1)

OF(D𝜌) → TF → 0.

(2.4)0 → I∕I2 → j∗Ω1

F
→ Ω1

Z
→ 0.

0 → TZ → HomOZ
(j∗Ω1

F
,OZ) → HomOZ

(I∕I2,OZ) → Ext1
OZ
(Ω1

Z
,OZ) → ⋯ .

(2.5)0 → TZ → TF|Z → NZ∕F → 0.
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If H1(Z,TF |Z) = 0 , then the morphism H0(Z,NF∕Z) → H1(Z,TZ) is surjective and 
H1(Z,NF∕Z) → H2(Z,TZ) is injective.

According to [23, Poposition 3.2.1], since Z ⊂ X is a closed embedding, the Zariski 
tangent space of HY

Z
 at the point corresponding to Z is H0(Z,NF∕Z) . Moreover, since Z is 

smooth the closed embedding is regular; hence H1(Z,NF∕Z) is an obstruction space for 
the Hilbert functor HY

Z
 . As a consequence, if H1(Z,TF |Z) = 0 , the forgetful morphism 

� ∶ HF
Z
→ DefZ is smooth. In fact, under our assumptions Z is contained in the Zariski 

open set of regular points of the Fano variety F. Thus Z can be covered by smooth affine 
open sets. This remark allows us to apply the standard smoothness criterion in deformation 
theory: see, for instance, [23, Proposition 3.2.9] or [20, Theorem 4.11] and prove that � is 
smooth.   ◻

Remark 2.2 If Z is a Calabi-Yau submanifold of F, then DefZ is smooth (Bogomolov-Tian-
Todorov Theorem) of dimension H1(Z,TZ) . Then, by the previous theorem, HF

Z
 is also a 

smooth functor: the deformation space of Z inside F is smooth of dimension H0(Z,NZ∕F).

Remark 2.3 If dimZ = 2 , then Theorem 3.5 does not hold. It is enough to consider a K3 
surface in ℙ4 . In this case, it is not true that the morphism � ∶ HF

Z
→ DefZ is smooth [23, 

Examples 3.2.11], indeed H1(Z,T
ℙ4 |Z) ≠ 0.

Remark 2.4 The condition H1(X, TF|Z) = 0 is not a necessary condition for the smooth-
ness of the forgetful morphism � ∶ HF

Z
→ DefZ . For example, [23, Example 3.4.4 (iii)], let 

Z ≅ ℙ
1 ⊂ F be a nonsingular projective curve negatively embedded in a projective nonsin-

gular Hirzebruch surface F with Z2 = −n < 0 , n ≥ 1 . Then, the exact sequence

splits since Ext1
OZ
(NZ∕F), TZ) = H1(Z,OZ(n + 2)) = 0 and so TF|Z ≅ OZ(2)⊕OZ(−n) . This 

implies that h0(Z,TF|Z) = 3 . Moreover h0(Z,NZ|F) = 0 and so Z is rigid in F in addition to 
being rigid as an abstract variety. Then, the morphism induced by � on the tangent space is 
surjective, and it is injective on the obstruction spaces: they are both zero since there are no 
deformations. In conclusion,  the morphism  � is smooth even if 
h1(Z,TF|Z) = h1(Z,OZ(2)⊕OZ(−n)) = n − 2 can be non-zero.

3  A large class of examples

Let F be a simplicial toric Fano variety of dimension dimF = n + m for m ≥ 3 . As in the 
previous section, the dual of the generalised Euler exact sequence (2.3) for F is

where KF = −
∑

�∈Σ(1) D� [6, Theorem 8.2.3].

⋯ → H0(Z,NF∕Z) → H1(Z, TZ) → H1(Z, TF |Z) → H1(Z,NF∕Z) → H2(Z,TZ).

