
Vibration-based identification of mechanical properties of orthotropic 

arbitrarily shaped plates: numerical and experimental assessment 

G. Battaglia1, A. Di Matteo2, G. Micale3, A. Pirrotta4,5 

1,2,4Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), 

Università degli Studi di Palermo, Viale delle Scienze I-90128 Palermo, Italy. 

1E-mail: giuseppe.battaglia03@unipa.it 
2E-mail: alberto.dimatteo@unipa.it 
4E-mail: antonina.pirrotta@unipa.it 

3Dipartimento della Innovazione Digitale ed Industriale 

Università degli Studi di Palermo, Viale delle Scienze I-90128 Palermo, Italy. 

3E-mail: giorgiod.maria.micale@unipa.it 

5Department of Mathematical Sciences 

University of Liverpool, Liverpool, UK 

5E-mail: antonina.pirrotta@liverpool.ac.uk 

 

Corresponding author: Prof. Antonina Pirrotta 

Keywords: Material parameter identification; pb-2 Rayleigh-Ritz approach; Particle-Swarm Optimization; Vibration 

test; Experimental analysis 

Abstract 

An innovative procedure is introduced for the identification of the mechanical parameters of 

orthotropic plates of arbitrary shape, under various boundary conditions, based on free-vibration 

data. The method employs a combination of a convenient Rayleigh-Ritz approach and Particle-

Swarm Optimization to estimate elastic constants of the orthotropic material in a straightforward 

manner, without requiring computationally demanding iterative Finite Element analyses. 

Specifically, the pb-2 Rayleigh-Ritz procedure is extended and applied to deal with orthotropic 

plates, simplifying the approach to more easily treat generic plate shapes, taking advantage of the 

Green's theorem. The method is then appropriately combined with the Particle-Swarm Optimization 

procedure to expeditiously identify material parameters based on available free-vibration data. 

Several numerical applications are presented to show the reliability of the approach, and 

comparisons with pertinent results available in the literature demonstrate the efficiency and 

accuracy of the proposed procedure. The study is then supplemented by experimental tests 

developed in the Laboratory of Experimental Dynamics at the University of Palermo, Italy. In this 

context, because of the obvious relevance for modern additive manufacturing processes, free-

vibration tests are performed on several 3D printed stiffened plates. Numerical vis-à-vis 

experimental data are examined, showing that the proposed procedure accurately capture equivalent 

orthotropic parameters of the stiffened plates. 



1 Introduction 

Thin plates and membranes are widely used in many engineering fields, including civil, 

mechanical and chemical engineering [1]-[3]. In many practical cases, structural properties of these 

systems differ in two mutually perpendicular directions, so that the plate is described as 

orthogonally anisotropic or, in short, orthotropic [4]. Such anisotropy can be due to the inherent 

orthotropic characteristic of the material, or it can be introduced by ribs, corrugation or stiffeners, 

generally referred to as structural orthotropy [1]-[2]. Examples include plates reinforced with set of 

equidistant stiffeners in one or two directions, open gridworks and corrugated plates [5]. It is worth 

noting that, interest in orthotropic plate analysis lies also for instance in the frequent occurrence of 

these materials in laminae of composite plates, or in the possibility, in some cases, of analytically 

modeling the whole composite plate as an orthotropic one [6]. Further, even isotropic plates altered 

by metallurgical process along perpendicular directions exhibit orthotropic characteristics [6]-[7], 

thus requiring an orthotropic plate model. Additionally, renewed interest has been devoted to 

classical plate analysis, since procedures developed for these structures are often applicable with 

minor changes, for instance, to modern laminated plates made of so-called functionally graded 

materials [8]-[10]. 

In this context, the problem of the dynamic response determination of orthotropic plates under 

various boundary conditions (BCs) arises naturally. Thus, considerable attention has been devoted 

by researchers to developing efficient and accurate methods for the vibration analysis of such 

systems. In this regard, existing approaches pertain generally rectangular shaped plates and they 

resort either to Rayleigh-Ritz procedures [11]-[12] or classical Finite Elements (FE) methods [13]. 

A recent contribution in this field can be found in [6], where exact solutions have been obtained for 

the free-vibration response of rectangular plates with simply supported or clamped edges, while 

other numerical approaches can be found in [14]- [16]. On the other hand, the free-vibration 

analysis of orthotropic generally shaped plates has been much less addressed. Specifically, few 

common cases have been studied in the literature, such as elliptical or circular plates [17], general 

triangular plates [18], skew plates [19], and trapezoidal plates [20]. 

A related problem of considerable engineering interest pertains to the determination of the elastic 

constants of the orthotropic material, which is clearly fundamental for any structural analysis, 

optimum design and quality control. Besides classical static testing [21], which can be time 

consuming and can damage the tested material, an alternative approach combines vibration testing 

and numerical methods. Specifically, natural frequencies and corresponding mode shapes can be 

obtained from experimental tests, and the elastic constants in the numerical model are updated until 

the predicted dynamic properties fit the experimental data within a certain tolerance. Notably, this 



procedure represents a fast and non-destructive method for the determination of the mechanical 

properties, and hence several research efforts have focused in past decades on this topic [22]-[25]. 

Initial approaches commonly employed a Rayleigh-Ritz technique to model the dynamic behavior 

of a plate, comprising a least-squares method for estimating the elastic constants [22]-[23]. Recent 

studies, which generally pertain to the application of FE method and novel optimization procedures, 

such as Genetic Algorithm, may be found in [26]-[33]. Although being very accurate, these latter 

approaches can be quite cumbersome and computationally demanding to be implemented, since 

they require time consuming iteration in the FE simulations. 

