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Abstract 

An innovative procedure is introduced for the analysis of arbitrarily shaped thin plates with 

various boundary conditions and under generic transverse loading conditions. Framed into Line 

Element-less Method, a truly meshfree method, this novel approach yields the solution in terms of 

the deflection function in a straightforward manner, without resorting to any discretization, neither 

in the domain nor on the boundary. Specifically, expressing the deflection function through a series 

expansion in terms of harmonic polynomials, it is shown that the proposed method requires only the 

evaluation of line integrals along the boundary parametric equation. Further, minimization of 

appropriately introduced novel functionals directly leads to simple systems of linear algebraic 

equations for the unknown expansion coefficients. Notably, the proposed procedure yields exact 

solutions, when available, for different plate geometries. Additionally, several numerical 

applications are presented to show the reliability and simplicity of the approach, and comparisons 

with pertinent Finite Element method data demonstrate the efficiency and accuracy of the proposed 

procedure. 



1 Introduction 

Many structural problems in engineering mechanics are governed by partial differential 

equations (PDEs) whose exact solutions is known for few restricted cases of practical interest. In 

this regard, the evaluation of the structural response of plates under generic loading conditions, 

commonly described via a biharmonic PDE in Kirchoff's theory, is a well-established problem in 

applied mechanics due to the constant use of these structural elements in most engineering fields. 

Clearly, since exact plate solutions are available only for certain shapes, boundary and loading 

conditions [1], several numerical procedures have been proposed and their development still attracts 

the attentions of many researchers in the field [2-4]. In this context, the Finite Element Method 

(FEM) [5] and Boundary Element Method (BEM) [6] unquestionably represent the most commonly 

employed and powerful numerical techniques for general structural analysis. 

As well-known the use of mesh, be it in the domain or in the boundary, is a common 

characteristic of these traditional approaches. Specifically, while conventional FEM approach 

basically requires a discretization over the entire domain through finite elements mesh, in the BEM 

an integral equation is obtained and a boundary mesh is required to numerically approximate the 

boundary integrals involved. It is worth underscoring that, in this latter approach the governing 

differential equation is satisfied exactly inside the domain and high accuracy is generally achieved 

with a relatively small number of boundary elements. Notably, the extensive research efforts 

devoted in the last few decades to the development of these approaches have allowed to circumvent 

most numerical problems associated to the domain or boundary discretization, thus making FEM 

and BEM the dominant approaches for most problems in computational mechanics. 

Nevertheless, the possibility of obtaining numerical solutions for PDEs without resorting to any 

discretization, that is the so-called meshless approach, has rather recently gained the attention of 

scientists and engineers working in this field. As defined in [7] a meshless method, also referred to 

as meshfree method, is a method used to establish system equations for the whole problem domain 

without the use of a predefined mesh for the domain discretization. This approach has, therefore, 

become an alternative to classical FEM and BEM due to some beneficial features such as its 

flexibility, wide applicability and the possibility of avoiding problems related to meshing and 

remeshing in the domain or boundary [7, 8]. 

In this regard, framed in the meshless approach, different procedures have been proposed to 

solve a variety of engineering problems [9], such as the element free Galerkin Method [10, 11], 

Petrov–Galerkin approach [12], h-p clouds method [13], and the reproducing kernel element 

method [14] among the others. Further, specifically referring to the plate analysis, the works in [15-

22] and references therein can be mentioned. Finally, note that other classes of methods, which are 



inherently meshless, exist for the plate bending problem, including the Trefftz method [23], the pb-

2 Rayleigh-Ritz method [24, 25], and the Galerkin method [26]. 

Additionally, a novel truly meshless procedure, namely the Line Element-less Method (LEM), 

has been introduced for the analysis of De Saint Venant pure torsion and flexure-torsion problem 

for both isotropic and orthotropic material [27-31]. Notably, this method does not require any 

discretization neither in the domain nor on the boundary, and all the involved integrals are simple 

line integrals. Further, based on the analogy between plates bending under edge moments and 

beams in torsion [32-34], recently the aforementioned LEM has been employed for the bending 

problem of simply supported plates subject to uniformly distributed edge moments [35]. 

In this context, aim of this paper is to extend the LEM for the analysis of arbitrarily shaped 

plates, without any holes, assuming various boundary conditions (BCs) and subject to transverse 

loads. Specifically, the original biharmonic PDE, which rules the plate deflection, is decomposed in 

two Poisson's equations, whose solution is expressed as the superposition of pertinent particular 

solution and harmonic polynomials with unknown expansion coefficients. These coefficients are 

then determined satisfying the prescribed BCs on the contour. 

Note that, in the proposed procedure the BCs are satisfied in a least square sense on the plate 

contour, and only line integrals along the boundary parametric equation are required, leading to 

systems of linear algebraic equations for the unknown expansion coefficients. 

Remarkably, as it will be shown in the following, this procedure yields exact closed-form 

solutions when available, for different plates geometries, while in the other cases approximate 

accurate analytical solutions are achieved generally employing few terms in the series expansion. 

This may be clearly considered an attractive feature of the proposed method, especially with respect 

to other meshfree procedure which are inherently exclusively numerical in nature. 

Interestingly, unlike the Trefftz method [23], where the BCs are enforced in a number of 

boundary points to determine pertinent expansion coefficients, or classical meshfree approaches, 

where several nodes are generally considered in the domain, this proposed procedure is entirely 

element-free. Further, with respect to the classical Rayleigh-Ritz approach [24, 25] more general 

plate shapes and BCs can be handled, and cumbersome integration over domains are not involved. 

These aspects may clearly represent an advantage of the proposed procedure. 

Several numerical applications will be shown, demonstrating the elegance and simplicity of the 

proposed procedure, and corresponding data vis-à-vis classical FEM results will be reported, 

assessing the accuracy and reliability of the procedure. 



2 Problem definition 

Consider a homogeneous isotropic thin plate, of arbitrary shape with contour   and domain  , 

uniform thickness h and modulus of elasticity E, generally referred to as Kirchhoff plate (see Fig. 

1). The governing differential equation in terms of transverse deflection ( ),w x y  is the well-known 

biharmonic equation [1, 36] 

( )2 2 2 2

2 2 2 2

,q x yw w

x y x y D
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 (1) 

where ( ),q x y  is the transverse distributed load, ( )3 212 1D Eh = −  is the flexural rigidity of 

the plate and   is the Poisson ratio. 

