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Chapter 1

Introduction

1.1 Problem description

The knee is one of the most frequently injured joints in the human body.
Epidemiology studies estimate that 1.6-1.9 million patients, most between
15 and 44 years of age, see a physician for a knee sprain each year. Among
those who sustain an acute traumatic hemarthrosis to the knee, the anterior
cruciate ligament (ACL) is partially or completely torn in more than 70% of
the time. According to a report of the National Center for Health Statistics,
250,000 patients in 1984 were diagnosed as having significant disruption to
their ACL. In fact, ACL is probably the most commonly and totally disrupted
knee ligament. If left untreated, ACL ruptures lead to increased anterior and
rotatory instabilities and meniscal tears and, in one-third of patients, joint
space narrowing and unequivocal evidence of osteoarthrosis on x-ray film.

In the mid 1970s, there was much confusion about the role of the ACL in
restraining anterior tibial displacement or “drawer.” Many studies were per-
formed by selectively cutting ligaments to determine their restraining action.
A recent survey of orthopaedic surgeons indicates that autograft replacements
are the most frequently used treatment option in cases of ACL ruptures . The
success of these procedures is affected by many factors, some mechanical in
origin. The studies of the past 10 years have been aimed at assessing the
importance of a number of these mechanical factors. Early studies sought
to determine the importance of the ACL in restraining anterior tibial dis-
placement. Typically, an anterior force was applied to the tibia of the intact
knee, a ligament was cut, the force was reapplied, and the increase in tibial
translation was measured. One problem with this approach was that the in-
creased translation depended on the order of ligament cutting; if the cutting
order changed, the measured translation changed.
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Today, after numerous theories proposed by orthopedic surgeons it is pro-
posed that ACL is one of the major ligaments within the human knee and
plays a critical part in stabilizing the joint. Just due to this prominent role,
ACL is highly susceptible to injuries, above all during pivoting sport activ-
ities, which can alter the overall knee biomechanics and, if not or poorly
treated, often lead to catastrophic osteoarthritis. For these reasons, ACL
reconstruction results to be one of the most commonly performed procedures
in orthopaedics and its incidence is increasing. While, on one side, liter-
ature suggests that the short- to mid-term functional performance of this
procedure is promising, on the other side it does not still prevent prema-
ture knee osteoarthritis. Common paradigm at the basis of ACL surgery
implies to replace the injured ligament by using a graft that should ideally
mimic the functional behaviour of the native structure. The most commonly
used solutions are primarily autologous grafts, including patellar tendon and
hamstring tendon graft , biological allografts , xenografts or bioengineered
synthetic grafts. Although trying to identify always the optimal solution
in terms of clinical and functional outcomes, the choice of any graft may
substantially alter the biomechanics of the knee, permitting a return to only
moderate physical activities. Besides concerns related to surgery, inappropri-
ate graft properties still remain main issues in reaching a long-term success.
Specifically to ACL reconstruction, structural and mechanical differences be-
tween native tissue and grafts might be expected, since the physiological
functions of ligament and, for example, tendons, are different by nature,
thus potentially altering the overall knee biomechanics. The graft, once in
situ, should be integrated at bone level and undergo a “ligamentization pro-
cess” during the healing and rehabilitation process. Nevertheless, the chosen
graft may fail in successfully restoring native ACL tissue mechanics, and
therefore overall joint biomechanics, due to sub-optimal initial properties.
For these reasons a deeper understanding of mechanical characteristics of
both native ACL and grafts could guide the surgeon in the definition of the
optimal grafts and reconstruction, definitely developing and validating novel
and better solutions in terms of long term clinical and functional outcomes.
Unfortunately, concerning ACL reconstruction, the characterization on hu-
man specimens is still incomplete, overall for what concerns their viscous
(i.e. time-dependent) behaviour. This aspect is fundamental to correctly
identify the viscoelastic behaviour of tendons and ligaments, as these data
will directly contribute towards optimizing bioengineering repairs. Indeed,
Creep and stress-relaxation are particularly important viscous phenomena in
dense collagen fibrous tissues such as ligaments and tendons. In fact, during
normal daily activity, loading of the ACL causes gradual creep and relaxation
events. However, because excessive ligament creep and relaxation could re-
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sult in increased laxity of the joint after injury or reconstructive surgery,
their accurate description is indeed of considerable significance. In partial
support, several studies described relaxation and creep as different micro-
structural phenomena and tested the hypothesis of their stress or strain level
dependency, but on animal soft tissues.

The main goal of this work was therefore to identify the different heredi-
tariness behaviour of native ACL and most used grafts in surgical reconstruc-
tion, by implementing a complete testing protocol able to both investigate
preimplant mechanical characteristics and to provide useful data for heredi-
tariness material modelling. In this thesis we proposed an experimental set
up for human tendons and ligaments capable of producing useful data to be
reworked for a more complete mechanical characterization of these fibrous
tissues. A non-linear hereditary behavior was found , and a three-parameter
non-linear mathematical model was proposed that could provide information
on creep and relaxation starting from the experimental data of the creep test
only or of the relaxation test only. The rheological model corresponding to
this model was obtained. Furthermore, as well as its mechanical equivalence
other investigation have been carried out to highlight material non-linearity.
We assumed that the non-linearity arise at fiber level of the hierarchical pack-
aging of the ligaments. In this regard a structural micromechanics model
has been introduced that returns the one-dimensional non-linear behavior of
these fibrous tissues. Finally, an analysis was made on the influence of the
random fluctuation of the model parameters, an the constitutive equation of
ligaments and tendons have been reported.

1.2 Survey of the scientific literature

Since the first studies at the mid of the eighteenth century (Wertheim,1847)
it has been shown that the stress increases much faster with increasing strain
than Hooke’s law predicts. Moreover it also known that tissues in the phys-
iological state are usually not unstressed. If an artery is cut, it will shrink
away from the cut. A broken tendon retracts away; the lung tissue is in
tension at all times. Ligaments and tendons display time-dependent and
history-dependent mechanical behavior characteristic of viscoelastic materi-
als. This evidence by long-standing mechanical test in which stress(strain)
are hold constant over long interval of time and strain(stress) is measured.
Viscoelastic behavior has been observed and studied in cells (Bausch et al.
1999; Guilak 2000; Guilak et al. 1999, 2000; Heidemann et al. 1999; Trickey
et al. 2000) and a number of biologic tissues such as articular cartilage (Mak
1986; Woo et al. 1980), bone (Lakes and Katz 1979; Lakes et al. 1979), skele-
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tal muscle (Best et al. 1994), cardiovascular tissue (Rousseau et al. 1983;
Sauren et al. 1983), tendon (Atkinson et al. 1999; Graf et al. 1994), and lig-
ament (Haut and Little 1969; Provenzano et al. 2001; Thornton et al. 1997;
Woo 1982, Woo et al. 1981). Structural, phenomenological, and continuum
models have been formulated to describe these viscoelastic behaviors (Bing-
ham and DeHoff 1979; Corr et al. 2001; Decraemer et al. 1980; Dehoff 1978;
Egan 1987; Fung 1972; Johnson et al. 1996; Lakes and Vanderby 1999; Lanir
1979, 1980, 1983; Sanjeevi et al. 1982; Shoemaker et al. 1986; Viidik 1968).
The most commonly applied model of viscoelastic behavior in biomechanics
has been the Quasi-linear Viscoelasticity (QLV) model of (Fung, 1972). This
model has been particularly useful in describing experimental behavior in
soft tissues (Best et al. 1994; Carew et al. 1999, 2000; Fung 1972; Sauren
and Rousseau 1983; Sauren et al. 1983; Thornton et al. 1997; Woo 1982;
Woo et al. 1980, 1981) and has been shown to describe ligament relaxation
behavior at a single fixed strain level very well (Woo 1982; Woo et al. 1981).

A recent study (Provenzano et al. 2001) in rat medial collateral ligament
revealed that within the strain-stiffening “toe” region and early portions of
the linear region of the stress—strain curve, stress relaxation, and creep be-
havior are nonlinear functions of strain and stress, respectively. The rate
of stress relaxation decreases with increasing strain and the rate of creep
decreases with increasing stress. Similar strain-dependent relaxation rate
behavior has been reported in the fibrocartilage zone of rabbit tendon tested
in compression (Haridas et al. 2001). The behavior in these data sets can-
not be robustly described using QLV, since in the separable formulation the
time-dependent behavior is independent of stress or strain. Hence, the same
rate of relaxation or creep would be predicted regardless of strain or stress
level (Provenzano et al. 2001). Although each curve in the data set could be
individually fit with separate moduli and a range obtained (as was demon-
strated by Haridas et al. 2001), with QLV a single modulus cannot describe
the stress- or strain-dependent rate behavior.

Thornton et al. (1997) reported that stress relaxation proceeds more
rapidly than creep and demonstrated that neither a linear nor a QLV theory
was able to phenomenologically model both behaviors with interrelated con-
stitutive coefficients. Such behaviors can be described, however, using the
single integral form of nonlinear superposition with interrelated coefficients
for relaxation and creep as shown by Lakes and Vanderby (1999), or by
incorporating collagen fiber recruitment when predicting creep from stress
relaxation as shown by Thornton et al. (2001). These studies examined
the relaxation—creep interrelation at only one level of coupled strain—stress,
therefore it is not yet known if these models can account for the strain- or
stress- dependent behavior described above, or if a more general formulation
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is required.

Many reasonably general constitutive models such those by Schapery
(1969), Lai and Findley (1968), Christensen (1980), Pipkin and Rogers (1968)
and the modified superposition (also commonly referred to as nonlinear su-
perposition) method (Findley et al. 1976; Lai and Findley 1968; Lakes
1998) have been proposed to describe nonlinearly viscoelastic materials. The
Schapery single integral approach has been shown to be accurate and adapt-
able (Dillard et al. 1987; Lou and Schapery 1971; Touti and Cederbaum
1997) and modified superposition is general and also allows the relaxation
function to depend on strain. These models have not been used to describe
ligaments, but some have been used for polymers, and their formulations
show potential for ligament mechanics.

Specific studies, ACL involving stress-relaxation were found in recent
studies (Delcroix, 2013, Pioletti, 2000, McLean, 2015, Skelley, 2016, and
Castile, 2016). In some of these (Delcroix, 2013), ACL was strained be-
tween 3% and 10% and the various curves were averaged. Interestingly,
fitting the mean curve until 100 s results in an exponent parameter around
0.03, similar to other recent studies. In more detail (McLean, 2015), authors
present stress-relaxation of the ACL antero-medial bundle alone. They stated
that material presents a nonlinear viscous behaviour because responses were
graphically (but it is not known if statistically) different at various strain
levels, precisely 6-9-12-18%, much above the strain range investigated by
this study. In other researches (Skelley, 2016) and (Castile, 2016), antero-
medial and postero-lateral ACL bundles were separated and compared during
stress-relaxation at 5% strain. Other authors (Castile, 2016, McLean, 2015
and Pioletti, 2000) reported a greater relaxation (around 30%) respect to
the present study, but at longer time-scales where relaxation becomes faster
(McLean, 2015). At beginning of the century (Pioletti, 2000), relaxation
curves on patellar tendon were also presented. The authors stated that for
strain values lower than 16% in the case of ACL and 12% for patellar tendon,
the hypothesis of variable separation was valid, as it was confirmed here on
the same tissues.

Stress-relaxation curves for patellar tendon were also found in studies of
(Johnson, 1994, Johnson, 1996, and Rupp, 2000). In more detail (Johnson
1994, 1996) tests on patellar tendon stress-relaxation at around 1% and 2% of
imposed strain have been conducted and it has been found that results were
similar, thus the relaxation function was modelled as independent by strain.
Fitting their curves until 100 s resulted in an exponent parameter around
0.06, not too distant from the data reported here. Some research as (Rupp,
2000), test relaxation lasted 15 min. The imposed strain level is not clear,
but stress relaxed to 80% of the starting value at 120 s, while in this work
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it was around 85% at 100s. In other studies as (Atkinson, 1999), patellar
tendons were transversally sectioned and relaxed with a 2% imposed strain.
Even if relaxation strongly depended by the sample transversal section, the
authors presented a rate of relaxation in the range 0.02-0.06, very close to
what reported here. Other authors (Donahue, 2001, 2002 and Abramovitch,
2010) report stress-relaxation curves for hamstring tendons. In more detail
(Donahue, 2001, 2002), hamstring tendon graft was stretched to 2.5% strain
for about 15 min. Fitting the first 100 s with a power-law, it comes out an
exponent parameter around 0.04, very close to what found here. Research as
(Abramovitch, 2010), shown imposed strain of 2.2% and the tissues at 1h were
completely relaxed. With only one strain level, the authors simply assumed
a separation between strain and relaxation function. This study can support
their assumption in the 1-5% strain range. Moreover, it is stated that human
patellar tendon appears to relax more than hamstring tendon, which is more
similar to ACL. This study observed a major similarity between tendons,
which both relaxed more than ACL, with only a slight faster relaxation in
the patellar tendon respect to the hamstring one.

ACL curves for creep were found from in studies of this century (Chu, 2003
and Delcroix, 2013). In more detail (Delcroix, 2013), test was carried out
by application of a constant 200 N load, about two times the maximum load
reached here for ACL samples, and lasted 300 s. Nevertheless, fitting their
data until 100 s resulted in an exponent parameter around 0.03, consistent
with the results of this study, as for stress-relaxation. Even if a static load
was applied also in research (Chu, 2003), the experimental set-up (in-vivo
study, ACL creep estimated via anterior tibial displacement) was too different
to compare their results with those found here. It was found only a static
creep plot for patellar tendon, specifically some research (Rasmussen, 1994).
The tendon was loaded at a constant 90 N load, close to those experienced
here at 2% of strain level, for 600 s. Fitting the curve until 100 s results in
a exponent parameter around 0.017, inside the deviation range revealed in
this study for the corresponding strain level.

Hamstring tendon creep curves were found in the studies (Donahue, 2001)
and (Donahue, 2002). Some research (Donahue, 2001, 2002), hamstring ten-
dons underwent creep at a constant 250 N load for about 15 min. Because
samples were double looped grafts, that load corresponds approximately to
the 2% strain condition of this study. From the curves it comes out a creep
rate higher than the one revealed here, even if, on those graphs, the fitting
is exposed to a wide margin of error.

Static stress-relaxation and creep were presented in the same study only
for ACL and hamstring tendon, respectively in more details (Delcroix, 2013)
and (Donahue, 2001, 2002). In none of them there was a correspondence
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between loading conditions in stress-relaxation and creep phases, differently
from this work. In more detail (Delcroix, 2013), stress-relaxation followed
creep, the opposite to this study, and no relation between the two phenom-
ena appears to be investigated. Other researches (Donahue, 2001, 2002)
creep followed stress-relaxation, but also there no relation between them was
searched.

The literature introduced so far is entirely based on tests on animal tissues
and also with a differently significant scale factor compared to human tendons
and ligaments.

Therefore in this thesis human tissues were investigated, and it was nec-
essary to develop a specific test protocol. We first attempted to interpret the
experimental data with a linear model and only after having confirmed the
non-linearity of the creep and relaxation curves obtained did we go in search
of a non-linear mathematical model.

The inter-group comparison has a direct impact on the clinical outcome,
specifically for what regards the intra-articular graft tissue response. The re-
sults from the intra-group comparison (ACL, Hamstring, Patellar, Synthetic)
and relaxation-creep interrelation have important impacts on modelling. In
particular for the non-linear hereditariness behavior.

The proposed model is discussed in the Chapter 3 sec.3.3 and Chapter 4.

1.3 Results

In this thesis we discussed in detail the non-linear hereditariness of materials,
described by means of non-linear fractional calculus, with a single-integral
approach. As far as time-varying power-law is considered as integral kernel,
then a fractional-order single integral non-linear model is obtained with a
three parameters generalized springpot, namely: ¢) non-linear exponent a;
i1) decaying exponent 3. and i) the characteristic time 7.. The model is
completely equivalent to the Nutting relations observed for rubbers and poly-
mers. The single integral model allows for the use of effect superposition of
auxiliary state variables, in terms of stress and strain, that account for the
position of some equivalence relations among creep and relaxations param-
eters, namely ¢) non-linear exponent «,; i) decaying exponent 3, and 4i1)
characteristic time; 7, observed, and verified with a large experimental cam-
paign on several materials. The generalized springpot possesses an equivalent
mechanical hierarchy, totally analogous to the well-known mechanical hier-
archy already established for the linear springpot, with non-linear internal
springs and dashpots. Some numerical examples reporting the behavior of
the non-linear hierarchy have been reported in the paper. These aspect are
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investigated in Chapter 3.

Based on this observation in the thesis to the introduction of an analyt-
ical model to describe creep and relaxation showing that some closed-form
expression relating creep and relaxation parameters could be established.

Direct inspection of the results of the analytical estimates and the mea-
sured values showed excellent matches with slight coefficient of variations.
The match among the values of parameters for creep and relaxation has
been found, only for long-standing stress/strain and in order to show that
such relations hold whatever kind of test is considered a numerical validation
has been introduced with other than constant value of the applied strain
(stress), namely linear and harmonically varying strain (stress).

The obtained results showed excellent match among the initial and the
recovered value of the applied stress (strain) leading to conclude that the
proposed relations represent a benchmark to provide a clinical support to the
clinicians that apply pre-stress to the tendons before surgical replacement
to reconstruct anterior cruciate ligaments functionality. These aspect are
investigated in Chapter 4.

A structural micromechanics corresponding to the non-linear model has
been developed previous a physical explanation of the experimental results
and the non-linear behavior found in these tissues.

Additionaly, data scattering involved in the experimental measures have
been represented with a random model assuming that the characteristic times
in creep and relaxation are modelled as random variables with prescribed
probability density. The parameters of the density may be obtained by the
measured first and second-order statistics of the creep and relaxation ob-
tained from the experimental campaign. Monte-Carlo simulation conducted
with the proposed random model shows that first-order statistics obtained
with the proposed approach coalesces with the measured data allowing to
use the random approach introduced in sec.3.3 for the prediction of the me-
chanical outcomes in terms of increments of the strain and the decaying of
the stress in tendons and ligaments.

Some additional recent findings still in course of investigations have been
also reported to show that the non-linear hereditariness of biological fibrous
tissue still deserves deep investigations.



Chapter 2

Biomechanics of the Knee

2.1 Anatomical and biomechanical description

The knee is a modified hinge joint,synovial type, which is composed of three
functional compartments: the patellofemoral articulation, consisting of the
patella, or "kneecap", and the patellar groove on the front of the femur
through which it slides; and the medial and lateral tibiofemoral articulations
linking the femur, or thigh bone, with the tibia, the main bone of the lower
leg [6]. The joint is bathed in synovial fluid which is contained inside the
synovial membrane called the joint capsule. The knee permits flexion and
extension about a virtual transverse axis, as well as a slight medial and lat-
eral rotation about the axis of the lower leg in the flexed position. The knee
joint is called "mobile" because the femur and lateral meniscus move[17] over
the tibia during rotation, while the femur rolls and glides over both menisci
during extension-flexion [8]. The center of the transverse axis of the exten-
sion /flexion movements is located where both collateral ligaments and both
cruciate ligaments intersect. This center moves upward and backward during
flexion, while the distance between the center and the articular surfaces of
the femur changes dynamically with the decreasing curvature of the femoral
condyles. The total range of motion is dependent on several parameters such
as soft-tissue restraints, active insufficiency, and hamstring tightness It has
got six degrees of freedom: three traslations and three rotations. In sagittal
axis it has flexion-extension movement, in frontal axis, it has a varus-valgus
rotation and whereas in transverse axis there is internal-external rotation;
for Flexion-Extension, 3 degrees of hyperextension to 155 degrees of flex-
ion; Varus-valgus, 6-8 deg in extension; Internal-external rotation, 25-30 deg
in flexion; Translation Anterior-posterior, 5-10 mm; Compression: 2-5 mm
(patellar compression); Medio-lateral, 1-2 mm.

13
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Figure 2.1: Schematic representation of six degree of freedom of the knee

2.2 Soft Tissues

In this section essential features of solid tissues will be discussed. This aspect
represents a preliminary illustration of the mechanics of soft tissues discussed
in this thesis.

2.2.1 Structure-function properties

The mechanics of biological material is mostly done to its arrangement at
molecular level i.e the kind of specific protein that sustains the applied loads.
In this regard the the most frequent elements produced by eukaryotic cells
are: actin, elastin, and collagen. Collagen will be discussed in greater detail
because of its extreme importance to human physiology. Then we shall con-
sider the thermodynamics of elastic deformation, and discuss that there are
two sources of elasticity: one associated wit change of internal energy, and
another associated with change of entropy. Following this, we move to word
the constitutive equations of soft tissues.
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Actin molecules are present in all muscles, leukocytes, red blood cells,
endothelial cells, and many other cells. The strength of a single actin fila-
ment were measured by Kishino and Yanagida (1988). The measurement
is based on the fact that a single actin filament (~ 7 nm in diameter)
can be clearly seen by video-fluorescence microscopy. Actin monomers are
globular. They polymerize into filaments. Actin filaments labelled with
phalloidintetramethyl-rhodamine are stable. Both ends of a single actin fila-
ment were caught using two kinds of microneedles connected to micromanip-
ulators under a fluorescence microscope. One of the needles, used for mea-
suring force, was very flexible, and the other, used for pulling actin filaments,
was stiff. Before the experiments, the needles were coated with monomeric
myosin to increase their affinity with actin. The stiff needle was pulled until
the filament broke. Force was calculated from the bending of the flexible nee-
dle. For filaments of length 4 to 32 pm, the tensile force of the actin filament
was found to be 108 + 5 (s.d., n = 61) pN without breaking, and almost
independent of the filament length. This force is comparable with the force
exerted on a single thin element in muscle cells during isometric contraction.
The tensile strength of the actin filament is, on assuming a force of 108 pN
sustained by a fiber of diameter 7 nm, at least 2.2 - 105 N/m?, or 2.2 MPa.

Elastin is a protein found in vertebrates. It is present as thin strands in
the skin and in areolar connective tissue. It forms quite a large proportion of
the material in the walls of arteries and veins, especially near the heart. It is a
prominent component of the lung tissue. Elastin is the most "linearly" elastic
biosolid materials known. If a cylindrical specimen of elastin is prepared and
subjected to uniaxial load in a tensile testing machine, a tension-elongation
curve as shown in fig. 2.2: 1 is obtained. The abscissa is the tensile strain
defined as the change of length divided by the initial (unloaded) length of
the specimen. The ordinate is the stress defined as the load divided by
the initial cross-sectional area of the specimen at zero stress: Note that the
loading curve is almost a straight line. Loading and unloading do lead to two
different curves, showing the existence of an energy dissipation mechanism in
the material; but the difference is small. Such elastic characteristics remain
at least up to strain, A = 1.6.

An example of fibrous tissue involving elastin as main element is the
ligamentum nuchae, which runs along the top of the neck of horses and cat-
tle. Specimens for laboratory testing can be prepared from the ligamentum
nuchae of ungulates (but cat, dog, and man have very small ligamentum
nuchae). These ligaments also contain a small amount of collagen, which
can be denatured by heating to 66°C' or above. Heating to this degree and
cooling again does not change the mechanical properties of elastin.

The function of the ligamentum nuchae in the horse is clear: it holds up
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Figure 2.2: The stress-strain curve of elastin
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the heavy head and permits its movement with little energy cost. If the horse
depended entirely on muscles to hold its head up, energy for maintaining
tension in the muscle would be needed. FElastin in the arteries and lung
parenchyma provides elasticity to these tissues. In skin it keeps the tissue
smooth. In humans it is known that the gene responsible for synthesizing
elastin is turned off at puberty.

One particular property of elastin has probably had a profound influence
on our knowledge of anatomy and histology. In the microscopic examina-
tion of a tissue, the tissue is usually fixed by formalin, formaldehyde, or
glutaraldehyde; then embedded, sectioned, and stained. Elastin cannot be
fixed: when elastin is soaked in these fixation agents for a long period of
time, (hours, days, or weeks), it retains its elasticity. If an elastin specimen
is stretched under tension and then soaked in these agents, upon release of
the tension the specimen does not return to its stretched length entirely, but
it can recover 40% — 70% of its stretch (depending on the degree of stretch),
and then still behave elastically.
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Figure 2.3: The stress-strain curve of a specimen of elastin that was first
stretched 30% and then soaked in 10% formalin for two weeks.

An example is shown in fig.2.3 which refers to a specimen that was
stretched to a length 1.3 times its unstressed length, soaked in formalin for
two weeks, and released and tested for its stress-strain relationship. It is seen
that the "fixed" specimen behaves elastically, although its Young’s modulus
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is somewhat smaller. If the strain (stretch ratio minus one) at which a spec-
imen is stretched while soaked in the fixative agent is plotted against the
retained strain after the "fixed" specimen is released (stress-free), we obtain
fig.2.4. In this figure the abscissa shows the initial stretch during fixation,
and the ordinate shows the retained stretch upon release. It is seen that
elastic recovery occurs in elastin at all stretch ratios. In other words, what
is commonly believed to be "fixed" is not fixed at all.
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Figure 2.4: Elastic recovery of elastin after fixation in formalin and glu-
taraldehyde solutions.