In this paper, a combination of an appropriately extended Rayleigh-Ritz technique and an 

alternative optimization procedure are introduced to yield the mechanical characteristic of 

orthotropic arbitrarily shaped plates based on free-vibration data. Specifically, the so-called pb-2 

Rayleigh-Ritz procedure [34]-[37][35], commonly used to treat isotropic plates of general shape, is 

extended to deal with orthotropic plate. In addition, taking advantage of the Green's theorem, 

involved computationally demanding double integrals in the plate domain are conveniently 

converted to more simple line integrals over the contour of the plate, thus facilitating the analysis. 

In this manner, a generalized eigenvalue problem is derived, whose solution directly yields plate 

natural frequencies and mode shapes. Notably, since matrices appearing in the eigenvalue problem 

explicitly depend on the elastic constants, this feature can be exploited to obtain the unknown 

material properties based on free-vibration data. To this end, an appropriate objective function, 

related to the aforementioned elastic constants, is defined and conveniently minimized via the 

Particle-Swarm Optimization (PSO) method [38]. This is a population-based approach, inspired by 

a mathematical description of the swarming of birds, which has proved particularly suitable for 

optimization procedures pertaining structural mechanics problems [39]-[42]. Further, comparison of 

numerical simulations results with pertinent data available in the literature are used to assess the 

accuracy of the proposed approach, considering several plate shapes and BCs. In passing, it is noted 

that existing approaches to this problem [22]-[33] concern with rectangular shaped plates, due to 

their widespread diffusion and the required lower computational cost. On the other hand, to the best 

of authors' knowledge, the case of arbitrary plate shapes, and their influence on the mechanical 

properties identification, has not been investigated yet. Remarkably, such cases may not be 

uncommon, since for instance they occur whenever plate edges are not perfectly parallel to the 

orthotropy axes, assumed to be aligned to the x and y axes of the chosen coordinate system. 

Furthermore, these analytical/numerical analyses are supplemented by an extensive experimental 

study undertaken in the Laboratory of Experimental Dynamics at the University of Palermo, Italy. 

In this regard, because of the obvious relevance for modern additive manufacturing processes, free-



vibrations tests are performed for several rectangular 3D printed plates reinforced by equidistance 

stiffeners in one direction. Note that, plates are realized through a so-called fuse deposition 

modeling 3D printer, employing common polylactic acid (PLA) filaments. In this manner, any 

possible detrimental effect due to bad connections between the plate and the stiffeners is also 

avoided. Experimentally measured frequencies and mode shapes are obtained using both laser 

scanning vibrometer and impulsive tests. Additionally, FE models of the real stiffened plates are 

developed as further reference. The proposed approach is then used to estimate equivalent 

orthotropic mechanical properties of the tested plates, and comparisons of the corresponding natural 

frequencies vis-à-vis experimental data and FE results are reported, demonstrating the reliability 

and accuracy of the proposed procedure. 

2 Problem definition 

Consider a thin orthotropic homogeneous plate of arbitrary shape, density ρ, contour   and 

uniform thickness h, as shown in Fig. 1. Assuming the material to be linearly elastic and the 

orthotropy axes aligned with the x and y axes of a Cartesian system in the plane of the middle 

surface, using the Love-Kirchhoff's hypotheses, the differential equation for the free-vibration of 

the plate can be written as [2] 
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where ( ), ,w x y t  is the plate displacement in the vertical direction. Further, the parameters Dx, 

Dy, and H are the so-called flexural and torsional rigidities which are given in terms of the material 

properties as 
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in which 
xE  and yE  are the Young's moduli in the x and y directions, xy  is the Poisson's ratio, 

xyG  is the shear modulus and yx xy y xE E = . 

Note that, for plate made of isotropic material, that is x yE E E= =  and xy yx  = = , the flexural 

rigidity is given as ( )3 212 1x yD D H Eh = = = − . Thus, in this case, the number of independent 

parameters reduces from four in Eq. (1) to two (Young’s modulus and Poisson's ratio). 

 



 
 

Figure 1: Plate of arbitrary shape. 

 

Assuming that the plate undergoes harmonic vibrations, ( ), ,w x y t  can be approximated as 

( ) ( )( )1 2, , , cos sinw x y t W x y t t   = +  (3) 

Substitution of Eq. (3) into Eq. (1) yields the following partial differential equation in terms of 

the mode shape ( ),W x y  and natural frequency  , as 
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The corresponding maximum strain energy can be expressed as 
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while the maximum kinetic energy is  
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2
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where   denotes the generic area of the plate. 

Clearly, the pertinent mode shape ( ),W x y , solution of Eq. (4), strongly depends on the chosen 

plate boundary conditions (BCs). In this regard, let n and t be the outward unit normal and tangent 

vector at a point A of a generic curvilinear edge of the contour  , and denote   as the angle 

between the normal n and the x axis (see Fig. 1). Omitting the notational dependence of the various 

variables, for the most common cases the BCs can be specified as 

i. Simply-supported edge 

0w =  (7.a) 

0nM =  (7.b) 

where nM  is the normal bending moment applied at the edge, given as 

2 2 2n x x y y x y xyM n M n M n n M= + +  (8) 



in which xn  and 
yn  are the components of the unitary vector n  along the x and y axes, while the 

bending moments 
xM  and yM , and the twisting moment xyM  are specified as 
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ii. Clamped edge 
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iii. Free edge 

0nM =  (11.a) 
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where nV  is the so-called effective shear force, while ntM  and nV  represent the twisting moment 

and the shearing force on the edge of the plate, given as 
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in which the shearing forces xV  and yV  are 
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3 pb-2 Rayleigh-Ritz method for general orthotropic plate analysis 

In this section the pb-2 Rayleigh-Ritz method, introduced in [34]-[36] for general isotropic plate, 

is appropriately extended to deal with arbitrarily shaped plates made of orthotropic material. 