 

 
Fig. 1 Plate with arbitrary shape 

 

The bending moments ( ),xM x y  and ( ),yM x y , and the twisting moment ( ),xyM x y  are given 

as 
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while the shearing forces ( ),xV x y  and ( ),yV x y  are given by 

( )
2 2

2 2
,x

w w
V x y D

x x y

   
= − + 

   
 (3.a) 

( )
2 2

2 2
,y

w w
V x y D

y x y

   
= − + 

   
 (3.b) 



Further, introducing the so-called moment sum ( ),M x y  as 
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1
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+
=

+
 (4) 

Eq. (1) can be recast into two equivalent Poisson's equations as [37] 

( ) ( )2 , ,M x y q x y = −  (5.a) 

and 
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,
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D
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where ( )
( ) ( )2 2

2

2 2x y

   
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 
 is the well-known Laplace operator. 

Thus, the solution of the plate problem Eq. (1) reduces to the integration of the two Eqs. (5 a, b) 

in succession, which is sometimes preferred depending upon the method of solution employed. 

As far as the boundary conditions (BCs) are concerned, denote as n and t the outward unit 

normal and tangent vector at a point A of a generic curvilinear edge of the contour  , and let   be 

the angle between the normal n and the x axis (see Fig. 1). Thus, for the most common cases, the 

boundary conditions for the curvilinear edge can be specified as [38-40] 

i. Simply-supported edge 

( ), 0w x y =  (6.a) 

( ), 0nM x y =  (6.b) 

where ( ),nM x y  denotes the normal bending moment applied at the edge, and is given as 

( ) 2 2, 2n x x y y x y xyM x y n M n M n n M= + +  (7) 

where xn  and yn  are the components of the unitary vector n  along the x and y axes, respectively. 

Note that, considering Eqs. (2) and (7), Eq. (6.b) becomes 
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ii. Clamped edge 

( ), 0w x y =  (9.a) 
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w x y w w
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iii. Free edge 

( ), 0nM x y =  (10.a) 
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where ( ),nV x y  is the so-called effective shear force, while ( ),ntM x y  and ( ),nV x y  represent the 

twisting moment and the shearing force on the edge of the plate, and are given as 

( ) ( ) ( )2 2,nt x y xy x y y xM x y n n M n n M M= + + −  (11) 

and 

( ),n x x y yV x y n V n V= +  (12) 

Clearly, taking into account Eqs. (2, 3) and Eqs. (11, 12), the condition in Eq. (10.b) can be 

expressed in terms of the transverse deflection ( ),w x y . 

Notably, the above reported BCs considerably simplify in case of straight edges [36]. For 

instance, for an edge parallel to the y axis Eq. (10.b) can be directly given as 
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3 Line Element-Less Method for plate analysis 

In this section LEM approach is introduced for the analysis of arbitrary shaped plates, without 

holes, with general BCs and under a transverse load ( ),q x y . Specifically, based on the classical 

applications of the LEM [27-31] and taking into account Eqs. (5), ( ),M x y  and ( ),w x y  can be 

expressed in terms of the so-called harmonic polynomials kP  and kQ , generally defined as 

( ) ( ), Re
k
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( ) ( ), Im
k
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or, recursively as 

( ) 1 1,k k kP x y P x Q y− −= −  (15.a) 

( ) 1 1,k k kQ x y Q x P y− −= −  (15.b) 

which are valid for 0k  , and with 0 1P =  and 0 0Q = . 

Further, the derivatives of the harmonic polynomials are 
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2 20; 0k kP Q k =  =   (16.c) 

Based on the above relations, it can be argued that a solution of Eq. (5.a) can be obtained 

expressing the moment sum function as the sum of harmonic polynomials, which satisfy the 

Laplace equation as in Eq. (16.c), and a particular solution of the Poisson equation Eq. (5.a), namely 

( ),pM x y ; that is 

( ) ( ) ( ) ( )
0 1

, , , ,
n n

k k k k p

k k

M x y a P x y b Q x y M x y
= =

= + +   (17) 

where ka  and kb  are ( )2 1n +  unknown coefficients to be determined, and n  is an integer 

number which denotes the truncation limit of the series expansion. 

Further, introducing the vectors 
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Eq. (17) can conveniently be rewritten in compact form as 

( ) ( ), ,n pM x y M x y= +r η  (19) 

where 

;T T
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are the vector containing the harmonic polynomials and the unknown coefficients, respectively. 

Note that, as far as the particular solution ( ),pM x y  of Eq. (5.a) is concerned, this can be 

obtained in closed-form using the approach in [41] (see Appendix A) when the load function 

( ),q x y  is represented by a homogeneous polynomial of degree N; i.e. 

( )
0

,
N

N k k

k

k

q x y A x y−

=

=  (21) 

where kA  are known coefficients which depend on the form of the assigned load. For 

completeness sake, expressions of ( ),pM x y  are reported in Tab. 1 for some common cases of 

transverse distributed load ( ),q x y . Further, as suggested in [42], if the function ( ),q x y  is not 

directly given in the form of Eq. (21), it can be initially approximated by a truncated series of 

Chebyshev polynomials which can be recast in the form of Eq. (21). Clearly, this yields a quite 

versatile tool for expressing various shapes of load distributions, and even concentrated loads, as it 

will be shown in the following section. 



As far as the unknown coefficients in Eq. (17) or (19) are concerned, the ( )2 1n +  values of ka  

and kb  in the vector η  can be determined appropriately imposing the specified BCs of the plate. In 

this context, it is convenient to firstly consider the simplified case of polygonal plate with simply-

supported edges, which will be then further generalized to arbitrary shaped plates with any 

boundary conditions. 

 

Tab. 1. Particular solution of Eq. (5.a) for different distributed loads 

Type of load Load function Particular solution 

Uniform 
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3.1 Simply-supported polygonal plate 

Let the plate be of polygonal shape and with all the edges simply-supported. Since in this case 

the moment sum function must be zero along the entire contour of the polygonal plate [32, 35], the 

following relation holds 

( ) ( ), , 0,nM x y M x y in= =   (22) 

Taking into account Eq. (22), it is feasible to evaluate these unknown coefficients η  in Eq. (19) 

applying a minimization procedure on the closed contour path integral of the squared moment sum 

function 

( ) ( )
2
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Thus, introducing Eq. (19) into Eq. (23), the functional can be recast as 
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Further, performing variations of the above functional with respect to η , yields 
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which is a linear algebraic system in the unknowns η , where 
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In this manner the vector η  can be directly evaluated as 

1

n

−= −η Q τ  (27) 

and, taking into account Eq. (19), the moment sum function can be expressed as 

( ) ( )1, ,n n pM x y M x y−= − +r Q τ  (28) 

Once ( ),M x y  is determined, the deflection function ( ),w x y  can be obtained solving Eq. (5.b). 

