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1 Introduction

Recently, D. Bongiorno and G. Corrao gave in [3] a quite general formulation
of the Fundamental Theorem of Calculus on a fractal subset E of the real line,
having finite and positive s-dimensional Hausdorff measureHs, with 0 < s < 1.
To give such a formulation (in particular, to get the integrability of the s-
derivatives), the authors used an extension of the Henstok-Kurzweil integral
to fractal sets.

It is well known that, in the Henstock-Kurzweil integration process, the
choice of partitions is not completely free as it is in the Riemann integral. This
was the reason that led U. B. Darji and M. J. Evans, borrowing the notion of
first-return from dynamics, to introduce in [4] the first-return integral, that is
an integration process that contains the Lebesgue integral, based on partitions
completely free.
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Unfortunately this process is inadequate to the Riemann-improper integral,
hence to the Henstock-Kurzweil integral (see [1] and [5]). A Riemann-type
characterization of the Riemann-improper integral is given in [2].

However, a problem that would deserve interest is to know if the derivatives
are first return integrable, hence if the first return integral can be used to give
a general formulation of the Fundamental Theorem of Calculus on the real
line.

In this paper, we solve negatively this problem on a fractal subset E of
the real line. To this end, we extend to s-dimensional fractal sets the notion
of first return integral (Definition 5) and we prove that there are s-derivatives
not s-first return integrable (Theorem 1).

2 Preliminaries

Throughout this paper we denote by N the set of all natural numbers and by
R the set of all real numbers.

Let 0 < s < 1, we recall that the s-dimensional exterior Hausdorff measure of
a subset A of the real line is defined as:

Hs(A) = lim
δ→0

inf

{ ∞∑
i=1

(diam(Ai))
s : A ⊂

∞⋃
i=1

Ai, diam(Ai) ≤ δ

}
.

Moreover, we recall that Hs(·) is a Borel regular measure and that the unique
number s for which Ht(A) = 0 if t > s and Ht(A) = ∞ if t < s is called
the Hausdorff dimension of A (see Mattila [8]). Whenever A is Hs-measurable
with 0 < Hs(A) <∞, it is said that A is an s-set. So Hs is a Radon measure
on each s-set.

In this paper we denote by E a closed s-set of R.

Definition 1 We say that a subset Ã of E is an E-interval whenever there
exists an interval A ⊂ R such that Ã = A ∩ E.

Definition 2 (Jiang-Su [6] and Parvate-Gangal [7]) Let f :E → R. We say
that f is s-Riemann integrable on E if there exists a number I such that, for
each ε > 0, there is a constant δ > 0 with∣∣∣∣∣

p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣ < ε, (1)

for each partition {Ãi}pi=1 of E-intervals with Hs(Ãi) < δ, and for each xi ∈
Ãi, for i = 1, 2, ..., p.

The number I is called the s-Riemann integral of f on E and we write

I = (R)

∫
E

f(t) dHs(t).
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The collection of all s-Riemann integrable functions on E will be denoted by
s-R(E).

Definition 3 (De Guzman-Martin-Reyes [9]) Let F : E → R and let x0 ∈ E.
The s-derivatives of F at the point x0, on the left and on the right, are defined,
respectively, as follows:

F ′−s (x0) = lim
E3x→x−

0

F (x0)− F (x)

Hs([x, x0] ∩ E)
, if Hs([x, x0] ∩ E) > 0 , for all x < x0,

F ′+s (x0) = lim
E3x→x+

0

F (x)− F (x0)

Hs([x0, x] ∩ E)
, if Hs([x0, x] ∩ E) > 0 , for all x > x0,

when these limits exist.
We say that the s-derivative of F at x0 exists if F ′−s (x0) = F ′+s (x0) or if

the s-derivative of F on the left (resp. right) at x0 exists and for some ε > 0 we
have Hs([x0, x0 + ε]∩E) = 0 (resp. Hs([x0− ε, x0]∩E) = 0). The s-derivative
of F at x0, when it exists, will be denoted by F ′s(x0).

3 The s-first return integral

Definition 4 We call trajectory on E any sequence Γ ⊂ E of distinct points
of E, dense in E. Given a trajectory Γ on E and an E-interval J̃ we denote
by r(Γ, J̃) the first element of Γ that belongs to J̃ .

Definition 5 Let f :E → R and let Γ be a trajectory on E. We say that f
is s-first return integrable on E with respect to Γ if there exists a number I
such that, for each ε > 0, there is a constant δ > 0 with∣∣∣∣∣

p∑
i=1

f(r(Γ, Ãi))Hs(Ãi)− I

∣∣∣∣∣ < ε, (2)

for each partition {Ãi}pi=1 of E with Hs(Ãi) < δ.