0 → TZ → TF|Z → NZ∕F → 0

0 → O
⊕t

F
→

⨁

𝜌∈Σ(1)

OF(D𝜌) → TF → 0,
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Lemma 3.1 Let F be a toric Fano variety and Z ⊂ F a Calabi-Yau sumbanifold. Let D be a 
divisor such that D|Z is nef and big, then

Proof Since the divisor D|Z is nef and big and Z is a Calabi-Yau manifold (and so KZ = 0 ), 
the Kawamata-Viehweg vanishing Theorem [7, Theorem  7.21] or [6, Theorem  9.3.10], 
implies that

  ◻

Remark 3.2 Let F be a toric Fano variety and Z ⊂ F a Calabi-Yau sumbanifold, such that 
dimZ = m . If the divisor D is such D|Z is nef and Dm

⋅ Z > 0 , then D|Z is nef and big [7, 
Section 1.29] and so we can apply the previous Lemma 3.1. Note also that if D is nef then 
its restriction D|Z to Z is also nef [7, Section 1.6].

Remark 3.3 A useful condition for nefness of a divisor D in F is the following: given a 
cone � ∈ Σ , any nef divisor is linearly equivalent to a divisor of the form

where a� = 0 if � ∈ �(1) and a� ≥ 0 for � ∉ �(1) , see [6, Equation 6.4.10].

Corollary 3.4 Let F be a toric Fano variety of dimension dimF = n + m and denote by 
Z ⊂ F a Calabi-Yau smooth variety of dimension dimZ = m . Suppose that Z is a complete 
intersection of very ample divisors. Then, for any divisor D such that D|Z is nef, we have

Proof Suppose that Z is a complete intersection of very ample divisors. Then, there exist 
n very ample divisors Nj , for j = 1,… , n , such that Z = Y1 ⋯Yn , where Yj is an element in 
the linear system |Nj|.

In particular, we have

where the last equality follows from the Nakai-Moishezon Theorem [7, Theorem  1.21], 
indeed N1 is ample and (Dm

⋅ N2 ⋯Nn) has dimension 1. Then, the conclusion follows by 
Remark 3.2 and Lemma 3.1.   ◻

Theorem 3.5 Let F be a simplicial toric Fano variety and Z ⊂ F a Calabi-Yau submanifold 
of dimZ = m , with m ≥ 3 . Suppose that for all � ∈ Σ(1) the divisor D� satisfies the follow-
ing vanishing

Then, the forgetful morphism � ∶ HF
Z
→ DefZ is smooth.

Hj(Z,OF(D)⊗OZ) = 0, ∀ j > 0.

Hj(Z,OF(D)⊗OZ) = Hj(Z,OZ(D|Z + KZ)) = 0, ∀ j > 0.

D =
∑

�

a�D�,

Hi(Z,OF(D)⊗OZ) = 0, ∀ i > 0.

Dm
⋅ Z = Dm

⋅ Y1 ⋯ Yn = N1 ⋅ (D
m
⋅ N2 ⋯Nn) > 0,

H1(Z,OF(D𝜌)⊗OZ) = 0.
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Proof By tensoring with OZ the dual of the generalized Euler exact sequence for F (2.3), 
we obtain

and so

By hypothesis H1(Z,OF(D𝜌)⊗OZ) = 0 . Since Z is a Calabi-Yau manifold of dimension 
dimZ = m ≥ 3 , H2(Z,OZ) = 0 and so H2(Z,O⊕t

Z
) = 0 ; this concludes the proof because 

H1(Z,TF|Z) = 0 and we can apply Theorem 2.1.   ◻

Example 3.6 Let F be a toric Fano variety of dimension dimF = n + m and denote by 
Z ⊂ F a Calabi-Yau submanifold of dimension dimZ = m ≥ 3 . Suppose that Z is a com-
plete intersection of very ample divisors, such that D�|Z is nef for all � ∈ Σ(1) . Then, by 
Corollary 3.4 we have that Hi(Z,OF(D𝜌)⊗OZ) = 0 for all i > 0.

Corollary 3.7 Let F be a simplicial toric Fano variety and Z ⊂ F a Calabi-Yau sumbanifold 
of dimZ = m . Let D� be the divisor associated with � ∈ Σ(1) and assume further that D�|Z 
is nef and Dm

𝜌
⋅ Z > 0 , for all � ∈ Σ(1) . Then,

is smooth.