Specifically, as similarly done for the moment sum function, a solution of Eq. (5.b) can be sought 

assuming ( ),w x y  as the sum of harmonic polynomials, and a particular solution of the Poisson 

equation Eq. (5.b), namely ( ),pw x y ; that is 

( ) ( ) ( ) ( )
0 1

, , , ,
m m

k k k k p

k k

w x y c P x y d Q x y w x y
= =

= + +   (29) 

where kc  and kd  are ( )2 1m +  unknown coefficients to be determined, and m  is an integer 

number which denotes the truncation limit of the series expansion. 

Again, note that the particular solution ( ),pw x y  can be evaluated applying the procedure in 

Appendix A considering the obtained moment sum function ( ),M x y  in Eq. (28). 

As far as the unknown coefficients in Eq. (29) are concerned, the ( )2 1m +  values of kc  and kd  

are determined appropriately imposing the BCs. In this regard, Eq. (29) can conveniently be 

rewritten in compact form as 

( ) ( ), ,m pw x y w x y= +r ξ  (30) 

where T T T =  ξ c d  is the vector containing the unknown coefficients, and 
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Therefore, considering that for a simply-supported plate Eq. (6.a) holds, the vector ξ  can be 

found minimising the closed contour path integral of the squared deflection function; that is 

( ) ( )
2

,w x y d


 =   ξ  (32) 

Introducing Eq. (30) into Eq. (32), and performing variation with respect to the unknown 

coefficients leads to an algebraic linear system in terms of the unknowns ξ , as 
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m
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ξ
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where 
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= Q r r  (34.a) 
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
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Finally, obtaining the vector ξ  from Eq. (33) as 

1

m

−= −ξ Q λ  (35) 

and substituting in Eq. (30), yields the sought deflection function of the plate ( ),w x y  as 

( ) ( )1, ,m m pw x y w x y−= − +r Q λ  (36) 

Note that if the number of terms in Eq. (29) corresponds to the one in Eq. (17), that is if n m= , 

then m n=r r  and m n=Q Q ; thus in this case it is only necessary to compute nQ  via Eq. (27.a) once 

beforehand. 

3.2 General plate analysis 

As previously mentioned, the above discussed procedure is strictly valid for polygonal plates 

with all edges simply-supported. In this case, in fact, both the moment sum and the deflection 

functions must be null on the contour, that is ( ), 0M x y =  and ( ), 0w x y =  in  . Notably, these 

properties allow the functionals ( ) η  and ( ) ξ  to be expressed as in Eqs. (23) and (32), 

respectively. 

Clearly, in the generic case of arbitrarily shaped plates with any BCs, neither ( ),M x y  nor 

( ),w x y  equal zero on the entire contour, and hence Eqs. (27, 35) cannot be directly used to find the 

unknown coefficients. This is, for instance, the case of a plate with curved 



boundaries ( )( ), 0M x y in  , in which at least one edge can undergo vertical deflections 

( )( ), 0w x y in  . Therefore, the possibility of the moment sum or the deflection functions not to 

vanish in   should be appropriately accounted for in the evaluation of the unknown coefficients. 

In this regard, assuming that the plate boundary conditions are the same on the entire contour  , 

the functional in Eq. (23) can be properly modified as 

( ) ( ) ( )
2

, ,M x y M x y d


  = − η  (37) 

where ( ),M x y  is given in Eq. (17) and ( ),M x y  is an additional function, conveniently 

introduced to take into account the generic plate boundary conditions. As apparent form Eq. (37), 

this function represents the pertinent moment sum function evaluated on the boundary. For 

consistency, ( ),M x y  can be expressed in terms of harmonic polynomials as 

( ) ( ) ( )
0 1

, , ,
n n

k k k k

k k

M x y a P x y b Q x y
= =
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in which ka  and kb  are unknown coefficients to be determined, while n  is an integer number 

denoting the truncation limit of the series expansion, with n n  and generally small. 

Denoting as 
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Eq. (38) can conveniently be rewritten in compact form as 

( ), nM x y = s η  (40) 

where 

;T T

n n n

 
 = =   

 

a
s p q η

b
 (41) 

Clearly, as shown in Fig. 2 if the plate BCs vary on the contour  , it is feasible to appropriately 

subdivide   in the N  edges i  on which the BCs remain constant, that is 
1

N

i

i



=

 =  . 

 



 
Fig. 2 Arbitrary shaped plate with mixed BCs and 4N = . 

 

Therefore, the functional in Eq. (37) becomes 

( ) ( ) ( )
2

1

, ,

i

N

i

i

M x y M x y d



= 

  = − η  (42) 

where the symbol ( )
i

d


  denotes the classical line integration and, similarly to Eq. (40), the 

function ( ),iM x y , representing the moment sum function on the corresponding edge, is given by 

( ), ; 1, ,i n iM x y i N= =s η  (44) 

where the subscript i  refers to the i-th edge i . It is worth stressing that, as previously 

mentioned, ( ),iM x y  equals zero only for simply-supported straight edges. 

Taking into account Eqs. (19) and (44) and substituting in Eq. (42), yields 
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,
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N

n p n i

i

M x y d



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  = + − η r η s η  (45) 

Analogously, to allow for the possibility of vertical deflections on the contour, the functional in 

Eq. (32) can be properly modified as 

( ) ( ) ( )
2

1

, ,

i

N

i

i

w x y w x y d



= 

 = −  ξ  (46) 

where ( ),w x y  is given in Eq. (29) and ( ),iw x y  is an additional function, conveniently 

introduced to take into account the possibility of boundary deflections. Similarly to ( ),M x y  in Eq. 

(37), ( ),iw x y  represents the pertinent deflection function evaluated on the boundary. Expressing 

( ),iw x y  in terms of harmonic polynomials, yields 



( ) ( ) ( ), ,

0 1

, , , ; 1, ,
m m

i k i k k i k

k k

w x y c P x y d Q x y i N

= =

= + =   (47) 

in which ,k ic  and ,k id  are unknown coefficients to be determined, while m  is the chosen 

truncation limit of the series expansion, with m m  and generally small. 

