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Abstract Inspired by a recent work about distribution frames, the definition of
multiplier operator is extended in the rigged Hilbert spaces setting and a study of its
main properties is carried on. In particular, conditions for the density of domain and
boundedness are given. The case of Riesz distribution bases is examined in order to
develop a symbolic calculus.
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1 Introduction

Bessel multipliers were introduced by Balazs in [8] and they became objects of
several works [9, 40, 41, 42, 43, 44, 45]. Multipliers have been studied also in
particular cases ([15, 21, 30]) and found applications in physics, signal processing,
acoustics and mathematics. To define them we need to recall some notions (see
[16, 31]).

Let H be a Hilbert space with inner product 〈·|·〉 and norm ‖ · ‖. A sequence
q = {q=}=∈N is a Bessel sequence ofH with upper bound � > 0 if∑

=∈N
|〈 5 |q=〉|2 ≤ �‖ 5 ‖2, ∀ 5 ∈ H .

A sequence q = {q=}=∈N is a (discrete) frame if there exist �, � > 0 such that

Rosario Corso
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, I-90123 Palermo
(Italy), e-mail: rosario.corso02@unipa.it

Francesco Tschinke
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, I-90123 Palermo
(Italy) e-mail: francesco.tschinke@unipa.it

1



2 Rosario Corso and Francesco Tschinke

�‖ 5 ‖2 ≤
∑
=∈N
|〈 5 |q=〉|2 ≤ �‖ 5 ‖2, ∀ 5 ∈ H .

Let q = {q=}=∈N, k = {k=}=∈N be two sequences of H and < : N → C. The
operator "<,q,k defined by

"<,q,k 5 =
∑
=∈N

<=〈 5 |k=〉q=,

and with domain the subspace of 5 ∈ H such that
∑
=∈N <=〈 5 |k=〉q= is convergent,

is called the multiplier of q, k with symbol <. When q, k are Bessel (frame) se-
quences and < is a bounded sequence, then "<,q,k is defined onH , bounded, and
it is called a Bessel (frame) multiplier.

Independently in [1] and in [33], the notion of continuous frame was introduced
as generalization of discrete frame and later in [10] the correspondent notion of
Bessel continuous (frame) multiplier was formulated, which we now recall. The
setting involves a measure space (-, `) with positive measure `. A map � : G ∈
- → �G ∈ H is called a continuous frame with respect to (-, `) if
1. � is weakly measurable, i.e. 5 ↦→ 〈 5 |�G〉 is `-measurable for every 5 ∈ H ;
2. there exist �, � > 0 such that

�‖ 5 ‖2 ≤
∫
-

|〈 5 |�G〉|23` ≤ �‖ 5 ‖2, ∀ 5 ∈ H . (1)

A weakly measurable map � : G ∈ - → �G ∈ H is called a Bessel continuous map
with respect to (-, `) if the second inequality in (1) holds. Let �, � : - → H be
Bessel continuous maps and < ∈ !∞ (-, `). An operator "<,�,� can be weakly
defined by

〈"<,�,� 5 |6〉 =
∫
-

<(G)〈 5 |�G〉〈�G |6〉3`, 5 , 6 ∈ H .

This operator is called the Bessel continuous multiplier of �, � with symbol <
(and continuous frame multiplier if �, � are in addition continuous frames). Among
continuous frame multipliers one can find time-frequency localization operators
[19, 20] (also called short-time Fourier transformmultipliers) and Calderón-Toeplitz
operators [36, 37].

Recently, a notion of frame (and related topics such as bases, Bessel maps, Riesz
bases and Riesz-Fischer maps) in space of distributions is appeared in [46, 48],
involving a rigged Hilbert space, or Gel’fand triplet, i.e. a triple D[C] ⊂ H ⊂
D× [C×], where D[C] is a dense subspace of H endowed with a locally convex
topology C, stronger than the one induced by the Hilbert norm and D× [C×] is the
conjugate dual ofD[C] with the strong dual topology C×. IfD[C] is reflexive, then the
inclusions are dense and continuous. Analogous concepts in rigged Hilbert spaces
and for the discrete case have been considered also in [14]. The aim of this paper is
then to give a correspondent notion ofmultipliers of distributionmaps.Apreliminary,
but very confined, study about distribution multipliers actually was given in [46].
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In contrast with a large part of the current literature, we will not pay attention
to bounded multipliers only. To give an example of the importance of unbounded
multipliers, we mention [4, 5] where they were used as tools to define non-selfadjiont
hamiltonians. Sufficient conditions for operators to be written as multipliers with a
fixed sequence (or map) have been given in [12, 13, 25].