Now if a tissue is fixed in one of these fixing agents in a state of ten-
sion, e.g., an inflated lung, or a distended artery (as these organs are usually
fixed by perfusion), and then sectioned under no load, the residual stress
in the elastin fibers will be released, and the length of the elastic fibers
will be shortened to its length at zero stress state. The fixed part of the
tissue, which is inextensible, will be buckled (wrinkled) by the shortening
of the elastin. As a consequence the tissue would appear buckled and un-
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even. The molecular structure of the tropoelastin, a precursor molecule of
elastin, has been sequenced (Bressan et al., 1987; Deak et al., 1988; Indik
et al., 1987; Raju et al., 1987; Tokimitsu et al., 1987; Yeh et al., 1987).
Mecham and Heuser (1991) have shown that tropoelastin is formed intracel-
lularly and then crosslinked extracellularly. The mature, cross-linked elastin
molecule is inert and so stable that in normal circumstances it lasts in the
body for the entire life of the organism. Repeating sequences in elastin
molecule have been noted, and some of their analogs have been prepared
chemically, and studied thermo-mechanically. Of these, poly (V PG VG),
poly (V PG F GV GAG), and poly (VPGG) on y-irradiation cross-linking
have been shown to be elastic. Urry (1991, 1992) and his associates have
shown that these polypeptides will self-assemble into more ordered molecu-
lar assemblies on raising temperature, i.e., they exhibit inverse temperature
transitions. The molecular proocesses that correspond to the entropic elas-
tomeric force in the self-assembling (nonrandom) systems have been studied
in detail. Urry has invented some new bioelastic proteinbased polymers on
the basis of this research. He has also broadened the view that this inverse
temperature transitions is a basic mechanism of biological free energy trans-
duction.The sources of elasticity of elastin, like those of other soft tissues,
must be a decrease of entropy, or an increase of internal energy with increas-
ing strain.Hoeve and Flory (1958) explained elastin elasticity on the entropy
theory. Urry (1985,1986) identified a mechanism of libration or rocking of
some peptide segments that contributes to the entropy. The selfassembling
mechanism discussed by Urry (1991) has a critical temperature in the order
of 25°C, above which more ordered aggregation forms. Hence Urry predicts a
decrease of elasticity at temperature lower than about 25°C. He verified the
phenomenon in the synthesized polypentapeptide named above. Debes and
Fung (1992) examined the critical temperature problem very carefully in the
lung tissue (parenchyma) of the rat, and did not find any critical temper-
ature associated with a sudden change of mechanical properties. One may
conclude that the inverse temperature transition phenomenon identified by
Urry for a synthetic analog of a part of the elastin molecule may not be a
major mechanism for the whole elastin. Other models of elastin elasticity are
proposed by Partridge (1969), Gray (1970), Weisfogh and Anderson (1970),
Gosline (1978), and Fleming et al. (1980).

2.2.2 Mechanical properties of tissue components

Elastin, resilin, and abductin, like rubber, are constituted of long flexible
molecules that are joined together here and there by cross-linking to form
three-dimensional networks. The molecules are convoluted and thermal en-
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ergy keeps them in constant thermal motion. The molecular configurations,
hence the entropy, change with the strain. With this interpretation, Treloar
(1967) showed that the shear modulus, G, is related to the density of the
material, p, the average value of the weight of the piece of molecule between
one cross-link and the next, M, and the absolute temperature, 7', according
to the formula

6= (2.1)

where R =gas constant = 8.3 - 107 erg/deg mol. The Young’s modulus is
related to the shear modulus G by the formula

E=2(1+v)G (2.2)

where v is the Poisson’s ratio. If the material is volumetrically incompressible
1
so that v = 3 then F¥ = 3G. In using the formula above for rubbery protein,

p is the concentration of the protein in g/cm?® of material. Water contributes
to density, but not to shear modulus, hence its weight should be excluded
from p. This formula is probably correct for those proteins which are already
diluted with water at the time they were cross-linked. There is a different
rule for materials that were not diluted until after they had been cross-linked.
In the latter case, the dilution then stretches out the molecules so that they
are no longer randomly convoluted. Rubber swollen with paraffin is such
an example. Crystalline materials derive their elastic stress from changes in
internal energy. Their elastic moduli are related to the strain of their crystal
lattices. Equation (2.1) does not apply to crystalline materials, neither does
it apply to fibers whose elasticity comes partly from internal energy changes
and partly from entropy changes. Most biological materials that can sustain
finite strain have rubbery elasticity. For example, hair can be stretched to 1.7
times its initial length, and will spring back, but this is because the protein
keratin, of which it is made, can exist in two crystalline forms-one with tight
« helices, and one with looser, § helices [23, 44]. When hair is stretched,
some of the «a helices are changed into (8 helices.
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Young’s modulus Tensile strength

Material (MPa) (MPa)
Resilin 1.8 3
Abduction 1-4

Elastin 0.6

Collagen (along fiber) 1 x 103 50-100
Bone (along osteones) 1 x 10* 100
Lightly vulcanized rubber 1.4

Oak 1 x 10* 100
Mild steel 2 x 10° 500

Figure 2.5: Mechanical Properties of Some Common Materials

Table in fig. 2.5 gives the average values of the Young’s modulus and
tensile strength for several common materials.

Collagen is a basic structural element for soft and hard tissues in animals.
It gives mechanical integrity and strength to our bodies. It is present in a
variety of structural forms in different tissues and organs. Collagen is the
main load carrying element in blood vessels, skin, tendons, cornea, sclera,
bone, fascia, dura mater, the uterian cervix, etc. The mechanical properties
of collagen are therefore very important to biomechanics. We must study
not only collagen molecules, but also how the molecules wind themselves
together into fibrils, how the fibrils are organized into fibers, and fibers into
various tissues. In each stage of structural organization, new features of
mechanical properties are acquired. Since in physiology and biomechanics,
our major attention is focused on the organ and tissue level, we must study
the relationship between function and morphology of collagen in different
organs. A collagen is defined as a protein containing sizable domains of
triple-helical conformation and functioning primarily as supporting elements
in an extracellular matrix. The individual chains are left-handed helices with
approximately three residues per turn. The chains are, in turn, coiled around
each other following a right-handed twist with a pitch of approximately 8.6
nm. The three a chains are arranged with slight longitudinal displacements.
The amino acids within each chain are displaced by a distance of 0.291 nm,
with a relative twist of —110°, making the distance between each third glycine
0.873 nm. To date 12 types of collagen have been identified. Figure 2.7 shows
three types of collagen. The « chains of Type I are designated as a1(I), a2(I),
etc.
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Figure 2.6: Schematic drawing of collagen triple helix
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Figure 2.7: three types of collagen that differ in the arrangement of the
chains, where Gal is galanin and Glu is glutamic acid

The close relation of function and structure of collagen aggregates, accord-
ing to E. J. Miller (1988), is shown in fig. 2.8. (A) shows the fiber-forming
collagens of Types I, II, III, V, and K. (B) shows Type IV collagen, which
is a major constituent of basement membranes. (C) shows type VI collagen,
which is prevalent in placental villi. (D) shows Type VII collagen, whose
distribution is unknown, but has been isolated from placental membranes.
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Figure 2.8: Molecular architecture of the aggregates

Type I collagen is virtually ubiquitous in distribution. It can be isolated
from virtually any tissue or organ, especially the bone, dermis, placental
membranes, and tendon. Type II is located chiefly in hyaline cartilag, and
cartilage-like tissues such as the nucleus pulposus of the vertebral body, and
vitreous body of the eye. Type III collagen, along with Type I, is a ma-
jor constituent of tissues such as the dermis and blood vessel walls, and
other more distensible connective tissues. It is also ubiquitous. Type V
is a relatively minor constituent in any tissue or organ, but has a distri-
bution similar to that of Type I. Type K, which is XI, is distributed like
Type II, chiefly in cartilage. Two ofthe chains of Type K collagen are highly
homologous to those of Type II. The collagens of Types IX and X are mi-
nor constituents of hyaline cartilages. The are called short-chain collagens
because their polypeptide chains are shorter than those of fibrillar procolla-
gens. Type IX collagen molecules contain three relatively short triple-helical
domains connected by non triplehelical sequences, instead of a single, long
triple-helical domain found in fibrillar collagens. Type IX collagen is also a
proteoglycan in that one of its polypeptide subunits serve as the core protein
for a chondroitin sulfate side chain. A collagen homologous to Type IX [50]
and is named collagen Type XII. The structure, function, and distribution
of Type IX/XII [14]. It is suspected that the Type IX/XII class of molecules
playa major role in the assembling of collagen fibrils.

Consider first the fiber-forming collagen molecules. A collection of tropocol-
lagen molecules forms a collagen fibril. In an electron microscope, the colla-
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Figure 2.9: Tendon hierarchical structure

gen fibrils appear to be cross-striated. The periodic length of the striation,
D, is 64 nm in native fibrils and 68 nm in moistened fibrils. The diameter
of the fibrils varies within a range of 20 to 40 nm, depending on the animal
species and the tissue. Bundles of fibrils form fibers, which have diameters
ranging from 0.2 to 12 um. Packaging of collagen fibers has many hierar-
chies, depending on the tissue. In parallel-fibered structures such as tendon,
the fibers are assembled into primary bundles, or fascicles, and then several
fascicles are enclosed in a sheath of reticular membrane to form a tendon.

— elastin fibers
— collagen fibers

Figure 2.10: Multiphoton imaging of human patellar tendon at the tibial
insection, Bioimaging lab, @ATen Center



BIOMECHANICS OF THE KNEE 25

h =2/sin(6,/2) |

L L

Figure 2.12: schematic crimping of the fiber

ee e covalent bond

oo o }} - 2 ’- eeo o
‘ \ oo o
GAG matrix collagen fibril

collagen fiber

Figure 2.11: hierarchical structure of the fiber

When the tendon was teased down to fine bundles, it was observed that
the physical outlines of these subbundles followed the waveform that was
deduced from the polarizing optics of the intact tendon bundle. As the fiber
is stretched, the "bending angle," 6, decreases and tends to zero when the
fiber is straight.

Thus the basic mechanical units of a tendon are seen to be bent collagen
fibers. The question arises whether the fibers are intrinsically bent because
of some fine structural features of the fibrils. Gathercole (1974), using SEM
to resolve the individual collagen fibrils about 100 nm in diameter as they
follow the waveform in a rat’s tail tendon, failed to find any specific changes
in morphology and fine structure along the length of the waveform. It is then
suggested that the curvature of the fibers might be caused by the shrinking
of the noncollagen components or "ground substance" of the tendon, i.e.,
that the curvature is caused by the buckling of the fibers. This suggestion
is consistent with the experience that the integrity of the ground substance
is of great importance to the mechanical integrity of the tendon. Enzymatic
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digestion directed at the noncollagen components can greatly change the
mechanical properties of the tendon. The buckling model was investigated
[27], and it was suggested that hyaluronic acid, which is a major space filling
material and which has a fairly high metabolic turnover rate, may be respon-
sible for the buckling of the collagen fibers. In some connective tissues, it has
been suggested that elastin and collagen together form a unit of composite
material. The straight elastic fibers are attached to the bent collagen fibers.

An original contribution in the field of fibril mechanics developed in the
course of the thesis involved hyaluronic acid with mechanical test and imag-
ing analysis. Hyaluronic acid (HAHMW, 1025 kDa) was purchased from
Altergon (Italy). HA (Mw, 280 kDa, PDI, 1.9) and its tetrabutylammonium
salt were produced as reported elsewhere [76]. HA-EDA-C'g derivative (Mw
320 kDa PDI 1.8 ) having 1243 mol % of EDA and 30+0.5 mol % of Cig
was synthesized and characterized as elsewhere reported Mechanical charac-
terization of fibers bundles was performed by using a Nanotensil T150 UTM
instrument. Fibers were observed by using an Zeiss Axiovert Microscope and
by a confocal microscope Olympus FluoViewFV10i. Live and Dead assay
was performed by using the Calcein AM, ethidiumhomodimer-IIT (Eth-I1T).
SEM images of freeze-dried fibers bundles was performed by using a Phe-
nom Tabletop SEM apparatus, while SEM pictures of AoSMC seeded fibers
bundles was performed by using a SEM Quanta feg 650 FEI. In this latter
case fibers were gold sputtered before the analysis. HPLC analysis was per-
formed using an Agilent 1260 Infinity. Just after production circular bundles
were transferred into a NaCl 0.9 % w/v 0.15 M and left overnight. Bundles,
were stored into NaCl 0.9 % w/v if used for further characterization as wet-
ted fibers, otherwise were cut and outstretched longitudinally to maintain
fibers alignment, then freeze dried. Dried aligned fibers were then stored
until their utilization. Mechanical properties of bundles were evaluated by
elongation tests at rupture using a Nanotensil T150 UTM equipment. In par-
ticular unfunctionalized HA-EDA-C'g, composite HA-EDA-C'g/fibronectin,
cyRGDC functionalized bundles were all collected as described before then
cut and elongated to obtain cylindrical shaped bundles of about 8 cm in
length with a diameter comprised between 1 and 1.3 mm. Bundles were then
fixed at rhomboidal specimens maintaining a distance between grips of about
60 mm. Elongation was performed at 5 x 10-3 1/s to a maximal deformation
0.4 mm/mm. Results were expressed as a mean of n=6 different measure-
ments indicating mean bundles diameter and mean elastic modulus (E; KPa)
+ standard deviation. Bundles were characterized from a mechanical point
of view comparing elastic moduli of the three different batches, i.e. non-
functionalized, fibronectin loaded and cyRGDC functionalized bundles. The
mechanical characterization has involved a sequence of mechanical tests with
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Figure 2.13: Nanotensile T150 UTM equipment with sample. @ATen Center,
Bio/nano Mechanics laboratory for medical science

six samples for each kind and measuring the diameter of the fibers, assumed
with circular cross-section, with a digital caliper. The fibers have been glued
to paper-based templates to achieve the prescribed initial length and to avoid
fiber damage close to the clamps of the machine. A specific picture of the ap-
paratus and experimental set-up employed for the mechanical test has been
reported in fig.2.13. The mechanical properties have been measured in terms
of engineering stress and strains obtained as ¢ = Dy/Lq and o = F'/Ay where
Dy is the displacements among the clamps that is prescribed and F is the
load measured by the force transducer of the equipment. The geometrical
parameters, namely the reference length L and the nominal cross-section Ay
have been measured at the beginning of the test. The graphical results of
the mean monotone stress-strain curves have been reported in fig 2.15 for all
investigated samples. Data of the stress-strain test reported in fig.2.14 show
that the presence of fibronectin caused a decrease in the elastic modulus of
the HA-EDA-C\5 fibers; on the contrary cyRGDC functionalization caused
a sharp increase in the elastic modulus (E= 76.7 kPa compared to 9.1 kPa
of the non-functionalized bundle).

As shown in Figure 2.16, according to previous results [23,24| the HA-
EDA-C4g non-functionalized bundles were poorly suitable to allow cell adhe-
sion. AoSMCs remained round shaped on nonfunctionalized and fibronectin
loaded bundles, moreover after 6 days cells became detached. Optical micro-



28 BIOMECHANICS OF THE KNEE

Batch of Bundie Mean Diameter (n=6) Elastic Modulus (KPa)
HA-EDA-Cis 1225+ 83 9.1+23
HA-EDA-Cs/fibronectin 1141 £123 2415
cyRGDC functionalized 1150 + 198 76.7+20

Figure 2.14: Values of elastic modulus (E) found for microfibrillar bundles un-
functionalized HA-EDA-C', fibronectin loaded and cyRGDC functionalized.
Palumbo, F. S., et al. "Multifibrillar bundles of a self-assembling hyaluronic
acid derivative obtained through a microfluidic technique for aortic smooth
muscle cell orientation and differentiation." Biomaterials science 6.9 (2018):
2518-2526.
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Figure 2.15: Stress/strain curves for microfibrillar bundles unfunctionalized
HA-EDA-C}g, fibronectin loaded and cyRGDC functionalized. Palumbo, F.
S., et al. "Multifibrillar bundles of a self-assembling hyaluronic acid deriva-
tive obtained through a microfluidic technique for aortic smooth muscle cell
orientation and differentiation." Biomaterials science 6.9 (2018): 2518-2526.
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scope images showed that microfibers of non-functionalized and fibronectin
loaded bundles swelled significantly from 1 to 6 days of culture. AoSMCs
became instead attached and elongated on microfibers of cyRGDC function-
alized bundles already after 2 days of culture. These Confocal microscopy of
elongated cells on cyRGDC functionalized bundles performed after 6 days,
confirmed attachment, elongation and alignment of AoSMCs, fig.2.16 Taking
into account these preliminary interesting results, a long term biological char-
acterization has been also performed for cyRGDC functionalized bundles. In
particular, viability of AoSMCs during 21 days of culture on cyRGDC func-
tionalized bundles was qualitatively evaluated by a Live and Dead cell assay.
Before cell seeding, pieces of bundles were messed up to allow maximum in-
teraction with the seeded cells. Cells appeared almost all viable (green) and
just few dead cells (red) were observed after 1 day from seeding fig.2.18A.
Hence viable cells attached to microfibers, maintained their viability after 7,
14 and 21 days. The distribution of cells and their alignment were evaluated
by confocal microscopy on individual microfibers fig.2.18B). After 7 days,
the cells appeared randomly distributed on microfibers, most of which ap-
peared aligned while other cells were crossing between adjacent microfibers.
Already after 14 days fibers appeared uniformly covered by elongated cells
having a quite good orientation. After 21 days cells increased their stretching
and actin myofilament were well visible and elongated; multinucleate muscle
fibers were visible and Z stack analysis, fig.2.17, showed a uniform distribu-
tion of cells along the fiber. As evidenced by SEM analysis fig.2.19 after 21
days of culture with AoSMCs, cyRGDC functionalized HA-EDA-C1g bun-
dles appeared compact with well-aligned microfibers attached one another.
On the surface of the fibers it is possible to observe several elongated and
aligned AoSMCs. Another batch of bundle was cut longitudinally into two
hemicylinders using a surgical blade and observed. Each fiber appears uni-
formly colonized by AoSMCs elongated and aligned with the orientation of
the fibers. Immunostaining on bundles cultured for 21 days with AoSMCs
showed desmin and HC-myosin positive cells, thus suggesting the mainte-
nance of contractile phenotype of differentiated myotubes fig.2.20. Confocal
analysis confirmed the quite good orientation of cells.

To reproduce the organization of muscle tissue, these scaffolds should
be organized into 3D microfibrillary constructs, in which each microfiber
should allow the orientation of the SMCs. Several production techniques
have been proposed for the engineering of complex 3D biomaterials and to
meet the requirements for regenerative medicine of smooth muscles, tendons
and ligaments. The strong reduction of the elastic modulus observed for
the fibronectin/HA-EDA-C18 bundle suggests that a homogeneous interpen-
etration of the protein and the polysaccharide derivative has occurred. It
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Figure 2.16: A. Optical microscope images taken on non-functionalized,
fibronection loaded, cyRGDC functionalized HAEDA- C\g bundles after
AoSMCs seeding at 1, 2 and 6 days of culture. B. Confocal microscope
images of AoSMCs on cyRGDC functionalized HA-EDA-C'g bundle after
DAPI and Alexa fluor-Phalloidin staining after 6 days of culture. Palumbo,
F.S., et al. "Multifibrillar bundles of a self-assembling hyaluronic acid deriva-
tive obtained through a microfluidic technique for aortic smooth muscle cell
orientation and differentiation." Biomaterials science 6.9 (2018): 2518-2526.
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Figure 2.17: Z stack analysis performed after 6 days. Palumbo, F. S. et
al. "Multifibrillar bundles of a self-assembling hyaluronic acid derivative
obtained through a microfluidic technique for aortic smooth muscle cell ori-
entation and differentiation." Biomaterials science 6.9 (2018): 2518-2526.
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Figure 2.18: A. Live and Dead assay on cyRGDC functionalized HA-EDA-
C18 bundles. Viability of AoSMCs assayed after 1, 7, 14 and 21 days from
culture; viable (green) and dead (red) cells are visible. B. Confocal mi-
croscopy images performed on cyRGDC functionalized bundles after 7, 14
and 21 days of culture. Palumbo, F. S.; et al. "Multifibrillar bundles of
a self-assembling hyaluronic acid derivative obtained through a microfluidic
technique for aortic smooth muscle cell orientation and differentiation." Bio-
materials science 6.9 (2018): 2518-2526.
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Figure 2.19: SEM analysis on cyRGDC functionalized HA-EDA-C}g bun-
dles after 21 days of culture with AoSMCs. Images at different magnifica-
tions. of the external surface of bundle (A, Al and A2) or its internal fibers
(B, B1 and B2) after longitudinal sectioning. The arrows highlight some
AoSMCs.Palumbo, F. S., et al. "Multifibrillar bundles of a self-assembling
hyaluronic acid derivative obtained through a microfluidic technique for aor-
tic smooth muscle cell orientation and differentiation." Biomaterials science
6.9 (2018): 2518-2526.
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Figure 2.20: Desmin and HC-myosin staining of aligned AoSMCs on cyRGDC
functionalized HAEDA- Cg bundle after 21 days of culture. Palumbo, F. S.,
et al. "Multifibrillar bundles of a self-assembling hyaluronic acid derivative
obtained through a microfluidic technique for aortic smooth muscle cell ori-
entation and differentiation.” Biomaterials science 6.9 (2018): 2518-2526.



BIOMECHANICS OF THE KNEE 35

is presumable to suppose that the interpenetration decreases the stiffness of
the fibers by increasing the extensibility of the bundle and decreasing the
elastic modulus. The interpenetration of fibronectin with HA-EDA-C's was
also confirmed by the very low release of protein observed in vitro. The elas-
tic modulus of cyRGDC functionalized bundle significantly increases when
compared with the non-functionalized and fibronectin loaded samples. This
result can be attributed to the partial inter-chain crosslinking that occurs
between parts of the maleimido functionalities with pendent amino groups
of the HA. Moreover, even the interpenetration of fibronectin did not pro-
duce improvements on cell attachment, in fact only a few round-shaped cells
remained on the fibers after 2 days. Like the nonfunctionalized samples,
the bundles loaded with fibronectin appeared visibly swollen, reaching after
6 days diameters up to 100 gym. The amount of interpenetrated fibronectin
was not sufficient to mediate cell adhesion and, more importantly, did not im-
prove fiber stability when compared to non- functionalized bundles. Instead,
cyRGDC functionalized bundles have improved cell attachment according to
previous results.

Collagen fibers are integrated with cells and intercellular substance in
a tissue. In a dense connective tissue, the cells are mostly fibrocytes; the
intercellular substance consists of fibers of collagen, elastin, reticulin, and a
hydrophilic gel called ground substance. Dense connective tissues contain
a very small amount of ground substance; loose connective tissues contain
a lot. The composition of the ground substance varies with the tissue, but
it contains mucopolysaccharides (or glycosaminoglycans), and tissue fluid.
The mobility of water in the ground substance is a problem of profound
interest in biomechanics, but it is an extremely complex one. The hydration
of collagen, i.e., the binding of water to the collagen molecules, fibrils, and
fibers, is also an important problem in biomechanics with respect to the
problem of movement of fluid in the tissues, as well as to the mechanical
properties of the tissue.

Depending on how the fibers, cells, and ground substance are organized
into a structure, the mechanical properties of the tissue vary. The simplest
structure, from the point of view of collagen fibers, consists of parallel fibers,
as in tendon and ligaments. The two- and three-dimensional networks of
the skin are more complex, whereas the most complex are the structures of
blood vessels, intestinal mucosa, and the female genital tracts. Let us con-
sider these briefly. The most rigorously parallel-fibered structure of collagen
is found in each lamina of the cornea. In adjacent laminae of the cornea, the
fiber orientation is varied. The transparency of the cornea depends on the
strict parallelism of collagen fibers in each lamina. Tissues whose function is
mainly to transmit tension can be expected to adopt the parallel-fiber stru-
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cure. Tendon functions this way, and is quite regularly parallel fibered. The
fiber bundles appear somewhat wavy in the relaxed condition, but become
more straight under tension. A joint ligament has a similar structure, but
is less regular, with collagen fibers sometimes curved and often laid out at
an angle oblique to the direction of motion. Different collagen fibers in the
ligament are likely to be stressed differently in different modes of function of
the ligament. Most ligaments are purely collagenous, the only elastin fibers
being those that accompany the blood vessels. But the ligamenta flava of
the spine and ligamentum nuchae of some mammals are mostly elastin. A
ligament has both ends inserted into bones, whereas a tendon has only one
insertion. The transition from ligament to bone is gradual; the rows offibro-
cytes are transformed into groups of osteocytes, first arranged in rows and
then gradually dispersed into the pattern of the bone, by way of an interme-
diate stage, in which the cells resemble chondrocytes. The collagen fibers are
continuous and can be followed into the calcified tissue. The transition from
a tendon into a bone is usually not so distinct; the tendon inserts broadly
into the main fibrous layer of the periosteum. The other end of a tendon
is joined to muscle. Generally the tendon bundles are invaginated into the
ends of the muscle fibers in the many terminal indentations of the outer sar-
colemmal layer. Recent investigation suggests that collagenous fibrils, which
are bound to the plasma membranes as well as to the collagen fibers, provide
the junction. Parallel fibers that are spread out in sheet form are found in
those fasciae into which muscle inserts, or in those expanded tendons called
aponeuroses, which are membraneous sheets serving as a means of attach-
ment for flat muscles to the bone. The tendinous center of the diaphragm is
similarly structured. These sheets appear white and shiny because of their
tight structure. Other membranes that contain collagen but the fibers of
which are not so regularly structured are opaque. To this group belong the
periosteum, perichondrium, membrana fibrosa of joint capsules, dura mater,
sclera, some fasciae, and some organ capsules. The cells in these membranes
are irregular both in shape and in arrangement.

The structure of collagen fibers in the skin is more complex, and must be
considered as a three-dimensional network of fibrils, although the predomi-
nant fiber direction is parallel to the surface. These fibers are woven into a
more or less thombic parallelogram pattern, which allows considerable defor-
mation without requiring elongation of the individual fibers. In the dermis,
collagen constitutes 75% of skin dry weight, elastin about 4%. The female
genital tract is a muscular organ, with smooth muscle cells arranged in cir-
cular and spiral patterns. Actually, in the human uterus only 30%-40% of
its wall volume is muscle, and in the cervix only 10%; the rest is connective
tissue. In the connective tissue of the genital tract the ground substance
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dominates, as the ratio of ground substance to fiber elements is 1.5: 1 in the
nonpregnant corpus and 5: 1 in the cervix near full term. During pregnancy,
the ground substance grows at the rate of the overall growth, while collagen
increases more slowly, and elastin and reticulin almost not at all. Hence
the composition of the connective tissue changes. This brief sketch shows
that collagen fibers are organized into many different kinds of structures, the
mechanical properties of which are different.
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2.3 The mechanical behavior of soft tissues

In this study the mechanics of soft tissues is discussed for those composed
by collagen, elastin and ground substances. Biomechanics paradigm sets
that the property of a tissue is known if the constitutive equations have
been established on the experimental basis involving static (kinematic) action
and measured kinematic (static) variables. The simplest experiment that
can be done on a biosolid is the uniaxial tension test. For this purpose a
specimen of cylindrical shape is prepared and stretched in a testing machine.
The load and elongation are recorded for prescribed loading or stretching
histories. From these records we can deduce the stress-strain relationship
of the material under uniaxial loading. The stress response , for biological
tissues, will show a hysteresis loop with each cycle, but the loop decreases
with succeeding cycles, rapidly at first, then tending to a steady state after a
number of cycles. The existence of such an initial period of adjustment after
a large disturbance seems common to all tissues. From the point of view
of mechanical testing, the process is called preconditioning. Generally, only
mechanical data of preconditioned specimens are presented.
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Figure 2.21: Tensile properties of elastin-rich canine nuchal ligament,
collagen-rich sole tendon, and intestinal smooth muscle (Hasegawa and
Azuma (1974)).