Denoting as 

( )
( )

( )
( )

( )

( )

0 1 0, 1,

, ,

, ,

, ; , ; ;

, ,

i i

m m i i

m m m i m i

P x y Q x y c d

x y x y

P x y Q x y c b

     
     

= = = =      
     

       

p q c d  (48) 

Eq. (47) can conveniently be rewritten in compact form as 

( ), ; 1, ,i m iw x y i N= =s ξ  (49) 

where 

;
iT T

m m m i

i

 
 = =   

 

c
s p q ξ

d
 (50) 

Further, taking into account Eqs. (30) and (49) and substituting in Eq. (46), yields the functional 

in the form 

( ) ( )
2

1

,

i

N

m p m i

i

w x y d



= 

  = + − ξ r ξ s ξ  (51) 

Note that, the additional function ( ),iw x y  in Eq. (46) must be taken into account only for the 

plate edges i  which can undergo vertical deflections (such as for a free edge). Therefore, unless at 

least one edge is allowed to move vertically, ( ), 0iw x y i=  , that is 0i =ξ , and the functional in 

Eq. (46) reverts to the more simple one in Eq. (32). 

As far as the solution procedure is concerned, a three steps scheme, similar to the one described 

in Section 3.1, can be followed. 

The first step is associated with the solution of Eq. (5.a), which leads to the moment sum 

function ( ),M x y . In this regard, minimising the functional in Eq. (45), that is performing the 

variation of the functional with respect to the unknown coefficients η , yields  

( )
,

1

N

n n i i

i



=


= + − =




η
Q η τ Q η 0

η
 (52) 

which is an algebraic linear system of equations, where 

, 2 ; 1, ,

i

T

n i n n d i N


= =Q r s  
(53) 

Equation (52) can equivalently be rewritten as 



1 1

,

1

N

n n n i i

i



− −

=

= − +η Q τ Q Q η  (54) 

so as to express the sought coefficients η  in terms of the vectors iη . 

Note that, as previously stated, if the plate BCs do not vary on the contour  , the functional in 

Eq. (37) should be used instead of the one in Eq. (45); thus, in this case, 1N =  and the line integral 

in Eq. (53) simply reverts to a contour integral in  . 

In this manner, considering Eq. (19) the moment sum function ( ),M x y  can be directly 

expressed as 

( ) ( )1 1

,

1

, ,

N

n n n n n i i p

i

M x y M x y


− −

=

=− + +r Q τ r Q Q η  (55) 

and a particular solution of Eq. (5.b) ( ),pw x y , which is required for the definition of the 

functional in Eq. (51), can be evaluated as reported in the Appendix A. It is worth stressing that, 

since ( ),M x y  depends on iη  as shown in Eq. (55), also ( ),pw x y  will be a function of the 

unknown iη . To directly express this dependence, hereinafter the particular solution will be denoted 

as ( ), ,p iw x y η . 

The second step is associated with the solution of Eq. (5.b), which yields the deflection function 

( ),w x y . In this regard, the variation of the functional in Eq. (51), with respect to the unknown 

coefficients ξ , can be performed as 

( )
,

1

N

m m i i

i



=


= + − =




ξ
Q ξ λ Q ξ 0

ξ
 (56) 

where 

, 2 ; 1, ,

i

T

m i m m d i N


= =Q r s  
(57) 

whose solution leads to the coefficients ξ  in terms of the unknowns iξ , that is 

1 1

,

1

N

m m m i i

i



− −

=

= − +ξ Q λ Q Q ξ  (58) 

Once these coefficients are found, the deflection function ( ),w x y  can be evaluated substituting 

Eq. (58) into Eq. (30), as 

( ) ( )1 1

,

1

, , ,

N

m m m m m i i p i

i

w x y w x y


− −

=

=− + +r Q λ r Q Q ξ η  (59) 



Finally, the unknown terms iη  and iξ  can be obtained appropriately imposing the specified BCs 

on the edges i  for which the additional functions ( ),iM x y  and ( ),iw x y  have been introduced. 

Specifically, for the most common cases, taking into account Eqs. (6, 9, 10) the following 

functionals can be defined for each edge i  of the whole plate contour  : 

i. Simply-supported curved edge 

( ) ( )
2

,

i

i i nM x y d


 =   η  (60) 

ii. Clamped edge 

( )
( )

2

,

i

i i

w x y
d

n




 
 =  

 
η  (61) 

iii. Free edge 

( ) ( )
2

,

i

i i nM x y d


 =   η  (62.a) 

( ) ( )
2

,

i

i i nV x y d


  =  ξ  (62.b) 

Note that, taking advantage of the properties of the harmonic polynomials, and considering the 

general expression of the deflection function in Eq. (59), all the aforementioned BCs in Eqs. (60)-

(62) can be appropriately represented in compact matrix form. In this regard, for simplicity sake, the 

resulting expressions are reported in Appendix B. 

In this context, observe that even more complex BCs, such as guided-end conditions, elastically 

restrained edges or imposed deflections, can be taken into account in a similar manner. Further, 

variations of the BCs on the same edge i  can be considered as well, appropriately subdividing the 

pertinent edge i  in the corresponding part on which the BCs remain constant. 

Clearly, minimising the above defined functionals, that is performing the variation with respect 

to the unknown coefficients iη  and iξ  as 

( )i i

i


=



η
0

η
 (63.a) 

( )i i

i


=



ξ
0

ξ
 (63.b) 



yields an algebraic linear system of equations in terms of iη  and iξ , which can be easily solved 

for the sought coefficients. Further substitution in Eq. (59) leads to the complete definition of 

deflection function ( ),w x y . 

To further elucidate the mechanics of the technique, Fig. 3 provides a step-by-step flowchart for 

the method, where reference to the aforementioned steps is reported as well. 

 

 
Fig. 3 Flowchart of the method 

 

It is worth noting that the entire procedure only requires the definition of simple line integrals, 

and the solution of algebraic linear system of equations which can be performed in a 

straightforward manner in any symbolic computation programs, such as Wolfram Mathematica. 

On this base, a peculiar characteristic of the proposed approach for plate analysis is the 

possibility of recovering the exact closed-form solution of the problem when it exists, as it will be 

shown in the following section, while in the other cases the method yields an approximate analytical 

solution, and this may be regarded as an attractive feature of the proposed procedure with respect to 

classical FEM and meshless approaches, which can provide only numerical results. 

Notably, the method does not require the definition of any mesh, and few terms in the series 

expansions are generally needed, thus keeping at minimum the computational effort. Finally, since 



neither the domain nor the boundary must be discretized (as in the classical FEM or BEM), the 

same procedure and expressions can be applied for different plate geometries, once the contour of 

the plate has been appropriately parameterized. 