The paper is organized as follows. We start by recalling some preliminaries in
Section 2. Then, in Section 3, we give the definitions of distributionmultipliers. They
can actually be formulated in two different ways, i.e. as operators from D to D× or
as operators onH . Questions about density of domain and closedness of unbounded
multipliers are discussed in Section 4, while Riesz distributionmultipliers are studied
and some results about symbolic calculus is obtained in Section 5.

2 Preliminary definitions and facts

Throughout the paper H indicates a Hilbert space with inner product 〈·|·〉 and
norm ‖ · ‖. We denote by � ()) and '()) the domain and the range of an operator
) : � ()) ⊂ H → H . If ) is densely defined, then we write )∗ for its adjoint.

A sequence q = {q=}=∈N ⊂ H is called total if 〈 5 |q=〉 = 0 for every = ∈ N
implies that 5 = 0. In particular, discrete frames are total sequences. A Riesz basis
q is a total sequence satisfying for some �, � > 0

�
∑
=∈N
|2= |2 ≤






∑
=∈N

2=q=






2

≤ �
∑
=∈N
|2= |2, ∀{2=} ∈ ℓ2 (N),

where ℓ2 (N) is the usual space of square integrable complex sequences.
Let D[C] be a dense subspace of H endowed with a locally convex topology

C, stronger than the topology induced by the Hilbert norm. The vector space of all
continuous conjugate linear functionals on D[C] (the conjugate dual of D[C]) is
denoted byD× [C×], and is endowed with the strong dual topology C×, defined by the
seminorms

@M (�) = sup
6∈M
|〈� |6〉|, � ∈ D×,

whereM is a bounded subsets ofD[C]. With a well-known identification procedure
(see [32]),H is considered as subspace of D× [C×]. The triplet

D[C] ⊂ H ⊂ D× [C×],

is called rigged Hilbert space or Gel’fand triplet [26, 27]. If D[C] is reflexive H is
continuously and densely embedded inD× [C×]. Denoting by ↩→ the continuous and
dense embedding, the triple is also denoted by

D[C] ↩→H ↩→ D× [C×] .
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In this way, the sesquilinear form �(·, ·) which putsD andD× in duality extends the
inner product of H ; i.e. �(b, [) = 〈b |[〉, for every b, [ ∈ D: we adopt the symbol
〈·|·〉 for both of them.

Let us denote by L(D,D×) the vector space of all continuous linear maps from
D[C] into D× [C×] ([2]). If D[C] is reflexive, it is possible introduce an involution
- ↦→ -† in L(D,D×) by the identity:

〈-†[ |b〉 = 〈-b |[〉, ∀b, [ ∈ D .

Hence, in this case, L(D,D×) is a †-invariant vector space.
IfD[C] is a smooth space (e.g., Fréchet and reflexive), then L(D,D×) is a quasi

*-algebra over L† (D) (Definition 2.1.9 of [2]).
We also denote by L(D) the algebra of all continuous linear operators . :

D[C] → D[C] and by L(D×) the algebra of all continuous linear operators / :
D× [C×] → D× [C×]. If D[C] is reflexive, for every . ∈ L(D) there exists a unique
operator .× ∈ L(D×), the adjoint of . , such that

〈� |.6〉 = 〈.×� |6〉, ∀� ∈ D×, 6 ∈ D .

In similar way an operator / ∈ L(D×) has an adjoint /× ∈ L(D) such that
(/×)× = / . We denote by L† (D) the algebra of all closable operators � inH such
that � (�) = D, � (�∗) ⊇ D, and �, �∗ leave D invariant. With the involution
� ↦→ �∗ �D= �†, L† (D) is a *-algebra.