Moreover, taking advantage of the Green's theorem, involved double integrals in the plate domain 

  are conveniently converted to more simple line integrals over the contour of the plate  . 



Specifically, following the classical pb-2 Rayleigh-Ritz method, the function ( ),W x y  in Eq. 

(4)-(6) may be parameterized by 

( ) ( )
1
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where N  is the chosen truncation limit of the series expansion, 
jc  are unknown coefficients to 

be determined, and ( ),j x y  are the so-called Ritz functions, taken as the product of a boundary 

function ( )1 ,x y , and polynomial functions ( ),jf x y , that is 
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As far as the boundary function ( )1 ,x y  is concerned, if the plate BCs vary on the contour  , as 

shown in Fig. 2, it is feasible to appropriately subdivide   in the N  edges, described by the 

equation ( ),k x y , on which the BCs remain constant, that is ( )
1
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N

k

k
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Figure 2: Arbitrary shaped plate with mixed BCs and 4N = . 

 

In this manner, the boundary function ( )1 ,x y  can be expressed as 
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Further, the polynomial function ( ),jf x y  in Eq. (15) may be generated as 
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and 

( ) ( )2 22 2
2 2

1 11 2
cos sin

2 2 2 2

j r j rj r j r
s

 − − − −   − − − −
= +   
   

 (20) 

in which the symbol     denotes the so-called maximum integer function. 

It is worth mentioning that, through the chosen boundary function in Eq. (16), the Ritz 

functions ( ),j x y  in Eq. (15) automatically satisfy the kinematic BCs. 

Introducing the energy functional of the plate 

-=F U T  (21) 

and applying a Rayleigh-Ritz procedure, that is performing the variation of the functional with 

respect to the unknown coefficients jc , yields 

0, 1, ,
j

j N
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= =



F
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Substituting Eqs. (5, 6) into Eq. (22), taking into account Eqs. (14)-(20), and manipulating, leads 

to the generalized eigenvalue problem (see Appendix A for the detailed derivation) 

( )− =K M c 0  (23) 

where 
2

xyh   = , c  is the vector containing the coefficients jc , while K  and M  are the 

stiffness and mass matrices, respectively, which depend on the Ritz functions ( ),j x y . 

Specifically, introducing the matrices ( ),d e pq
R  whose elements are given as 
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where the generic superscript ( ),d e p q  refers to the order of the partial derivatives in Eq. (24) 

(see Appendix A), the matrices K  and M  can be expressed by 
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Note that in Eqs. (25) and (26) specific values of the generic superscript ( ),d e p q  have been 

appropriately substituted in the matrices ( ),d e pq
R  in Eq. (24), as shown in Appendix A. 

Once these matrices have been defined, the eigenvalue problem in Eq. (23) can be solved, 

leading to the natural frequencies   and the corresponding coefficients vector c . 

3.1 Simplified expression in terms of line integrals 

Although Eqs. (23)-(26) provide a simple and effective method to determine natural frequencies 

and mode shapes of orthotropic plates under most common BCs, double integrals in Eq. (24) can be 

particularly cumbersome to be evaluated for plates of arbitrary shape. For this reason application of 

the aforementioned procedure is generally limited to the case of rectangular plate, for which 

integrals can be simply obtained numerically. 

In this context, taking into account Green's theorem, double integrals in Eq. (24) can be 

converted into much simpler line integrals, which allow for an elegant and straightforward 

application of the proposed procedure to plates of arbitrary shape. 

Specifically, introduce the functions 
( ) ( ),

,
d e p q

ijA x y  and 
( ) ( ),

,
d e p q

ijB x y  as 

( ) ( )
( ) ( ), ,,

, , 1, , ; 1, ,

p qd e

jd e p q i

ij d e p q

x yx y
A x y dx i N j N

x y x y


++    

= = =  
       

  (27) 

and 

( ) ( )
( ) ( ), ,,

, , 1, , ; 1, ,

p qd e

jd e p q i

ij d e p q

x yx y
B x y dy i N j N

x y x y


++    

= = =  
       

  (28) 

Note that the above defined indefinite integrals can be generally obtained in closed form since 

they involve integrations of polynomial functions. 

Further, let the equation of the k-th edge ( ),k x y  of the plate be given in parametric form as 

( ) ( ) ( ),k k kx y    =   . Thus, functions in Eqs. (27) and (28) can be expressed in terms of the 

generic parameter   as well, that is 
( ) ( ),d e p q

ijA   and 
( ) ( ),d e p q

ijB  . 

Taking into account Eqs. (27) and (28), application of the Green's theorem yields the terms 
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where the symbol ( )
k
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In this manner, Eq. (29) allows for a simpler evaluation of the terms 
( ),d e p q

ijR , which are involved 

in the elements of the mass and stiffness matrices in Eqs. (25) and (26), and the proposed procedure 

can be used even for plates of more complex shape. 

In passing, it is noted that if the plate BCs do not vary on the contour  , and the entire plate 

boundary can be described by a single equation ( ) , then the line integral in Eq. (29) simply 

reverts to a contour path integral in  , that is 
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4 Mechanical properties identification 

As previously shown, the proposed pb-2 Rayleigh-Ritz approach leads to an eigenvalue problem 

which can be easily solved to determine natural frequencies, as well as mode shapes, of arbitrarily 

shaped plates under several BCs and made of orthotropic material. 