Figure 2.21 shows stress-strain relations for the canine nuchal ligament,
sole tendon, and intestinal smooth muscle, which are rich in collagen, elastin,
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and smooth muscle (cell), respectively [56]. The elastin-rich nuchal ligament
has much less strength and much more flexibility than the collagen-rich sole
tendon. The intestinal smooth muscle is much softer than the other two
tissues, and its stress-strain curve has a wide hysteresis loop, which indicates
that the tissue is viscoelastic.

Most biological soft tissues exhibit open hysteresis loops in their load-
deformation curves, that correspond to energy dissipation in the material.
Such energy dissipation is often referred as material hereditariness whose
more popular evidence is the material relaxation. Indeed the patellar tendon
is elongated and maintained at some length, the load does not stay at a

specific level but decreases rather rapidly at first and then gradually as in
fig. 2.21
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Figure 2.22: Relaxation behavior of patellar tendon (Yamamoto et al.
(1999)).

A typical load-elongation curve for a tendon tested in simple elongation
at a constant strain rate is shown in fig. 2.23. It is seen that the curve
may be divided into three parts. In the first part, from 0 to A, the load
increases exponentially with increasing elongation. In the second part, from
A to B, the relationship is fairly linear. In the third part, from B to C, the
relationship is nonlinear and ends with rupture. The "toe" region, from 0 to
A, is usually the physiological range in which the tissue normally functions.
The other regions, AB and BC, correspond to reserve strength of the tendon.
The ultimate stress of human tendon at C lies in the range 50-100 MPa.
The maximum elongation at rupture is usually about 10%-15%. « is the
angle between the linear part of the curve and the deformation axis. The
slope, tana, is taken as the "elastic stiffness," Young’s modulus. In terms of
structure function relationships, the toe-in region represents "un-crimping"
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of the crimp in the collagen fibrils. Since it is easier to stretch out the crimp
of the collagen fibrils, this part of the stress strain curve shows a relatively
low stiffness. As the collagen fibrils become uncrimped, then we see that the
collagen fibril backbone itself is being stretched, which gives rise to a stiffer
material. As individual fibrils within the ligament or tendon begin to fail
damage accumulates, stiffness is reduced and the ligament/tendons begins
to fail, BC is an elastc damage model. Thus a key concept is that the overall
behavior of ligaments and tendons depends on the individual crimp structure
and failure of the collagen fibrils

Figure 2.23 shows the monotone test of patellar tendon and hamstring
and ACL ligaments outline the well-known j-shaped curve.

15}

Patellar

Hamstring

000 O 005 0.10 0.15 0.20

Figure 2.23: monotone test on human ligaments and tendon conduced at
Aten Center. 0 = F/Ap and ¢ = Al/ly. Bologna E. et al. ESB-Ita Roma,
Settembre 2017.

A J-shaped curve can be compared to an S-shaped curve in which the
material has been pre-stressed, causing the effective origin of the graph to be
further along the curve. This is shown in the fig. 2.23 Patellar. Arteries and
other biological tissue are naturally pre-stressed but in general an s-shaped
curve characterizes the stress-strain response of the rubber.
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F 3

If the material were pre-stressed to
this point, its effective stress-strain
curve would be J-shaped

Figure 2.24: stress-strain curve called S-shaped

Comparing j-shaped and s-shaped curve, we can say that many biological
tissues corresponding to j-shaped curve have an important characteristic is
the initial large extension achieved with relatively low levels of stress and the
subsequent stiffening at higher levels of extension. This aspect is associated
with the recruitment of collagen fibres as they become uncrimped and reach
their natural lengths, whereupon their significant stiffness comes into play
and overrides that of the underlying matrix material.

Finally we must consider, that most biological soft tissues have a wa-
ter content of more than 70%. Therefore, they hardly change their volume
(isovolumic) even if load is applied, and they are almost incompressible.
The incompressibility assumption is applicable to most biological soft tis-
sues. However, it is not the case in the articular cartilage, because the tissue
is micro-porous and, therefore, water can enter and leave pores depending
upon load [95].

2.4 Fundamentals of continuum mechanics for
soft tissue modelling

We presents the concepts for the kinematics of a body that underlie the study
of viscoelasticity. Bodies occupy configurations, which are regions of the
three-dimensional Euclidean point space. A one-to-one correspondence can
be set between points of a body and the points they occupy in the Euclidean
space. Thus, we will treat a body as a closed set of points occupying a
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B,
Figure 2.25: Deformation of a body

regularl region B, called the ‘current’ configuration, of the three-dimensional
Euclidean point space. The displacement u of these points may be measured
only with respect to a reference2 configuration, which will be denoted with
By. Points z (20) defined in B(B,y) are called ‘spatial’ (material). Therefore,
with reference to fig.2.25 the displacement u is defined as

u =X — X (2.3)

or

u = g(x0) — Xo (2.4)
where the function g : By — B is the deformation, relating material points
to spatial points. This function is invertible, with inverse g~, so

x = g(x0), Xo=g (x) (2.5)

Let us now consider two material points xy and xy + wowy, the latter
obtained by adding to xq the unit vector wy multiplied by the scalar wy. The
two points are mapped forward to

x =g(x0) and x+ ww = g(x¢ + wowp) (2.6)

so the embedded vector wywy transforms to ww. The Taylor series expansions
of g and g~! around x, and x, respectively, yield

ww = g(xo + wowp) — g(x0) = Fwowy) + O(wy) (2.7a)
wowo = g H(x +ww) — gt (x) = F Y (ww) + O(w?) (2.7b)

where F is the deformation gradient and F~! its inverse F~!F = FF~! = 1.
It is worth noting that F represents a gradient of a material field, whereas
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F~! is the gradient of a spatial field, namely,

~ Og(xo) o 0g'(x)
F = aXO and F = T

(2.8)

Note that tensor F is a two-point tensor in the sense that wy and w are,
respectively, defined in the material and spatial configurations. In order to
highlight that the two gradients are taken with respect to different fields, the
following convention will be used:

F = Gradg and F'=Gradg™ (2.9)
to rewrite eq.(2.8) in an alternative way and where Gradf(z,y, z) = 6_i +
x
0 0
8—fj + a—fk. More in general, when an operator will be written with an initial
Yy 2

capital (minuscule) letter, it will be referred to a material (spatial) field.
Egs.(2.7a)(2.7b) make transparent the fundamental property of the de-
formation gradient F(F)~!: It transforms the embedded material (spatial)
oriented line element into a corresponding embedded spatial (material) ori-
ented line element. In particular, eqs. (2.7a)(2.7b) yield, when truncated at
the first order:
i) The change in the modulus of the embedded oriented line element:

w Wo -1
(X0, wo) o |Fuwy ) - | w| (2.10)

where A is the stretch at the material point xq (or, equivalently, at the spa-
tial point x) relative to the material direction wy (or, equivalently, spatial
direction w). Note that if F' were singular, there would be fibres transformed
into points, a situation clearly non admissible. Therefore, it is assumed that
detF > 0, so the stretch always results strictly positive: greater (smaller)
than one when the fibre elongates (contracts) deforming from By to B.

ii) The change in the orientation of an embedded oriented line element:

Flw Fw, Fw
= = \x,w)Flw w = =
|F~ 1wl (x,w) |[Fwo|  A(Xo,wo)

wo (2.11)

It is expedient now to introduce the right and left Cauchy-Green (symmetric
and positive definite) deformation tensors

C=F'F and B=FF' (2.12)



44 BIOMECHANICS OF THE KNEE

Since the stretch is always strictly positive and, consistently, the two Cauchy-
Green deformation tensors are positive definite, we may use the definition of
square root of a tensor to define the right and left stretch tensors

U=CY? and V=B'? (2.13)

which are symmetric and positive definite tensors admitting the spectral
representation

U = )\1111 ®u; + )\2112 ® ug + )\31,13 ® usg (214&)
V = /\1V1 X v+ )\2V2 X v + )\3V3 X V3 (214b)

where ® is the tensor product and \;, u; and v; (i = 1,2, 3) are, respectively,
the principal stretches (the stretches in the direction of the eigenvectors of C
and F. Tt is therefore reasonable to understand that the effect of F(F~!) on
a material (spatial) fibre results in a stretch given by U(V ') and a rotation
R.. Defining this rotation as

we find the polar representation theorem that we rewrite here
F=RU = VR (2.16)

where R € Orth™.

U and V provides a local measure of deformation because their principal
components represent the stretch of the three orthogonal fibres (aligned with
the eigenvectors). In particular, U(V is a Lagrangean (Eulerian) measure of
deformation because it transforms material (spatial) quantities into spatial
(material). In the absence of strain, the stretch tensors reduce to the identity
U =V =1. All the tensors C, B, U and V can be chosen to quantify the
strain, and more in general, we may conclude that there are infinite possibil-
ities of choice. It therefore may be convenient to introduce the Lagrangean
and Eulerian strain measures

Uu” -1 v —1
locU m=20 logV. m=20

defined for every (positive, negative or null) integer m so that they vanish in
an undeformed situation. The logarithm of a tensor is defined for symmetric
positive definite tensors taking the logarithm of the eigenvalues in its spectral
decomposition so that

3 3
logU = Z gw; @u; and logV = Z&'Vz‘ R v; (2.18)
i=1

i=1
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Figure 2.26: Rigid-body deformation

where

g; = log; (2.19)

are the so-called logarithmic strains. The logarithmic strain € may be intro-
duced with reference to a fibre of initial length [, stretched until it reaches

l
the final length [ so the stretch is Ay = l_f certain stage of the process of

0
straining, the fibre has a length [, so the increment in deformation de for an
increment dl in length is

_d

de ; (2.20)
which, integrated between [, and [, provides
ly
€= logl— = logAy (2.21)
0

an expression corresponding to the definition to eq.(2.20). Note that the two
notations

T'=TT.. T and T™ (2.22)
when m = 2, we obtain the Green-Lagrange strains
1 1

E® = Q(C —1I) and G® = §(B —1I) (2.23)

homogeneous deformation occurring with constant gradient, a rigid-body
rotation about the point p and a rigid-body translation of displacement v is
illustrated in fig.2.26 The rotation about point p moves the solid from the
reference configuration By to the ‘intermediate’ configuration B;, so point x,
is transformed into point x; as

x; =p + Q%o — p) (2.24)
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2P0

Figure 2.27: Effects of a rigid-body deformation: two rotated reference con-
figurations to describe the same current configuration (a) and two rotated
final configurations corresponding to the same reference configuration (b).

where Q € Ortho™ describes the rigid-body rotation, constant for all material
points in By. Finally, point x; is translated to x simply by adding a vector
v, constant for all points in B;. The result is

x =q+ Q(xo — p) (2.25)

where q = p + v, so the deformation gradient for a rigid-body rotation and
translation is F = Q. The deformation described by eq.(2.25) is rigid because
the distance between every pair of points in By is preserved. Since the choice
of the reference configuration is arbitrary, two reference configurations, By and
Bj, are sketched in fig. 2.27 both transformed into the same final configura-
tion B. The difference between By and Bj lies in a rigid-body rotation. The
transformation of oriented line elements provides the following equations:

v=Fvy and v=F"v] (2.26)

where F and F* are the two deformation gradients relative to the two refer-
ence configurations By and B, respectively. Since eq.(2.26) must hold true
for every vector vy, and v = Qvy, it may be concluded that

F* =FQ” (2.27)

showing how a change in the reference configuration by a rigid-body trans-
formation affects the deformation gradient.
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A motion is an ordered sequence of mappings of a reference configuration
into current configurations, or in other words, a motion is a smooth one-
parameter family of deformations, ordered by the time t, so that

x =g(xo,t) and x¢=g '(x,1) (2.28)

The velocity and acceleration of particle at time t are given by

0 t
X(x0,t) = % and  v(x,t) =% (g7 (x,1),1) (2.29)
and material X and spatial a descriptions of the acceleration
o t
%(x0,t) = % and a(x,t) =% (g7 (x,1), 1) (2.30)

The gradient of the material description of the velocity is
Gradx(xg,t) = F (2.31)

whereas, by definition, the gradient of the spatial description of velocity is
denoted by L

L(x,t) = gradv (2.32)
the gradient with respect xo and using the chain rule of differentiation,
F=LF (2.33)
An other relation is .
(F')=F 'FF! (2.34)

Introduction of the concept of force requires specification that we will
refer to an inertial frame. In the current configuration, a body interacts with
the environment through forces, which may act on the surface, denoted by
o (defined per unit surface) or, at interior points, denoted by b (defined per
unit volume). The Cauchy theorem states that if o and b* (body forces) are
a system of forces for B during a motion, a necessary and sufficient condition
for to hold for any part P € B is the existence of a spatial tensorial field T
the so-called Cauchy stress tensor such that
i) The traction is a linear function of the unit normal n through the Cauchy

stress:
s(n) = Tn (2.35)

transforming the spatial unit normal to the spatial vector s.
ii) The Cauchy stress is symmetric:

T € Sym (2.36)
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iii) T satisfies the local equations of motion
divT +b* =0 (2.37)
Of  0fa  Ofs

where divf = — 4+ — + —

Jor  OJy 0z

Stress is the internal counterpart to forces applied by the environment to
the body in its actual configuration: It intrinsically represents, therefore, a
spatial quantity.

Tnda = Snodao (238)

where

S = JTF” (2.39)

is the first Piola-Kirchhoff stress tensor, and Sngy is the nominal traction.
Tensor S is in general un-symmetric but satisfies

SF' = FS” (2.40)

because T is symmetric. Note that by introducing the so-called Kirchhoff
stress,
K=JT (2.41)

Eq.(2.39) can be rewritten in the short form as
S = KF? (2.42)

The nomenclature ‘Kirchhoff stress’ to denote eq.(2.41). The first Piola-
Kirchhoff stress tensor is the transpose of the nominal stress tensor (note
that it is denoted by a bold minuscule letter, but it is a second-order un-
symmetric tensor), that is

t=ST=F'K (2.43)

used, among others, by Hill and Ogden. Note that the nominal traction is
Sny = t'ny is a measure of the surface force per unit area in the reference
configuration. Therefore, the first Piola-Kirchhoff stress satisfies

/Tn:/ Sny (2.44)
oP dPy

Thus, introducing the body force in the reference configuration

bo = Jb (2.45)
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/vp:/ %p0 (2.46)
oP 0P,

we can write the balance laws

/ SHOZ/ b[):/ Xp() (247&)
0Py Py Py

/{,PO (x = 0)Sno + /PO (x —o)by = /8 |, (x~0)%n0 (2.47D)

Equation (2.47a) localises into a local balance expressed in the reference
configuration

and noting that

representing, when the inertia is neglected, translational equilibrium of a
spatial element imposed on the reference configuration. However, symmetry
of S does not follow from (2.47b), equivalent to the symmetry of the Kirchhoff
(and thus Cauchy) stress.

To prove that eq.(2.47b) which means the symmetry of the Kirchhoff
stress K, we can proceed as follows. For every constant vector a, we may
write

a-(x—o0)xSny=—[S"(x—o0)a)] - ng (2.49)

so the divergence theorem gives

/8130 a-(x—0)xSny = —/ [S"(x—o0) x a)] (2.50)

Py

Using, now the property
div [ST(x — 0) x a)] =S - grad|(x — o) x a] + [(x — 0) x a] - divS (2.51)
and the mixed product equality
(x—o0)xa) -divS =—a-(x—o0)x divS (2.52)

we can rewrite the scalar product of eq.(2.47b) with a as

/ S-grad((x—o0) x a) = —a/ (x —0) x [divS +bg —Xpg| (2.53)
oP

Py

so that through (2.48) we arrive at

/P S - grad](x — o) x a] = 0 (2.54)
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which, holding for every part P, (and vector a), implies the integrand to be
null, which may be rewritten [using the definition of the first Piola-Kirchhoff
stress and the polar decomposition of F, as

[grad(x — 0) x aju = }35% g(xo + 5‘;) — 8(x0)

the spectral representation of U™! allows us to write

a= —aFu (2.55)

trjlaxv)) @ Kv;+ (ax vy) @ Kvy + (ax v3) @ Kvs] =0 (2.56)
which developing the scalar product and invoking arbitrariness of a yields
V) X KV1 + vy X KV2 + vg X KV3 =0 (257)

Thus, using the representation of K in the reference system v;, that is

3
K=Y Kjvi®v, (2.58)

ij=1
we finally conclude the symmetry of K (note that the symmetry of a tensor
in one reference system implies symmetry in every reference system):

(K12 — KQl)VQ X Vi —+ (K13 — K31)V3 X Vi + (K23 — Kgg)Vg X Vo = 0 (259)

the subsequent application of the divergence theorem yields the theorem of
power expended in the spatial description

/ s(n)-v+/|o-v:/T-D+i/Bv2 (2.60)
oP P P dt P2

and referential description

/ S(no)->'<+/ bo-xz/ S-F+£/ Py (2.61)
P P op, dt Jp, 2

which, in other words, represent the equation of energy balance for isothermal
deformation (when temperature effects are kept into account, the internal
energy, the heat flux and supply come into play.
Note that the stress power per unit volume in the reference configuration
is
K-D=S-F (2.62)

but it also can be expressed as

T? . E® =8.F (2.63)
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where

T® =F'KF T =F"'S (2.64)
is the second Piola-Kirchhoff (symmetric) stress tensor. Since its scalar prod-
uct with the Green-Lagrange rate of strain gives the stress power per unit
volume (in By), the second Piola-Kirchhoff stress and the Green-Lagrange
strain tensor are said to be ‘work conjugate’. More in general, we can define
the Lagrangean and Eulerian stress measures T(™) and Z(™ work-conjugate
to the strain measures so that

K-D=2z™.G™ =8.F=1Mm.EM (2.65)

A conjugate pair of stress and strain that will become useful later is
formed by the Biot stress tensor T() and the right stretch-strain tensor E®
defined as

1
EY =U -1 conjugate to TW = 3 (T(Z)U + UT(2)) (2.66)

whereas another pair is the Almansi strain E®) and its conjugate stress T(2),
defined as
1

EC? — 2 (UC? —1)  conjugate to T? =F'KF (2.67)

where U2 = C~! = F~'F~T To better understand the material or spatial
nature of the stress measures that we have introduced, let us consider the
effects of a rigid-body rotation of the current configuration, represented by
the rotation tensor Q € Orth™*. Since the unit normal n* and the stress
vector s* in the rotated configuration B* are related to the corresponding
vectors in B via
n"=Qn, s"=Qs (2.68)
it is concluded that the Cauchy stress transforms as an Fulerian quantity
T = QTQ’ (2.69)
expressing the fact that the two stress vectors Tn and T*n* are related by
T*n* = Q(Tn) (2.70)

We can find the transformation laws of the first and second Piola-Kirchhoff
tensors through transformation rules of kinematic fields for rigid-body ro-
tations of the current configuration QS and T® showing that the latter
remains unchanged as E®), whereas the former behaves as F. Let us now con-
sider a rigid-body rotation of the reference configuration such as that sketched
in fig.2.26a, whereas the current configuration remains fixed. The Cauchy
stress does not change. Therefore, the first and the second Piola-Kirchhoff
tensors transform as SQ” and QT®QT showing that they behave again
as F and E®| respectively.
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Chapter 3

Material hereditariness

The mechanical behavior of materials discussed in previous chapter have been
shown to depend on the specific kind of tissue considered. Such observation
led to two limit cases: i) In presence of a complete recovery in cycle ten-
sile tests the concept of material elasticity is introduced; ii) In presence of
mechanical behavior such that complete energy dissipation (no recovery) is
observed, then the concept of viscous material is reported. Real-type of ma-
terials show an intermediate behavior and the term material hereditariness is
reported. The term hereditariness indicates the behavior of an intermediate
material between elastic solid and viscous liquid, this behavior is typical of
polymers [43], of human bones, of various mortars and resins used in construc-
tion, of some families of rocks [53| and other materials. The hereditariness
material therefore it is characterized by having two asymptotic behaviors,
that of the solid elastic and that of the viscous liquid. From previous consid-
erations it is evident that time dependence of biological materials is a crucial
aspect in understanding their function and performance.

Hereditariness has been studied in numerous biological materials such
as bone, articular cartilage, skeletal muscle, ligament, tendon,cardiovascular
tissues [5, 6]. Ligaments are hereditariness and thus, display time- depen-
dent and load-history-dependent mechanical behavior. Recently, ligament
hereditariness has been studied in healing, damaged, grafted, and prosthetic
ligaments. It is axiomatic that a repaired or replaced ligament must pos-
sess the same hereditary characteristics as a normal ligament to provide the
same function. It is also of interest to know the difference in performance
between healthy and damaged ligament. For these reasons it is important to
understand hereditary behavior throughout its functional range. To describe
the history of stress and strain two functions are intertwined ¢,(e,t) and
¢c(0,t). In general, these functions are assumed to be non-linear functions.
To investigate on the nature of ¢,(¢,t) and ¢.(o,t), experimental creep and

23
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Figure 3.2: Relaxation test

relaxation testing is required.

Prior studies of ligament hereditariness often consist of a creep or relax-
ation test at one load or strain level.

Let a specimen be subjected to a step stress history fig.3.1, in which the
stress is instantaneously increased to some value oy at ¢t = 0 and then held
fixed. The typical strain response consists of i) an instantaneous increase in
strain at ¢ = 0 followed by ii) continued straining in time at a non-constant
rate and (iii) an asymptotic approach to some limit value at time increases.
The behavior is called creep. Let ¢.(09,t) = J(t,00) denote the strain at
time t when the value of the stress is 0y. Then, J(t,00) = 0 when ¢ < 0; ii)
jumps to value J(0,0¢) at t = 0 and iii) J(¢,00) monotonically increases to
the limit value denoted by J(oo, 0p) as t — oo. The jump in strain J(0, o)
at t = 0 indicates instantaneous springiness or elasticity. The fact that the
material reaches a non-zero limit value of strain indicates solid behavior. If
the strain were to increase without bound, it would indicate fluid behavior,
which is not considered here. The relations og vs J(0, 09) and oy vs J (00, o)
describe, respectively, instantaneous elastic response and the long-time or
equilibrium elastic response. J(t,00) has a different dependence on time ¢
and stress oy for each material, and is therefore considered to be material
property called the creep function.

Let a specimen be subjected to a step strain history fig.3.2, in which
the strain is instantaneously increased to some value €g at t = 0 and then
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held fixed. The typical stress history required to produce this strain history
consists of i) an instantaneous increase in stress at ¢ = 0 followed by ii)
a gradual monotonic decrease of stress at a non-constant rate and iii) an
asymptotic approach to some non-zero limit value as time increases. The
behavior is called stress relaxation. Let ¢,(co,t) = G(t,&0) denote the stress
at time ¢ when the value of the strain is fixed at eg. Then, i) G(t,£0,¢¢) =0
when ¢ < 0, ii) G(t,&¢) jumps to the value G(0,¢¢) at t = 0, and iii) G(t, &)
monotonically decreases to the non-zero limit value denoted by G(o0, )
as t — oo. The jump in stress G(t,€0,e0) at t = 0 is another indication
of instantaneous springiness or elasticity. That fact that a non-zero stress
G(00, €¢) is required to maintain the strain at ¢y is another indication that
the material is a solid. If G(c0,2¢) = 0, then no stress would be required
to hold the material in a strained state, a characteristic of the response
of fluids. The relationsG(0,eq) vs g9 and G(oo,g) vs. &g also describe,
respectively, instantaneous elastic response and the long-time or equilibrium
elastic response. G(t,g¢) has a different dependence on time ¢ and strain &g
for each material, and is therefore considered a material property called the
stress relaxation function.

Let H(t) denote the Heavidide step function, H(t) = 0, t € (00, 0) and
H(t) =1, t € [0,00). When there is linearity, the stress response to the step
strain history e(t) = eoH (t) is

o(t) = G(t, 20) = 20G (1) (3.1)

G(t) is called the stress relaxation modulus. It is convenient to introduce
the notation G(0) = Gy and G, for the limit of G(¢) as t — oc.

In a similar manner, the strain response to the step stress history o(t) =
O'0H<T) is

e(t) = J(t, 0) = o0 (1) (3.2)

J(t) is called the creep compliance. It is assumed that J(0) > 0 and J(t)
monotonically increases to a finite limit J > 0 as t — oo. It is convenient
to introduce the notation J(0) = Jy and J., for the limit of J(t) as t — oc.

For these reason creep and relaxation also illustrate the duality of re-
sponses, strain is found under stress control conditions, or stress is found
under strain control conditions. This further raises the question of how to
determine the strain response when the stress varies with time or the stress
response when the strain varies with time.

Force versus displacement curves at constant strain rates demonstrate
that ligament is non-linear. The reason is that [30] collagen fibers are re-
cruited as load increases. The stress—strain curves, as in fig.2.8, of liga-
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ment display a “toe” region where fibers straighten and elongate in a strain-
stiffening fashion until the fibers are no longer crimped. At that point the
fibers elongate, giving rise to the linear segment of the stress—strain curve.
For these reasons, this chapter is divided into sec. 3.1 and sec.3.2 on linear
hereditariness e non-linear hereditariness, respectively. Sec. 3.1 describing
the models present in the literature and the limits of these, attention will be
paid to the link between creep and relaxation in the linear hereditary field,
the monoaxial model will be extended to the triaxial model, finally, isotropic
material will show why in the tendons and ligaments of the human knee the
linear model does not agree with the experimental data. The sec. 3.2 will
analyze the non-linear hereditariness, from the junction of the Quasi-linear
hereditariness to some of the nonlinear models proposed in the literature,
finally an original model will be proposed as the subject of the doctoral the-
sis which for the first time proposes a link between creep and relaxation in
non-linear models.