In this paper (-, `) denotes a measure space with a f-finite positive measure
`. We recall that a measurable set � ⊆ - is called an atom if `(�) > 0 and for
every � ⊆ � we have either `(�) = 0 or `(�) = `(�). A measure space (-, `) is
called atomic if there exists a partition {�=}=∈N of - consisting of atoms and sets
of measure zero. We write !1 (-, `), !2 (-, `) and !∞ (-, `) for the usual spaces of
(classes of) measurable functions. Moreover, ‖<‖∞ denotes the essential supremum
of < ∈ !∞ (-, `). For simplicity, we write !1 (R), !2 (R) and !∞ (R) when we
assume the Lebesgue measure. The Fourier transform of 5 ∈ !1 (R) is defined as
5̂ (W) =

∫
R
5 (G)4−2c8WG3G and it extends to a unitary operator of !2 (R) in a standard

way. In this paper we consider weakly measurable maps: given a measure space
(-, `) with ` a f-finite positive measure, l : G ∈ - → lG ∈ D× is a weakly
measurable map if, for every 5 ∈ D, the complex valued function G ↦→ 〈 5 |lG〉 is
`-measurable. If not otherwise specified, throughout the paper we will work with a
fixed rigged Hilbert space D[C] ⊂ H ⊂ D× [C×] with D[C] reflexive and a measure
space (-, `) as described before. We start by recalling simple definitions about
weakly measurable maps. Since the form which putsD andD× in conjugate duality
is an extension of the inner product ofH , we write 〈 5 |lG〉 for 〈lG | 5 〉, 5 ∈ D.

Definition 1 ([46, Definition 2.2]) Let l : G ∈ - → lG ∈ D× be a weakly
measurable map, then:

1. l is total if, 5 ∈ D and 〈 5 |lG〉 = 0 `-a.e. G ∈ - implies 5 = 0;
2. l is `-independent if the unique `-measurable function b : - → C such that:∫

-
b (G)〈6 |lG〉3` = 0, for every 6 ∈ D, is b (G) = 0 `-a.e.
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Definition 2 ([46, Definition 3.2]) A weakly measurable map l is a Bessel distri-
bution map (briefly: Bessel map) if for every 5 ∈ D,

∫
-
|〈 5 |lG〉|23` < ∞.

It is convenient to considerD[C] as a Fréchet space because of the following propo-
sition.

Proposition 1 ([46, Proposition 3.1]) Let D[C] be a Fréchet space and l : G ∈
- → lG ∈ D× a weakly measurable map. The following statements are equivalent.

1. l is a Bessel map.
2. There exists a continuous seminorm ? on D[C] such that(∫

-

|〈 5 |lG〉|23`
)1/2
≤ ?( 5 ), ∀ 5 ∈ D .

(iii) For every bounded subsetM of D there exists �M > 0 such that

sup
5 ∈M

��� ∫
-

b (G)〈lG | 5 〉3`
��� ≤ �M ‖b‖2, ∀b ∈ !2 (-, `).

As a consequence of the previous proposition, we have [46]:

• the conjugate linear functional on D:

Λ
b
l :=

∫
-

b (G)lG3`

is defined in weak sense, and is continuous, i.e. Λbl ∈ D× [C×];
• the synthesis operator )l : !2 (-, `) → D× [C×] defined by )l : b ↦→ Λ

b
l is

continuous;
• the analysis operator )×l : D[C] → !2 (-, `) defined by ()×l 5 ) (G) = 〈 5 |lG〉 is

continuous;
• the frame operator (l : D[C] → D× [C×], (l := )l)

×
l is continuous, i.e.

(l ∈ L(D,D×).

Wewill often workwith a special class of Bessel mapswhich is defined as follows.

Definition 3 ([46, Definition 3.2]) A Bessel distribution map l is called bounded
Bessel map if there exists � > 0 such that∫

-

|〈lG | 5 〉|23` ≤ �‖ 5 ‖2, ∀ 5 ∈ D .

If l is a bounded Bessel map, with a limit procedure, we have [46]:

• Λ
b
l is bounded in D(‖ · ‖), then it has a bounded extension Λ̃bl toH ;

• the synthesis operator )l has range inH , it is bounded and ‖)l ‖ ≤
√
�;
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• the (Hilbert adjoint) operator )∗l : H → !2 (-, `) extends )×l and )∗l 5 = [,
where [ is the limit in !2 (-, `) of the functions )×l 5= : G ↦→ 〈 5= |lG〉, where
{ 5=} is a sequence in D converging to 5 (we will also denote the function )∗l 5
by G ↦→ 〈 5 |ľG〉 for 5 ∈ H , i.e. we consider ľG as an ‘extension’ of the linear
functional lG);

• the operator (̂l = )l)∗l is bounded and it is an extension of (l .

Now it is time to recall a notion of frames in the distribution context (Definition
3.6 of [46]).