4 Applications 

In this section, the proposed LEM approach is applied to several plate configurations, 

considering various shapes, boundary conditions and both distributed and concentrated loads. 

Firstly, as benchmark cases, the proposed method is employed for three different well-known 

examples, namely triangular simply-supported plate, circular clamped plate and elliptical clamped 

plate, demonstrating the ability of the method to directly yield the exact solutions. Further, as 

approximate analytical solutions, a rectangular shaped plate with mixed boundary conditions, a 

triangular simply-supported plate under a concentrated load and a plate with complex shape are 

investigated to show the potentiality of the method. Finally, to assess the accuracy of the procedure, 

the LEM based deflection functions are compared with the results of classical Finite Element 

analyses for all the above mentioned configurations, providing also relative errors data are also. 

As far as the selection of the number of terms in Eqs. (17), (29), (38) and (47) is concerned for 

these numerical applications, it is noted that these values strongly depend on the specific problem 

under consideration. In this regard, in general, greater values might be required for determining the 

deflection of plates with complex shapes or BCs, and in case of complex load functions. Further, an 

higher number of terms is generally necessary if stress distributions on the boundaries are sought. 

Obviously, higher number of terms leads to enhanced accuracy, at the expense, however, of higher 

computational cost. Readers may refer to the following numerical examples for potential candidate 

values of the parameters. Further, as a rule of thumb for choosing an appropriate number of terms, 

the procedure in Fig. 3 can be performed for few different values of n and m, since the approach 

generally requires few seconds in terms of computational cost. For increasing values of these 

parameters, a good indication that the specific value is a reasonable one is when no considerable 

difference is noted anymore in the form of the plate deflection, and the BCs are appropriately 

satisfied, as shown in the following section. 

4.1 Numerical applications: exact solutions 

Consider the case of a triangular shaped plate (see Tab. 2) under a uniformly distributed load 

( ) 0,q x y q=  and with all the edges simply-supported. Applying the previously described procedure 



yields the non-null series coefficients for the deflection function Eq. (30) of the vector ξ , as 

reported in Tab. 2. 

 

Tab. 2: Plate geometries and corresponding coefficients of the deflection function. 

Plate Shape and BCs Non-null coefficients of ( ),w x y  
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Substituting in Eq. (30) leads to 

( ) ( ) ( )3 2 2 2 3 2 2 20, 3 3 4
192

q
w x y y x y l x y l l x y

l D

 
 = − + − + + − −   

 
 (64) 

which is the exact solution of the considered problem [1]. In this regard, the contours of the 

above obtained deflection function are shown in Fig. 4(a) for 3 6l m= . 

Consider next the case of a circular plate (see Tab. 2) of radius r  under a uniformly distributed 

load 0q  and simply-supported along the entire contour ( )1N = . The plate boundary   is defined 

by the curve in parametric form 

cos
, 0 2

sin

x r

y r


 



=
 

=
 (65) 



Since the boundary is curvilinear, the additional moment sum function ( )1 ,M x y  should be taken 

into account, while ( )1 ,w x y  is equal to zero, that is 1 0=ξ , because of the chosen BCs. Applying 

the previously defined procedure, coefficients η  and ξ  are found via Eq. (54) and (58), 

respectively, in terms of the unknowns 1η . Finally, considering Eq. (59), the remaining coefficients 

ka  and kb  in 1η  are found using Eq. (60). In this regard, a value of 
( )

( )

2

0

0

1

8 1
a

q r 



−
−=

+
 is obtained, 

while all the other terms are equal to zero. Therefore, substituting in Eq. (59) yields the well-known 

exact solution of the deflection function as 

( )
( ) ( )( ) ( )2 2 2 2 2 2

0 1 5

64 (
,

1 )

q r x y x y r

D
w x y

 



 − − − + +
=

+ +


+
 (66) 

In this regard, the contours of the function in Eq. (66) are shown in Fig. 4(b) for 1r m= . 

Finally, consider the case of a clamped elliptical plate of axes a  and b  (see Tab. 2), under a 

uniformly distributed load 0q . The plate boundary   is defined by the curve in parametric form 

cos
, 0 2

sin

x a

y b


 



=
 

=
 (67) 

As in the previous case, taking into account the BCs and the plate shape, 1N = , ( )1 , 0M x y   

and ( )1 , 0w x y = . Following the previously described procedure, all the pertinent coefficients are 

found minimizing the functional in Eq. (60) considering Eqs. (54) and (58), leading to the deflection 

function 

( )
( )

( )

2
2 2 2 2 2

0

4 2 2 48 3 2
,

3

q b x a b y

a a b b D
w x y

 + − +
 

+ +
=  (68) 

which is the exact solution of the problem [1]. In this regard, the contours of Eq. (68) are shown 

in Fig. 4(c) for 1.5a m=  and 1b m= . 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Deflection functions ( ),w x y  for 2
0 500 N ; 5mm; 210GPa; 0.3q m h E = = = = : (a) Triangular simply-

supported plate; (b) Circular simply-supported plate; (c) Elliptical clamped plate. 



 

As far as the convergence rates of the proposed approach is concerned, analyses can be 

performed in terms of the 2L  displacement and energy norm, which can be defined respectively as 

[18] 

( )

1

2
2

,w w x y d


 
=  
 
  (69) 

and 

( )

1

2
22 ,

2

D
e w x y d



 
=   

 
  (70) 

In Tab. 3 the relative error between the 2L  displacement and energy norm of the exact solution 

and the proposed approach, for different values of the number of coefficients m in Eq. (29) is 

reported. As it can be seen, relative error is exactly equals to zero for the highest number of terms in 

the series expansion since, as previously mentioned, the proposed method leads to the analytical 

solutions. 

 

Tab. 3. Relative errors in terms of L2 displacement and energy norm 

Plate Shape and BCs Number of coefficients m 
Relative error for the L2 

displacement norm 

Relative error for the L2 

energy norm 

Triangular simply-supported plate 

5m =  0 0 

4m =  23.42 10−  13.33 10−  

3m =  11.27 10−  17.11 10−  

Circular simply-supported plate 

4m =  0 0 

3m =  34.93 10−  35.37 10−  

2m =  34.93 10−  35.37 10−  

Elliptical clamped plate 

4m =  0 0 

3m =  1.89  1.13  

2m =  1.89  1.13  

 

Further details on the convergence of the method can be obtained graphically, plotting for 

instance the deflection functions of the plate boundaries which, for the considered cases, must be 

null. In this regard, in Fig. 5 deflection functions on the boundaries are shown for the same number 

of coefficients m used in Tab. 3. Specifically, in Fig. 5(a) the plate deflection on the horizontal edge 

of the triangular plate is shown, while in Figs. 5(b) and (c) the circumferential deflections of the 

circular and elliptical plate boundaries are reported. 