The number I is called the s-first return integral of f on E with respect to a
trajectory Γ and we write

I = (R∗)Γ

∫
E

f(t) dHs(t).

The collection of all functions that are s-first return integrable with respect
to a trajectory Γ on E will be denoted by s-R∗(E)Γ .

It is clear that, for each each f ∈ s-R(E) and for each trajectory Γ on E,
it is f ∈ s-R∗(E)Γ with

(R∗)Γ

∫
E

f(t) dHs(t) = (R)

∫
E

f(t) dHs(t).
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4 Main result

Theorem 1 There exists an s-derivative f :E → R such that f 6∈ s-R∗(E)Γ ,
for each trajectory Γ on E.

Proof Let E be the ternary Cantor set. Remark that E is an s-set, with s =
log3 2, and that

Hs
˜[

2

3n
,

1

3n−1

]
=

1

2n
= Hs

˜[
0,

2

3n

]
, (3)

and

Hs
˜[

2

3n
,

7

3n+1

]
=

1

4n
= Hs

˜[
8

3n+1
,

1

3n−1

]
, (4)

for n = 1, 2, · · ·.
Define

F (x) =



(−2)n
n Hs ˜[ 2

3n , x
]
, x ∈ ˜[

2
3n ,

7
3n+1

]
;

(−2)n
n Hs ˜[

8
3n+1 , x

]
, x ∈ ˜[

8
3n+1 ,

1
3n−1

]
;

0, x = 0.

Then, for x ∈ ˜[
2
3n ,

1
3n−1

]
we have F ′s(x) = (−2)n/n.

Moreover, for x ∈ ˜[
2
3n ,

7
3n+1

]
, it is∣∣∣∣∣F (x)− F (0)

Hs( ˜[0, x])

∣∣∣∣∣ =
2n

n

Hs ˜[ 2
3n , x

]
Hs( ˜[0, x])

≤ 2n

n

1

4n
2n =

1

n
,

and, for x ∈ ˜[
8

3n+1 ,
1

3n−1

]
, it is∣∣∣∣∣F (x)− F (0)

Hs( ˜[0, x])

∣∣∣∣∣ =
2n

n

Hs ˜[
8

3n+1 , x
]

Hs( ˜[0, x])
≤ 2n

n

1

4n
2n =

1

n
.

Thus

F ′s(0) = lim
x→0

F (x)− F (0)

Hs( ˜[0, x])
= 0.

In conclusion, the function F is s-differentiable on E with

F ′s(x) =

{
(−2)n
n , x ∈ ˜[

2
3n ,

1
3n−1

]
;

0, x = 0.
(5)

Now let us consider the function f(x) = F ′s(x), x ∈ E. By definition, f is
an s-derivative on E.
In order to show that f 6∈ s-R∗(E)Γ , for a given trajectory Γ ≡ {tn}, it is
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enough to find, for each M > 0 and each δ > 0, a finite system of pairwise
disjoints E-intervals Ãi, i = 1, 2, · · · , p, such that

⋃p
i=1 Ãi = E, Hs(Ãi) < δ

and
p∑
i=1

f(r(Γ, Ãi))Hs(Ãi) > M. (6)

To this end, given two disjoint E-intervals J̃1, J̃2, we put

r(Γ, J̃1) ≺ r(Γ, J̃2),

whenever r(Γ, J̃1) = tn, r(Γ, J̃2) = tm, and n < m.
We also define

N1 = {n ∈ N : r(Γ, ˜[2/32n, 1/32n−1]) ≺ r(Γ, ˜[2/32n+1, 1/32n])}

and

N2 = N \N1.

Remark that

r(Γ, ˜[2/32n+1, 1/32n−1]) = r(Γ, ˜[2/32n, 1/32n−1]), if n ∈ N1;

r(Γ, ˜[2/32n+1, 1/32n−1]) = r(Γ, ˜[2/32n+1, 1/32n]), if n ∈ N2.

By the divergence of the series
∑
n 1/n it follows that, at least one of the series∑

n∈N1
1/n,

∑
n∈N2

1/n is divergent; then, without loss of generality, we can
assume that

∑
n∈N1

1/n = +∞.
Now, given an arbitrary constant δ > 0, let us take k ∈ N such that

Hs( ˜[2/32n+1, 1/32n−1]) < δ, for each n ≥ k. (7)

Then, by (3) and (5), we have∑
k≤n∈N1

f(r(Γ, ˜[2/32n+1, 1/32n−1]))Hs( ˜[2/32n+1, 1/32n−1])

=
∑

k≤n∈N1

22n

2n

(
1

22n+1
+

1

22n

)
=

3

2

∑
k≤n∈N1

1

2n
= +∞.