3.1 Linear hereditariness

Around 1921, Nutting [74] focused his attention on hereditariness materials
behavior. He conducted several experiments that did led to assert that the
two equations used to describe solids perfectly rubber bands and perfectly
viscous fluids were actually special cases of a single general law. Also since
best-fitting of the experimental data he noticed that the deformation-time
bond, it was not well described by laws in which dependence on the temporal
variable it was given by an exponential type function (as obtained from the
models classics), but the curve that interpolated the points well must neces-
sarily be a power-law. The experimentation provided two types of curves, one
of the u in displacement as a function of time t and one of the displacement
as a function of the applied force F (constant time). The time-displacement
curves u-t showed a proportionality link between the displacement and the
n-th power of the temporal variable ¢”; there or implied a relationship of
linearity between the logarithm of the displacement and the logarithm of the
time, that is:

logu o logt (3.3)

moreover, n was independent of the force value. From the displacement-force
curves u - F a relationship similar to previous one:

logu x log F (3.4)

hence the displacement resulted or proportional to the real power of the force
applied F. By virtue of the aforementioned observations Nutting proposed
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a power- law able to express the link between the three quantities in play u, F
and t. This law, of a purely empirical nature, with a simple and mathematical
structure general validity, and shown below:

u=at"F™ (3.5)

it expresses the law of variation of displacement as a function of time at
vary the force applied. Parameters are n and m, characteristic of the single
material, they are independent of u, t, F and the geometry of the specimen
but result variable as the temperature changes. The constant a is instead
independent from u, t and F, but dependent on the type of test. If we
consider keeping in small displacements we can consider keeping in the linear
field.

In the framework of linear hereditariness an important assumption in this
regard is that the material response is linear. The property of linearity of
response consists of two conditions: scaling and superposition. These are
discussed here only for the stress response to a strain history. Amnalogous
comments apply to the strain response to a stress history. In this regard the
material function for creep test satisfies the linearity conditions, namely:

G (Ao, t) = Ao (0,t) YANER 5 ¢ (01 + 02,t) = ¢ (01,t) + ¢ (02, 1)
(3.6)
A similar consideration holds true for the material function for relaxation
test that satisfies the linearity conditions in 3.6 as:

Or (Neyt) = Aoy (e,8) YAER 5 ¢ (e1+62,t) = b (61,1) + & (€2, 1)

(3.7)
In other terms, the assumption of linearity of response states that if a strain
history () is scaled by constant A, then the corresponding stress o(t) is
also scaled by A and if two strain histories are superposed, then the cor-
responding stresses are also superposed. It is important to note that the
property of linearity of response does not refer to the shape of any ma-
terial response curve. It refers to a method of constructing the stress re-
sponse to a composite strain history by scaling and superposing the stress
responses to the component strain histories. The linearity assumptions for
the creep and relaxation functions allow to introduce material hereditari-
ness for unitary value of applied stress, and strain, namely 0 = 1, ¢ = 1
resulting in stress and strain independent material hereditary functions as
¢ (1,t) = oJ(t) = 1J(t), and ¢, (1,t) = G (t) = 1G (t), respectively.
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Time-varying functions [G (t)] = F/L? and [J (t)] = L?/F are the well-
known relaxation and creep functions, respectively.

Linear superposition applied to a generic stress/strain history, namely o(7)
and (1) with 7 < ¢, yields:

/Gt—r)da( e /Gt—r Hdr 4+ 2G) (3.8)

t
e(t) :/ J(t —T1)do(T) + o0 J(t) —/ J(t—T)o(r)dr +00J(t) (3.8b)
0 0
Egs.(3.6a, b) are defined in terms of Boltzman superposition with do =
¢dt and de = édt increments, where [-] = 4. Laplace transform of eqgs.(3.8a),(3.8b)
with o9 = 0 and ¢y = 0 yields the fundamental relation between creep and
relaxation of linear hereditariness in the Laplace domain as:

- 1

J(s)G(s) = (3.9)

s
where G(s) and J(s) are the Laplace transform of relaxation and creep func-
tions, respectively. This fundamental relationship expresses the circumstance
that G(t) and J(t) are functions related to each other in the domain of
Laplace. It follows that if it is determined through experimental tests G(t),
the function J(t) is determined accordingly and vice versa.

The specific functional class of creep and relaxation functions reported in
may be guessed from experimental data collected in the course of experimen-
tal campaigns and they are very often expressed as single or linear combi-
nations of exponential functions by means of Prony representation theorem

[77] as:
=> (1 — exp (-ch)» (3.10a)
= Z G, exp (—%) (3.10b)

F

where the coefficients of the expansions have physical measures [G,| = Iz
L2

and [J,] = — and the material characteristic times in creep and relaxations,

namely, TJ(C) and Tj are additional material parameters that may be esti-
mated by best fitting procedures together with the expansion coefficients.
The integer numbers in the expansions, namely, M and N are respectively,

the order of the Prony series used for creep and relaxation.
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The expressions for creep and relaxation functions reported in egs.(3.10a)
(3.10b) can not, however, satisfy the fundamental relation of linear heredi-
tariness, and, henceforth they must be used separately in stress-based and
strain based constitutive relations. Some attempts to introduce analogous
formulations joint in creep and relaxation led to unphysical negative values
of the material relaxation times in the Prony expansion [77].

For this reason, the use of the power-law is preferred, and in the early
twentieth century through the experimental campaign of Nutting on con-
crete and ceramic polymers, it showed how the power-law best-fitting the
experimental data.

3.1.1 Rheological Models

Another approach used to develop constitutive equations for linear hereditary
response involves mechanical analogs. These are mechanical devices formed
by combining linear elastic springs and linear viscous dampers in series or
parallel. The devices can be shown to exhibit a time dependent response that
is similar to that observed in hereditary materials, namely, creep under con-
stant load and force relaxation under constant deformation. For this reason
these devices are treated as mechanical analogs of hereditariness response.
Since the springs and dampers are described by linear equations, as are the
equations for the kinematics of deformation and force transmission, there is
a linear relation between the overall force and deformation. These approach
are known as rheological models and they will discussed in the following.
The spring in Fig.3.3a is the elastic (or storage) element, as for it the force is
proportional to the extension; it represents a perfect elastic body obeying the
Hooke law. This model is thus referred to as the Hooke model. We denote
by m the pertinent elastic modulus In this case we have no creep and no
relaxation so the creep compliance and the relaxation modulus are constant
functions J(t) = 1/E, G(t) = E

The dashpot in fig.3.3b is the viscous (or dissipative) element, the force
being proportional to rate of extension; it represents a perfectly viscous body
obeying the Newton law. Denoting by v the pertinent viscosity coefficient.
We note that the Hooke and Newton models represent the limiting cases of
viscoelastic bodies.

A branch constituted by a spring in parallel with a dashpot is known as
the Voigt model, see fig.3.3c where 7. is referred to as the retardation time.

A branch constituted by a spring in series with a dashpot is known as
the Maxwell model, see fig.3.3d, where 7, is is referred to as the the relax-
ation time. The Voigt model exhibits an exponential (reversible) strain creep
but no stress relaxation; it is also referred as the retardation element. The



60 LINEAR HEREDITARINESS

) ) (0] d ( b)
a —p | —p o
_‘ —_— () __’ — (1)

o= Ee O'=7]8

E n
) — 0 — | — 0 d)
c n — ) —_— 0

d d _ de
o(t) = Ee(t) + ”7? o))+ a—- =1—
a 1
J(t):]l(].—e_ﬂrf), Jl =%,T=% J(t)=Jg+J+t, Jg=71"]+=;
G®)=G,+G.b6, G,=EG_=q G =Gie™, G =—,1,=q
1

Figure 3.3: classic viscoelastic models: a) Hooke model, b) Newton model,
c¢) Kelvin-Voigt model, d)Maxwell model

Maxwell model exhibits an exponential (reversible) stress relaxation and a
linear (non reversible) strain creep; it is also referred to as the relaxation
element.

By increasing the number of simple elements to the Kelvin-Voigt model
they are obtained other more accurate models in the simulation of viscoelastic
behavior. Such models are called SLS (Standard Linear Solid) or Zener.

The simplest viscoelastic model is obtained by adding a spring either in
series to a Voigt model or in parallel to a Maxwell model, respectively. In this
way, according to the combination rule, we add a positive constant both to
the Voigt-like creep compliance and to the Maxwell-like relaxation modulus
so that J; > 0 and G, > 0. Such a model was considered by Zener with
the denomination SLS and will be referred here also as the Zener model. We
have for the model in fig.3.4a The model shown in fig.3.4b, consisting of a
Hooke in model parallel with a Maxwell model with a and 8 the same for
both.

In similar fashion the functional stress-strain relations reported in egs.(3.10a)
(3.10b) possess an equivalent differential formulation in terms of elastic (Hookean)
and viscous (Newtonian) elements.

In more details, the differential formulation of the Prony series expansion
for the creep function J (¢) in egs.(3.10a) (3.10b) is provided in fig.3.3. Simi-
larly the mechanical arrangements springs and dashpots reported in fig. (3.3
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Figure 3.4: a)Zener model:a spring in series to a Voigt model; b) Zener model:
a spring in parallel to a Maxwell model

b) corresponds to the rheological representation of the relaxation function

G (t) reported in egs.(3.10a) (3.10b). with 7, = 7, = % Direct comparisons

of figs.(3.3 a and b) shows that the mechanics beyond1 the creep and relax-
ation functions described by Prony series expansion is quite different as shown
by the series and parallel arrangements of springs and dashpots that corre-
spond to the prescribed analytical expression in eqgs.(3.10a) (3.10b). Such
a consideration is a direct consequence to the lack of mathematical consis-
tency of creep and relaxation functions expressed in terms of Prony series
expansions. In passing we observe that, as far as N = M = 1 the well-known
Maxwell elements representing relaxation and Kelvin-Voigt element for creep
are obtained.

3.1.2 1D Fractional-order linear hereditariness

Linear hereditariness is certainly the field of the most extensive applications
of fractional calculus, in view of its ability to model hereditary phenomena
with long memory. The analysis start from the power-law creep to justify
the introduction of the operators of fractional calculus into the stress-strain
relationship.
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Figure 3.5: a) Rheological model for exponential relaxation; b) Rheological
model for exponential creep

Let us consider the hereditariness of a material with creep compliance,

B8
J(t) = —Gor(i-i-ﬁ) (Tio) (3.11)

where I'(+) is the Euler-Gamma function, 3, and [r] = T are material param-
eters that may be estimated through a best-fitting procedure of experimental
data and Gq the elastic modulus of the material. Such creep behaviour is
found to be of great interest in a number of creep experiments; usually it is
referred to as the power-law creep. In virtue of the reciprocity relationship
eq.(3.9) in the Laplace domain we can find for such hereditariness solid its
relaxation modulus,and then the corresponding relaxation spectrum. After
simple manipulations we get

G(t) = % (i) - (3.12)

For our hereditariness solid exhibiting power-law creep, the stress/strain re-
lationship in the creep representation can be easily obtained by inserting the
creep law eq.(3.11) into the integral eq.(3.9). Straightforward manipulations
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show that the power-law functional class in eqs.(2a, b) satisfies the conju-
gation relation and it yields, upon substitution in egs. (1la, b) the following
constitutive relations:

7_6 t
o(t) = % /O (t—T)*ﬁé(T)dT:GOTOﬁ( gie) (t) (3.13a)
1 ! , 1
0= G /0 (=)o) = (Zo) ) (313D)

where [CDSr A ] is the Fractional Caputo derivative and [/ f "] is the Riemann-
Liouville fractionalintegral, The constitutive equation eqs. (3.13a)(3.13b)
have been modelled with the introduction of a new rheological element, the
springpot, fig.3.5 after Scott-Blair. Springpot is a mechanical element with
mechanical properties are intermediate between those of a pure elastic solid
(Hooke model) and a pure viscous fluid (Newton model). The use of frac-
tional calculus in linear hereditariness leads us to generalize the classical
mechanical models, in that the basic Newton element (dashpot) is substi-
tuted by springpot. The springpot, fig.3.6 defined in terms of two parame-
ters, i.e. Cg = GOT(? > 0 and S, with 8 € [0, 1] whose constitutive relation
is reported in eqs.(3a,b). Such element is widely used nowadays to define
several types of materials including as limiting cases, elastic (8 = 0) and vis-
cous elements (5 = 1). More precisely, a simple spring corresponds to = 0
d d°f _df
and —5 = —5
’f _df

derivative, i.e. —=

dtd — dt

= f; whilst the case of f = 1 corresponds to a first order

— f, which is a Newtonian dashpot.
=0
&+
p=1

Figure 3.6: Springpot element

3.1.3 Three dimensional isotropic fractional-order non-
linear hereditariness

In such a context, uniaxial hereditariness [32, 37, 43, 65| involving fractional
order stress-strain relations has been reported since the beginning of the 20th
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century |74, 49| defining the so-called springpot element [16], as discussed in
previus section.

In presence of the multi axial stress/strain state as that usually encoun-
tered in usual application the 3D constitutive relation describing material
hereditariness is discussed in the context of power-laws functional classes of
the relaxation/creep functions.

In such case an extension of the constitutive relation presented in section
3.1.2 and tensorial strain/stress state are discussed in this section by means
of effect superposition.

Let us consider a 2nd-order stress tensor o with the symmetries 0;; = 0
for 1 # j. In the following we introduce the Voigt representation of the
state variables of the material in terms of vector representation of stress and
strains tensors as:

ol (t) = [o11 () 092 (t) 033 (t) 032 (t) 031 (t) 012 ()] (3.14)

€T (t) = [511 (t) €99 (t) £33 (t) 2832 (t) 2631 (t) 2512 (t)] (315)

where t is the current time and the mixed index stress and strain compo-
nents, namely o;; (t) and ¢;; () with ¢ # j denote shear stress and strain,
respectively. Let us assume that o;; (t) = d;; and let us consider a single
normal stress o;; = 1 for (i = 1,2,3).

In such a context the evolution of the strain e (t) along the stress direc-
tion oy; (t) and in the orthogonal planes reads:

e () = 55 () = —J, (t) 0 (3.16D)

with i # j # kand 4, j, k = 1,2,3. In egs.(3.16a)(3.16b) J., (t) and J, (t)
are the axial and the transverse creep functions with respect to the stress
direction, respectively. Under the assumption of smooth load process o;;(t)
the presence of contemporaneous stress o;;(t) = 0;;(t)d;;, with i« = 1,2,3,
may be accounted for by the integral

with i # j # k and 1,j,k=1,2,3, respectively.

In the context of material isotropy shear strains 2e;;(t), (¢ # j), are not
involved by the axial stress o;; (), but only by the shear stress as o;;(t) with
i # j. The evolution of the shear strain 2e;;(t) due to a generic shear stress



LINEAR HEREDITARINESS 65

history o;;(t) may be obtained by superposition integrals by means of the
shear creep function Jr(-) as:

2., () = /O Jr (t — )6y (7) dr (3.18)

with ¢ # jand i, j = 1,2,3. The constitutive equations reported in eqs.(3.17),(3.18)
may be reported in Voigt notation as:

a(t):/o I (t—1)6 () dr (3.19)

where J(t) is the creep functions matrix that is described as:

JA@ 0
J (t) - { 0 JO (t) ] (3.20)
where the elements of the axial creep matrix J()(¢) are:
TV (1) = Ji (8) 8 — (1= 6) Ju (8) (3.21)

with 4,7 = 1,2,3. The shear creep matrix J)(¢) is a diagonal matrix gath-
ering the shear creep functions Jr () as:

I () = Jp (1) 0y (3.22)

ij
The three creep functions J,(t),J,(t) and Jp(t) are related by a linear relation
that reads:

Jr(t) = 2JL(t) — Ju(t) (3.23)

that may be obtained, with straightforward manipulations, by introducing
a shear stress state o;;(t) that involves a shear strain state under isotropy
assumption, namely ;; = 2¢;; (), and as evaluating the elongation and the
stress along the principal axes at angles of 7 /4.

Under the assumption of linear elasticity, the creep functions coincide
with the material compliance, which reads Jr = 1/G, J, = 1/E and J, =
v/E. After substitution in eq.(3.23), this yields:

1 1w 2(1+v)
== =)= 7 3.24
a (E * E) E (3:24)
that is the well-known relation among elasticity moduli.

Knowledge of the creep function matrix J(¢) in eq.(3.20) allows for the
definition of the relaxation matrix G(¢) by means of the coniugation relation

as:
- 1

G(s)J(s) = =1 (3.25)
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where I is the identity matrix and G(s), J(s) are the Laplace transforms of
the relaxation G(¢) and the creep functions J(¢) matrices.

With straightforward manipulations of eq.(3.25) and inverse Laplace trans-
form, the relaxation matrix may be written as: With straightforward manip-
ulations of eq.(3.25) and inverse Laplace transform, the relaxation matrix
may be written as:

G (1) 0
G(t) = { 0 G™ (1) ] (3.26)
where:
GV (1) = £ S [(jL - jv> 5i; + (1 —6;) jv]
52 ( L+ Jv> (JL . 2JU>
(3.27a)
~ 1
G () =L | ——— | 0y (3.27h)
52 <JL -+ Jv)

Egs.(3.27a),(3.146b) show that in the presence of material fading memory,
the relaxation matrix G(t) is obtained as a combination of creep functions
relative to uniaxial creep tests. Similar considerations may be also withdrawn
from the observation that in uniaxial relaxation tests, the relaxation function
G (t) is obtained in lateral free conditions, that is the strain state involves
€11 # €29 # 0 and e33 = 1 and measuring only o33(t) = G (t) relaxation
with 017 = 0992 = 0. Knowledge of the relaxation matrix of the material G(t)
allows to evaluate the stress vector as:

o (1) = /0 G (t — 1) (7) dr (3.28)

The longitudinal shear and transverse relaxation functions Gp(t),Gr(t)
and G, (t) are linearly related by an equation that is similar to the one in-
volving creep functions in eq.(3.23), reading;:

1
Gr(t) = 5 (G (t) — Gy (1)) . (3.29)
The latter allows for the evaluation of the transverse relaxation G, (t), as:
G, (t) =G (t) —2Gr (t) (3.30)

In the following section, we derive the thermodynamic restrictions among
the material parameters used in power-law representation of isotropic mate-
rial hereditariness.
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3.1.4 Power-law isotropic hereditariness: Thermodynamic
restrictions

Let us assume that relaxation functions in laterally restrained axial and tor-

sion shear tests may be captured, respectively, by power-laws with different
order (o # ) as:

GL(t) =G4+ G Gr(t) =GVt ° 4+ Gy (3.31a)
G, (1) =2 (GTW)fﬁ + GT> - (GL@t*a + GL) (3.31b)
with eq.(3.31b) obtained from the application of eq.(3.26). The physical
F
dimensions of the coefficients are [Cr] = [Cr] = F/L?, [Cgﬂ = a7
@] _ _F
) = mr

The expressions of the relaxation functions in egs.(3.31a),(3.31b) yield
the relaxation matrix of the material in eq.(3.26), with elements in the block
matrices G (t) and G (t) reading:

GV =G (t) 6+ (1 —8;) Gy (1) (3.32a)
G (t) = Gr (1) 6y (3.32b)

We see that the relaxation matrix involves elements decaying with differ-
ent power-laws of order 5 and « («, 5 € [0, 1]).

The coefficients and parameters involved in the power-law descriptions
of the material relaxation, namely, G (t), G,(t) and Gr(t) are related by
thermodynamical restrictions to ensure the requirement of positive entropy
rate increment [28|. Indeed, a dissipative simple solid is defined only if the
restrictions:

G (0) > G(o0)

> (3.33)
G (0) >

0
0 (3.34)
are fulfilled by the relaxation matrix of the material as reported in basic
references on material hereditariness [24, 92, 28|.

Eqgs.(3.33)(3.34)are always satisfied by assuming positive values of the

coefficients Gz, G and G’(La) and G(Tﬁ )| whereas eq.(3.34)) alone is satisfied

as the eigenvalues of the first derivative of the matrix, namely, G (0) are all
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negative. This requirement may be verified by introducing a one-parameter
family of relaxation matrices defined on a real parameter § as G(t) = G(t +
§), and by studying the behavior of Gg(t) for the limiting case § — 0.

The parameter-dependent family of matrices G(;(t) is defined as:

* (A
G (t) = G E)t +9) & ?t s (3.35)
where the elements read:
G (t+06)= -GVt +06) " (3.36a)
G (t+6)=-GYp(t+ 5)”*1 (3.36D)
G (t+0) = —26Y8(t +6) P + GWa(t + 5)~ Y (3.36¢)
Observe that the one-parameter family Gs(t) tends to the limit:
lim Gs (t) = G (t) (3.37)

6—0

We can infer the behavior of G(t) from that of G4(t), and by letting § — 0.
In this regard, the requirement in eq.(3.37) may be recast as:

—G(0)=—1limGs (t) > 0 (3.38)
0—0
that is we evaluate the eigenvalues \;(6) (i = 1,2,...6) of the matrix G(0)

and with the additional constraints —\;(J) > (z =1,2,..6) as § — 0.
The evaluation of the eigenvalues \;(9) gives:

M (0) = X () = —2 (GL ) (3.392)
— X3 (0) = =M (6) = =As (6) = =G (5) >0 (3.39b)
— X6 (0) = —4G7 () + G () > 0 (3.39¢)

Substitution of egs.(3.36a),(3.36b) into eq.(3.39b) shows that the inequality

is fulfilled for G’ > 0 and 0 < 8 < 1. The inequalities egs.(3.39a),(3.39¢)
read, after substitution:

aGad~ O — G~ >0 (3.40a)
46G 6~ — oG 6~ > 0 (3.40b)
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that, after some straightforward manipulation, may be cast in a more suitable
form, taking natural logarithms as:

In (Aup) > (@ — ) Ino (3.41a)

In {@] <(a—pf)Iné (3.41b)

where A,3 = ozG(LO‘)/ (ﬁG(Tﬁ)) Inequalities in egs.(3.41a)(3.41b) must be

fulfilled for any value of the parameter ¢ yielding that o = 3. Moreover, in
this latter case the additional thermodynamical restriction holds true.

GP < e <36l (3.42)

In passing, we observe that the condition o = S holds true only for the
two terms (or one term) description of the relaxation function in eq.(3.32a).
Indeed, as we assume that the relaxation functions G (t) and Gr(t) involve
linear combinations of power-laws as:

GL(t) =Y Gt Gr(t) =) GPe o (3.43)
j=1 i=1

with n and m the number of power-laws involved. Under such circumstances,
the thermodynamical arguments proposed in this study yield the same con-
ditions among the order of the power-laws as:

max (aj) = max (6;) (3.44a)
min (a;) = min (5;) (3.44D)

Substitution of eqs.(3.32a),(3.32b) into the constitutive equations for the
three-axial hereditariness yields a relation among the stress vector and the
history of the strain vector &(t) as:

o(t) = Gj /Ot (t—7)Pe(r)dr + G = Gy (Dgis) ) +G (345

where we have embraced the Voigt representation of the relaxation tensor
G (t) in matrix form and we have used the notation:
=B

G(t) = Gﬁm +G (3.46)
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with the matrices:

e e
¢ ¢y ¢y 0o 0 0
¢ ¢ 6y o 0 o0
Gs(ty=| £ 2 758 3.47a
5 (t) 0 0 0 ¢ 0 o (3.47a)
o 0 0o o0 GY 0
o 0 0o 0o 0o GY]
GG G0 0 0]
G, Gp G, 0 0 0
~ |G, G, G 0 0 o0
G=19" 0 0 G o o (3.47D)
0 0 0 0 Gr 0
0 0 0 0 0 Gr,

The stress vector obtained as a functional of the strain vector e(t) in
eq.(3.45) is the generalization of the constitutive equation reported in eq.(3.8a)
under the assumption of material isotropy.

In the next section the multiaxial fractional-order hereditariness will be
further discussed by introducing a mechanical hierarchy that yields the con-
stitutive model reported in eq.(3.45)

3.1.5 Exact mechanical description of fractional-order
isotropic hereditariness

The stress/strain tensor outlined in section (2) requires a multiaxial constitu-
tive relation, as in eq.(3.45), that under the assumption of G = 0 generalizes
eq.(3.8a).

The rheological element, namely the springpot, corresponding to eq.(3.8a)
can not, however, be defined also for the isotropic description, namely for the
presence of shear stress/strain. A mechanical model that may be involved
in the presence of normal and shear stress to be used in experimental test is
represented in Fig.3.8



LINEAR HEREDITARINESS 71

_ s
pu,  FEEEDI) =KD ()
—v F
AN
A F 1 M;
RS,
T = =194 [ S
i = +
N ST I oI 7%
1) (1)
w_0s4 @ _ s s
Kﬂ - Kﬁ
H H

Figure 3.7: Rheologic elements

Under such conditions, the circular column of height H, cross section A
and radius R under axial stress and shear stress related to the measured
relative displacements u(t) and twist angle p(¢) provides these equilibrium
equations:

(3.48)

where Jg = mR*/4 is the polar moment of inertia of the circular cross-section
represented in Fig.3.8. The constitutive equation(3.48) involve for limiting
cases: i) a linear elastic spring (8 =0); and ii) a linear viscous element
(B = 1), respectively.

In the following, we introduce a hierarchic mechanical model to capture
the axial and shear hereditariness assuming power-law description of the
creep and relaxation functions for axial and shear stress/strain, respectively
[37, 32]. The obtained mechanical hierarchy corresponds exactly to an axial
and shear springpots with the same order of time evolution/decay.