Notably, one of the beneficial features of this procedure lies in the fact that plate flexural and 

torsional rigidities directly appear in the mass and stiffness matrices in Eqs. (25) and (26). Thus, it 

can be argued that the aforementioned approach could be appropriately exploited, as an inverse 

problem, for the identification of the orthotropic material parameters. Specifically, based on some 

known values of the natural frequencies 
k , for instance experimentally identified, an inverse 

procedure can be implemented leading to an estimate of the four involved mechanical parameters 

xE , yE , xyG  and xy . Note that, such a procedure can be easily pursued properly defining an 

objective function, to be minimized, related to the aforementioned elastic constants. 

Specifically, assuming dimensions and density of the plate to be known, in this study the 

considered objective function is expressed by the functional 
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where fn  is a chosen number of considered frequencies, 
k  is the k-th natural frequency 

determined solving the eigenvalue problem in Eq. (23) and the terms in square brackets in Eq. (33) 



denote lower and upper bounds, respectively. Therefore, the functional to be minimized gives an 

account of the deviation between the measured 
k  and numerically calculated 

k  frequencies. 

Clearly, minimization of the functional in Eq. (32) leads to estimates of the flexural and torsional 

rigidities in Eq. (2), since the fn  natural frequencies 
k  depend on these parameters via Eq. (23). 

As far as the minimization of the functional ( ), , ,x y t xyD D D   is concerned, the Particle-Swarm 

Optimization (PSO) method [38] has been used. This is a population-based approach, inspired by a 

mathematical description of the swarming of birds, with some useful characteristics [39] as simple 

implementation and execution, avoided evaluation of the objective function derivatives, and ability 

of finding regions in which a global minimum is attained even in presence of non-smooth objective 

functions (as in the case in which experimental data are used). Further, the method is based on few 

parameters (see [39] for details), among which the maximum number of iterations and the 

population size are particularly important. In fact, to avoid possible premature convergence of the 

PSO method, appropriate values of these two parameters can be chosen. 

In this context, it is worth mentioning that other optimization procedures could be used to 

minimize the functional in Eq. (32) with respect to the coefficients ( ), , ,x y t xyD D D  , such as ant 

colony optimization [43]-[44], genetic algorithms [29]-[31], and hybrid optimization techniques 

exploiting combination of the above mentioned procedures and classical gradient-based 

minimization routines [41]. Moreover, objective functions different from the one in Eq. (32) could 

also be considered, as those reported in [24] and [26], and even some based on the joint use of 

experimentally determined natural frequencies and mode shapes [45]. In passing, it is noted that, 

although these approaches may lead to increased accuracy, their influence on the identified 

parameters is out of the scope of the present study, and therefore they will not be investigated. 

As far as the numerical implementation of the identification procedure is concerned, a three steps 

scheme can be followed: 

i) Based on known plate dimensions, geometry and BCs, matrices ( ),d e pq
R  in Eqs. (25) and (26) 

are determined using Eq. (29). 

ii) PSO, implemented for instance in MATLAB environment, is used to minimize the functional 

in Eq. (32) with respect to the coefficients ( ), , ,x y t xyD D D  . At each iteration of the 

optimization procedure, values of the aforementioned coefficients are assumed and 

corresponding natural frequencies k  are obtained solving the eigenvalue problem in Eq. (23). 



iii) Once the optimal values of the coefficients ( ), , ,x y t xyD D D   which minimize Eq. (32) have 

been obtained, pertinent values of the mechanical parameters can be determined taking into 

account Eq. (2) as 
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Observe that the evaluation of the matrices ( ),d e pq
R , which represents the most computationally 

demanding step, can be carried out once beforehand. In this manner, since second and third steps do 

not depend on the plate shape or BCs, the identification procedure is completely generic and can be 

implemented independently on the first step. 

5 Numerical Applications 

In this section, the proposed procedure is applied to two plate configurations, previously 

analyzed in the literature, with different shapes and boundary conditions (see Fig. 3). Specifically, a 

clamped elliptical plate and a triangular cantilever plate have been analyzed. Further, several 

material properties have been taken into account for each configuration, demonstrating the ability of 

the method to detect mechanical properties regardless the orthotropic material considered. In this 

regard, the mechanical characteristics of the materials employed are reported in Tab. 1. 

 

Table 1: Material properties [46] 

Material xE  [GPa] yE  [GPa] xyG  [GPa] xy    [Kg/m3] 

Graphite/Epoxy 181 10.30 7.17 0.28 1600 

Carbon/Epoxy 229 13.35 5.25 0.315 1600 

 

Finally, to assess the accuracy of the procedure, proposed method results are compared with 

pertinent data from the literature, for all the above mentioned cases. 

 



 
(a)  

(b) 

Figure 3: Analyzed configurations: a) Elliptical clamped plate; b) Triangular cantilever plate. 

 

Note that, for the following applications upper and lower bounds in Eq. (33) have been 

determined using Eq. (2) and assuming a 60%  of variation with respect to the reference values in 

Tab.1. Further, 20N =  terms in Eq. (14) have been used for the pb-2 Rayleigh-Ritz procedure. 

5.1 Numerical applications: elliptical plate 

Consider the case of an elliptical shaped plate, made of orthotropic material, clamped along the 

whole boundary, as shown in Fig. 3(a). The boundary equation ( ),x y  is given as 

( )
2 2

, 1
x y

x y
a b

   
 = + −   

   
 (35) 

and, considering the chosen BCs, the boundary function ( )1 ,x y  in Eq. (16) can be expressed as 

( ) ( )
2

1 , ,x y x y =  . Further, taking into account that the boundary of the plate is defined by the 

curve in parametric form 

cos
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=
 (36) 

Eq. (31) can be used to obtain the element of the matrices ( ),d e pq
R  in Eqs. (25) and (26). 

The proposed procedure has been then applied to identify the mechanical characteristics of the 

two materials in Tab. 1, assuming as measured frequencies 
k  in Eq. (32) those numerically 

calculated in [17] (see Tab. 2), considering 1a m= , 0.5b m=  and 5h mm= . 