Definition 4 ([46, Definition 3.6]) Let D[C] ⊂ H ⊂ D× [C×] be a rigged Hilbert
space, with D[C] a reflexive space and l a weakly measurable map. We say that l
is a distribution frame if there exist �, � > 0 (called frame bounds) such that

�‖ 5 ‖2 ≤
∫
-

|〈 5 |lG〉|23` ≤ �‖ 5 ‖2, ∀ 5 ∈ D .

Moreover, we say that

• l is a tight distribution frame if we can choose � = � as frame bounds of l;
• l is a Parseval distribution frame if � = � = 1 are frame bounds of l.

If l is a distribution frame, then the frame operator (̂l satisfies the inequalities

�‖ 5 ‖ ≤ ‖(̂l 5 ‖ ≤ �‖ 5 ‖, ∀ 5 ∈ H .

Since (̂l is symmetric, this implies that (̂l has a bounded inverse (̂−1
l everywhere

defined inH . A Parseval distribution frame satisfies Definition 4 with (l = �D , the
identity operator of D, and (̂l = �H , the identity operator ofH .

Example 1 ([46, Example 3.18]) Let us consider the rigged Hilbert space

S(R) ⊂ !2 (R) ⊂ S× (R)

where S(R) is the Schwartz space of rapidly decreasing �∞-functions on R and the
conjugate dual S× (R) is the space of tempered distributions. Let X be the weakly
measurable map X : G ∈ R → XG ∈ S× (R), where XG stands for the X distribution
centered at G. As known, XG acts in the following way 〈XG |q〉 = q(G), for every
q ∈ S(R). Then one trivially has∫

R
|〈q|XG〉|23G =

∫
R
|q(G) |23G = ‖q‖2, ∀q ∈ S(R),

where ‖q‖2 is the norm in !2 (R); hence, X is a Parseval frame.

We note that this example is based on the measure space (-, `) = (R, _), where
_ is the Lebesgue measure on R, and of course it is not a continuous frame. On the
contrary, the definition of distribution frame reduces to that of discrete frame when
(-, `) is the set N with the counting measure W. Indeed we have the following.



Some notes about distribution frame multipliers 7

Proposition 2 Let l : = ∈ N → l= ∈ D× be a bounded Bessel distribution (resp.,
distribution frame) on D[C] ⊂ H ⊂ D× [C×]. Then {l=}=∈N ⊂ H and {l=}=∈N is
a Bessel sequence (resp., frame) ofH .

Proof Assume that {l=}=∈N is a bounded Bessel distribution map and fix < ∈ N.
The linear functional 5 ↦→ 〈 5 |l<〉 for 5 ∈ D is bounded with respect to the norm
ofH , because

|〈 5 |l<〉|2 ≤
∑
=∈N
|〈 5 |l=〉|2 ≤ �‖ 5 ‖2, ∀ 5 ∈ D . (2)

This means that l< ∈ H . A standard argument ([16, Lemma 5.1.9]) shows that (2)
extends for each 5 ∈ H , i.e. {l=}=∈N is a Bessel sequence.
If {l=}=∈N is a distribution frame, then the conclusion follows in a similar way. �

Definition 5 Let l, \ be distribution frames. We say that \ is a dual frame of l if

〈 5 |6〉 =
∫
-

〈 5 |\G〉〈lG |6〉3`, ∀ 5 , 6 ∈ D .

To formulate the following result, we recall that there exists a unique operator
'l ∈ L(D) such that (l'l 5 = 5 for every 5 ∈ D ([46, Lemma 3.8]).

Proposition 3 ([46, Proposition 3.10]) Let l be a distribution frame with frame
bounds � and �. Then the map \ : - → D× defined by \G := '×llG for G ∈ - , is a
distribution frame with bounds �−1 and �−1 and it is a dual frame of l.

The map \ in Proposition 3 is called the canonical dual frame of l.

Definition 6 ([46, Definition 2.3]) Let D[C] be a locally convex space, D× its
conjugate dual and l : G ∈ - → lG ∈ D× a weakly measurable map. Then l is
a distribution basis for D if, for every 5 ∈ D, there exists a unique `-measurable
function b 5 such that:

〈 5 |6〉 =
∫
-

b 5 (G)〈lG |6〉3`, ∀ 5 , 6 ∈ D

and, for every G ∈ - , the linear functional 5 ∈ D → b 5 (G) ∈ C is continuous in
D[C].
Given a distribution basis l we can simply write in weak sense

5 =

∫
-

b 5 (G)lG3`, ∀ 5 ∈ D .