To this aim let us introduce an elastic column of unbounded length with
circular cross section of radius R. The elastic features of the column are
non-costant along the column axis and vary with the coordinate as:

E(z)==———2"% G(z)= %za —-1<a<l1 (3.49)
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elastic cylinder
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Figure 3.8: column with non-homogeneous viscosity

The column is externally restrained by a set of torsional and axial viscous
dashpots Fig.3.9 with non-homogeneous viscosity 7(z) as:

n(z) = e e _1<a<1 (3.50)

Axial and torsional equilibrium along the column axis reads:

Nt B ] E mR%s(z + Az)™
———— 2 21 RA = Az t) — t
P(1+a)z TRAZU (2, 1) T(1—a) [u(z+ Az t) —u(z,t)]+

E, tR?sz=¢

m [U (Z, t) —Uu (Z - AZ, t)] (351&)
n—az_o‘QWR?Ang (2,t) = GomRY (2 + A2) [0 (2 + Az, t) — ¢ (2,1)] +
I'l+a)

+ Gam RNz + A2) Y9 (2,1) — o (2 — Az, )] (3.51b)
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Figure 3.9: elements of the column with non-homogeneous viscosity

that, can be rewritten in differential form, by letting Az — 0 as:

Naz”® Ou(zt)  EuRs 0 ( _ 0u(zt)

F'l4+a) ot  T(1-a)oz : 0z (3:52)
naz”® Op(zt)  GaR 0 ([ _,0p(21)

I'l+a) ot  TI'(l—a)oz Dz (8:52b)

The boundary conditions involving the differential fields u(z,t) and ¢(z,t)
in egs.(3.52a),(3.52b) read, respectively.

lim u (z,t) =0 (3.53a)
Z—r 00

E ou
lim ————2"%— = K .53b
zlg(lJF(l—a)Z 0z 0 (8:53b)
lim ¢ (z,t) =0 (3.54a)

Z—r 00

. Go _,0p

];_)I% mz 5 = M, (3.54b)
Mathematical operators and boundary conditions in eqs.(3.54a)(3.54b)

are completely equivalent to those of a previous differential problem that

has been solved by resorting to a non- linear mapping followed by Laplace

transforms [37, 31|. Such a procedure yields a Bessel differential equation of

second kind in terms of the anomalous Laplace parameters. The position of
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the boundary conditions and inverse Laplace transform provides the solution
in the form:

-8
uo (1) = ug (21) = lim u(z,1) = %FO _LL(O)F (355
B
-8
2o (1) = po (1) = lim g (= 1) = %Ma —Jr(t),  (3.56)
B
with: ( >
26) (T
(L) _
b = o wr BT (3.57)
28) (7 )
(1) _
EEN R DI ) (3:5%)
with g = L+a and the relaxation times:
'l-q
T (3.59)
'l-qa)
= G F(l+a) (360)

The Superposition principle provides, by resorting to the fundamental equa-
tions of linear viscoelasticity, the constitutive equations of the macroscopic
variables, as:

Fy(t) = kP (Dmuo) (t) (3.61)
My (1) = K (Do) (1) (3.62)

Eqgs.(3.61),(3.62) are the constitutive equation at the macro-scale and, by

M,
recalling that Fy = 0334 and |7]| = 4/ \t31\2 + |t32]2 = 5 the constitutive

equations of the material read:

033 — G(BL) (D’8€33) (t) (363)
7| =Gy (D) (1) (3.64)
where the coeflicients GgL) and G/(BT) read:
7.(L)7 7.(T)
on ! ) _ ks R (3.65)
A A A 2As 1 '

and where [ is an internal length of the material. Egs.(3.63),(3.64) are the
multiaxial constitutive relations of the isotropic material and, henceforth,
correspond to the hierarchy introduced by the fractional-order isotropy.
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3.2 Non-Linear Viscoelasticity

Many materials or structures are called soft in the sense that they are able to
undergo large displacements / rotations, possibly in addition to large strains:
rubbery materials and soft living tissues are typical examples, but truss-like
structures also display such behaviors due to some internal mechanisms. The
mechanical response of soft materials during their service life is very seldom
linear (unless restricted to the small strains regime in some specific use), and
most of the time, non-linearities are present; an intuitive idea of a nonlinear
response is provided by the crushing of a soft ball, with the ball returning
to its initial shape when the pressure is released. Non-linearities in contin-
uum mechanics can be classified as geometrical non-linearities and material
non-linearities: the first type (geometrical non-linerarities)occur when the
displacement or rotation of material elements of the structure are large in
comparison to its size; this may occur for slender structures having a small
bending stiffness compared to their in-plane properties. The second type
(material non-linearities) are due to the occurrence of large strains.

The experimental results illustrated show that biological tissues are not
elastic [5, 7]. The history of strain affects the stress. In particular, there is
a considerable difference in stress response to loading and unloading. Most
authors discuss soft tissue experiments in the framework of the linear theory
of viscoelasticity relating stress and strain on the basis of the Voigt, Maxwell,
and Kelvin models,formulated a continuous relaxation spectrum that corre-
sponds to a combination of an infinite number of Voigt and Maxwell elements.
A non-linear theory of the Kelvin type was proposed by Viidik (1966) on the
basis of a sequence of springs of different natural length, with the number
of participating springs increasing with increasing strain. It is reasonable to
expect that for oscillations of small amplitude about an equilibrium state,
the theory of linear viscoelasticity should apply. For finite deformations,
however, the non-linear stress-strain characteristics of the living tissues must
be accounted for.

For a viscoelastic solid the constitutive assumption states that the stress
o, internal energy “e” and specific entropy 7 at time t depend on histories
of the deformation gradient F', temperature 6 and temperature gradient.
Thermodynamic arguments show that the stress, internal energy, and specific
entropy it is assumed that do not depend on the temperature gradient grad6.
Temperature, being a scalar will not be explicitly mentioned.

As in the case of linear viscoelasticity, it is assumed that the solid is in its
reference configuration for ¢t < 0, i.e. F(t) =1I,t < 0. It is further assumed
that the material does not age and the stress at the current time ¢ depends
on the history of the deformation gradient,t € (—oo, t], thereby allowing for
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jump discontinuities at ¢ = 0. This constitutive equation expressing this
dependence is denoted by

o =F[F(t—1)[Z] (3.66)

JF is called a tensor-valued response functional and plays the rule of the
material response function ¢,(g,t) observed in previous chapter. There are
three main sources of restrictions on F: (a) the influence of superposed rigid
body motions, (b) material symmetry, (c¢) restrictions due to thermodynam-
ics.

Consider the motion () = x(X, 1), t € [0,¢] and suppose that the body
undergoes a second motion x(t) = x*(X,¢) that is obtained from the first
by a superposed rigid body motion,

XX, 1) = QD) [x(X,T) — d(D)], Te 0,1 (3.67)
Vector d(t) represents a rigid body translation. Q(f) represents a rigid body
rotation and satisfies the orthogonal condition as:

QMR =)' Q) =T (3.68)

It is assumed that the superposed rigid body motion affects the stress at time
t by only its rotation at time ¢. This leads to the condition that

TR — OF(t — )|Zo] = QUOTIF(t — )[2]Q(D)" (3.69)

for any rotation history Q(f) as long as it satisfies eq.(3.68). This, when
combined with the Polar Decomposition of F'(t) leads to the statement that
eq.(3.66) is of the form

o=RHFUt -2, R(t)" (3.70)

Because U and C' contain essentially the same information about the local
deformation and JF is as yet arbitrary, eq. (3.70) is usually restated without
loss in generality in the form

o =Ft)S[C(t—1)Z) F(t)" (3.71)

where G is a new response functional.

The concept of material symmetry arises from the fact that a material has
some physical microstructure in its reference configuration, such as a crys-
talline structure or a randomly oriented macromolecular network. Consider a
sample of material in its reference configuration and its microstructure. Sup-
pose there is a transformation of this reference configuration to a new con-
figuration such that the material appears to have the same microstructure as
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before. Let both the original and transformed configurations be subjected to
the same homogeneous deformation history with deformation gradient F(t).
The underlying microstructures, which appear to be the same in their re-
spective reference configurations, are distorted in the same way. The stresses
are assumed to be the same at each time t and these configurations are said
to be mechanically equivalent.

A transformation of the original reference configuration to one that is
mechanically equivalent is a linear transformation denoted by H. One re-
striction on H is that it produce no volume change and this leads to the
condition that |detH| = 1. In addition, for most equivalent microstructures
of interest, H is a rotation or a reflection and satisfies

HH"=H'H=1 (3.72)

Symmetries of a material are described by specifying the set of transforma-
tions H that lead to equivalent microstructures. These form a mathematical
entity called a material symmetry group. The material symmetries com-
monly used to describe nonlinear viscoelastic materials are isotropy, trans-
verse isotropy and orthotropy

The possible motions of a body may be limited by constraints such as
incompressibility or inextensibility in certain directions. Such constraints im-
pose restrictions on the constitutive equations. Discussion here is restricted
to the constraint of incompressibility, this leads to an idealized material
model for which any possible motion must satisfy the constraint,

detF(t) =1, te]0,t] (3.73)

Consideration of the restrictions of the thermodynamics for materials with
constraint eq.(3.73) leads to a modified form for constitutive equation eq.(3.66),

o(t) = —p(t) I + F[F(t — )] (3.74)

in which p(¢) is an arbitrary scalar function. The restriction imposed by
consideration of the influence of superposed rigid body motions must still be
satisfied so that F in eq.(3.74) still must satisfy eq.(3.69).

There is an interesting result for isotropic nonlinear viscoelastic solids
that does not depend on the form of the response functional F. Since (3.69)
must hold for arbitrary rotation transformations H and rotation histories
Q(t), t € [0,¢], in [72] it has shown that the constitutive equation can be
written in the form

o = §[B(1); Cilt — 1) (3.75)
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where B(t) is defined by B(t) = F(t)F(t)T and is called the left Cauchy—Green
tensor, and Cy(f) was defined by Cy(t) = Fi(t)” F,(t), where F} is called the

relative deformation gradient. The response functional 9 satisfies
SIH'B(H; H'C\(t — ) H|%,| = H'S[B; Ci(t — 1)|2JH  (3.76)

for all orthogonal transformations H. 9 is said to be an isotropic functional.
If, in addition, the material is incompressible and isotropic, the constitutive
equation can be written as

a(t) = —p()I + S[B; Cy(t — 1)[7%] (3.77)

where § satisfies eq.(3.76).

A number of specific representations for the response functionals ¥ and
G have appeared in the literature and these are for example in the book by
Lockett [64] as well as recent review article [40]. Some models proposed in
the literature will be summarized below, and finally the model developed in
this thesis will be presented.

3.2.1 Rate and Differential Type Constitutive Equations

One class of constitutive equations is that in which stress and its first "n" time
derivative and the deformation gradient and its first “m” time derivatives, all
evaluated at the current time t, are linked. We get for the functional

le do d’o d"o dF d*F de}

O — —— ey ——— — ey, —

Tt dt? T dtn Vodt a7 dtm
where R is a function of m 4+ n + 2 arguments. When subjected to the
restrictions imposed by the considerations of superposed rigid body motions,
the constitutive equation has the form [73].

(3.78)

R, [RTUR, RT;% [Rt(ﬂTa(i)Rt(ﬂL:t R.U,RT [j—;Ut(ﬂ] ) R} ~0
(3.79)

in which J =1,...,n and k£ = 1, ..., m. Such constitutive equations are said
to be of rate type and the j-th derivative

d7

= [R(D e (ORD) (3.80)

dt’ =t
is called the jth invariant stress rate. The orthogonal tensor R(?) is the rigid
body rotation. Equation (3.79) can be solved, in concept, for the stress in
terms of the deformation history or for the deformation in terms of the stress
history. A special case of (3.79) is explicit in the stress and does not depend
on the stress rates,
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3.2.2 Green—Rivlin Multiple Integral Constitutive Equa-
tions

Previous considerations holds true as we do not specify the kinematic class

of the deformations undergone by the solid.

In the following we may consider on attention measure of the strain with
the introduction of the Green—-St. Venant strain tensor defined by

(C(t)—1I) (3.81)

N —

E(t) =

t _
Note F = 8;:—)(2 that E(t) =0, t € (—00,0). Let E(f) be introduced into

eq.(3.71), which then becomes

o(t) = F(t)5: [E(t — )2, F(t)" (3.82)
Green and Rivlin [51] assumed that the response functional §; is continuous
in a E(f) in a sense described in [40]. By expressing E(t), t € (0,t) as

a Fourier series and then using the Stone-Weierstrass theorem, Green and
Rivlin obtained a representation for eq.(3.82) as a multiple integral series,

6 (Bl - D)= [ K- DaB(n)+
—I—/t /t Ks(t —ty,t — to)dE(ty)dE(ts)

+/OO /OO /Oo Kyt —t1,t — to,t — t3)dE(t))dE(t)dE(t;) + ... (3.83)

in order to account for a jump discontinuity in E(t). K;(t — t)dE(t),
Ky(t—ty,t —ty), K3(t —t1,t —ty,t —t3) are tensor-valued functions of order
four, six and eight, respectively. The dual assumption can also be made. As
discussed in Lockett [64], it has the form

B3, | (PO o @F 0" )l | (3.84)

J; has a multiple integral series representation analogous to eq.(3.83) with
E(t) replaced by F(t)"'a(t)F(#)T. In applications, only the truncation of



80 NON-LINEAR VISCOELASTICITY

eq.(3.83) or the series representation of eq. (3.84) up to triple integrals has
been considered.

Coleman and Noll [25] developed a constitutive equation based on the
assumption of fading memory, i.e. the current stress depends more on recent
deformations than past deformations. They also assumed that deformation of
the current configuration with respect to the reference configuration is large,
and that the deformation of recent configurations relative to the current
configuration changes slowly, in a sense made precise in [25]. This led to
Taylor series—like approximations to eq.(3.71), the leading terms of which
are

ot) = R(t){k1 [C(t)]+

/_ K [C(t),t — ] [R(t)" (Cy(T) — IR(t))}dt‘}R(t)T (3.85a)

+ / t K>[C(t),t — ] [F(t)"(Cy(t) — I)F(t)}dt‘}F(t)T (3.85b)

The integrands in egs.(3.85a)(3.85b) are linear in the tensors R(t)T (C(t) —
IR(t) and F(t)T(C(t) — I)F(t). K; and K, are fourth-order tensor func-
tions of ¢ and C(t) and have the property, made precise in [25], that they
monotonically decay to zero as ¢ increases. Dependence on the finite strain
tensor C(t) expresses the notion that deformation of the current configu-
ration with respect to the reference configuration can be large. The linear
dependence of the integrand on Cy(t) — I arises from the assumption that the
deformation occurs slowly. If the material is assumed to be incompressible,
then the assumption of fading memory imposed on eqs.(3.85a)(3.85b) leads
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to

o(t) = —p(t)I + R(t){k:l [C(t)]+
/0 t K, [C(t),t — t| [R(t)" (Ci() — IR(2))] dt}R(t)T (3.86a)
o(t) = —p(t)I + F(t){k:z [C(t)]+

+ /t K, [C(t),t — ] [F(t)"(Cy(t) — I)F(t)}df}F(t)T (3.86b)

When there is no deformation, then x(¢) = X, t > 0. All of the tensorial
variables appearing in eqgs.(3.86a)(3.86b) reduce to I and the stress reduces
to o(t) = ky(I) or o(t) = ko(I). It is assumed that the material is stress
free in its reference configuration so that ki(I) = ko(I) = 0. The dual form
of this constitutive equation in which the deformation is expressed in terms
of the stress history has not been considered.

3.2.3 Pipkin—Rogers Constitutive Theory

Pipkin and Rogers [79] developed a constitutive theory for nonlinear vis-
coelastic solids based on a set of assumptions about the response to step
strain histories. The response functional in eq.(3.71) has the form of a series
in which the first term gives the best approximation to measured mechanical
response using single step strain histories. The next level of approximation
uses the response to double step strain histories, and so on. The leading
terms terms that make up the whole formulation

a(t):F(t){Kg[C(t),O] +/0 %K;;[C(t),t—ﬂdf}F(t)T (3.87)

If the material is assumed to be incompressible, then

t a o
o(t) = —pt)I + F(t){Ks [C(t),0] +/ ng [C(t),t —1] dt}F(t)T
0 _
(3.88)
where the motion must be such that detF(t) = detC(t) = 1. At a fixed
value C of the strain tensor argument, K3[C' t] is assumed to monotonically
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decrease with ¢ to a non-zero limit. This, in effect, incorporates the notion
of fading memory into the Pipkin-Rogers constitutive theory. If the material
does not deform from its reference configuration, then eq.(3.87) reduces to
o(t) = K3(I,t). It is assumed that the material is stress free and hence
K;(I,t) = 0. Pipkin and Rogers discussed the dual to eq.(3.87). Although
the dual formulation gives an expression that is convenient for modeling
the results of creep experiments. Consequently, only eqs.(3.87)(3.88) are
considered here.

3.2.4 Material Symmetry Restriction

The forms for the constitutive equations presented reduce the problem of find-
ing material symmetry restrictions on the response functional G in eq.(3.71)
to that of finding material symmetry restrictions on the tensor valued func-
tions in eqs.(3.79),(3.83), (3.85a), (3.85b),(3.86a),(3.86b) or (3.87). Each of
these is a tensor valued function of a set of tensors M;, i = 1,2...N, that is,
of the form ®(M;.M,,...My). The material symmetry condition

H'G[C(t - 1)|Z|H = §H"C(t — 1) |2, H] (3.89)
imposed on the functions ® has the form
H®(M,, M,,..My)H" = ® HM,H" HM,H" . HMyH") (3.90)

The method for determining the form of ®(M;, My, ... My) satisfying eq.(3.90)
has been presented in the review article [85]. It is shown in [85|that for each
type of material symmetry,

1. there is a set of basic scalar functions I(My, M, .. My), k = 1,...k,
called invariants, that have the property

I, (M, M,,..My) = I, HM,H", HM,H" . HMyH") (3.91)

for each transformation H of the material symmetry group under consider-
ation;

2. there is a set of basic tensor valued functions, P,,(M;j, M,,...My),
m = 1,...M that satisfy (3.90) for each transformation H of the material
symmetry group under consideration.

3. A function ®(M;, My, ...My) that satisfies (3.90) can be represented in
the form

M
=) oP, (3.92)
m=1
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where ® is a scalar function of the basic scalar invariants, i.e. ®,, = i)m(] 1y IN).
It is straightforward to show that eq.(3.92) satisfies eq.(3.90).

The representation eq.(3.92) shows that material symmetry restrictions
determine the basic functions P,,(M;, Ms,...My) and hence the general ten-
sorial structure of® (M, Ms,...My). Material symmetry restrictions also
determine the arguments of the scalar coefficients ®,,, but provide no infor-
mation as to how @,, depends on these arguments.

The constitutive theories above involve only second order tensors. In this
case, there is no distinction between proper or full isotropy because eq.(3.71)
is identically satisfied by central reflection transformations. The rate type
constitutive equation in eq.(3.79) becomes

:RQ 0',0'1,0'2,...7Un;A1,A2,...,Am;B =0 (393)

The tensors Ay, known as Rivlin—Ericksen tensors [82|, are defined recur-
sively by

DA,

A, L+LTA 94
Dt—l-k-l— k (3.94)

A =(L+L)"-, A1 =

where L = FF~1. o, is defined recursively by

Do,
Dt

+o,L+ L', (3.95)

Og =0, O(nt+1) =

R, is an isotropic function of its arguments.

The form of each integrand in eq.(3.83) can be constructed by identifying
it with ®. For isotropic materials, the Green—Rivlin constitutive equation
eq. (3.83) becomes [64]

t

G [E(t - 1)[2) = / T + v M+

—00

¢t
+ / / (I3 TV T + TnpyTo + 15Ty My + 10 My M|

t t t
+ / / / [I1p7 1125 + IpsTh Tog + g1y To M3+

+ 10T12 M5 + Y1 Ty Moy Mg + 1o My Mo M) + .. (3.96)
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where wl = 1/)2(15 - tl), 1= 1,2, Qﬂz 1%( tl, tg), 1= 3,4,5,6, Ma =
dE(t,), T, = tr(M,), T, = tr(M,M,) and T, . = tr(M,M,M,)

This constitutive theory received a great deal of attention when first pro-
posed. An extensive discussion of experimental and analytical work based
on this theory is provided in [45]. Most of the experimental work makes
use of the dual form eq.(3.84) because it is experimentally more feasible to
apply step stresses and measure creep. There is little current interest in the
model for several reasons. The triple integral truncation of eq.(3.2.4) is ad-
equate for strains of about 0.1. However, larger strains require integrals of
higher multiplicity. This rapidly increases the number of experiments and
functions of time to be measured and the cost of the numerical evaluation of
the integrals.

Instead, when the material is isotropic egs.(3.85a)(3.85b) can be written
as eq.(3.75)

/ KB, 1(CD) - Dt (3.97)

in which the forms of k and K are found using the precedent results. K (B,
has the property that it monotonically decreases with ¢ to zero for fixed B.
In order to discuss the response to step changes in deformation, it is usually
written in the alternate form obtained by integrating by parts,

- 2 dCy(t)
— kB K[B(t),t — ] —="di 3.98
o(t) = kB + [ s (3.98)
The form of k is
k = aol + a,B + a, B? (3.99)

The scalar coefficients a; are functions of the invariants I,(B) of B(t) defined

by

1
slir(B)* —tr(B%)],  I3(B) = det(B)

) R (3.100)
The properties of K[B, ] are similar to those of K[B,t]. The integrand of

L(B) =tr(B), I(B) =
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eq.(3.98) is given

96D 400 | 400

K[B(1),1 1) (t-0)| B e+

B
+ Z Z Gap(t — ) Btr [Bb%} (3.101)
a=0 b=0

The scalar coefficients ¢, and ¢, are functions of (¢ — ¢) and the invari-
ants I,(B). If the material is assumed to be incompressible and isotropic,
eq.(3.97) and eq.(3.98) are replaced, respectively, by

o(t) = —p(t)I + k[B(t)] + /Ot E[B(t),t — ) (Cy(F) — I)dt (3.102)

or

~

dw:—m@I+MBun+At[<>t—ﬂ

k[B(t)] and k[B(t)] have the same form as in eq.(3.99). However, since
I3(B) = 1, the scalar coefficients i now depend only on I1(B) and I»(B).
Several authors carried out an extensive experimental program to determine
k and K for a styrene-butadiene rubber. The result of their program, sum-
marized in [69], is the following specific form of eq.(3.103),

dCt() (3.103)

o=—pt)I+ [d + ﬁ + L[f+g(1y — 3)]} B(t) - [f + g(Is — 3)|B(t)*+
+ 2/_; {d)o(t D)t (I — )t — a} %Odt

¢ bu(t — 1) dCy(t)  dCy(t) _
+/_OO |:¢l(t_ﬂ + m} {B(t) =t — B(t)]dt (3.104)

In eq.(3.104), I, I are the invariants of B, d, e, f, g are constants and ¢o(t),
D (t) ¢1(t), ¢o(t) are monotonically decreasing functions of time.

While for Pipikin and Rogers Theory the tensor valued function K3[C, ]
in eq. (3.87) and eq.(3.88) has the form

K;[C,t] = al +bC + cC*? (3.105)
where a, b, ¢ are functions of ¢ and the invariants of C,

L2 ()], L(C) = det(C)

Il(C> = tT(C), IQ(C) = 9
(3.106)
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For notational convenience, let /(C' denote the set (1;(C), I,(C), I5(C)). By
eq.(3.105) and the assumed dependence of K3[C,t] on ¢, the scalar coeffi-
cients a, b, ¢ also monotonically decrease with ¢ to non-zero limit values. For
an isotropic material, eq. (3.87) can be written as

o(t) = F(OIIF(t)" (3.107)
where
=a(l ) 0)I + b(I(C(t),0)C(t) + c(I(C(t),0)C(t)+
/ C(t),t —t) I+
+b(I (E) t - t‘)C(f) +(I(C(f),t — HC* (D)) di (3.108)

If the material is assumed to be incompressible, then eq.(3.107) is modified
by the addition of the term —plI, as in the case of eq.(3.88) , and I[(C)
now represents (I;(C'), Io(C'))since deformations are restricted by eq.(3.73) to
satisfy the constraint [3(C) = 1. Recalling the assumption that the material
is stress free in the reference configuration and hence Kj3(I,t) = 0, it follows
from eq.(3.105) that

ao(I(I), 1) + ar(I(I), 1) + ax(I(I),1) = 0 (3.109)

When the material is incompressible, I(I) = (3,3,1) and when it is incom-
pressible I(I) = (3, 3).

The terms outside the integral can be expressed in terms of B(t) by use
of B(t) = F(t)T and the observation that I,(C) = I,(B), a = 1,2,3. The
integrand cannot be expressed in terms of B(t) because it depends on C/(¢
for all times ¢ € [0,¢]. It is possible to express F(t)C(t)F(t)T in terms of
B(t) and Cy(1).

Kaye and Bernstein, Kearsley and Zapas [62, 15] proposed a constitutive
equation for polymer fluids of the form

Y (oU(L, It —t OU (I, I, t — 1 _
o = —pI+/ { ( ha;, 30,5('0_1 — ( 1,8;’ 3C't(lg}dt
1 2
(3.110)

in which U(I3, I5,t) is a material property that depends on time ¢ and the
scalar invariants of the relative right Cauchy—Green strain tensor C(t) =

FI(H)F(1) ,

—0o0

L(C)=tr((C(1))™"),  L(C)=tr(Cit)) (3.111)
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This constitutive equation, is mentioned here for several reasons. It is a
nonlinear single integral constitutive equation whose integrand is expressed
in terms of finite strain tensors, just as in eq.(3.97) or eq.(3.108). In addition,
with it a number of boundary value problems involving viscoelastic fluids can
be approached in a manner similar to problems involving viscoelastic solids.