 

Table 2: Frequencies 2k kf  =  [Hz] for elliptical plate. 

Material Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Graphite/Epoxy 22.5 46.2 47.5 73.4 79.9 87.8 110.5 111.8 145.9 151.4 

Carbon/Epoxy 25.0 51.5 52.5 80.4 89.8 97.2 121.9 123.2 163.5 168.2 

 



Further, to investigate on the accuracy of the approach, two different number of considered 

natural frequencies fn  in Eq. (32) have been used, namely 5fn =  and 10fn = . In this regard, 

identified mechanical parameters, for each value of fn  and material, are reported in Tab. 3. Note 

that, for each identified parameter, the pertinent relative error is reported in square brackets. 

 

Table 3: Identified mechanical parameters for elliptical clamped plate 

Material fn  
xE  [GPa] yE  [GPa] 

xyG  [GPa] 
xy  

Graphite/Epoxy 
5 181.7 [0.4 %] 10.34 [0.4 %] 7.39 [3.1 %] 0.201 [28.3 %] 

10 180.8 [0.1 %] 10.23 [0.1%] 7.05 [1.7 %] 0.303 [8.3 %] 

Carbon/Epoxy 
5 228.5 [0.2 %] 13.32 [0.2 %] 4.36 [16.8 %] 0.411 [30.4 %] 

10 228.8 [0.1 %] 13.34 [0.1 %] 5.12 [2.4 %] 0.336 [5.9 %] 

 

As it can be observed in Tab. 3, a satisfactory agreement between identified and reference 

Young's moduli in the x and y directions have been obtained, even for low number of natural 

frequencies fn . However, generally a higher value of fn  must be taken into account to more 

accurately identify the Poisson's ratio and the shear modulus, for both materials considered. This 

may be due to the fact that natural frequencies are note particularly influenced by variations of xy . 

5.2 Numerical application: triangular plate 

Consider a general orthotropic triangular plate, bounded by the sides (1) 2y bx d b= + , (2) 

2y b= −  and (3) ( ) 2y bx a d b= − − + , where the quantities a, b and d are shown in Fig. 3(b). 

Assuming the plate to be clamped only along the second edge, while the other two are free, the 

boundary function ( )1 ,x y  in Eq. (16) can be expressed as 

( )
2

1
2

,
b

x y y
 

+ 
 

=  (37) 

Representing the aforementioned boundary equations in parametric form, the element of the 

matrices ( ),d e pq
R  in Eqs. (25) and (26) can be determined using Eq. (29). 

The mechanical characteristics of the two materials in Tab. 1 have been then identified, 

assuming as measured frequencies 
k  in Eq. (32) those numerically calculated in [18] (see Tab. 4), 

considering 0.25a m= , 3 2b a= , 2d a=  and 5h mm= . 

 

Table 4: Frequencies 2k kf  =  [Hz] for triangular plate. 

Material Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Graphite/Epoxy 29.6 128.4 218.2 311.8 536.7 572.6 957.9 1606.4 1801.0 1818.2 

Carbon/Epoxy 33.7 146.1 1264.8 201.3 507.1 655.4 942.1 1654.1 1817.7 2002.8 



 

In this regard, identified material parameters are reported in Tab. 5, for the two chosen values of 

fn . Note that, for each identified parameter, the pertinent relative error is reported in square 

brackets. 

 

Table 5: Identified mechanical parameters for triangular cantilever plate 

Material fn  
xE  [GPa] yE  [GPa] 

xyG  [GPa] 
xy  

Graphite/Epoxy 
5 163.8 [9.5 %] 10.29 [0.1 %] 7.17 [0 %] 0.226 [19.1 %] 

10 181.0 [0 %] 10.30 [0 %] 7.17 [0 %] 0.279 [0 %] 

Carbon/Epoxy 
5 216.2 [5.6 %] 13.34 [0.1 %] 5.24 [0.1 %] 0.212 [32.7 %] 

10 229.0 [0 %] 13.35 [0 %] 5.25 [0 %] 0.315 [0 %] 

 

Again, as it can be observed in Tab. 5, a good agreement between identified and reference 

Young's moduli in the x and y directions have been obtained, even for low number of natural 

frequencies fn . However, in this case also a very low value of relative error has been achieved for 

the shear modulus xyG  for both materials, while higher discrepancies are obtained for the Young 

modulus 
xE . This could be due to both the shape of the plate and the adopted BCs. Further, it can 

be observed that considering a higher number of natural frequencies fn  allow to very accurately 

estimate all the mechanical characteristics. 

As a final remark, results suggest that these particular plate shape and BCs may be better suitable 

to more precisely identify material parameters, even considering a lower number of natural 

frequencies, especially in terms of shear modulus and Poisson's ratio. 

Once the accuracy of the proposed procedure has been assessed through several numerical 

applications, in the next section the reliability of the approach will be experimentally investigated. 

Specifically, based on the so-called Equivalent Plate Model, 3D-printed stiffened plates will be 

studied as equivalent orthotropic ones, and the proposed procedure will be used to determine the 

equivalent orthotropic material parameters. 

6 Experimental validation of the proposed procedure 

To further investigate on the reliability and accuracy of the proposed procedure, an extensive 

experimental campaign has been carried out in the Laboratory of Experimental Dynamics at the 

University of Palermo, Italy. The investigation has focused on the assessment of the equivalent 

orthotropic mechanical characteristics of plates reinforced by equidistant grooves stiffeners. 