So, given M > 0, there exists N ∈ N such that p1 = N − k + 1 is an even
number and∑

k≤n≤N ;n∈N1

f(r(Γ, ˜[2/32n+1, 1/32n−1]))Hs( ˜[2/32n+1, 1/32n−1])

> M + 3 +

∞∑
n=2

(−1)n

n
. (8)
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The E-intervals { ˜[2/32n+1, 1/32n−1]}Nn=k are pairwise disjoint, cover the por-
tion of E contained in [2/32N+1, 1/32k−1] and each of them has Hs-measure

less than δ. They constitute a first group of p1 requested E-intervals {Ãi}p1i=1:

Ã1 = ˜[2/32k+1, 1/32k−1], Ã2 = ˜[2/32k+3, 1/32k+1],

· · · , Ãp1 = ˜[2/32N+1, 1/32N−1].

Then, by (8), we have

p1∑
i=1

f(r(Γ, Ãi))Hs(Ãi) > M + 3 +

∞∑
n=2

(−1)n

n
. (9)

Now we define a second group of requested pairwise disjoint E-intervals,
{Ãi}p2i=p1+1, that cover the portions of E contained in [0, 1/32N+1].
There are two possible cases:

r(Γ, ˜[0, 1/32N+1]) = 0, or r(Γ, ˜[0, 1/32N+1]) 6= 0.

In the first case we define

Ãp1+1 = ˜[0, 1/32N+1],

and we have
f(r(Γ, Ãp1+1))Hs(Ãp1+1) = 0. (10)

In the second case there exists a unique n∗ > 2N + 1 such that

r(Γ, ˜[0, 1/32N+1]) ∈ ˜[2/3n∗ , 1/3n∗−1].

If n∗ = 2N + 2 we also define Ãp1+1 = ˜[0, 1/32N+1], otherwise we define

Ãp1+1 = ˜[0, 1/3n∗−1], Ãp1+2 = ˜[2/3n∗−1, 1/3n∗−2],

· · · , Ãp2 = ˜[2/32N+2, 1/32N+1].

Hence we have

f(r(Γ, Ãp1+1))Hs(Ãp1+1) =

{
1/(N + 1), if n∗ = 2N + 2;

2 · (−1)n
∗
/n∗, otherwise.

Consequently,
|f(r(Γ, Ãp1+1))Hs(Ãp1+1)| < 1. (11)

Thus, since p1 is even, by (9) and (11), if follows∣∣∣∣∣∣
p2∑

i=p1+1

f(r(Γ, Ãi)Hs(Ãi)

∣∣∣∣∣∣ < 1 +

p2∑
n=p1+2

(−1)n

n

< 2 +

∞∑
n=p1+2

(−1)n

n
. (12)
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The third group of requested pairwise disjoint E-intervals that cover the
portions of E contained in [2/32k−1, 1] can be defined taking a generic system

of pairwise disjoint E-intervals, {Ãi}pi=p2+1, such that Hs(Ãi) < δ, for each

i, and such that ˜[2/3n, 1/3n−1] =
⋃
i∈In Ãi, where In ⊂ {p2 + 1, · · · , p} and

1 ≤ n ≤ 2k − 1.

By definition of f it follows f(r(Γ, Ãi)) = f(r(Γ, ˜[2/3n, 1/3n−1])) = (−2)n/n,
for 1 ≤ n ≤ 2k − 1 and i ∈ In. Thus

p∑
i=p2+1

f(r(Γ, Ãi)Hs(Ãi) =

2k−1∑
n=1

(−2)n

n
Hs( ˜[2/3n, 1/3n−1])

=

2k−1∑
n=1

(−1)n

n
. (13)

In conclusion, we have defined the required system {Ãi}pi=1 of pairwise

disjoint E-intervals such that Hs(Ãi) < δ, for each i,
⋃p
i=1 Ãi = E, and, by

(9), (12), and (13), such that∣∣∣∣∣
p∑
i=1

f(r(Γ, Ãi))Hs(Ãi)

∣∣∣∣∣
=

∣∣∣∣∣∣
p1∑
i=1

+

p2∑
i=p1+1

+

p∑
i=p2+1

∣∣∣∣∣∣
> M + 3 +

∞∑
n=2

(−1)n

n
−

∣∣∣∣∣∣
p2∑

i=p1+1

∣∣∣∣∣∣−
∣∣∣∣∣∣

p∑
i=p2+1

∣∣∣∣∣∣
> M + 3 +

∞∑
n=2

(−1)n

n
− 3−

∞∑
n=p1+2

(−1)n

n
−

2k−1∑
n=2

(−1)n

n

> M.

This completes the proof.
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