 



 
(a) 

 
(b) 

 
(c) 

Fig. 5 Convergence in terms of deflection function on the boundary: (a) deflection on the horizontal edge of the 

triangular plate; (b) circumferential deflection of the circular plate; (c) circumferential deflection of the elliptical plate. 

 

Note that, deflections exactly equal to zero for the highest number of terms continuously on the 

whole contour, since the analytical solutions are reached. Further, as shown in Fig. 5(b) and (c), 

deflections obtained with 3m =  exactly match those obtained using 2m =  since, as reported in 

Tab. 2, coefficients 3c  and 3d  are equal to zero. 

Note that, classically to obtain the above reported exact solutions in Eqs. (64), (66) and (68) 

different approaches are required for each plate shape [1]. For instance, solution of circular and 

elliptical plates is generally obtained considering polar and elliptical coordinates. On the other hand, 

as shown, the proposed method yields the exact solutions, if available, regardless the chosen plate 

geometry. 

In the following section, LEM will be applied to different plate configurations, aiming at 

highlighting the ability of the proposed approach to treat more demanding cases, such as generic 

load conditions, mixed BCs and plate of complex shape. 

4.2 Numerical application: concentrated load 

As a first example, in order to show how the proposed procedure can also be applied for plate 

under generic load conditions, consider the case of a simply-supported triangular plate under a 

concentrated load Q  applied at the origin. 

Since in this case Q  cannot be directly expressed as in Eq. (21), the concentrated load can be 

assumed as a distributed load ( ),q x y  shaped as a Dirac's delta ( ),x y  of amplitude equals to Q , 

which can be conveniently approximated in terms of Chebyshev polynomials as 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 0 2

1 1

1 2 1 2
, 1 1

N N
i i

s s

s s

q x y Q T x T x T y T y
   = =

  
 + − + −  

  
   (71) 

where N is the truncation limit of the series expansion, while ( )sT   is the Chebyshev polynomial 

of order s, defined by the recurrence relation [43] 

( ) ( ) ( )1 12s s sT x xT x T x+ −= −  (72) 

in which ( )0 1T x =  and ( )1T x x= . 



Once the concentrated load has been expressed as in Eq. (71), the particular solution ( ),pM x y  

of Eq. (5.a) can be obtained in closed-form using the approach in Appendix A. 

In this manner, the above defined procedure can be easily applied. Specifically, taking into 

account the chosen plate shape and BCs, the procedure in section 3.1 can be followed. Thus, firstly 

the moment sum function ( ),M x y  is directly determined via Eq. (28) and secondly the deflection 

function ( ),w x y  is immediately retrieved using Eq. (36). 

In this regard, Fig. 6(a) shows the contour plot of the aforementioned function, assuming 

3 6l m= . Note that in this case 22  terms have been used in the vector ξ  in Eq.(35), considering 

only even coefficients 2kc  and odd coefficients 2 1kd +  (thus also 22m =  in Eq. 29). Further, in Fig. 

6(b) LEM results of the deflection profile at 0x =  are compared with pertinent FEM data obtained 

employing the commercial code Ansys. 

 

 
(a) 

 
(b) 

Fig. 6 Deflection functions ( ),w x y  for 100 ; 1mm; 210GPa; 0.3Q N h E = = = = : (a) Contours plot with LEM;  

(b) Deflection profile. 

 

As it can be observed, classical FEM data are in very good agreement with the results of the 

proposed LEM approach, assessing the accuracy of the considered procedure. 

To further assess the reliability of the procedure, the average relative discrepancy index r  

between proposed method results and FEM data has been computed. Specifically, r  can be defined 

as 

( )
2

2

1
100LEM FEM

r

p FEM

w w

N w


−
=   (73) 



where LEMw  and LEMw  are the values of the deflection obtained using the LEM and FEM 

approach respectively, while pN  is the considered number of points of the deflection functions. 

In this regard, taking into account the points in Fig. 6(b), 1.75%r = , thus showing the accuracy 

of the propose approach. 

4.3 Numerical application: mixed BCs 

Aiming at demonstrating the capability of the proposed procedure to treat plates with mixed 

BCs., consider the case of a rectangular plate under a uniformly distributed load 0q , assuming two 

opposite plate edges simply-supported, one edge clamped and one free, as shown in Fig. 7(a). 

 

 
(a) 

 
(b) 

Fig. 7 Plate geometries: (a) Rectangular plate with mixed BCs; (b) Clamped plate of complex shape. 

 

Applying the procedure in Section 3.2, the plate boundary   can be conveniently subdivided in 

four edges i , that is 4N = . Note that, since the two edges 2  and 4  are simply-supported, as 

previously mentioned the corresponding function ( )2 ,M x y  and ( )4 ,M x y  in Eq. (42) can be 

assumed equal to zero and only the remaining functions ( )1 ,M x y  and ( )3 ,M x y  must be taken into 

account. Further, since just the boundary 3  can undergo vertical deflections, ( )3 , 0w x y   while 

( ), 0, 1,2,3iw x y i= =  in Eq. (46). 

In this manner, the vector η  in Eq. (54) can be specified as 

1 1 1

,1 1 ,3 3n n n n n

− − −=− + +η Q τ Q Q η Q Q η  (74) 

and the moment sum function ( ),M x y  can be obtained via Eq. (20). 

Further, the vector ξ  in Eq. (58) becomes 

1 1

,3 3m m m

− −=− +ξ Q λ Q Q ξ  (75) 

and the deflection function can be evaluated substituting in Eq. (30) as 



( ) ( )1 1

,3 3 1 3, , , ,m m m m m pw x y w x y− −=− + +r Q λ r Q Q ξ η η  (76) 

Finally, the unknown terms 1η , 3η  and 3ξ  can be obtained appropriately imposing the specified 

BCs on the edges 1  and 
3  for which the additional functions ( ),iM x y  and ( ),iw x y  have been 

introduced. 