In this regard, it is noted that corrugated and stiffened plates have been deeply investigated in the 

past decades. Stiffened plates, in fact, show some economical and mechanical advantages, but their 



analysis and optimization may be a daunting task, thus requiring computationally demanding FE 

analyses. In some cases, however, mechanical behavior of stiffened or corrugated plates can be also 

studied considering an equivalent flat plate made of orthotropic material, generally referred to as 

Equivalent Plate Model (EPM). Experimental data indicate good accuracy of such idealization, 

provided that relatively small, and closely spaced, stiffeners are employed. Clearly, this approach 

yields various advantages, such as reducing the computational effort that FE method would have 

demanded, especially in preliminary design. Therefore, several research efforts have been devoted 

to determining the required equivalent orthotropic plate parameters. It is worth noting that, the 

majority of studies have dealt with the cases of corrugated plates, introducing several different 

approximate relations, which have been also experimentally analyzed [47]. On the other hand, the 

case of longitudinally stiffened plates has been less investigated, many studies date back to the 50th 

[48]-[51] and few other have been more recently presented [52] on this topic. Further, experimental 

analyses in the literature generally comprise only the first fundamental natural frequency, while the 

accuracy of such EPM pertaining higher natural frequencies and mode shapes has been much less 

addressed [51]. Thus, it is apparent the need for up-to-date studies on this field, which could also 

experimentally assess the accuracy of the EPM even for stiffened plates. 

On this base, aiming both at validating the reliability of the proposed procedure and the classical 

EPM for stiffened plates, present experimental analyses have focused on rectangular longitudinally 

stiffened plates, taking into account several natural frequencies and mode shapes. Specifically, three 

different plate configurations have been considered, as reported in Fig. 4(a): a homogeneous flat 

rectangular plate (Configuration #1), a rectangular plate with 6 equidistant stiffeners in one 

direction (Configuration #2) and a rectangular plate with 9 equidistant stiffeners in one direction 

(Configuration #3). A sketch of the plates geometry is shown in Fig. 4(b), while dimensions of each 

Configuration is reported in Tab. 6. 

It is worth mentioning that plates have been realized through a 3D printer Model PRUSA i3 

MK2S, as shown in Fig. 4(c), which is a fuse deposition modeling printer, employing common 

polylactic acid (PLA) filaments. Remarkably, thanks to the 3D printing manufacturing process, any 

mechanical or adhesive bonding between the plate and the stiffeners have been avoided, thus 

eliminating any possible detrimental effects due to the connections adopted. 

 

Table 6: Plate configurations parameters 

Configurations a  [mm] b  [mm] h  [mm] h  [mm] L  [mm] p  [mm]   [Kg/m3] 

Configuration #1 190 210 4 - - - 1240 

Configuration #2 190 210 4 2 7.6 22.8 1240 

Configuration #3 190 210 4 2 7.6 15.2 1240 

 



 
 

(a) 

 
 

(b) 

 
 

(c) 

Figure 4: (a) Plate Configurations; (b) Plate geometry; (c) 3D Printer. 

 

6.1 Experimental set-up and data acquisition 

As far as the experimental set-up is concerned, cantilever plate conditions have been employed 

for the tests for each Configuration, since these BCs are particularly suitable for experiments 

compared to others common cases. In this regard, Fig. 5 shows the adopted experimental set-up, 

while in Fig. 6 pictures of the experimental equipments are reported. 

 

 
 

Figure 5: Experimental set-up. 

 

As it can be seen, each plate Configuration has been fixed on one side of a rigid frame (Fig. 6(b)) 

and excitation has been provided through a B&K shaker type 4810 (Fig. 6(c)) connected with a 

stinger close to the clamped side of the plate. Further, input force signal has been acquired through 



a PCB ICP Force Sensor model 208C, directly positioned between the shaker and the plate (Fig. 6 

(d)). The Frequency Response Functions (FRFs) and the mode shapes of the plates have been 

measured with a Polytec laser scanning vibrometer model PSV-400 (Fig. 6(e)) which allow to 

measure both velocity and displacements of a chosen grid of points of the plate without any contact 

through the laser signal. Note that the forcing signal, provided by the shaker connected to the B&K 

amplifier model 2706 Fig. 6(f) is generated by the Polytec workstation Fig. 6(g), to which the laser 

head is also connected. 

 

 
 

Figure 6: Devices employed for the experimental tests. 

 

A sweep sine, of frequency range between 0.1 and 2000 Hz, has been used as forcing signal and 

repeated for each point of the grid, while the chosen sample rate was 2000 Hz. Finally, the mode 

shapes and corresponding natural frequencies have been identified by means of the vibrometer 

software version 9.2. 

To obtain more precise data especially at the lowest frequency, impulsive tests have been also 

performed for all the three Configurations. Specifically, a small impact hammer model PCB 

086E80 Fig. 7(a) has been used to provide the impulse, while four miniature PCB piezoelectric 

accelerometers Model 352C23 Fig. 7(b) have been employed to measure the acceleration responses 

on different points of the plates. Note that, considering the small dimensions and mass of each of 

these accelerometers, the influence of these sensors on the plate frequency response can be 

neglected. Further, signals have been then digitalized and acquired by means of a National 

Instruments NI 4497 PXI Acquisition Board provided inside the chassis of a National Instruments 



PXIe model 1082, and then processed in self-developed LabView and MATLAB environments 

programs (Fig. 7(c)). 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Figure 7: Devices employed for the impulsive tests: (a) PCB impact hammer model 086E80; (b) miniature PCB 

accelerometers Model 352C23; (c) NI PXIe model 1082. 

 

For each plate Configuration five tests have been performed, both with shaker and the impact 

hammer, and pertinent average FRFs has been determined. The corresponding identified natural 

frequencies are reported in Tab. 7. 