Moreover, l is `-independent. Since 5 ∈ D → b 5 (G) continuously, there exists a
unique weakly `-measurable map \ : - → D× such that: b 5 (G) = 〈 5 |\G〉 for every
5 ∈ D. We call \ dualmap of l. If \ is `-independent, then it is a distribution basis
too.

The next two notions are the counterparts of orthonormal and Riesz bases of the
discrete context, which are particular cases of Definition 6.
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Definition 7 ([46]) A weakly measurable map l : - → D× is a Riesz distribution
basis if it is a `-independent distribution frame.
A weakly measurable map Z : - → D× is Gel’fand distribution basis if it is a
`-independent Parseval distribution frame.

In a way similar to the discrete case, we can give some equivalent conditions for
a Bessel distribution map to be a Riesz distribution basis.

Proposition 4 ([46, Proposition 3.19]) LetD ⊂ H ⊂ D× be a rigged Hilbert space
and let l : G ∈ - → lG ∈ D× be a Bessel distribution map. Then the following
statements are equivalent.

1. l is a Riesz distribution basis;
2. if Z is a Gel’fand distribution basis, then the operator, defined, for 5 ∈ H , by

5 =

∫
-

b 5 (G)ZG3` ↦→ , 5 =

∫
-

b 5 (G)lG3`

is continuous and has bounded inverse;
3. the synthesis operator )l is a topological isomorphism of !2 (-, `) ontoH ;
4. l is total and there exist �, � > 0 such that

�‖b‖22 ≤




∫
-

b (G)lG3`




2
≤ �‖b‖22 , ∀b ∈ !

2 (-, `).

If l is a Riesz distribution basis with frame bounds �, �, then l possesses a
unique dual frame \ (so the canonical dual frame) which is also a Riesz distribution
basis with frame bounds �−1 and �−1 (see [46, Proposition 3.20]). In particular, a
Gel’fand distribution basis Z coincides with its dual basis.

Example 2 ([46, Example 3.18]) Let us come back to Example 1. The distribution
frame X : G ∈ R ↦→ XG ∈ S× (R) is clearly _-independent, then X is a Gel’fand
distribution frame.

In Proposition 2 we made a consideration about the case (-, `) = (N, W) and
discrete frames. Nowwe compare distribution frames with continuous frames. There
is indeed a remarkable difference about the possibility to define ‘Riesz maps’. To
explain the difference in details, we recall that a family {�G}G∈- ⊂ H is a Riesz
continuous map if one of the following statements holds (see [3, 24])

1. {�G}G∈- is a continuous frame and the operator �� : H → !2 (-, `) defined by
(�� 5 ) (G) = 〈 5 |�G〉 is surjective;

2. {�G}G∈- is a continuous frame and `-linearly independent, i.e. if 2 : - → C and∫
-
2(G)〈 5 |�G〉3`(G) = 0 for all 5 ∈ H , then 2(G) = 0 `-almost everywhere.

It was proven in [35, Corollary 4.3] and in [39, Theorem 9], that Riesz continuous
maps can be defined only if the space (-, `) is atomic. In contrast, Riesz distribution
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maps can be defined with non-atomic measure spaces (-, `) (as we have seen
in Example 1). Note that the formulations of Riesz continuous map and Riesz
distribution map are totally analogue.

3 Distribution multipliers

Let D[C] ⊂ H ⊂ D× [C×] be a rigged Hilbert space. In the distribution context,
there is more than one way to define multipliers. The first way we describe consists
of operators acting on D[C] with values in D× [C×].

We suppose that D[C] is a reflexive Fréchet space and (-, `) is a measure space
with ` a f-finite positive measure. Let l, \ : - → D× be two weakly measurable
Bessel maps and < ∈ !∞ (-, `). Then the sesquilinear form

Ω<,l,\ ( 5 , 6) :=
∫
-

<(G)〈 5 |lG〉〈\G |6〉3`

is defined for all 5 , 6 ∈ D. By Proposition 1(ii) we have

|Ω<,l,\ ( 5 , 6) | ≤ ‖<‖∞‖〈 5 |lG〉‖2‖〈\G |6〉‖2 ≤ ‖<‖∞?( 5 )?(6)

for all 5 , 6 ∈ D. This means that Ω<,l,\ is jointly continuous on D[C] and then
there exists an operatorM<,l,\ ∈ L(D,D×), such that

〈M<,l,\ 5 |6〉 = Ω<,l,\ ( 5 , 6), ∀ 5 , 6 ∈ D .