Specifically, minimizing the functional in Eq. (62) specified for 
3 , namely ( )3 3 η  and 

( )3 3 ξ , as in Eq. (63), the vectors 3η  and 3ξ  can be obtained in terms of 1η . Finally, 

minimization of the functional in Eq. (61) for 1 , that is ( )1 1 η , yields the vector 1η . Clearly, 

further substitution in Eq. (76) leads to the complete definition of deflection function ( ),w x y . 

In this regard in Fig. 8(a) the contour plot of the deflection function is shown, assuming 1a m=  

and 0.5b m= . Note that in this case 12  coefficients kc  and 10  coefficients kd  have been used in 

the vector ξ . Further, proposed method results vis-à-vis FEM data are shown in Fig. 8(b) for the 

deflection profile at 0x = . 

As it can be seen, an excellent agreement is achieved between classical FEM data and proposed 

LEM approach, assessing the accuracy of the considered procedure. 

 

 
(a) 

 
(b) 

Fig. 8 Deflection functions ( ),w x y  for 2
0 500 N ; 1mm; 210GPa; 0.3q m h E = = = = : (a) Contours plot with LEM; 

(b) Deflection profile. 

 

To further show the reliability of the approach, the average relative discrepancy index in Eq. (73) 

has been computed, considering the points in Fig. 8(b), leading to the very low value of 0.28%r =  



4.4 Numerical application: arbitrarily shaped plate 

As a final example, to demonstrate the capability of the method to treat plates with arbitrary 

geometries, a clamped plate with complex shape (see Fig. 7(b)) under uniformly distributed load 0q  

has been analyzed. The boundary   of the plate is defined by the curve in parametric form 

( )

( )

3 3

3 3

sin cos cos
, 0 2

sin cos sin

x r

y r

  
 

  

 = +


 
 = +


 (77) 

Applying the proposed procedure, considering the specified BCs, the moment sum function can 

be expressed as 

( ) ( )1 1

,1 1, ,n n n n n pM x y M x y− −=− + +r Q τ r Q Q η  (78) 

where 1η  is a vector of unknowns due to the additional function ( )1 ,M x y  which takes into 

account the clamped BCs, while ( ),pM x y  is given in Tab. 1 for the uniform load distribution. 

Further, since no deflection occurs on  , 0i =ξ  and the deflection function in Eq. (59) can be 

simplified as 

( ) ( )1

1, , ,m m pw x y w x y−=− +r Q λ η  (79) 

where the particular solution ( )1, ,pw x y η  can be obtained as in Appendix A. 

Finally, the unknown term 1η  can be evaluated appropriately imposing the specified BCs on  . 

Specifically, performing variation of the functional in Eq. (61) with respect to 1η  yields a linear 

system of algebraic equation, whose solution leads to the unknowns coefficients 1η . 

In this regard, the contours of the deflected surface for 1r m=  is depicted in Fig. 9(a), while in 

Fig. 9(b) the deflection profile at 0x =  is reported vis-à-vis pertinent FEM data. Note that, in this 

case just 9 terms of the even coefficients 2kc  are required in the vector ξ  in Eq. (58) (that is 

16m = ), being zero all the coefficients 2 1kc +  and kd . 

 



 
(a) 

 
(b) 

Fig 9 Deflection functions ( ),w x y  for 2
0 500 N ; 5mm; 210GPa; 0.3q m h E = = = = : (a) Contours plot with LEM; 

(b) Deflection profile. 

 

As it can be observed, also in this case an excellent agreement is achieved between proposed and 

FEM data, further assessing the reliability of the proposed procedure. Moreover, the average 

relative discrepancy index in Eq. (73) has been computed, considering the points in Fig.9(b), 

leading to the satisfactorily low value 1.83%r =  

 

Concluding Remarks 

In this paper, an innovative procedure has been developed for evaluating the deflection function 

of arbitrarily shaped plates subject to generic transverse loading conditions. This approach, which 

can be framed into the Line Element-less Method (LEM), allows to evaluate the plate deflection 

function through a simple series expansion in terms of harmonic polynomials. Appropriately 

defining novel functionals and performing variations, linear systems of algebraic equations have 

been obtained for the series expansion coefficients. Further, considered boundary conditions have 

been satisfied via an element-free procedure in a least square sense on the plate contour. Notably, 

only simple line integrals are involved in the whole procedure, and any discretization, be it in the 

domain or on the boundary, has been avoided. Additionally, it has been shown that the method 

leads to exact solutions, when available, for different plates geometries and boundary conditions, 

while for all the other cases highly accurate approximate analytical results have been achieved using 

few terms in the series expansions. Analyses have been carried out for several plate shapes, 

boundary and loading conditions, showing the elegance and simplicity of the proposed procedure, 

which allows the computational cost to be kept at minimum. Further, for all these cases, 



comparisons of LEM based deflection functions vis-à-vis pertinent Finite Element method data 

have been reported, assessing the accuracy and reliability of the considered approach. 

 

Ackowledgement 

Alberto Di Matteo and Antonina Pirrotta would like to acknowledge the PRIN 2015 funding 

program from the Italian Ministry of University and Research (MIUR), Project N. 2015JW9NJT. 

Appendix A: Particular solution for Poisson's equation 

In this appendix, the procedure described in [41] to obtain a closed form expression of a 

particular solution of a Poisson's equation is briefly reported. 

In this regard, consider a Poisson's equation of the form 

( ) ( )2 , ,f x y q x y =  (A.1) 

where ( ),q x y  is a generic homogeneous polynomial of degree N given as 

( )
0

,
N

N k k

k

k

q x y A x y−

=

=  (A.2) 

Then, a closed form particular solution of Eq. (A.1) is 

( ) 2

0

,
N

N k k

p k

k

f x y P x y− +

=

=  (A.3) 

that is a polynomial of degree N , where the coefficients 
kP  are  

( ) ( ) ( )

( )

( ) 2

2

0

1 2 ! 2 !
; 1

! 2 !

mN k

k k m

m

k m N k m
P A k N

k N k

 −  

+

=

− + − −
=  

− +
  (A.4) 

Note that, in Eq. (A.4) the term ( ) 2N k −   denotes the integer part of ( ) 2N k− . 

It is worth mentioning that, when ( ),q x y  is not directly given as in Eq. (A.2), the particular 

solution in Eq. (A.3) can still be used if ( ),q x y  is firstly appropriately approximated by a truncated 

series of Chebyshev polynomials [42, 43]. 

 



Appendix B: Expression of the Boundary Conditions in terms of 

Harmonic Polynomials 

In this appendix, the compact form expressions of the BCs used in Eqs. (60)-(62) are reported. 