3.2.5 Transversely isotropic and orthotropic material
restriction

For many materials, such as biological tissue, it is appropriate to use a con-
stitutive equation for an anisotropic viscoelastic solid, several authors have
addressed this aspect [4] . The restrictions due to transverse isotropy and
orthotropy on the functions appearing in the rate and differential constitu-
tive equations, the Green—Rivlin constitutive equation and the finite linear
viscoelastic constitutive equation lead to very complicated expressions. In
the case of the Pipkin—Rogers constitutive equation egs.(3.87) and (3.88), the
expressions are more tractable and have been discussed by [81] For a material
that is transversely isotropic with respect to the E3 direction, the invariants
are

(€)= tr(C),  D(C) = J[tr(C ~r(C?)],  I,(C) = det(C)

14(C) = Cs3 I5(C) = 0123 + 0223 (3.112)
Let I(C) denote the set (I,(C), ..., Is(C)),eq.(3.87) becomes:

o(t) = F(t){ar(I(C(1)), 0)I + ax(I(C(1)), 0)[[L(C(1))] — C(t)]+
+ag(1(C(t)),0)Es ® Es + as(I(C(1)),0)[Crs(t) (B ® Es + Es © Ey)+
+C%@xEy®E3+Ey®Egy+lfafégpuu«xa@—al
+ax(I(C(1)), t = )(L(CH) = C(1) + as(I(C(1)),t — 1) B3 © Es+
+ay(I(C (), t — D|Cr3(0)(Ey @ Es + B3 ® Ey)+

+ Co3(t) (B2 @ Es + B3 @ By)||dt}F(t)"
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For a material that is orthotropic, the invariants are:

Il<C) == Cn IQ(C) == 022 Ig(C) - C33 (3113)
LC)=C%  L(C)=Ck  I(C)=C4 (3.114)

Let I(C) denote the set (I,(C), ..., I4(C)),eq.(3.87) becomes

o(t)=F(t){ai(I(C(t)),0)E, ® Ey + ay(I(C(t)),0)E; @ Eyr+
+a3(1(C(t)),0)E; @ E3 + 2a4(I(C(t)),0)C12(E; @ Ey + Ey ® Ey)+
+ 2a5(I(C(t)),0)Cos(t) (B, @ Es + Es @ Ey)+

2a6(1(C(1)),0)Cs1(t)(Es @ Ey + E, ® E3)]+

+/O %[MU(C@@ —t)E @ B+

+ax(I(C(t)),t —t)Ey @ Ey + a3(I(C(t)),t — t)E3 @ Es+
+2a,(1(C(1)),t — 1)Cro(D)(E, @ Ey + By @ Ey)+
+2a5(I1(C(t)),t — 1)Co3(Ey ® Es + E3 @ Ey)+

+2a6(I(C(1)),t = 1)Cs1(E) © B3 + E3 @ E)]dt} F(t)" (3.115)

3.2.6 Homogeneous deformation:Triaxial stretch histo-
ries

Let an isotropic nonlinear viscoelastic solid block undergo the triaxial stretch
motion

xi(t) = N(0)X; t € (—oo,t] 1=1,2,3 (3.116)
with
M) =X(t) =Xs(t) =1 t€ (00,0 (3.117)
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Ai(t)is a stretch ratio in the X; direction. It can have a jump discontinuity
at t = 0 and then vary arbitrarily for ¢ € [0,¢]. The deformation gradient
history is

FH)=I € (-o0,0)

F(?) = diaglh (D), ha(D), Ma(D] T € [0,1 (3.118)

from which the kinematical quantities needed for use in the constitutive
equations are found to be given by

CH=I f¢c(—o0,0)
C(t) = diag[\ (1)*, Xa(D)?, As(D)?] T € [0,1] (3.119)

B(t) = diag[M(t)*, a(t)*, As(t)’] (3.120)

Ci(t) = diag[1/M(t)*, 1/2(t)*, 1/Xs(t)] T € (—00,0)

Ci(t) = diag[(M(B)/Mi(1)%, (Aa(D)/22()*, (As(D)/As(1)*]  t € K(Lt]

In addition
L(C(1) = M () + Xa(£)? + As(D)?

L(C(D) = M(0)*Aa()? + Xa2(B)*A3(1)? + As(£)* M ()

L(C(D) = M(B)*Aa()* A3 (8)? (3.122)
Note that I(B(t)) = I(C(t)), k = 1,2,3. Finally,
aC,(f)

a 0 t€(—00,0)
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W0 [N @ . @ dal® @ @]
T R WOy e W E RS WO PR telod

(3.124)
Substituting eqgs.(3.120)-(3.124) into eqgs.(3.98)-(3.101) gives an expression
for the stress oy;(t),

+4/0 azzggba(t—é)/\i(t)Qa%dEéﬂdf

_I_

2 ZQ: 22: Pan(t)Ni(1)* 23: [)‘k(t)% [ (1111((3)) ) - (ﬁ(’f)) |

+4 /O DD dwlt = ON(D* ( ST ::(% di’;;ﬂ ) dt (3.125)

For an incompressible material, o;;(t) is replaced by o;;(¢)+p and the motion
is such that A\ (£)\2(£)A3(t) = 1, t € [0,t]. For the constitutive equation
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(3.104)

o = —p(t) + {d + +L(f + gL - 3)]] Ai(t)? = [f + g1 = 3)[\ (1) "+

(I —2)?

+4/Ot {¢0(t—i)+(12—3)<1>0(t—ﬂ} O Ai(t) dxi(h) dit+

N0 dt
4{(/51(15) + (ffl_(t;)Q] [G(((Z))Y _ (Ait))QIAi(t)%
/ {gbl(t -+ (I - 2?2]%@) Ai(f) Ai((t?Q dAdiﬂ 3 (3.126)

From eq.(3.107)

oii(t) = Ni(t)*{ao(I(C(t),0) + ar (I(C(t), )\ (¢)*+
+ ax(I(C(t),0) N (t)* + /0 % [ao(I(C(f)j —t)+

+a(I(C(1), t = ONi(t)* + ax(I(C(D),t — ONi(1)*]d}  (3.127)

in which I(C) denotes the set of invariants eq.(3.122). For an incom-
pressible material, o;(t) is replaced by oy(t) + p, the motion is such that
)\1(7?))\2(2?)/\3(1?) =1, te [O,t] or Ig(C) =1 and ](C) = (]1(0),]2(0))

3.2.7 Homogeneous deformation: Uniaxial stretch his-
tories

Uniaxial stretch is the special case of triaxial stretch when there is only one
non-zero stress component. As in other areas of solid mechanics such as
elasticity and plasticity, an understanding of uniaxial stretch is essential to
an understanding of the material. Thus, this subsection contains a detailed
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discussion of uniaxial stretch for nonlinear viscoelasticity. Many of the fea-
tures of the uniaxial response introduced for linear viscoelastic response are
re-visited here. Let the reference configuration of an isotropic nonlinear vis-
coelastic solid be a block with edges along the X5, X5, X5 axes of a cartesian
coordinate system. The block undergoes uniaxial extension along the X3-
axis. The motion is described by eq.(3.117) and the stresses are given by
eq.(3.127) with o11(t) = 022(t) = 0, t > 0. For notational convenience, let
As3(t) = A(t) and o33(t) = o(t). Equations (3.127) become

0= —p(t) + ao(I(C(t),0)A#)* + a1 (I(C(t),0)A(#t)* + ax(I(C(t), 0)A(t)°+

+/O %[C@(I(C(a,t - E)A(t)2+

+ay(I(C(E),t — HAEAD)? + ax(I(C (), t — DAO2AD)*]dE (3.128a)

0= —p(t) + ao(I(C(t),0)\ (1) + a1 (I(C(t),0) A1 (£)* + ax(I1(C(t),0) A (t)°+

+/o ﬁ [ao(I(C@). 1 = DX(1)*+

+ai(I(C(D),t = DM ()M (D) + azx(I(C (), t — OM(8)* M (8)*E]dE
(3.128b)

0= —p(t) + ag(I(C(t),0))A(t)* + a1 (I(C(t), 0) Ay (t)* + ao(I(C(t), 0) Ao (t)°+

+/0 %[QO([(C(QJ—QM@){’_

+ a(I(C(1),t — H)Aa(t)*Aa(8)* + as(I(C (1), t — E) Ao (t)* Ao (£) ] dE
(3.128c¢)

It is intended that eqs.(3.128a)(3.128b)(3.128¢) apply to both compress-
ible and incompressible materials in a single expression. When the ma-
terial is compressible, p = 0 and when it is incompressible. Equations
(3.128a)(3.128b) (3.128c¢) are supplemented by the condition Ay (£) A (£)A3(f) =
1, t € [0,t]. Suppose that the material is compressible. If the history
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A3(t) = A(t), t € [0,t] is specified, then eqgs.(3.128b) (3.128¢c) become a
system of nonlinear Volterra integral equations for A;(¢) and A\y(¢), t € [0, ¢].
Once these are known, eq.(3.128a) is used to determine o(t),t > 0. If the
stress history, o(t), t > 0, is specified, eqgs.(3.128b) (3.128c) becomes a system
of nonlinear Volterra integral equations for \;(t), Aa(t), A3(t), t € [0, ¢].

Suppose that the material is incompressible. If the history A3(¢) = A({),
t € ]0,t] is specified, then eqs.(3.128b) (3.128¢) along with Ay (£) Ao (£)A3(t) =
1, ¢t € [0,t] become a system of nonlinear Volterra integral equations for
p,A1(t) and Aqo(t), t € [0,t]. Once these are known, eq.(3.128a) is used
to determine o(t), t > 0. If the stress history,c(t), ¢ > 0, is specified,
eqs.(3.128b) (3.128¢) along with A\(£)A\2(t)A3(f) = 1, ¢t € [0,¢] becomes a
system of nonlinear Volterra integral equations for p,\;(t), Aa(f), A3(t), t €
[0,¢]. These can be solved using the numerical method.

For determination of A;(¢) and \y(t), t € [0, ], For both compressible and
incompressible materials, subtraction of egs. (3.128b) (3.128c) gives:

0= (A2(t)* = M (t)*)Jao(I(C(t),0)) + ar(I(C(t),0)(Aa(t)* + M (t)*)+

+ az(I(C (1), 0) (A2 (t)* + Ao (£)* M (6)* + Ai(8) )]+

_1_/0 8(158— i [aO(I(C(f),t — 1) (Aa(t)® = M (1)*)+

+ a1 (I(C(T), t — £) (A (t)*Xa(£)* — Au ()M (8)?)+

+aa(I(C(E), £ — a8 Aa(t) — A (£)2 N (8)")] dE (3.129)

Eq.(3.129) leads to a relation between \;(f) and Ay(¢). Let t =¢t; = 0. The
integral becomes zero and eq.(3.129) reduces to:

0= (Aa2(t1)” = M (t1)?)[ao(I(C (1), t1)) + ar (I(C(t1), tr1) (Na(t1)? + A (£1))+

+ GQ(I(C(tl), tl)()\g(tl)4 + /\2(t1)2/\1(t1)2 + /\1 (t1)4)] (3130)

It is assumed that the expression in square brackets is not zero. Then the
only physically meaningful solution to eq.(3.130) is Aa(t1)? = A1(t1)?. Next,
evaluate eq.(3.129) at t = to, introduce the notation ;(t—¢)/9(t—t) = a;(t—t)
and approximate the integral using the trapezoidal rule. Since A\y(t)* =
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Ai(t1)?, eq. (3.129) reduces to:

0= (Aa(t2)® = M (t2)*)[ao(I(C(t2), t1)) + a1 (I(C(t2), t1) (Aa(t2)? + M (t2)?)+

+ ag(I(C(t2), t1) (Mg (t2)* + Aa(t2)* A1 (t2)* 4+ Ai(t2))]+

+ S (ta — t1){[ao(I(C(ta), t1)) + ao(I(C(tr), ta — t1)](Aa(t2)* — M (t2)*)+

DO | —

+ [a1 (1(C(t2), t1) (Aa(t2)® + M (t2)?) 4+ a1 (1(C(t1), t2 — t1)] A1 (£2)°]
()\2(t2)2 — Al(tg)Q) + [a2(I(C(ty),ta — t1) + a2 (I(C(ty),ta — 1)

(Ao (t)* + Ao (t1)* A (8)? + M (8) DA (1) ] Qa(t2)® = M (t2)*)} (3.131)

Since each term in eq.(3.131) has the factor Ay(¢;)? = A1 (t1)?, this equation
admits the solution A\y(t3)* = A(t2)%. It is assumed that this is the only

physically meaningful solution. Next, let eq.(3.129) be evaluated at t = ¢,
and assume that Ay () = A\ (tx)%, k=1,2,....,n — 1.
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Approximating eq.(3.129) by use of the trapezoidal rule gives:

0= ()\2(75”)2 — >\1(tn)2)[ao([(C(tn), t1)) + a1 (I(C(tn), t1)(>\2(tn)2 + M\ (tn)2)+

+ as(I(C(tn), t1) (Na(tn)* + Xatn)Ai(tn)® + Ai(tn) )]+

zn2

+ Z tiv1 — t){[ao(I(C (i), tn — tiy1)) + ao(I(C(t:), tn — tit1)]

(Xa(tn)? = M(tn)?) + [a1 (I(C(tig), tn — tix1) (Aa(tiza)*+
+ a1 (I(C(ti), tn — ) (M ()] (Aa(tn)? = M(ta)*)+

+[as(I(C(tir), ta — tiv) M (tier)* + aa(I(C (), tn — ti) M ()]
Ooltn? = Mt} + 500 = ta ) oI (C 1), 1)+

4 ao(I(C(tn_1), tn — ta_1)](A2(tn)? — Ai(tn)?)+
+ (a1 (1(C(tn), t1) (Ao (tn)? + A (tn)?) + a1(1(C(tn-1), tn — tn1) (M1 (tn1)’]
(A2 (tn)? = M (tn)?) + [a2(1(C(tn), t1) (Ao (tn)* + Aa(tn)? A1 (80)® + M (t) )+

a2(I(C(tn-1),tn = ta-1) (M (tn-1) ] N2(tn)” = Ai(ta)*)} (3.132)

Since each term in eq.(3.132) has the factor A\g(t,)* — A\ (£,,)?, this equation
admits the solution Ay(t,)? = Ai(t,)?. As before, it is assumed that this is
the only physically meaningful solution. This solution holds as tn increases,
that is, as time marches forward. In the limit as the number of time steps
increases and the time increments decrease, the approximation to eq.(3.129)
is expected to approach the exact equation. Thus, the numerical solution
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implies that Ao(£)? = A (f)?, t € [0,¢]. The invariants in eq.(3.124) reduce to:

L(C(1) = 2M(D)* + A(D)
L(C(H) = M) + 2\ (5)*A(F)

L(C (1) = M)A (3.133)

When the material is compressible, eq.(3.128a)(3.128b), with p = 0 give
a system of non-linear Volterra integral equations that relate A(¢, A;(¢) and
o(t). When the material is incompressible, one finds from the result \y(#)* =
A (8)%, t € [0,t] and the condition A\ (£)Xa(f)A3(t) = 1 £ € [0,¢] that:

MO =MDV e, (3.134)
The invariants eq.(3.133) reduce further to

L(C(t) = \t)* + (3 L(C (ﬂ)_QA(ﬂ (ﬂz

The scalar p is found from eq.(3.128b). Eliminating p between eq.(3.128a)
and eq.(3.128b) gives:

o(t) = ((ﬂ O)[ o(I(C(1),0)) + ar(I(C(2), ))( (6" + O)

(3.135)

+ax(I(C(2).0) (W FA) + %) +

+ /0 8@% [ao(I(C(i),t 5 <>\(ﬂ4 ) 4+ ﬁ) 4

(3.136)
a (I(C(t),t —1) (A(t)Q/\(E)Q — A(t)&@) (3.137)
(3.138)
as(1(C(D),t — ) (A(tm@‘* _ W)] d (3.139)

the stress—stretch relation for an isotropic, incompressible nonlinear vis-
coelastic solid.
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3.2.8 Quasi-Linear Viscoelasticity (QLV)
Let us assume that in eqs.(3.87)(3.88) the kernel K3[C,t] is separable, i.e.

Ks[C, 1] = K9[C|G(?) (3.140)

has become known as Quasi-linear viscoelasticity. K(®[C] is normalized so
that G(0) = 1. Then,eq.(3.141) becomes

o (t) = —p(t)I + F(t){ / K©[C (( f? dt}F( )T
(3.141)

The terminology “quasi-linear viscoelasticity” arises because K()[C] can
be thought of as a non-linear measure of strain. The expression in braces in
eq.(3.141) is linear in this nonlinear strain measure.

In 1D form as we particularize the elastic tensor K(®[C] = diy;/0e and
G(t) is the relaxation function with ¢y (¢) the Helmoltz free energy function
of hyperelastic materials and we may write the one-dimensional reletion for
the strain histrory yielding the QLV model of non-linear hereditariness as
reported in [48]:

5(t):/0tJ(t—T) (%ff)d _/Otj(t—T)%g(T)dT (3.142a)

o(t) = /0 G(t—r) 8(?—;0617’ = /0 G(t—r) 8?_122(8)& (1)dr  (3.142b)

where ¢¢(0) is the Gibbs free energy. It must be remarked that the spe-
cific form of QLV in eqgs.(3.142a)(3.142b) has been defined independently by
eq.(3.142a) [48].

3.3  Quasi-Fractional Hereditary Materials (Q-
FHM)

The constitutive equation reported in egs.(3.142a)(3.142b) have been ob-
tained from mathematical approximation without any mechanical justifica-
tion. Indeed, the behavior of the material is non-linear hereditariness, the
relationship eq. (3.9) between the creep and relaxation functions is not ap-
plicable. Additionally to this point it is not possible to relate the results of
the creep with those of the relaxation and vice versa.

In this paragraph we aim to show that power-laws expressed in terms of
real powers of time for the material creep ¢’ and relaxation functions ¢t
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may be used for an consistent mathematical description of non-linear models
of material hereditariness.

As it has been observed in sec.3.1 for many materials power-law relation in
time and in stress/strain have been observed. Under such circumstances data
analysis shows that material functions for constant stress, namely ¢. (o,t)
and for uniform strain, namely, ¢, (e,t) functions may be expressed in a
generalized, separable form as:

outmt) = 1) 10 = (&) (%)5 f o ) )
(3.143a)

—Br
Or (e,1) = Ge () G (t) = Goe™ (%) ﬁ (3.143Db)

that are completely equivalent to the Nutting observation for polymers. In
the latter equality in eq.(3.143a) we introduced, for simplicity, the non-

. . 0o
dimensional stress s = —.
0
Generalization to negative values of the stress and strain my be provide

as we introduce the sign(s) function as:

s|%sign(s Pe
e (0,t) = Js[*sign(s) T fﬂf)) (Tio) (3.144a)
Arsign —Br
¢ (e,1) = ﬂafgﬁf;) <%) (3.144b)

Let us introduce in the material function the non-linear transform
sp(t) = |s|%sign(s) and &,(t) = |e|* sign(e) (3.145)

and let us assume that the eqgs.(3.143a)(3.143b) holds true also for non-
constant stress/strain histories. In this case Boltzmann superposition applies
also to s, (t) and £(t) yields:

. Br t

S(t)—% /0 (t— 1) e, (r)dr = (1) <D§Tsn) (1) (3.146a)
T —Be t . -

e(t) = ﬁ /0 (t—7) "5, (1) dr = (1) (L?CSH) (t)  (3.146b)

As we assume that, after the introduction of fractional calculus formalism
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yields:
s() = (=)™ (DG e (™) () (3.147a)
S (t) = [Tiﬁ (12:5) (t)} o (3.147)

or, involving the knowledge of the creep functions:

£ (1) = () (1 1s(0]) (1) (3.148a)

Be ( ybe Ve
s(t) = {(@ <DO+5> (t)] (3.148b)
Observation of eqs.(3.146)(3.146b) shows three main features:

i) The constitutive equations for the non-dimensional stress involves a
non-linear transform of the strain € (t) — £, (t) a relaxation time 7, and the
time-decay order [3,;

ii) The constitutive equation for the strain evolution involves the non-
linear transform of the stress s (t) — s, (t), a creep characteristic time 7, and
an evolution order ., with 8. # f,;

iii) Some specific relations among creep (a, ., 7.) and relaxation (o, B, 7,)
parameters can be obtained as from the next part.

3.3.1 Relations among Creep and Relaxation parame-
ters

The non-linear dependence of the strain and the stress observed in the exper-
imental campaign was extensively investigated in several papers on ligaments
and tendons hereditariness [80, 1, 78]. However, despite the large efforts in
the description of material parameters observed in relaxation tests no rela-
tions among «., (., 7. for the creep tests and «,, 8., 7. for the relaxation
could be observed as reported by several authors. This latter comment is
discussed in detail in this section obtaining the fundamental conditions that
must be fulfilled for fractional-order modeling of non-linear hereditariness of
tendons of the knee.

To this aim let us evaluate the strain € (¢) at time instant ¢t = 7. yielding
a one-to-one relation among the applied, non dimensional, stress s and the
measured strain ¢ (7.), omitting arguments:

s =" (I (B, + 1))/ (3.149)
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that, after substitution in eq.(3.149) yields the equality:

e (T (8, + 1))V = = (T")_BT (3.150)
g/ e . = — .
I'(B) \7
that may be cast as:
1 1 T _Br
O € (3151)
Te
. 1 :
that holds true, for any value of the strain ¢ as a,, = — so that a relation

among the material characteristic times observed in creepcand relaxation may
be established as:
7 = 1.0(B, + 1) @I (8, ) /P (3.152)

1
that, in. conjunction with the relation a,, = — allows to estimate the char-
a

acteristic time of the relaxation upon measure of the characteristic time ob-
served in creep once a relation among the decay (5, and the order (. has been
established.

This latter condition may be obtained as we search the estimates of
creep parameters with direct measures of the relaxation parameters, namely,
A, By, 7. Under this condition the relation among the characteristic time in
creep estimate 7. and the characteristic time observed in relaxation reads:

1 177!
re=17 |D(8) BT (8, 4+ 1)5 (3.153)
yielding:
! 1
7 =7 |T(B) P T (8.4 1) (3.154)

Direct comparison of eq.(3.154) with eq.(3.152) yields the relation among the
orders:

Be = a By (3.155a) Br = o e (3.155b)
eqs.(3.155) allows for a relation among the decaying order of the relaxation,

given the creep parameters as:

_ S

%

By (3.156)
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that corresponds, in conjunction with o, = 1/a,, to eq.(3.155b) namely
67’ = arﬁc'

Relaxation order [, of the stress s(t) yields the order of the relaxation
B, > B. according to the well-established paradigms that relazation run faster
than creep as reported by several authors [63].

3.3.2 Numerical assessment

In this section we aim to show that the proposed equivalence relations hold
true also in the presence of non-constant stress or strain histories and that
the constitutive equations in eqs.(3.147a)(3.147b) (3.148a)(3.148b) are com-
pletely general.

we can shown the numerical results for a polynomial class of stress and
strain. In the first application a function s (t) of type has been assigned:

s(t) = 5t (3.157)

we have studied the problem by applying the eqs.(3.148a)(3.148b), and we
have considered three different value of ., in particular a.—1 to show the
particular case of linear behavior, . = 3, = 8 = 0.45, and o, = 1,1.4,1.7
and other parameters are fixed, 7. = 4.5; The solutions were obtained devel-
oped a numerical code implementing Griinwald-Letnikov’s diferintegral, we
considered 2000 steps with a time step of 0.1.

250§
500 |
. Numerical results — o1
400 s(t) ——- O.=14 %
) wof — = O=17/
* 200 1o ]
100 o
s
0 |
] 20 40 60 80 100 L & %
58] oy
a) b)

Figure 3.10: Numerical results between s(t) assigned and Numerical results

The figs.(3.10a,b) showed the numerical results respectively of eq.(3.148a)
and eq.(3.148b). Fig.3.10a and fig.3.10b shown the perfect match between as-
signed function of stress history and numerical results of eq.(3.148a) Fig.3.10b
highlight the effect of non-linearity in the £(¢) function, that increase for in-
creasing values ..
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If now we consider harmonic-type stress and strain histories function, for
example s (t) of type has been assigned

s(t) = s;Sin(w;t) with 4,57 =0,1,2 (3.158)

where sg = 10,s; = 15,8, = 20. In the first application, we have consid-
ered to show the effect of amplitude on the non linearity of the function
s(t) eq.(3.148a), so we fixed the value of w, in particular wy = 1 and also
we established values for 5. = 0.045, 7. = 7.5 and o, = 0.77. A numerical
code has been developed for solving the eqs.(3.148a) and (3.148b), in partic-
ular we used the solution of Fractional Integral and fractional derivative by
Griinwald-Letnikov’s differintegral, we considered 5000 steps with a time step
of 0.01. The fig.3.11a shows that numerical application of eq.(3.148a) per-
fectly overlaps the assigned functions of s(t) and the effect of the non-linearity
in the £(t) function for three different values of s;. while the fig.3.11b shows
the perfectly overlaps between assigned stress history and the stress functions
from eq.(3.148a) for each value of w.

20 e +  Numerical results 20

fffff

10 i

Wy
-—-y

- -,

] 1 H 3 4 5 & 0 1 2 3 4 5 L]

a) " b) l

Figure 3.11: a) Numerical results between s(t) assigned ad s(t) obtained
for 3 different amplitude; b) Numerical results between s(t) assigned ad s(t)
obtained for 3 different frequency levels

In the following, the we have fixed the values of amplitude and have
change wj, the three parameters chosen are wy = 1,w; = 2,wy = 4. The
function s(t) is calculated considering f. = 0.045, 7. = 7.5 and o, = 0.77.
The fig.3.11b shows the evaluation of

s(t) = s1.5in(w;t) (3.159)

To further highlight the effect of non-linearity in the case of non-linear vis-
coelastic behaviour, the value of the function to () eq.(3.148b) was also
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elt]

Figure 3.12: Numerical results of strain for assigned amplitude sy = 10 and
frequency w; and 3 different value of a.

calculated for three different values of a., in particular o, = 1 to show the
particular case of linear behavior, g. = 3,, and o, = 1.4 and o, = 1.7. For
each analysis we have considered fixed value of amplitude and w. In follow-
ing figs.(3.12,3.13 and 3.14) show the results of eq.(3.148b) was calculated
by implementing Griinwald-Letnikov’s differintegral for the calculation of the
fractional integral, in which 5000 steps were carried out with a time step of
0.01. In the numerical tests carried out the effect of the non-linearity on the
strain function both by keeping the amplitude constant and by keeping the
frequency constant, the amplitude of the function is increased in both cases
as the parameter increases a.

In the next subsection we aim to show that the quasi-linear model of fractional
order material hereditariness is exactly modeled by a rheological assembly of
internal linear springs and internal linear dashpots depending on the level of
the external agency.

3.3.3 The rheological model of Fractional-order Quasi-
linear Hereditary Materials (FQHM)
The original study aim to show that the proposed approach to fractional

model of FQHM possess an equivalent rheological model totally analogous
to a mechanical hierarchy that has been proposed for the linear fractional-
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Figure 3.13: Numerical results of strain for assigned amplitude sqg = 10 and
frequency ws and 3 different value of a.

€l

40

Figure 3.14: Numerical results of strain for assigned amplitude sqg = 10 and
frequency w3 and 3 different value of a.
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order hereditary material (FHM).