Proof It is enough to apply Lemma 3.1 and Theorem 3.5.   ◻

Corollary 3.8 Let F be a simplicial toric Fano variety of dimension dimF = n + m and 
denote by Z ⊂ F a Calabi-Yau submanifold of dimension dimZ = m ≥ 3 . Suppose that Z is 
a complete intersection of very ample divisors, such that D�|Z is nef for all � ∈ Σ(1) . Then 
� ∶ HF

Z
→ DefZ is smooth.

Proof It is enough to apply Theorem 3.5 and Example 3.6.   ◻

4  Hodge numbers of Calabi‑Yau varieties

In this section, we are interested in computing Hodge numbers of Calabi-Yau submani-
folds Z of a toric Fano variety F, in particular for the case investigated in the previous sec-
tion, i.e., whenever H1(Z,TF|Z) = 0 . Recall that the Hodge numbers of Z are defined as 
hi,j(Z) = dim

ℂ
Hj(Z,Ωi

Z
) and they satisfy the Hodge duality hi,j(Z) = hj,i(Z) . If dimZ = m , 

since KZ = 0 , we have TZ ≅ Ωm−1
Z

 and so

(3.1)0 → O
⊕t

Z
→

⨁

𝜌∈Σ(1)

OF(D𝜌)⊗OZ → TF|Z → 0,

⋯ → H1(Z,O⊕t

Z
) →

⨁

𝜌∈Σ(1)

H1(Z,OF(D𝜌)⊗OZ) → H1(Z,TF|Z) → ⋯

⋯ → H2(Z,O⊕t

Z
) →

⨁

𝜌∈Σ(1)

H2(X,OF(D𝜌)⊗OZ) → H2(Z,TF|Z) → ⋯ .

� ∶ HF
Z
→ DefZ

hm−1,i(Z) = dimHi(Z,Ωm−1
Z

) = dimHi(Z,TZ).
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Under the assumption that Z is a Calabi-Yau submanifolds of a simplicial toric Fano variety 
F such that H1(Z,TF|Z) = 0 , we can estimate the Hodge numbers of Z.

Proposition 4.1 Let F be a simplicial toric Fano variety of dimension dimF = n + m and 
denote by Z ⊂ F a Calabi-Yau submanifold of dimension dimZ = m . If H1(Z,TF|Z) = 0 , 
then

where t is the rank of CL(F).

Proof The exact sequence (2.5)

induces the following exact sequence in cohomology:

Since dimHi(Z,TZ) = dimHi(Z,Ωm−1
Z

) , we have H0(Z,TZ) = 0 and this implies that

Then, by the long exact sequence associated with the Euler exact sequence 3.1 restricted to 
Z, we obtain

Since H0(Z,OZ) = ℂ and H1(Z,OZ) = 0 , it follows that

where t is the rank of CL(F). Hence,

  ◻

Remark 4.2 In the setup above of a smooth Calabi-Yau submanifold Z in a simplicial toric 
Fano variety F, the previous proposition provides the dimension of the moduli space at the 
point corresponding to Z, that is smooth of dimension H1(Z,TZ).

Proposition 4.3 Let F be a simplicial toric Fano variety of dimension dimF = n + m and 
denote by Z ⊂ F a Calabi-Yau submanifold of dimension dimZ = m ≥ 3 , that is the com-
plete intersection of n very ample divisors, such that D�|Z is nef for all � ∈ Σ(1) . Then,

hm−1,1(Z) = dimH1(Z, TZ) = dimH0(Z,NZ∕F) −
⨁

𝜌∈Σ(1)

dimH0(Z,OF(D𝜌)⊗OZ) + t,

0 → TZ → TF|Z → NZ∕F → 0

0 → H0(Z, TZ) → H0(Z,TF|Z) → H0(Z,NZ∕F) → H1(Z,TZ) → H1(Z, TF|Z) = 0.

dimH1(Z,TZ) = dimH0(Z,NZ∕F) − dimH0(Z, TF|Z).

