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Abstract— Cardiovascular variability is the result of the
activity of several physiological control mechanisms, which
involve different variables and operate across multiple time
scales encompassing short term dynamics and long range
correlations. This study presents a new approach to assess
the multiscale complexity of multivariate time series, based on
linear parametric models incorporating autoregressive coeffi-
cients and fractional integration. The approach extends to the
multivariate case recent works introducing a linear parametric
representation of multiscale entropy, and is exploited to assess
the complexity of cardiovascular and respiratory time series in
healthy subjects studied during postural and mental stress.

I. INTRODUCTION

An intrinsic feature of cardiovascular oscillations is their
dynamical complexity, which results from the fact that such
oscillations reflect the combined activity of several mech-
anisms of physiological regulation [1]. Since these mech-
anisms typically operate across multiple temporal scales,
e.g. reflecting thermoregulatory or neural parasympathetic
and sympathetic control, a surge of interest has recently
emerged in methods able to assess the so called multiscale
complexity of cardiovascular oscillations. The main approach
in this case is multiscale entropy (MSE) [2], which computes
the conditional entropy (CE) of an individual time series
(typically, heart period (HP) variability) as a function of the
time scale at which the series is observed. After its definition,
MSE has been refined in order to meet requirements typical
of the study of cardiovascular oscillations, such as the joint
detection of the complexity of several variables [3] (e.g.,
besides HRV, also systolic arterial pressure (SAP) or respi-
ratory movements (RESP)) or the detection of complexity
from short time series (typically, few hundred beats) [4],
[5]. In this context, the present work introduces a novel
method to assess multivariate and multiscale complexity
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of cardiovascular oscillations. The method is based on fit-
ting a multivariate time series with a vector autoregressive
fractionally integrated (VARFI) model, and on exploiting
the theory of state space models to provide the multiscale
representation of the VARFI parameters and obtain from
them a multiscale and multivariate measure of complexity.
Compared to previous works [3], [4], [5], [6], the proposed
VARFI approach allows: (i) to work reliably on short time
series thanks to its parametric formulation; (ii) to account for
long-range correlations in addition to short-term dynamics
thanks to fractional integration; (iii) and to assess the overall
complexity of multivariate time series thanks to its vector
formulation. Here, it is evaluated on HP, SAP and RESP
time series measured in healthy subjects in a resting supine
condition and during postural stress induced by head-up tilt
and mental stress induced by mental arithmetics.

II. METHODS

A complexity measure for a multivariate M -dimensional
dynamic process X = [X1, . . . , XM ] is the entropy rate

CX = H(Xn|X−
n ) = H(X−

n+1)−H(X−
n ) (1)

where Xn = [X1,n, . . . , XM,n] and X−
n = [Xn−1Xn−2...]

are the vector variables describing the present and the past
states of the process, and H(·|·) and H(·) denote entropy and
conditional entropy. If Xn has a joint Gaussian distribution,
it can be described through a vector linear regression model
fed by white and uncorrelated innovations En, so that the
conditional entropy of the present given the past can be
expressed analytically in terms of the innovation covariance
ΣE as [7]:

H(Xn|X−
n ) =

1

2
ln((2πe)M |ΣE|). (2)

In this work we provide an alternative definition of com-
plexity, including in (2) a normalization of the innovation
covariance to the process covariance ΣX, which is needed to
define multiscale complexity where the process covariance
changes with the time scale:

CX =
1

2
ln

(
(2πe)M

|ΣE|
|ΣX|

)
. (3)

Here, following a parametric approach, we represent the
process X through a VARFI model describing both short-
term dynamics and long-range correlations [8]:

A(L)diag(∇d)Xn = En (4)
where L is the back-shift operator (LiXn = Xn−i), A(L) =

I −
p∑

i=1

AiL
i (IM is the identity matrix), A(L) is a vector



autoregressive (VAR) polynomial of order p, and diag(∇d) =
diag[(1 − L)di ], i = 1, . . . ,M , where (1 − L)di is the
fractional differencing operator [9]. The parameter d =
(d1, . . . , dM ) determines the long-term behavior of the pro-
cess Xi, while the coefficients of A(L) allow the description
of the short-term dynamics.

Then, we identify the VARFI model as described in [5],
using the Whittle semiparametric estimator to compute di
individually for each process Xi and the ordinary least
squares to compute the VAR parameters. The estimated
VARFI model was approximated with a finite order VAR
process, which was represented at any assigned scale τ
exploiting the state space method defined in [10]. Finally,
the multivariate complexity was computed inserting in (3)
the innovation and process covariances derived at scale τ .

III. APPLICATION TO CARDIOVASCULAR VARIABILITY

The proposed method is applied to the time series of HP,
SAP and RESP (X = [RR, SAP, RESP]) (stationary windows
of at least 400 beats) measured from 62 healthy subjects
(19.5 ± 3.3 years old) in the resting supine position (SU1),
in the upright position (UP) reached through passive head-up
tilt, in the recovery supine position (SU2) and during mental
stress induced by mental arithmetics (MA) [11].

Multiscale multivariate complexity was computed com-
paring the ”eVARFI” approach described above, based on
VARFI modeling, with the ”eVAR” approach, based on pure
AR modeling (i.e., d = 0 in (4)). Significant changes in com-
plexity between conditions (SU1 vs. UP and SU2 vs. MA)
were assessed via a linear mixed-effects model incorporating
the fixed-effects condition and scale, and subject-dependent
intercept allowing for a random variation between subjects
[12]. The estimated marginal means were computed for each
difference [13] to evaluate the changes of interest, and a Z-
test was applied to check the significance of these difference
at a significance level p < 0.05.

Figure 1 presents the distributions of the complexity
measure computed in the two conditions at different time
scales τ . Considering both eVAR and eVARFI estimation,
the multivariate complexity measure decreases significantly
from SU to UP at scale 1, while no changes are observed at
longer time scales. The decrease documents a simplification
of the overall dynamics of HP, SAP and RESP, likely
as a consequence of the weakening of respiration-related
oscillations of HP and SAP which is indeed evident at short
time scales during tilt [1], [4]. Here, the similarity between
VAR and VARFI identification suggests that the impact of
long-range correlations does not change substantially from
rest to tilt.

From SU2 to MA the multivariate complexity increases
significantly for eVAR at all scales except 12, but decreases
for eVARFI at scales 5 and 12. The increased complexity
observed for eVAR at multiple time scales confirms previous
results found for HP [4]. On the other hand, the decreased
complexity observed using the new VARFI approach sug-
gests that long-range correlations have a bigger impact on
the cardiovascular and respiratory dynamics during mental

stress. This result confirms the regularizing role of long-range
correlations on physiological dynamics [6].

Fig. 1: Median and quartiles of the multiscale complexity measure
CX(τ) computed through eVAR and eVARFI approaches during
postural (SU1 vs. UP, left) and mental stress (SU2 vs. MA, right).
* indicate significant differences between conditions.
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