Rheological description of the non-linear dependence of the power-law in
previous section may be captured as we introduce an unbounded linearly
elastic bar that is externally restrained by a bed of viscous element along the
column length as in Fig.3.15.

Figure 3.15: Linear elastic bar externally restrained by viscous elements and
equilibrium representation of the single element

The equilibrium of the generic element reads:
Ne(z + Az) — N(2) = =N, (3.160)
where N, is the overall force of the dashpots along the column and it reads:

Ou

Ny(z) = =C(z, Fy) Az 5 (z,1) (3.161)

and the elastic axial stress along the column reads:
N (z) = K(z, Fp) [u(2,t) —u(z — Az, t)] (3.162a)
Ne(z4+ Az) = K(z + Az, Fy) [u (2 + Az, t) —u(z, )] (3.162b)

and with u(z,t) the axial displacement along the column. Substitutions of
eqs.(3.161),(3.162a),(3.162b) into eq.(3.160) yields the equilibrium equation
in terms of the kinematic field u(z,t) along the column as:

Ou

K(z+ Az, Fy)Au (z + Az, t) — K(z, Fo)Au (z,t) = C (2, Fy) , , taz 5

(3.163)
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that, after some algebraic manipulation may be written as:

A ou
K. (z, F
and introducing the relation K (z, Fy) = % with [K,] = F and letting
2
Az — 0 eq.(3.164) reads:
0 ou ou
— | K ) —| = ) — 1
e ] o m g (3.165)
with the relevant boundary conditions:
lm u(st) =0, lim K, (s0) 24 = By W (3.166)
mpue =0 gkl =5 -

and for the initial condition u(z,0) = 0 Vz. The mechanical hierarchy that
corresponds to the non-linear creep function in eq.(3.165) is obtained assum-
ing that the applied force F{ is constant as in standard creep test. In the
following we assume that the axial stiffness and axial damping are expressed
by the relation:

8

Foz Fimod)y
Ko (2,Fy) = Ko 20— = Ky~ =
(2 F0) = Koo mi oy = Bor Ty

-6

(3.167)

with [Ky] = LOF?+) and I'(-) is the Euler-Gamma function and § € [—1, 1]
and . The non-linear damping coefficient reads:

-6

F(l—occ)z

C (Z, F(]) = Coh

(3.168)
with [Cy] = FE+e) L. Substituting of eqs.(3.167),(3.168) into eq.(3.165)
yields:

0 ou

— | Ky —| =C,

0z [ 0% az} 0%
that has the same mathematical structures of the governing equation of the
linear hereditary hierarchy described in [30, 35] Laplace transform Lfu] =
u(s) of eq.(3.169) yields; after some straightforward manipulations:

50u

1
o (3.169)

diz {Z‘éz—ﬂ = 51920 (3.170)
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C
with relaxation time 79 = ?0. The solution of eq.(3.170) may be obtained

0
in terms of the first and second modified Bessel function, Yj, (z/7ps) and
K. (24/Tos) with B.(0 +1)/2 as:

0 (2,8) = 2% [B1Yse (24/T05) + BaK g (24/705)] (3.171)

yielding, after substitution in eq.(3.166) the condition B; = 0. The integra-
tion constant By is obtained by the boundary condition in eq.(3.166) yields:

F7 K, d F
. 28.-1) o 0% 5 _ 0
By £1_I>I(1) z Ta=0) 7% Kg. (24/T0S) . (3.172)

yielding the constant B as:

B F(?C(ST(])—,&/?
27T T (28,) K221

(3.173)

The the axial displacement of the hierarchy at z — 0 ,namely, ug (¢) corre-
sponds to the material creep functions as:

Fge(sm) /%
t = Lil 0 1 ﬁcK —
uo (t) T (20,) Fryoo—ar 1 K. (2/709) (3.174)
Fgery ™ Fge ([ t\™
— tﬁc — .
Kor (2/8c> F (ﬁc) }-(0226c K()Fﬁc 7_-0
where we denoted:
7o = 70°T (26.) T (B) K2 (3.175)

that is completely equivalent to the non-linear creep function introduced
to capture the non-linear behavior of the tendons observed in the mechanical
tests. In passing we observe that the expression of the creep function in
eq.(3.175) does not allow for the use of time-superposition principle so that no
convolution integrals may be defined for non-linear hereditariness provided
by eqs.(3.146)(3.146b) unless the non-linear transform F, (t) — F ()" is
introduced. Under these circumstances the effect superposition may be used
and the fractional-order operators may be readily defined.

In order to find the response of the hierarchic model to a constant applied
stress, the equilibrium equations of the elements of the discretized model
eq.(3.164) are recast in matrix form as follows:

E} 7% (pyBu + qyAu) = vF, (3.176)



108 NON-LINEAR VISCOELASTICITY

where v is an influence vector and

CYOAZI_(s
_ 0= 3.177
V= Tra o) (3.177a)
K()Azilia
=" 3.177h
V=TT g) ( )
and
179 —1-9 0 0 i
—179 17949279 —9-9 0
0 —2=0 970 4 3% 0
A = : : : : : (3.178a)
~(N-1)"°
|0 0 0 (N—1)°+N—°]
(19 0 0 0 ]
0 279 0 0
0O 0 39 ... 0
B=| - . S : (3.178Db)
0 0 0 - - - N7

and N is the number of laminae in which the hierarchical model is dis-
cretized. In order to evaluate the solution the set of ordinary differential
equations (3.176), the system is premultiplied by B~1/2 and the coordinates
transformation is introduced as x = B'/?u; as a consequence, eq. (3.176)
may be written as

pvX + qvDx = VE§© (3.179)
being D = B™/2AB~"/2 and v = B~Y2v. Moreover in eq. (3.179) the
load terms have been simplified and the load appears only to the r.h.s. of
the system; as a consequence for constant applied load history the system
is linear. For this reason the matrix D can be easily diagonalized by the
standard method of modal analysis [35]. To this purpose, let the ® be the
modal matrix whose columns are the eigenvectors of the matrix D, then

'DP® = A TP =1 (3.180)

being I the identity matrix and A a diagonal matrix containing the eigen-
vectors of D. By introducing the modal coordinates in eq. (3.179) as

x(t) = ®y(t) y(t) = ®Tx(t) (3.181)
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the following system of uncoupled linear differential equations is obtained

pvy +qvAx = VFg (3.182)

The generic j — th equation reads

¢1j
2 [ 3.183
qVA] 0 < )

0395 +yj =

where §; = pyv/qvA; > 0 and ¢y ; is the first component of the j — th eigen-
vector. eq. (3.183) represents the governing equation of the well-known
viscoelastic Kelvin-Voigt model with unitary stiffness coefficient and damp-
ing coefficient equal to §;. Since the applied force at the r.h.s. of eq. (3.183)
is constant, the solution is the creep function of the Kelvin-Voigt model am-
plified by the value of the force in the y domain, that is

_ O1,
QV)\]'

no Fee [ = exp(—t/3;) (3.184)
The solution in the original domain related to the upper lamina, the one we
are interested in, can be easily obtained by the following

uy(t) = vIB 2@y (t) (3.185)

Eq. (3.185) is able to reproduce the nonlinear creep behavior described by
the Nutting law. To this purpose fig.3.16 shows the creep function obtained
with the aid of eq. (3.185) for different values of the applied force Fy. It
is evident that as the applied force increases, the creep curves do not scale
linearly.
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Figure 3.16: Plot of the creep curve related to the displacement of the upper
lamina for different values of the applied force. Parameter values: a. = 1.4,

Be =0.3, Az =0.01, N = 2000, (1. = 1).



Chapter 4

Non-linear hereditariness:
Ligaments and Tendons of human
knee

In this chapter the proposed approach to non-linear hereditariness in terms
of fractional-order calculus is used for the biomechanical characterization of
knee tendons and ligaments.

At first we report that in clinical biomechanics of graft used for surgical
reconstruction makes wide use of terms as stress and strain. Unfortunately
preconditioning of graft before surgery is usually done by means of applica-
tion of forces.

In the next section we show by experimental results that a correct ap-
proach to be followed in clinical biomechanics will be the replacement the
stress and strain as correct measures.

4.1 An in vitro mechanical test to mimic pre-
conditioning /pretension protocol

In this paragraph we will assume that: i) a preconditioning protocol can be
optimized with respect to the graft section, i.e. diameter, since geometrical
factors affect, significatively, the results of the protocol [3]; ii) the protocol
tuning on the graft diameter may be not sufficient to obtain an optimal out-
come, because the grafts involves different tissue with different mechanical
behaviour, although of the same size. In this experimental study these as-
sumptions are investigated to provide the effects of an “in vitro” mechanical
test, mimicking a simple preconditioning/pretensioning protocol, and apply
it to several graft samples used in ACL reconstruction. Final aim of this

111
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Fémur

Tissue level

Figure 4.1: The three scales of tissue engineering in case of the cruciate
anterior ligament

work is to identify reliable metrics able to support the optimal tuning of the
initial loading conditions for any graft chosen in the treatment of ACL injury.

The experimental campaign involved three different types of human tis-
sues, namely patellar (P) and hamstring (H) tendons, Anterior Cruciate Lig-
aments (ACL), and a commercial synthetic graft Lars (S). This choice was
justified by the fact that these tissues are commonly used in ACL reconstruc-
tion [47]. They were collected from a Tissue Bank (Science Care, USA). The
study was approved by the local Ethics Committee (protocol “TISS-KNEE”
8425). Tendons were stored at -80 °C' and thawed in a 37 °C' water bath for
15 min prior to testing [42] and then prepared by an experienced orthopaedic
surgeon. After preparation, each specimen was cleaned and cut at the same
length before clamping fig.4.2. For the first study we have prepared four
different groups were prepared: - “H 32 mm?”, an H group with section 324
11 mm?, with pretensioning load of 140£18 N that corresponds to 4 MPa
stress, equivalent to the pretensioning load of 160 N used in [88] for 7 mm
diameter grafts and indicated as good for stiffness and strength.

- “H 10 mm?®”, an H group with section 10£11 mm?, with pretensioning
load of 140 N was applied.

- “P 32 mm?”, a P group with section 3241 mm?, with a pretensioning
load of 140 N was applied.

- “S 10 mm?”, an S group as furnished by the manufacturer with section
10+1 mm?, with pretensioning load of 140 N was applied. Each group was
composed of six samples, as indicated in [58].
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Figure 4.2: Preparation for testing of: hamstring tendon sample H (a),
patellar tendon samples P (b), synthetic ligament S (c¢). A patellar sam-
ple clamped in the traction machine (d).

The aim of this study is the definition of an “optimal” procedure to tune
the initial loading conditions of grafts. The experimental set-up used to this
aim has involved the use of a single-axis electroforce dynamic system (Bose
3330, TA instruments) to perform uniaxial tensile tests. Sample principal
fibres were qualitatively aligned along the machine loading axis (fig. 4.2d).
Clamping was obtained with the aid of milled grips, involving sandpaper for
the synthetic grafts and a surgical basting suture at the end of hamstrings
grafts (fig.4.2a) [68]. In order to obtain reliable results, a specific experi-
mental protocol consisting in four phases consecutively applied on the same
sample was developed (fig. 4.3):

1. Preconditioning: specimens were preconditioned by harmonic load
between 20 and 100 N, for twenty cycles at 0.25 Hz, thus to remove any
crimping in the tendon fibrils caused by prolonged storage in a fixed position
[55].

2. Recovery: a 20 N load was maintained for 15 min to exhaust sample
elongation. After recovery, the initial length of the specimen as well as its ini-
tial width and thickness were measured along three sections of mid-substance
by using a standard digital caliper; measurements were repeated three times
by two different operators and values were then averaged to calculate strain
and engineering stress.
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Figure 4.3: Protocol test

3. Pretensioning: a load was applied to induce pretension on the graft,
considering a linear ramp with a loading rate of 315 N/s.

4. Stress relaxation: sample position reached in pretensioning was main-
tained for 100 s to mimic the behaviour of the grafts being implanted into
the knee joint.

During the whole experimental test, specimens were continuously moist-
ened with saline solution [54]. Stress relaxation lasted 100 s, that is an
observation time chosen for accurate estimation of the phenomenon through
a power-law model. The experimental data from the mechanical tests report-
ing the normalized stress with superimposed power-law fitting, are reported
in fig. 4.4. The results about the pretension level o(t) are collected in fig.
4.5. The observation of the data shows that with a three times larger sec-
tion Ag, the “H 32 mm?” the group presented about a three times lower
o(t) respect to the “H 10 mm?” set; difference was statistically significant
(p-value 0.0248). No difference was present between different materials with
same section. The relaxation rates  are collected in fig.4.6. It can be ob-
served that samples with larger section, in particular the “H 32 mm?” set,
shows faster relaxation if no statistical difference is present. Thus, the “H
32mm?” showed the highest decay, but no statistical difference is present.

The first assumption about the influence of the stress in the role of the
ACL graft cross-section area (i.e. diameter), was specifically demonstrated
by comparing grafts of the same typology, i.e. hamstring tendons, including
different section areas. The second assumption, about the importance of the
graft tissue, arise from the need to tune the preconditioning/pretensioning
protocol for each graft. However, the protocol did not show any significantly
different effect depending on the graft typology at least for the selected test
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Figure 4.4: Stress relaxation dimensionless mean curves (markers) for patellar
P, hamstring H and synthetic S samples with section area 32 or 10 mm?2, and
relative power fitting superimposed (straight lines). o(t) stands for tension
at time t,0(t) is the tension at the beginning of the relaxation (pretension).
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Figure 4.5: Pretension o(t) for patellar P, hamstring H and synthetic S sam-
ples with section area 32 or 10mm?.
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Figure 4.6: Relaxation rate  for patellar P, hamstring H and synthetic S
samples with section area 32 or 10mm?.
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Figure 4.7: Loading loss, for patellar P, hamstring H and synthetic S samples
with section area 32 or 10mm?.
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conditions and analysis. The proposed preconditioning and based-on-stress
pretensioning protocol shows comparable values of graft loss of tension after
fixation, with respect to literature |70, 39]. These findings further under-
lines the strong effect of pretensioning and hence the need to define a proper
protocol in clinical applications. The influence of the graft cross-section has
been observed primarily on pretension and also, with less extend on stress
relaxation. In particular for H, the test yields an inverse relationship between
graft area and pretensioning and a direct relationship between graft size and
relaxation. The results obtained for P are in agreement with literature. The
pretensioning load influences the mechanics of the grafts to a large extend.
The Stress, defined as force on section area, appears as the correct metric to
take into account both the contributes, with the aim to identify an optimal
approach for graft selection and preparation. In fact, the inherent definition
of stress could help comparing and exploiting the results obtained in different
studies. For instance, indications about a “dangerous” pretension — i.e. an
excessive applied force able to introduce alterations in structure —, seem to
be different if we consider a load of 340 N for a hamstring graft and a load of
500 N for a hamstring-polyethylene hybrid transplant. Nevertheless, focus-
ing on cross-section area, we found that the first study used a graft diameter
of about 7 mm, whereas the second of about 9 mm, thus both leading to a
common indication in terms of stress (for both about 8 MPa). Indeed, stress
is fundamental in interpreting structural-mechanical relationship. The pre-
viously reported stress value of 8 MPa represents an important basis also to
interpret our results. While Hingorani et al. [60] and Vena et al. [90] showed
that a higher pretension load led to a higher level of relaxation, the behaviour
identified in this work appeared to be quite different, presenting lower level
of relaxation when higher stress was applied; anyhow in [59] only pre-damage
strains were used and it was speculated that a separate behaviour may be
identified at higher levels of induced stress. This could be indeed our case,
since the higher stress values are all above the critical value of 8 MPa, thus
micro-damages could have impaired a full reorganization of the tissues and
therefore the overall relaxation behaviour. In the analysed testing conditions,
the influence of different graft materials was not that evident. Despite few
differences due to the proposed testing protocols, consistency with literature
was specifically identified in tension level and rate of relaxation for both P
and H samples. Unfortunately, no data for comparison were found in lit-
erature concerning synthetic graft, with particular attention to the specific
polyethylene terephtalate material. Despite this study did not find different
macroscopic behaviours related to the several grafts tested, their specificity
should not be ignored. Micro-structural differences were in fact reported
between hamstring and patellar tendons. Although these grafts are of the
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same typology of tissue, they were harvested from different knee anatomical
locations, definitely with a specific different function. For this reason, un-
der mechanical test conditions different from these observed in this study,
some significant differences were highlighted. For the analysed synthetic so-
lution, differences with respect to hamstring were not attended in general,
as hamstring graft represents a “gold standard”, thanks to a broad range of
available analyses [89, 61]. Nevertheless, new materials are under develop-
ment to obtain optimal ACL graft properties, therefore focusing on stress -
here proposed as one possible tuning metrics - can be useful to identify the
optimal graft diameter. This study presented several limitations and that
may be improved in the close future. Concerning testing, despite the use
of several solutions to avoid slippage of the soft tissues, further experiments
should necessarily consider the clamping performed on bone insertions or the
use of special gripping techniques. The obtained results show that the major
limitation pertains to the small sample size and testing conditions, that did
not allow us to completely generalize relationships between graft diameters
and materials. Nevertheless, this study provided an important basis that
can be used as a preliminary approach to optimize in particular the precon-
ditioning/pretensioning protocol and, more in general, the choice of graft in
the treatment of ACL injury.

4.2 The non-linear hereditariness of ligaments
and tendons human knee

In this paragraph we investigated from each type of graft used in surgical
reconstruction, behavior at different levels of imposed strain. In more details
we build a specific protocol on to introduced the same specimen relaxation
followed by material creep in five phases. 1. Preconditioning: specimens were
preconditioned by cycling between 20 and 100 N, for twenty cycles at 0.25
Hz, thus to remove any crimping in the tendon fibrils caused by prolonged
storage in a fixed position. 2. After preconditioning, the initial length of the
specimen as well as its initial width and thickness were measured along three
sections of mid-substance by using a standard digital caliper; measurements
were repeated three times by two different operators and values were then
averaged to calculate strain and engineering stress. 3. Stress relaxation test-
ing: considering the physiological range for ACL during daily-life activities,
different levels of strain, i.e. 1 %, 2 %, 3 %, 4 %, 5 %, were applied for 100
s to each specimen of each group, considering a linear ramp with a displace-
ment rate of 250 mm/s, thus to mimic physiological loading conditions. 4.
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Figure 4.8: Scheme of the testing protocol, where “Force” is the vertical force
read by the load cell (Newton) and “Displacement” is the distance between
clamps (millimetres)

Recovery: after relaxation, the applied strain was removed, and the specimen
was left untested for 15 min, thus to recover the effects of the loading history
and reduce the residual stress within the material. Recovery was assessed by
checking that after the unloaded period, the length of the sample was the
same measured at the end of phase 1. 5. Creep testing: the load recorded at
the beginning of phase 2 was applied to the sample for 100 s, considering a
linear ramp with a loading rate of 315 N/s. During the whole experimental
test, specimens were continuously moistened with saline solution

For each type of graft, five testing sessions which corresponded to the
imposed strains of 1-2-3-4-5% These values were chosen because peak ACL
strains during commonly activities range between 0% and 5%, and also be-
cause the strain at which the patellar tendon transits from the toe-region to
its linear region is slightly less than 5%. During the test, the specimen was
continuously moistened with saline solution. We have used the protocol test
in fig.4.8

Before testing, the specimens were preconditioned by cycling between 20
and 100 N, for twenty cycles at 0.25 Hz to remove any crimping in the tendon
fibrils caused by prolonged storage in a fixed position .

4.2.1 Experimental findings

The experimental data in terms of the axial engineering strain (o, t) have
been averaged, for each level of applied stress. The averaged creep func-
tions, namely < ¢ > (0y,t) > and < e (0;,1) > are reported in tab.4.1
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Figure 4.9: log-log plots averaged creep functions hamstring ligaments

and tab.4.2) respectively. A more detailed representation of the averaged
creep functions may be observed in a log[< ¢ >] — log [t] plot reported in
figs.(4.9,4.10) for the patellar and hamstring tendons, respectively.

Creep
Hamstring Patellar
o Be Te a o fe Te a

261 01266 3.976 1.2556 221 0.0917 4.938 0.635
5.65 0.0832 11.405 1.811 4.55 0.0902 2.742 0.717
8.61 0.0744 &. 701 1.649 5.37 0.0885 4.000 0.789
998 0.0735 4.052 1.591 6.88 0.011 5.799 0.672
16.26 0.067 11.29 1.568 7.57 0.058 5.22  0.729

Table 4.1: Average values for Hamstring and Patellar tendons obtained from
best fitting of experimental campaigns for creep test

Data analysis reported in fig.4.2 and fig.4.3 for the log-log plots reveals

that good candidate to fit averaged values of creep functions ,uép) (6;,t) and
i (6;,t) is the a linear model with equation:

j R .
log |:< 5( ) (U, t) >] = ,Bj log (]_"(1_—6])7-6(3)> + % log (G—]O) (41)

where 7 = P, H denotes the specific tissue considered, Tc(j ) and 0j are respec-
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Figure 4.10: log-log plots averaged creep functions Patellar tendons

o
tively a characteristic time and the non-dimensional stress 7; = E] where F

is the tangent elastic modulus obtained at the origin of a monotone test.

Straightforward manipulation of eq. (4.1) yields the relation for the av-
erage of the strain omitting j-dependence:

with 0 < 8. < 1, 0 < a. < 1 two material parameters, [7.] = [T] is an
additional material constant representing the characteristic time of the ma-
terial observed in a creep test and sign () is the signum function. It may
be observed that values of a., 5. and 7, are represented in tab.4.1 for the
considered tissues.

Inspection of eq.(4.2) reveals that the creep function coalesces with the
original formulation of Nutting obtained by experimental data conducted for
rubbers, concrete, steel, but not for biological tissues as in fact < e(o,t) >
for an assigned value of o, is a creep function that is < e(0,t) >= ¢.(s,t) =
s% = J(t) for s > 0.
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Figure 4.11: averaged creep functions hamstring ligaments
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Figure 4.12: averaged creep functions Patellar tendons

Solid lines in fig.4.11 and fig.4.12 represent fits of the data with eq.(4.1) and
excellent agreement among curves and data may be observed as expected
for power-laws representation of ligaments and tendons hereditariness [63].
The Nutting law given in the form |s|*sgn(c).J(t) has been obtained by
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Figure 4.13: log-log plots averaged relaxation functions hamstring tendons

considering a creep test. Since eq.(4.2) is non-linear, it may be obtained the
correspondent relation for the relaxation test like it happens in the linear
case. In order to achive this result we proceed with the relation test on
the specimen for patellar and hamstring tendons. Previous considerations
about the averaged values of the creep test results may be reported for the
relaxation averaged data in figs.(4.15, 4.16) and for the log-log plots reported
in figs.(4.13, 4.14) for the patellar and hamstring tendons, respectively. Solid
lines in figs.(4.13, 4.14) represents the linear fitting with equations (omitting
j-dependence)

Relaxation
Hamstring Patellar
€ Br Tr Q. € 5r Tr Q

1% 0.1589 5.191 0.796 1% 0.1444 5.39 1.574
2% 0.1507 5.211 0.552 2% 0.1258 5.2311 1.394
3% 0.1227 4.686 0.606 3% 0.1122 4.971  1.268
4% 0.117 4503 0.628 4% 0.1060 4.601  1.489
5% 0.1051 4.532 0.637 5% 0.098 4.98 1.69

Table 4.2: Average values for Hamstring and Patellar tendons obtained from
experimental campaigns for relaxation test
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Figure 4.14: log-log plots averaged relaxation functions Patellar tendons

T(8,)% t

r

log {M + o, log[e] (4.3)

G } =log[< s(t) >] = —f, log [

that corresponds, after straightforward manipulations to the stress average
relaxation expressed as:

<o) ERER) T e

with «,., [, relaxation material parameters and [7,] = [T] the characteristic
time of the tissue obtained in a relaxation test. The observation of eqs.(4.2,
4.4) shows that both creep and relaxation functions of the fibrous tissue
are non-linear functions of the stress and the strain respectively. Under the
assumption that &« = v = 1 a linear dependence is experienced so that the
creep and relaxation may be expressed as:

g Be
<e(t) >= Ta-3) (Tic) = sJ (t) (4.5a)
—Br
< s(t) >= %(Ti) _ G (1)

with J(t) and G(t) the well-known creep and relaxation functions of linear
hereditariness as 7, = 7. = 19 and 3, = 5. = .
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Figure 4.16: averaged relaxation functions Patellar tendons
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The same considerations can be made for ACL and the LARS synthetic
prosthesis
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Figure 4.18: log-log plots averaged creep functions LARS graft
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Creep
ACL ligaments Lars graft
o Be Te Qe o Be Te
5,7 0.101 9.67 091 9 0.22 139

10.86 0.0883 9.34 1.017 176 0.203 5.98
11.87 0.084 5.19 1.025 21.87 0.14 7.24
13.68 0.08 475 096 2734 0.101 20.83
13.7  0.0789 3.66 092 3516 0.1 30

127

Qe
0.97
1.021
1.07
1.31
1.39

Table 4.3: Average values for ACL and LARS obtained from best fitting of

experimental campaigns for creep test
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Figure 4.19: log-log plots averaged relaxation functions ACL
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Figure 4.20: log-log plots averaged relaxation functions Lars graft

Relaxation
ACL ligaments Lars graft

3 o Ty o € B, T Q,
1% 0.091 14.1 111 1% 0219 536 1.05
2% 0.09 1993 0981 2% 0.211 59.71 0.971
3% 0.086 23.86 0.99 3% 0.155 48.37 0.942
4% 0.077 418 1.02 4% 0.1463 63.48 0.719
5% 0.071 3.78 1.13 5% 0.1427 4.41 0.725

Table 4.4: Average values for ACL and LARS obtained from best fitting of
experimental campaigns for relaxation test

4.2.2 Comparison among creep and relaxation parame-
ters

In table(4.5,4.6,4.7) and table 4.8 values of the parameters obtained by best
fitting of the experimental data in sec.(3) for creep and relaxation tests have
been contrasted with the results of the proposed equations used to relate
creep and relaxation parameters. The columns of the tables report the esti-
mates of creep parameters for measured values of the relaxation parameters
at different level of applied stress assuming G, 1M Pa respectively for
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hamstring (tab.4.5) and patellar tendons (tab.4.6). The table reports the
percentage absolute value of the mean error e; with ¢« = 3, a, 7, among es-
timated and measured parameters and direct inspections shows that errors

are less than 5%.

o 60 = 67"047"
2.61 0.1251
5.65  0.0833
8.61  0.0738
9.98 0.0722
16.26  0.065

Hamstring tendons

e
0.0118
0.0012
0.008
0.018
0.0299

a. =1/a,
1.247
1.831
1.641
1.477
1.555

Ca
0.006
0.0109
0.005
0.072
0.009

Te

5.1
3.8
4.141
5.75
5.391

€r
0.033
0.386
0.0352
0.008
0.033

Table 4.5: Average values for Hamstring tendons obtained from parameters

relationships

9 ﬁc = Brar
2.21 0.1397
4.55 0.1235
5.37 0.109
6.88 0.012
7.57 0.089

Patellar tendons

€s
0.033
0.018
0.029
0.09
0.091

a. =1/,
0.614
0.71
0.765
0.673
0.732

€a
0.033
0.024
0.03
0.002
0.004

TC
4.01
11.34
8.9
4.07
11.11

€r
0.008
0.006
0.0023
0.004
0.01

Table 4.6: Average values for Patellar tendons obtained from parameters

relationships

o Bc - /BTaT
5,7 0.102
10.86  0.083
11.87 0.081
13.68 0.078
13,7 0.075

ACL ligaments

€s

0.009
0.063
0.037
0.026
0.052

a. =1/,
0.9

1.019
1.021
0.962
0.899

€a
0.009
0.002
0.001
0.003
0.022

Te
9.55
9.39
5.22
4.6
3.69

er
0.012
0.005
0.006
0.031
0.008

Table 4.7: Average values for ACL obtained from parameters relationships
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Lars Graft
9 ﬁc = ﬁrar €3 Qe = 1/ar €a Tec €r
9 0.102 0.045 0.95 0.018 13.6 0.021
17.6  0.083 0.01 1.03 0.008 6.2 0.036
21.87 0.081 0.042 1.06 0.007 7.02 0.03
27.34 0.078 0.04 1.39 0.061 21.2 0.01
35.16 0.075 0.03 1.37 0.008 30.6 0.02

Table 4.8: Average values for LARS graft obtained from parameters relation-
ships

The observation of the experimental data reported in tabs. (4.1,4.2,4.3,4.4)
as well as of the relations among creep and relaxation coefficients, shows that
the order of the power-law [o] " and [e]” depends, non-linearly, by the level
of the initial strain ¢ (relaxation) or the initially assigned stress o (creep).