0 → H0(Z,O⊕t

Z
) →

⨁

𝜌∈Σ(1)

H0(Z,OF(D𝜌)⊗OZ) → H0(Z, TF|Z) →

→ H1(Z,O⊕t

Z
) → ⋯ .

dimH0(Z, TF|Z) =
⨁

𝜌∈Σ(1)

dimH0(Z,OF(D𝜌)⊗OZ) − t,

dimH1(Z,TZ) = dimH0(Z,NZ∕F) −
⨁

𝜌i∈Σ(1)

dimH0(Z,OF(D𝜌)⊗OZ) + t.

h1,1 = dimH1(Z,Ω1

Z
) = t,
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where t is the rank of CL(F).

Proof As above, since Z is a Calabi-Yau manifold of dimension m, we have that Ωm
Z
≅ OZ 

and so TZ ≅ Ωm−1
Z

 . Therefore,

The submanifold Z is the complete intersection of n very ample divisors N1,⋯ ,Nn , i.e., 
Z = N1 ⋅ ⋯ ⋅ Nn . In particular, NZ∕F = OZ(N1)⊕⋯⊕OZ(Nn), and so

where in the last equality we use the Kodaira vanishing (the restriction of an ample line 
bundle to a closed subscheme is still ample). The long exact sequence in cohomology asso-
ciated with (2.5) implies that

and so Hm−1(Z,TZ) ≅ Hm−1(Z,TF|Z) . (We actually have Hj(Z, TZ) = Hj(Z,TF|Z) , for all 
j = m − 1 > 2).

Finally, by the long exact sequence associated with the Euler exact sequence 3.1 
restricted to Z, we obtain

Corollary 3.4 implies Hj(Z,OF(D𝜌)⊗OZ) = 0 , for all j > 0 and all � ∈ Σ(1) ; therefore

since Hm(Z,OZ) = ℂ .   ◻

Remark 4.4 If Z is a Calabi-Yau submanifold of dimension dimZ = 3 , that is a complete 
intersection of n very ample divisors in a simplicial toric Fano variety F of dimension 
dimF = n + 3 , such that D�|Z is nef for all � ∈ Σ(1) , then we can describe the Hodge dia-
mond of X. Indeed, by the previous proposition we computed h1,1 and by Proposition 4.1 
we can compute h1,2(Z) = h2,1(Z) = dimH1(Z,Ω2

Z
) = dimH1(Z, TZ).

Remark 4.5 The weighted projective spaces are examples of projective toric varieties with 
Picard number 1. Therefore, under the assumption of the previous proposition, the com-
plete intersection Calabi-Yau manifolds in weighted projective spaces have h1,1 = 1 . If we 
require F smooth, then F is the projective space ℙn , that are the only smooth projective 
toric variety with Picard number 1 [6, Exercise 7.3.10].

h1,1 = dimH1(Z,Ω1

Z
) = dimHm−1(Z,Ωm−1

Z
) = dimHm−1(Z,TZ).

Hj(Z,NZ∕F) =

n⨁

i=1

Hj(Z,OZ(Ni)) =

n⨁

i=1

Hj(Z,OZ(Ni + KZ)) = 0 ∀j > 0.

⋯ → Hm−2(Z,NZ∕F) → Hm−1(Z, TZ) → Hm−1(Z,TF|Z) → Hm−1(Z,NZ∕F) → ⋯

⋯ →

⨁

𝜌∈Σ(1)

Hm−1(Z,OF(D𝜌)⊗OZ) →Hm−1(Z,TF|Z)

→Hm(Z,O⊕t

Z
)→

⨁

𝜌∈Σ(1)

Hm(Z,OF(D𝜌)⊗OZ) → ⋯ .

h1,1 = dimHm−1(Z, TZ) = dimHm−1(Z,TF|Z) = dimHm(Z,O⊕t

Z
) = t,
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4.1  Examples of Calabi‑Yau threefolds in weighted projective spaces

Let P = ℙ(1, 1, 1, a3,… , an) be the weighted projective spaces for n ≥ 3 , and ai ≥ 0 , 
for all i ≥ 3 . According to [18, Claim 37 ] or [23, Example 3.1.25], we have T1