Specifically, taking into account Eq. (59) and the properties of the harmonic polynomials in Eqs. 

(15) and (16), it is possible to directly give explicit expressions of the BCs in terms of the 

previously introduced functions. In this regard, let the deflection function in Eq. (59) be rewritten as 

( ) ( ), , ,m p iw x y w x y= +r μ η  (B.1) 

where mr  is a row vector containing the harmonic polynomials, as given in Eq. (31), while μ  is a 

column vector of coefficients, given as 

1 1

,

1

N

m m m i i

i



− −

=

= − +μ Q λ Q Q ξ  (B.2) 

In this manner, omitting henceforth variable dependence, derivatives of the deflection function 

can be expressed as 

pm
ww

x x x

 
= +

  

r
μ  (B.3) 

and 

pm
ww

y y y

 
= +

  

r
μ  (B.4) 

Recalling the properties of the harmonic polynomials as in Eq. (16), Eqs. (B.3) and (B.4) can be 

directly expressed in compact form as 

( ) ( )1 1

,

p

m x x

ww

x x


= +

 
r Z μ  (B.5) 

and 

( ) ( )1 1

,

p

m y y

ww

y y


= +

 
r Z μ  (B.6) 

where 
( )1

xZ  and 
( )1

yZ  are diagonal matrices of coefficients given respectively as 

( )1
0 1 1 2x m m=Z  and 

( ) ( )1
0 1 1 2y m m= −Z , while 

( )1

,m xr  and 
( )1

,m xr  are vectors containing 

the corresponding derivatives of mr , given as 

( )  1

, 1 1 0 1m x m mP P Q Q− − −=r  (B.7) 

and 

( )  1

, 1 1 0 1m y m mQ Q P P− − −=r  (B.8) 

On this base, second order derivatives can be directly obtained as 



( ) ( ) ( )
22

2 1 2

,2 2

p

m x x x

ww

x x


= +

 
r Z Z μ  (B.9) 

( ) ( ) ( )
22

2 1 2

,2 2

p

m y y y

ww

y y


= +

 
r Z Z μ  (B.10) 

( ) ( ) ( )
22

2 1 2

,

p

m xy y x

ww

x y x y


= +

   
r Z Z μ  (B.11) 

where 
( ) ( ) ( )2

1 0 1 0 1 1x m m= − − −Z  and 
( ) ( ) ( )2

1 0 1 0 1 1y m m= − − − − −Z , 

while 

( )  2

, 2 2 1 2m x m mP P Q Q− − − −=r  (B.12) 

( )  2

, 2 2 1 2m xy m mQ Q P P− − − −=r  (B.13) 

and ( ) ( )2 2

, ,m y m x=r r . 

Finally, third order derivatives can be rewritten as 

( ) ( ) ( ) ( )
33

3 1 2 3

,3 3

p

m x x x x

ww

x x


= +

 
r Z Z Z μ  (B.14) 

( ) ( ) ( ) ( )
33

3 1 2 3

,3 3

p

m y y y y

ww

y y


= +

 
r Z Z Z μ  (B.15) 

( ) ( ) ( ) ( )
33

3 1 2 3

,2 2

p

m xy x y y

ww

x y x y


= +

   
r Z Z Z μ  (B.16) 

( ) ( ) ( ) ( )
33

3 1 2 3

,2 2

p

m yx y x x

ww

y x y x


= +

   
r Z Z Z μ  (B.17) 

where 
( ) ( ) ( )3

2 1 2 1 0 2x m m= − − − − −Z  and 
( ) ( ) ( )3

2 1 2 1 0 2y m m= − − − −Z . 

Further 

( )  3

, 3 3 2 3m x m mP P Q Q− − − −=r  (B.18) 

( )  3

, 3 3 2 3m y m mQ Q P P− − − −=r  (B.19) 

while ( ) ( )3 3

, ,m xy m x=r r  and ( ) ( )3 3

, ,m yx m y=r r  

In this manner, taking into account Eqs. (2) and (3) and manipulating yields the bending and 

twisting moments as 

( ) ( ) ( ) ( ) ( ) ( )( )
2 2

2 1 2 2 1 2

, , 2 2

p p

x m x x x m y y y

w w
M D

x y
 

   
= − + + +  

    

r Z Z r Z Z μ  (B.20) 

( ) ( ) ( ) ( ) ( ) ( )( )
2 2

2 1 2 2 1 2

, , 2 2

p p

y m y y y m x x x

w w
M D

y x
 

   
= − + + +  

    

r Z Z r Z Z μ  (B.21) 



( ) ( ) ( ) ( )
2

2 1 2

,1
p

xy m xy y x

w
M D

x y


 
= − − + 

  
r Z Z μ  (B.22) 

while the shearing forces are given as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
3 3

3 1 2 3 3 1 2 3

, , 3 2

p p

x m x x x x m xy x y y

w w
V D

x x y

   
= − + + +  

     

r Z Z Z r Z Z Z μ  (B.23) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
3 3

3 1 2 3 3 1 2 3

, , 3 2

p p

y m y y y y m yx y x x

w w
V D

y y x

   
= − + + +  

     

r Z Z Z r Z Z Z μ  (B.24) 

Further, normal stresses 
x  and y , given as 

2 2

2 2 21
x

E z w w

x y
 



  
= − + 

−   
 (B.25) 

and 

2 2

2 2 21
y

E z w w

y x
 



  
= − + 

−   
 (B.26) 

can be directly expressed as 

( ) ( ) ( ) ( ) ( ) ( )( )
2 2

2 1 2 2 1 2

, ,2 2 21

p p

x m x x x m y y y

w wE z

x y
  



   
= − + + +  

−     

r Z Z r Z Z μ  (B.27) 

and 

( ) ( ) ( ) ( ) ( ) ( )( )
2 2

2 1 2 2 1 2

, ,2 2 21

p p

y m y y y m x x x

w wE z

y x
  



   
= − + + +  

−     

r Z Z r Z Z μ  (B.28) 

Similarly, shear stresses   

2

1

E w
z

x y




 
= −  

+   
 (B.29) 

can be given as 

( ) ( ) ( )
2

2 1 2

,
1

p

m xy y x

wE
z

x y




 
= − + 

+   
r Z Z μ  (B.30) 

Note that Eqs. (B.3), (B.4), (B.20)-(B.24) are then useful to directly express the BCs in Eqs. (6)-

(12) in terms of harmonic polynomials. These expressions can be then used in the functionals in 

Eqs. (60)-(62). 
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