In such circumstances the multiplicative decomposition of the material
functions J (o,t) and G (g,t) does not hold. However, statistical analysis on
the experimental data shows that assuming the average value of the order
B, — B, and B, — f3, for creep and relaxation may be assumed in engineering
context whereas the scattering of material-time data, namely 7. and 7, with
respect to a mean value among the different level of strains has been modeled
as random fluctuations [18].

In this case the formulation proposed for general kind of stress/strain
histories, see sec.3.3, may be still used in biomechanical constitutive equation
of the fibrous tissues of the knee:

s(t) = ()" (D57 [ (1) (®) (4.62)
e(t) = [ L (Jf;s) (t)} o (4.6h)

7'7{3 "

or, involving the knowledge of the creep functions:
£ () = (r) ™ (I 1s (") (0 (4.7)
~ - 1/ac

s(t) = |()" (Dike) (0]

The use of single-integral model of non-linear hereditariness in the context
of fractional-order calculus has not been exploited, mainly, for the lack of
equivalence among creep and relaxation parameters. Analytical and experi-
mental arguments showed here showed that, as far as the creep parameters
(ac, Be, TC) have been measured by experimental tests, the corresponding re-
laxation parameters (&T, By, Tr), may be estimated by means of the relations

(4.7b)
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reported in egs.(3.153)(3.154)(3.155)(3.155b)(3.156) and viceversa. The fj,
and [, value referred to and the average value corresponding to the slope of
the previously reported logarithmic curves.

Finally, to focus on the trend of the parameters, the histograms of the
average ( values, for each level of stress/strain, have been reported for each
group considered for both the creep and the relaxation results. Moreover,
the histograms of the beta values between the groups are reported both for
creep and for relaxation
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Figure 4.21: average (. for ACL tissue
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The histograms show:

i) that/s, is greater than .,

ii) [. decreases with increasing stress level in each group
iii) 3, decreases with increasing strein level in each group
iv) histograms between tissue groups show that this trend
is confirmed for both tendons and ligaments

4.2.3 Stochastic models of creep and relaxation mate-
rial parameters

The analysis provided in previous approach showed the anomalous behavior
of tendons and ligaments that, however, accounting for the variation of the
order of the power-law careful requires the use of the single-integral approach.
In this section we show that a microstructure approaching provide additional
insights to the macroscopic mechanics of ligaments and tendons. In this
section non-linear hereditariness of knee tendons and ligaments is framed in
the context of stochastic mechanics. The proposed constitutive equations
of fibrous tissues involves three material parameters for the creep tests and
three material parameters for relaxation tests. One-to-one relations among
material parameters estimated in creep and relaxations were established and
reported in the paper. Data scattering, observed with a novel experimental
protocol used to characterize the mechanics of the tissue, was modelled as
the outcome of the random mechanical parameters. The numerical example
proposed in this study shows that for an assigned probability density function
of the material random parameters, the parameters of the probability density
function (pdf) may be obtained by a statistical analysis of the experimental
data.

Data analysis of the experimental campaign reported in previous section
showed that constitutive equations for creep and relaxation involves three
sets of parameters a, 3, 7., and 7, J, 7.

Results collected in experimental campaign showed that data scattering
observed in experimental tests result in averaged expressions of the strain
evolution p. (t) and us (t) as well as in standard deviation, namely S (¢) and
S5 (t).

In this study we assumed that the source of data scattering is due to the
outcomes of the characteristic times of the material, considered a random
variables namely, 7. — T, and 7, — T, with prescribed probability density
functions p,, (7.) and p,, (7,-), respectively for the characteristic times in creep
and relaxations.

Under these circumstances the random description of the stress/strain
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evolution equations read, in creep and relaxation, respectively:

1\? &
-5 -
S (1) = (%) FE 5 (4.8b)

Eqgs.(4.8a,4.8b)) allow for the evaluation of the averages of the stress and
strain functions as:

B % B
-5 46
1o () =< (Ti) > ?E 5 (4.9b)

where < e > denotes the mathematical expectation operator that reads:

< (%)B - 70 <%>ch (r.) dr. (4.10a)
() o= [ (L) nmn (1o

Similar comments hold true also for the mean square error of the random
functions E (t) and X (¢) resulting into:

S.(t) =< (E(t) — pe (1))? >=< B(t)> > —puc(t)” (4.11a)
Sy (1) =< (B (t) — ps (1)) >=< 2(t)* > —ps(t)? (4.11b)

with second-order moments:

23 ~2a
< E(t)? >=< <Ti) > % (4.12a)
5 1 —26 52'yt725
< XE(t) >=< <ﬁ> GG (4.12Db)
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and the mathematical expectation reads:

< (T%)w >= / (Tl)wpc (1) dTe (4.13a)
(B [ () (1

In the following we assumed that the probability density functions p,, (7.) and
pr,. (7e) are described by uniform density in the interval [7. — a.; 7. + ac] and
[T, — ay; T + a,] with 2a, and 2a,. the amplitude of the interval representing
the boundary of the characteristic times.

The results of the proposed model of random hereditariness was reported
in figs.(4.32,4.33,4.34, 4.35) with solid lines for the averaged and the second-
order statistics of the strain evolution and stress decay in conjunction with
the amplitude of the interval of the pdf obtained by best fitting of the data
to characterize the density function.

Observation of figs.(4.32,4.33,4.34,4.35) shows that the second-order mo-
ments of data scattering is well described by the proposed random model of
the characteristic times reported in this section.

1.8-I | | | I .I.J

1.6¢ = 5.65MPa
O O 86 MPa
=14+ A 9.99 MPa
ud o 16.26 MPa

Figure 4.32: second-order moment creep hamstring ligaments
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Figure 4.33: second-order moment creep Patellar tendons
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Figure 4.34: second-order moment relaxation hamstring ligaments
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Figure 4.35: second-order moment relaxation Patellar tendons

In passing we observe also that the relation among the characteristic times
7, and 7, provided in sec.(3.2) holds true also with the random description
of the characteristic times as:

< T, >=<T,>T(8+1)"*0(5)"° (4.14a)
< T2 >=<T.%>T(8+ 1)Y*T(8)*° (4.14b)

allowing to define the statistics of the characteristic times with only the
relaxation or the creep tests.

Data scattering involved in the experimental measures have been repre-
sented with a random model assuming that the characteristic times in creep
and relaxation are modelled as random variables with prescribed probability
density. The parameters of the density may be obtained by the measured
first and second-order statistics of the creep and relaxation obtained from
the experimental campaign.

A monte-carlo simulation conducted with the proposed random model
shows that first-order statistics obtained with the proposed approach coa-
lesces with the measured data allowing to use the random approach intro-
duced for the prediction of the mechanical outcomes in terms of increments
of the strain and the decaying of the stress in tendons and ligaments.
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4.3 A microstructure approach to tendons non-
linear hereditariness

The level of the fascicle including collagen fibers, membranes and interstitial
fluid is quite representative of the structure of tendons. We presently inves-
tigate the effect of the rheology of the components of the tendon fascicles
in a multiscale analysis starting from the level of individual collagenfibers
organizedinto bundles, and then into fascicles at the next scale. A config-
uration of a collagen bundle is conceived in terms of a representative unit
cell including a collagen fiber surrounded by a viscous membrane and aphys-
iological fluid. The mixing of solid and fluid components gives rise to an
equivalent stress-strain response in tensor format highlighting a long term
memory, in addition to instantaneous viscous effects. The kernel function of
the hereditary response is determined thanks to the theory of homogeniza-
tion, relying on the solution of the localization problem over the selected unit
cell. Homogenization is the principal factor responsible for both the relax-
ation phenomena and the non-linearity due to recruitment of fibrils observed
at the fascicle level, although none of the components present at the lower
scales is endowed with these properties. The nature of the matrix surround-
ing the collagen fiber described as either viscous solid or a biological fluid -
is shown to strongly influence the transverse response, but it has a weaker
influence on the tensile response of fascicles. The initial waviness and pro-
gressive recruitment of the collagen fibers under the effect of the local strain
has been integrated in the expression of the elastic and viscous stresses at the
scale of the collagen fiber bundle, allowing simulating the nonlinear response
of a fascicle.

Tendon exhibits a hierarchical structure with each level comprising the
assembly of many finer structures at lower scales.The mechanical behavior
at each level thus depends on the immediate lower level, but also on the
nature of the assembly. This behavior can therefore vary from one level to
the next one, and as a corollary, the whole set of responses of the inherent
entities govern the tendon response itself. It is accordingly necessary to pro-
vide context for this work in relation to the structure and behavior often
don at its different hierarchical levels.Tendons are natural fibrous compos-
ite materials; their complex structure has been widely described (e.g.Wang,
2006; Cowin,2000): it can be modeled as a composite tissue, with a com-
plex. hierarchical arrangement going from collagen molecules (nano-scale)
to fibrils (hundreds of nanometers),fibers (tens of micro-meters), and dif-
ferent levels of fascicles (hundreds of micrometers)up to the macro level of
the tendon. At the different levels of this hierarchy, discontinuous aligned
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structures are embedded in a hydrated matrix, and some levels (from sub-
fascicles to the whole tendon) are surrounded by a thin membrane called
the endotenon.Understanding the role and impact of the mechanics of the
constituents at the separate scales on the behavior of the structure at the
ultimate scale of the whole tendon is a very challenging problem, due to
the combination of time-dependent (viscous) responses and geometrical as
well as material nonlinear effects. Moreover, the proposition of accurate
biomechanical constitutive theory ac-counting for the dynamic description of
the tendinous micro-structure is crucial for the development of novel healing
methods in tissue engineering (Lin et al., 2004), technical applications in
biomedical and (further) improvements of surgical techniques in tissue repair
(Matheson et al., 2005), or for the finite element modeling of joints within
the human body.

From a physiological point of view, tendons are hierarchical structures
consisting of the assembly of fibril seprincipally collagen, with a content
higher than 95% -, physiological liquid and little elastin. The collagen por-
tion is made up of 97¢98% type I collagen, with small amounts of other types
of collagen, including essentially hetero-typic collagens of type I, III, V, and a
smaller fraction of collagens of type II, IX, XI and XII (Woo et al., 2006).This
type of structure and behavior grossly appears at each level,without being the
same from one scale to the next one, since a given scale level is not the mere
copy of the immediately preceding one. At the fiber level, each fiber is made
almost exclusively of fibrils of collagen I. Fibers are assembled to form fasci-
cles maintained by a membrane called the endotenon, similar to a perforated
net-like structure serving as an insertion site for the collagen fibers. Contrary
to fibers and fascicles,fibrils are not enclosed by a membrane; they are more-
over linked together only by a few proteoglycan bridges (Silver et al., 2003).
It makes therefore sense to make the approximation that fibrils are nearly
mutually free, also assuming they have the same geometry and mechanical
properties;the mechanical behavior of fibers can then be assimilated to that of
fibrils (Franchetti and col. 2002;Silver et al., 2003). Non-linear behavior of
the tendons and ligaments has not been modeled through a structural scheme
with a corresponding mathematical model that returns the experimental evi-
dence on non-linearity either for elasticity and/or material hereditariness. In
this study we propose a micromechanical fiber model to which to attribute
the nonlinear behavior of these tissue. In particular, we want represent the
phenomenon of the curling of the fibers as the main source of evidences of
the deviation from the linearity of collagen fibrils bundles. The structural
model of the collagen fibril is represented as lumped-mass truss with an as-
signed opening angle #, that has a range of values reported in the literature,
also a spring and a springpot are inserted. This micromechanical model with
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Figure 4.38: mechanical representation of tendon fiber
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its governing equation captures the Q-FHM behavior introduced previously.
Two different solution are observed for creep and relaxation involving the
same differential equation. Let us consider the fiber in fig. 4.38 and let us
isolate an element, fig. 4.39 of the truss for simplicity sake. The equilibrium
equation is a non-linear fractional differential equation:

1 8 i —
F(0) = gy (DR 0= 0)) (6 + 575560 = )
where l m(0/2
h(0) = l,cotg(f) and X = i = %
o= 2sin@y/2)
[ |

Figure 4.40: micromechanical model change configuration

(4.15)

(4.16)
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with A stretch of the fiber, 6 it is the angle indicating the initial opening of
the fiber, K represents the bending stiffness of the collagen fiber, hg = h(6y)
and 3 represents the order of stress decay in the collagen fiber.

Relaxation test

The numerical application on this model is carried out starting from relax-
ation and fixing three values of £, = 0.095, 5, = 0.09, 5, = 0.14 and 75 = 10
We have fixed a value of 8 = 13° and the value of A = 0.03 These choices al-
low us to say that we are analyzing physiological conditions for these tissues.
Assuming these parameters, the equation obtained is

T0 Br (D K -
F=—(D(60—-¢6 t)+ —(0—10 4.17
gy (D6E0 = 00)) (0 + 50— 00 (4.17)
whose solution in presents of constant § — 6;)
- 5

ho)  Ar(B+1)

where U(t) is the Unit step function. By solving the equation for the re-
laxation, we obtained the curves represented by points are shown in fig.4.41.
Subsequently a fitting of these numerical values was made using a power-law,
we can see in the figure 4.41 how the points of the numerical test are perfectly
superimposed on the fitting curve with the solid line.

Creep test

To simulate the creep test, the previous fixed values of § and 0y were inserted
in the model and F' = 25N was imposed. Assuming these parameters, the
equation obtained is

P Tohl( ; (D50 - 00) (1) + %(9 _ o) (4.19)

the equation to be solved is a non-linear fractional differential equation.

Numerical solution of the non-linear differential equation, has been ob-
tained by means of Adams algorithm that was developed and modified to
solve the non-linear differential equations. In more detail the integration
method uses variable step-size coefficients. Given a sequence of step sizes
Po—ks1s hn—kio, ..., hn, where h, is the current step to take, the coefficients
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Figure 4.41: relaxation function obtained from micromechanical model
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Figure 4.42: creep function obtained from micromechanical model
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for the method with AdamsBashforth predictor of order k and AdamsMoul-
ton corrector of order k + 1, g;(n) such that

Yn+1 = thk(”)(Pk(n + 1) + Dn+1 (42())
k—1
=0

where the ®;(n) are the divided differences. This defines a function that
computes the coefficients that are used in error estimation. Figure4.42 shows
the numerical values and the fitting curves superimposed with the solid line.
The [, values obtained with the fitting of numerical data are lower than the
B, values, as obtained from the experimental data.



Conclusions

In this thesis we provide a biomechanical analysis of ligaments and tendons
of the human knee with respect to the time dependent behavior.

In more details the study involved four kind of fibrous tissues of the human
knee namely Anterior Cruciate Ligaments, Patellar, Hamstring and synthetic
graft named Lars (Ligament Augmentation and Reconstruction System) .

It is known that under long-standing loads the collagen structure and the
ground substance composing the tissue undergoes a time-dependent behavior
that deviate from elastic.

Some previous study have shown the mechanics of the time dependence
for rat, rabbit ligaments but now of then focus on human fibrous tissues.

The mathematical model proposed in the thesis extend the well-know
quasi-linear viscoelastic model often and used in biomechanics in the field of
fractional-order calculus it has been shown that, as long as fractional order
calculus is used then some specific relations among creep and relaxation
parameters may be obtained.

This led to conclude that a three parameters model may capture some
non-linear behavior of material obtained generalization of the springpot that
is a two parameters material model. The proposed approach has been as-
sumed by an extensive experimental campaign of fibrous tissues of the human
knee with a specific testing protocol showing maximum deviate of 6% among
measured and estimated parameters.

The micromechanics beyond the observed non-linearity from creep and
relaxation tests have been introduced by means of the structural model the
tissue at fiber level that involves bundles of waves of collagen fibrils. The
geometric non-linearity of the fiber is analyzed and its mechanical behavior
is good agreement with observed experimental data.

The proposed approach shows, however, some limitations related to the
single-integral model used to describe the stress/strain constitutive equation
that has been observed in further creep test with two step load.
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Figure 4.43: Two-step creep test protocol

Indeed we begun a new test protocol on patellar and hamstring tendons
and we observed a non-linear dependence of the order of power-law (. =
Be (0, T). The testing protocol has involved regularization of the samples in
the dimensions of width and length. After that they have been cut by a band
saw after previously placing in liquid nitrogen to induce the brittle fracture
during cut.

The machine protocol involves two creep tests in succession on the same
sample. Two different levels of force are applied, corresponding to two in-
creasing tensions. After being clamped between two knurled pliers, the sam-
ple is subjected to a loading program which includes:

i) test in load control constant force through a ramp 315 N/s. The load
is kept constant for 60sec for the first test, on the second sample for 300 sec,
on the third sample for 600sec and on the last sample for 900sec.

ii) the test continues to be conducted in load control, with a constant
force increased compared to the first, always with a ramp at 315 N /s, for 900
seconds. the figure 4.45 shows a creep test conducted with this protocol.

Data processing of the experimental findings showed that the values of
[, of the first and second steps are different. Furthermore, data showed that
the second value of (. varies according to the duration of the first phase.
This result is shown in fig. 4.45 that highlights a non-linear dependence of
B. on time as well as on the stress level, which up to now was the only form
of non-linearity assumed also in the current thesis.
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Figure 4.44: Patellar Test results
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Figure 4.45: (. trend as the duration of time t of the first step of the test
protocol changes

Previous considerations lead to argue that a complete phenomenological
constitutive equations describing hereditariness of ligaments and tendons re-
quires additional terms with respect to the proposed Q-FHM. This research
is underway and it will be presented elsewhere.
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Appendix A

Fractional Calculus

A.1 Riemann-Liouville Fractional Integrals and
Fractional Derivatives

We give the definitions of the Riemann-Liouville fractional integrals and frac-
tional derivatives on a finite interval of the real line and present some of their
properties in spaces of summable and continuous functions. More detailed
information may be found in the book by Samko et al.

Let Q = [a,b](—00 < a < o0) be a finite interval on the real axis R.
The Riemann-Liouville fractional integral I f and I;* f of order o € C
R(a)) > 0) are defined by

(12:0) @) = 0 | o @ aR@>0) (A

a x—t)-e

and

(18 f) (x) = F(la) /b ' (tii (271’5_& (>b Ra)>0)  (A2)

respectively. Here I'(«) is the Gamma function. These integrals are called
the left-sided and the right-sided fractional integrals. When @ = n € N, the
definitions (A.5) and (A.2) coincide with the nth integrals of the form

(" f) (2) = / "ty / " by / "t = (A3)

1

= m/a (x—t)" ' f(t)dt (n€N) (A.4)
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and

(7 f) (x) Z/bmdtl /btl dtg.../btnl F(t)dt, =

1

- T /b Y@t (@)dt (neN) (A.5)

The Riemann-Liouville fractional derivatives Dy, y and Dy y of order o € C
(R(a) > 0) are defined by

D) = () () @) -

:;(dY/;(yﬂ (n=[R()] + Lz >a) (A6)

T — t)afnJrl

(Dy_y)(x) = <—%)n (=) (z) =

:;( d>n/:(yﬂ (n=[R(@)]+ iz <b) (A7)

I(n—a)\ dz x —t)entl

respectively, where [R(«)] means the integral part of R(«). In particular,
when o = n € N, then

(Da,y)(@) = (Dy_y)(x) = y(2); (Dy,y)(z) =y (2), (A.8a)
(Dy_y)(z) = (-1)"y"”(x) (n€N) (A.8b)

where y™ is the usual derivative ofy(x) of order n. If 0 < R(a) < 1, then

(D y)(x) = ﬁ% / %(0 <R(a) < Liz>a) (A9)

(Dgy)(x) = —ﬁ%/ %(O < R(a) < 12 <b) (A.10)
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When o € RT, then (A.6) and (A.7) take the following form:

o __1 (4 ' x—y(t)dt n=|a ;x> a
D) = s (1) [ st = ol Lo > @) (A1)

n—a)

) = s (~32) [ s (= fal + o <

) (A12)
while (A.9) and (A.10) are given by
(D%, ) (@) = ﬁ% / (i(i)f)ta O<a<liz>a)  (A13)
and
(D?y)(x):—ﬁ%/:%(()<&< Lz<b)  (Al14)
respectively.

A.2 Caputo Fractional Derivatives

We introduce the definition of the Caputo fractional derivatives. Let [a, b]
be a finite interval of the real line R and let D¢ [y(t)](z) = (DS, y)(x) and
Dy [y(H)](z) = (D¢ y)(x) be the Riemann-Liouville fractional derivatives
of order &« € C R(a) > 0) defined by (A.6) and (A.7) respectively. The
fractional derivatives (¢ D5, y)(x) and (¢ Dj" y)(z) of order v € C (R(ar) > 0)
on [a, b] are defined via the above Riemann-Liouville fractional derivatives by

i (g
eDt)) = (D5 |0 i - of ) @) )

and

I (k)
eop ) = (08 oo - P e- ot J @
respectively, where -
n=[Ra)]+1 for a¢gN (A.17)

These derivatives are called left-sided and right-sided Caputo fractional deriva-

tives of order a.
In particular, when 0 < R(a) < 1, the relations (A.15) and (A.16) take
the following forms:

(eDary)(@) = (Day [y () — y(a)])(z) (A.18)
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(eDy-y)(x) = (Dy_[y(t) = y(0)])(x) (A.19)
If @ ¢ Ny and y(x) is a function for which the Caputo fractional derivatives
(eDg y)(z) and (¢Dj_y)(x) of order aw € C (R(ar) > 0) exist together with
the Riemann-Liouville fractional derivatives (DS, y)(x) and (Dj_y)(x), then,
in accordance with (A.8a) and (A.9) they are connected with each other by
the following relations:

(D)) = (D [ot0 2 - o] ) (o - e

k—a+1
(n = [R(@)] + 1 (A21)
In particular, when 0 < R < 1, we have
(eDE ) = (D)) = 1o =0 (A22)
(D D@ = (D)) - i s -a) (A2

A.3 Grunwald-Letnikov Fractional Derivatives

We give the definition of the Griinwald-Letnikov fractional derivatives. The
above operation of fractional differentiation is based on a generalization of
the usual differentiation of a function y(x) of order n € N of the form

n . (Ahy) (@)

y(x)™ () = I (A.24)

Here (AJy)(x) is a finite difference of order n € Ny of a function y(z) with

a step h € R. Property (A.24) is used to define a fractional derivative by

directly replacing n € N in (A.24) by a > 0. For this, h" is replaced by h®,

while the finite difference while the finite difference (A}y)(x) is replaced by

the difference (A%y)(z) of a fractional order o € R defined by the following
infinite series:

(Apy)(z) = (-1 ( ) ylx —kh) (z,heR; a>0)  (A.25)
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where < Z ) are the binomial coefficients. When h > 0, the difference

is called left-sided difference, while for for h < 0 it is called a right-sided
difference. The series in (A.25) converges absolutely and uniformly for each
a > 0 and for every bounded function y(z).

Following (A.24), the left- and right-sided Griinwald-Letnikov derivatives
y$(x) and y®(x) are defined by

AOA
Y% (x) = lim L@ 5 o) (A.26)
h—0 he
e (2,) (@)
a _ (ihy x
yt(x) = }lg% ta (a>0) (A.27)
respectively.

The definition (A.25) of the fractional difference (Afy)(z) assumes that
the function y(z) is given at least on the half-axis. For the function y(x)
given on a finite interval [a, b], such a difference can be defined as follows by
a continuation of y(x) as a vanishing function beyond [a, b]:

(@) = B )w) = S0 (§ ) e k) (@R a>0)
= (A.28)

where

coy_ Jue), xelab]

@ =10 e (4.29)
It is acceptable to rewrite the fractional difference (A.28) in terms of the
function y(z) itself, avoiding its continuation as a vanishing function, in the
forms

Ofa)e) =V (§ )@=k (mheR a>0) (A3

and

(A% y)(r) = (—1)k ( (g ) y'(x+kh) (z,heR; a>0) (A31)
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