P
= 0 and 

H1(P, TP) = 0 and so the local deformations of P are trivial.
In [16], there are examples of smooth varieties with trivial canonical bundle in vari-

ous weighted projective space. In particular, there are the following nonsingular three-
folds weighted hypersurfaces [16, Theorem 14.3]:

and the following nonsingular codimension 2 weighted threefolds complete intersection 
[16, Theorem 14.6]:

These varieties are all examples of smooth subvarieties with trivial canonical bundle in 
a toric Fano variety with Picard rank one (that is not smooth except the cases of projec-
tive spaces ℙ(1, 1, 1, 1, 1) and ℙ(1, 1, 1, 1, 1, 1) ). Moreover, if Z is any of these Calabi-Yau 
threefolds we have H1(Z,TP|Z) = 0 . Indeed, the generalised Euler exact sequence (2.3) for 
P = ℙ(1, 1, 1, a3,… , an) is

and it restrict to

Considering the long exact sequence associated with (4.1), it is enough to prove

For the weighted hypersurface case Z = Xd , we tensorize the exact sequence

with OP(a) and we conclude the vanishing (4.2), since Hi(P,OP(n)) = 0 for all n ∈ ℤ and 
i ≠ 0,

∑
i ai + 3 [8, Section 1.4]. For Z any of the above codimension 2 weighted threefolds 

complete intersection, similar computations prove the vanishing H1(Z,TP|Z) = 0 . There-
fore, as proved in Theorem 2.1 the forgetful functor � ∶ HP

Z
→ DefZ is smooth and so the 

functor HP
Z
 is smooth at the corresponding point.

Remark 4.6 A we also noted in Remark 4.4, we can compute the Hodge numbers of these 
Calabi-Yau weighted complete intersections. By Proposition 4.3, we have

and by Proposition 4.1, we have

X5 ⊂ ℙ(1, 1, 1, 1, 1) X6 ⊂ ℙ(1, 1, 1, 1, 2) X8 ⊂ ℙ(1, 1, 1, 1, 4) X10 ⊂ ℙ(1, 1, 1, 2, 5),

X2,4 ⊂ ℙ(1, 1, 1, 1, 1, 1) X3,3 ⊂ ℙ(1, 1, 1, 1, 1, 1)

X3,4 ⊂ ℙ(1, 1, 1, 1, 1, 2) X4,4 ⊂ ℙ(1, 1, 1, 1, 2, 2).

0 → OP →

⨁

i≥3

OP(ai)⊕O
⊕3

P
→ TP → 0,

(4.1)0 → OZ →

⨁

i≥3

OZ(ai)⊕O
⊕3

Z
→ TP|Z → 0.

(4.2)H1(Z,
⨁

i≥3

OZ(ai)⊕O
⊕3

Z
) = H2(Z,OZ) = 0.

0 → OP(−d) → OP → OZ → 0,

h1,1 = dimH1(Z,Ω1

Z
) = 1,
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4.2  Examples of complete intersection Calabi‑Yau fourfolds

Let Z be a smooth Calabi-Yau fourfold in F; let j ∶ Z → F be a closed embedding of Z in 
F. Suppose further that Z is a complete intersection of n very ample divisors N1,… ,Nn so 
that dim(F) = n + 4 . Let us analyse hi,j(Z) = dim

ℂ
Hj(Z,Ωi

Z
) . By Proposition 4.3, we have 

h1,1(Z) = t = rankCL(F) . Next, let us compute h1,2(Z) = h2,1(Z).