 

Table 7: Experimentally identified frequencies 2k kf  =  [Hz] 

Configurations Mode sequence number 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Configuration #1 22.4 60.3 138.7 216 219 388 412 476 545 661 

Configuration #2 34.5 76 201 221 292 474 482 586 650 684 

Configuration #3 37.4 88.4 218.5 236.2 317.5 506 511 646 700 745 

 

6.2 Experimental results vis-à-vis numerical simulations 

Once natural frequencies and mode shapes of the three plates have been determined, mechanical 

parameters of the analyzed Configurations have been identified applying the proposed method. 

Further, to verify the reliability of the approach, comparison among experimental data, FE 

simulations and numerical results of the previously introduced procedure has been performed. 

Firstly, material parameters (Young’s modulus E  and Poisson's ratio  ) of the homogeneous 

flat plate (Configuration #1), assumed to be isotropic, have been identified minimizing the mean 

squared error between the first two experimentally obtained natural frequencies, and the 

corresponding analytical ones reported in [3]. In this regard, the identified values are reported in 

first line of Tab. 8. Clearly, since the material is isotropic x yE E E= =  and xy yx  = =   

 

Table 8: Identified material parameters  

Configurations xE  [GPa] yE  [GPa] xyG  [GPa] xy  

Configuration #1 2.77 2.77 1.09 0.263 

Configuration #2 3.95 1.44 0.94 0.383 

Configuration #3 4.17 1.44 1.01 0.307 



 

To verify the validity of the identified parameters, the natural frequencies of the plate have been 

determined also by FE analysis on ANSYS environment using these aforementioned values. 

Specifically, for the FE analysis a hexahedral mesh with 395 nodes and 67.000 elements has been 

used. Pertinent results are shown in Fig. 8, where experimental natural frequencies (black circles) 

are reported vis-à-vis analytical one [3] (dashed blue line) and numerical FE simulation (magenta 

squares). In this figure the modes are labelled by two mode indices, namely m and n, indicating the 

number of nodal lines approximately parallel to y- and x-axis, respectively, including the boundaries 

as nodal lines, except when the boundary is free [3]. The frequencies are plotted over the mode 

index m. Lines connecting the symbols are guides to the eyes only. 

As it can be seen, a very good match between experimental and numerical natural frequencies is 

achieved, thus proving the validity of the identified parameters. In this regard, a low average 

relative error between FE results and experimental data, of approximately 2.5%, has been obtained. 

 

 
Figure 8: Comparison of experimental vis-à-vis numerical data in terms of natural frequencies for Configuration #1. 

Dashed blue lines –Analytical results; Magenta squares – FE results; Black circles – Experimental data. 

 

Once material parameters of the flat plate (Configuration #1) have been determined and verified, 

attention has been then focused on the two stiffened plate (Configurations #2 and #3). 

Specifically, assuming an orthotropic behavior of these plates, firstly the proposed identification 

procedure (see Sections 4) has been applied. On this base, equivalent orthotropic parameters of the 

two Configurations have been retrieved minimizing the functional in Eq. (32) considering the 

10fn =  experimentally determined natural frequencies 
k  in Tab. 7. The pertinent identified 

mechanical parameters are reported in Tab. 8 (second and third lines). Further, numerical results in 



terms of mode shapes and natural frequencies for Configurations #2 and #3 have been also obtained 

applying the previously described pb-2 Rayleigh-Ritz procedure.  

Again, to verify the validity of these identified parameters, natural frequencies and mode shapes 

of the actual stiffened plate have been determined also via FE analyses on ANSYS environment 

using the actual geometry of the plate (Tab. 6 and Fig. 4(b)). Specifically, the real plates shape (flat 

plates with stiffeners) have been modelled with 3D elements, assuming the material isotropic with 

the previously obtained Configuration #1 Young's modulus and Poisson's ratio (see Tab. 8). 

In addition, to further assess the reliability of the approach, equivalent orthotropic plate rigidities 

have been estimated applying the relations of the so-called EPM for stiffened plates, given in [1]-

[2]. In this regard, according to the EPM, the orthogonally stiffened plate can be treated as an 

equivalent flat plate made of orthotropic material. Specifically, for a rectangular plate reinforced by 

equidistant stiffeners in one direction of thickness h , disposed symmetrically with respect to the 

middle plane of the plate (Fig. 4(b)), and assuming that both the plate and the stiffeners are made of 

the same isotropic material, EPM yields the equivalent rigidities as 
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 (38) 

where E  and   are the elastic constant of Configuration #1 given in Tab. 8, I  the moment of 

inertia of the stiffener taken with respect to the middle axis of the cross section of the plate, while 

p  and L  are reported in Fig. 4(b). In this manner, based on Eq. (38), Eq. (23) yields the 

corresponding natural frequencies of Configurations #2 and #3 for the EPM. 

Comparisons of the different adopted procedures are shown in Fig.9. In this figure natural 

frequencies obtained applying the proposed procedure (red dotted line) are compared with the 

experimentally determined natural frequencies (black circles), the EPM numerical data (dashed blue 

line) and the numerical FE simulation results (magenta squares). 

 



 
(a) 

 

 
(b) 

 

Figure 9: Comparison of experimental vis-à-vis numerical data in terms of natural frequencies: a) Configuration #2; b) 

Configuration #3. Red dotted lines - Proposed procedure results; Blue dashed lines –EPM results; Magenta squares – 

FE results; Black circles – Experimental data. 

 

As apparent, proposed method results excellently agree with both pertinent experimental data 

and FE simulations, thus proving the reliability of the proposed identification procedure. 

Specifically, the average relative errors between proposed method results and experimental data are 

2.1% for Configuration #2 and 2.2% for Configuration #3. Moreover, considering that FE analyses 

have been carried out on the actual plates geometry, thus no assumptions have been made for these 

simulations, the validity of the applied experimental procedure has been further assessed. 