Proposition 4.7 Let F be a simplicial toric Fano variety of dimension dimF = n + m and 
denote by Z ⊂ F a Calabi-Yau submanifold of dimension dimZ = m ≥ 4 , that is the com-
plete intersection of n very ample divisors, such that D�|Z is nef for all � ∈ Σ(1) . Then,

Proof The proof goes as in Proposition 4.3. Since Z is a Calabi-Yau manifold of dimension 
m, we have that Ωm

Z
≅ OZ and so TZ ≅ Ωm−1

Z
 . Therefore,

As in the proof of Propostion 4.3, Hj(X,NZ∕F) = 0 for all j > 0 . The long exact sequence in 
cohomology associated with (2.5) implies that

and so, since m ≥ 4 , Hm−2(X, TZ) ≅ Hm−2(Z, TF|Z).
Finally, tensoring with OZ the generalized Euler exact sequence for F (2.3), we obtain

where t is the rank of CL(F). Corollary 3.4 implies Hj(Z,OF(D𝜌)⊗OZ) = 0 , for all j > 0 
and all � ∈ Σ(1) ; therefore

  ◻

Since Z is a Calabi-Yau manifold of dimension 4, we have that Ω4

Z
≅ OZ and so 

TZ ≅ Ω4−1
Z

≅ Ω3

Z
 . Therefore, by Proposition 4.1, we have

If we denote by c = h1,3(Z) and d = h2,2(Z) , the Hodge diamond of Z is

h1,2(Z) = h2,1(Z) = dimH0(Z,NZ∕P) −
⨁

�∈Σ(1)

dimH0(Z,OZ(D�)) + 1.

h1,2 = h2,1 = 0.

h1,2 = dimH2(Z,Ω1

Z
) = dimHm−2(Z,Ωm−1

Z
) = dimHm−2(Z,TZ).

⋯ → Hm−3(Z,NZ∕F) → Hm−2(Z, TZ) → Hm−2(Z,TF|Z) → Hm−2(Z,NZ∕F) → ⋯

⋯ →

⨁

𝜌i∈Σ(1)

Hm−2(Z,OF(D𝜌)⊗OZ)

→ Hm−2(Z, TF|Z) → Hm−1(Z,O⊕t

Z
) →

⨁

𝜌i∈Σ(1)

Hm−1(Z,OF(D𝜌)⊗OZ) → ⋯ ,

h1,2 = dimHm−2(Z,TZ) = dimHm−2(Z,TF|Z) = dimHm−1(Z,O⊕t

Z
) = 0.

h1,3(Z) = h3,1(Z) = dimH1(Z,Ω3

Z
) = dimH1(Z,TZ)

= dimH0(Z,NZ∕F) −
⨁

�∈Σ(1)

dimH0(Z,OF(D�) + t.
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Then, we only miss the computation of d.

Proposition 4.8 Assume Z is a Calabi-Yau manifold of dimension 4, then we have

Proof In order to compute d = h2,2(Z) , we use the signature �(Z) of the (complex) four 
manifold Z. On the one hand, �(Z) is defined as

which reads as �(Z) = 2 − 2c + d . On the other hand, the Hirzebruch Signature Theorem 
(see, for instance, [13]) gives

where the pj(Z) ’s are the Pontryagin numbers. These are related to the Chern classes of Z 
as follows:

Hence we obtain the statement.
  ◻

Remark 4.9 Assume Z is a smooth Calabi-Yau fourfold in F; let j ∶ Z → F be closed 
embedding of Z in F. Suppose further that Z is the complete intersection of n very ample 
divisors N1,… ,Nn so that dim(F) = n + 4 , then the Chern classes of Z can be computed in 
terms of the Chern classes of the bundles Nj . More precisely, the following recursive rela-
tions can be deduced from the exact sequence defining the normal bundle, namely:

1

0 0

0 t 0

0 0 0 0

1 c d c 1

0 0 0 0

0 t 0

0 0

1.

(4.3)d = h2,2(Z) = 2c − 2 +
1

45

(
3c2

2
(Z) + 14c4(Z)

)
.

�(Z) = h0,4(Z) − h1,3(Z) + h2,2(Z) − h3,1(Z) + h4,0(Z),

�(Z) =
1

45

(
7p2(Z) − p2

1
(Z)

)
,

p1(Z) = −2c2(Z), p2(Z) = 2c4(Z) + c2
2
(Z).
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In [10–12], the authors carry out computations on Chern classes and Hodge numbers for 
Calabi-Yau fourfold that are complete intersection in product of projective spaces.
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