As far as the EPM results are concerned, Fig. 9 shows that EPM leads to a satisfactory agreement 

with the experimental data at lower frequencies, while, as expected, the accuracy of the EPM results 

decrease drastically at higher frequencies. It can be therefore argued that EPM could be adopted to 

estimate the first few natural frequencies of stiffened plates. 



 

 
 

(a) 

 
 

(b) 

Figure 10: Comparison of experimental vis-à-vis numerical results in terms of mode shapes for stiffened plates: a) 

Configuration #2; b) Configuration #3. First row- Experimental data; Second row – Numerical results with proposed 

procedure; Third row – FE results with ANSYS. 

 

In addition, as shown in Fig. 10, analogous analyses have been also performed in terms of mode 

shapes. Specifically, in this figure, the first three mode shapes obtained experimentally are 

compared with those numerically determined with the proposed procedure and FE analyses with 

ANSYS on the actual stiffened plate geometry. As it can be observed, these numerical methods lead 

to satisfactory agreement with the experimental data. Similar results have also been obtained for 

higher modes, here omitted for brevity's sake. 

Concluding Remarks 

In this paper, an innovative identification procedure has been proposed for estimating 

mechanical properties of orthotropic arbitrarily shaped plates, based on free-vibration data. Plates 

natural frequencies have been determined resorting to a Rayleigh-Ritz scheme. Specifically, the so-

called pb-2 Rayleigh-Ritz approach has been appropriately extended to deal with the case of 

orthotropic plates. It has been shown that this approach could lead to computationally demanding 

double integrals in the plate domain. To account for the possibility of employing generic plate 

shapes, these double integrals have been appropriately converted to more simple line integrals, 

taking advantage of the Green's theorem. In this manner, numerical double integration can be 

conveniently circumvented. The procedure has led to a generalized eigenvalue problem for the plate 

natural frequencies and mode shapes, that involves matrices which explicitly depend on the material 

elastic constants. This feature has been exploited to yield material properties based on available 

natural frequencies. In this regard, an appropriate objective function has been introduced and 

conveniently minimized through the Particle-Swarm Optimization method, allowing to 

expeditiously identify material parameters. Numerical analyses have been performed for several 



plate shapes, as well as different boundary conditions and materials, and comparisons of the 

proposed method estimated elastic constants have been made with those already presented in the 

literature. The results have shown a satisfactory agreement between the two solutions, 

demonstrating the reliability of the proposed approach. 

Additionally, an extensive experimental study has been undertaken to assess the accuracy of the 

procedure. In this regard, considering the obvious relevance for modern additive manufacturing 

processes, free-vibrations tests have been carried out for several rectangular 3D printed stiffened 

plates. Specifically, plates have been realized through a fuse deposition modeling 3D printer, 

employing common polylactic acid filaments. In this manner possible defects related to the bonding 

between the plate and the stiffeners have been avoided. Experimentally measured frequencies and 

mode shapes have been obtained using both laser scanning vibrometer and impulsive tests, 

employing the proposed approach to identify the equivalent orthotropic mechanical properties and 

corresponding natural frequencies. Moreover, 3D Finite Element analyses of the stiffened plates 

have been performed as a further reference. Proposed procedure based frequencies considered vis-à-

vis pertinent experimental data and FE simulations have assessed the reliability and accuracy of the 

proposed approach. Furthermore, results of the well-known Equivalent Plate Model, commonly 

employed to analyze corrugated and stiffened plates as orthotropic ones, have been reported, as 

well. Data have shown a reasonably good agreement with the experimental and proposed method 

results for the first modes, while discrepancies have increased at higher modes. 
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Appendix A 

In this Appendix, detailed derivation of Eqs. (23) – (26) is reported for completeness’ sake. 

In this regard, substituting Eq. (14) into the expressions of the maximum strain and kinetic 

energy in Eqs. (5) – (6), leads to 
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Taking into account Eq. (21) and performing variation with respect to the unknown coefficients 

jc  as in Eq. (22), yields 
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Let introduce the integral in Eq. (24), that is 

( ) ( ) ( ), ,,
, 1, , ; 1, ,

p qd e

jd e p q i

ij d e p q

x yx y
R dx dy i N j N

x y x y
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

   
= = =  

       
  (A.4) 

where the generic superscript ( ),d e p q  of the term 
( ),d e p q

ijR  refers to the order of the partial 

derivatives of the functions ( ),i x y  and ( ),j x y  at the right-hand side of Eq. (A.4). 

In this manner, the integrals in Eq. (A.3) can be specified as 
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 (A.5 a-f) 

and Eq. (A.3) can be rewritten in more compact form as 

( ) ( ) ( )( ) ( )
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
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= =
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Let c  be the vector containing the unknown coefficients, that is  1

T

Nc c=c , and 
( )20,20

R , 

( )20,02
R , 

( )02,20
R , 

( )02,02
R , 

( )11,11
R , and 

( )00,00
R , the matrices containing as elements those in Eqs. 

(A.5 a) – (A.5 f) respectively. Then, Eq. (A.6) can be rewritten in compact matrix form as  

( ) ( ) ( ) ( ) ( ) ( )20,20 02,02 20,02 02,20 11,11 00,00
4

yx t
y

xy xy xy

DD D
D 

  

 
 + + + + − =  

  

R R R R R R c 0  (A.7) 

where 2

xyh   = . 

Finally, recalling Eqs. (25) and (26), that is 

( ) ( ) ( ) ( ) ( )20,20 02,02 20,02 02,20 11,11
4

yx t
y

xy xy xy

DD D
D

  
 = + + + +
 

K R R R R R  (A.8) 

and 

( )00,00
=M R  (A.9) 

the generalized eigenvalue problem in Eq. (23) is retrieved. 
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