For brevity we write

M<,l,\ 5 =

∫
-

<(G)〈 5 |lG〉\G3`, ∀ 5 ∈ D

and we callM<,l,\ the outer distribution multiplier of l and \ with symbol <.
As in [8], we have, if )×l and )\ are the analysis and synthesis operators of l and

\, respectively, �< : !2 (-, `) → !2 (-, `) is the multiplication by < defined by
�< 5 (G) := <(G) 5 (G), thenM<,l,\ = )\�<)

×
l . Moreover,M†

<,l,\
=M<,\,l .

Now we move to the second way to define multipliers, namely operators acting
on H . Again we consider a rigged Hilbert space D[C] ⊂ H ⊂ D× [C×], a measure
space (-, `) with ` a f-finite positive measure, but the choice of l, \ and < is
more general. Indeed, let l, \ be two weakly measurable maps and < : - → C a
`-measurable function. Let us define the subspace � ("<,l,\ ) of 5 ∈ D such that
the integral ∫

-

<(G)〈 5 |lG〉〈\G |6〉3`

is convergent for all 6 ∈ D and the linear functional
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6 ↦→
∫
-

<(G)〈 5 |lG〉〈\G |6〉3` (3)

is bounded with respect to the norm ofH . An operator "<,l,\ : � ("<,l,\ ) → H
can be defined as follows: for every 5 ∈ � ("<,l,\ ),"<,l,\ 5 is the unique element
inH associated to the functional (3) by the Riesz lemma, i.e.

〈"<,l,\ 5 |6〉 =
∫
-

<(G)〈 5 |lG〉〈\G |6〉3`, ∀ 5 ∈ � ("<,l,\ ), 6 ∈ D .

For shortness, we write "<,l,\ 5 =
∫
-
<(G)〈 5 |lG〉\G and call "<,l,\ the distri-

bution multiplier of l and \ with symbol <. If l and \ are Bessel distribution maps
(resp. Gel’fand bases, Riesz distribution bases, distribution frames), then "<,l,\ is
called a Bessel distribution (resp. Gel’fand distribution, Riesz distribution, distribu-
tion frame) multiplier.

In the language of representation of sesquilinear forms [34, 38], we can say
that "<,l,\ is the operator associated to Ω<,l,\ . In the discrete setting, operators
associated to sesquilinear forms induced by sequences have been studied in [5, 17,
18].

We first pay attention to distribution multipliers defined (resp. bounded) on D.

Proposition 5 Let < ∈ !∞ (-, `).

1. If l is a Bessel distribution map and \ is a bounded Bessel distribution map, then
"<,l,\ is a well-defined operator "<,l,\ : D → H .

2. Ifl and \ are bounded Bessel distribution maps with bound �l , �\ , respectively,
then "<,l,\ is bounded and it extends to a bounded operator "̂<,l,\ onH with
norm ‖"̂<,l,\ ‖ ≤

√
�l�\ ‖<‖∞.

3. If l, \ are bounded Bessel maps, then "̂<,l,\ = )\�<)
∗
l and "<,l,\

∗ =

"̂<,l,\ .

The proof is an adaptation of [10, Lemma 3.3] and it is omitted. However, we
want to make the following remark about Proposition 5.

Remark 1 Let < ∈ !∞ (-, `) and l, \ Bessel distribution maps, then "<,l,\ is not
necessarily bounded in the norm of H . Indeed let us consider S(R) ⊂ !2 (R) ⊂
S× (R) and l : R → S× (R) defined by lG = GXG , i.e. the distributions 〈 5 |GXG〉 =
G 5 (G) for 5 ∈ S(R). Then l is a Bessel distribution map since

∫
R
|〈 5 |GXG〉|23G =∫

R
|G 5 (G) |23G is finite for all 5 ∈ S(R). Let \ be the distribution frame given by

\G = XG and <(G) = 1 for G ∈ R, then "<,l,\ is defined on 5 ∈ S(R) and
("<,l,\ 5 ) (G) = G 5 (G) for G ∈ R. Clearly, "<,l,\ is not bounded.

Multipliers with a bounded inverse defined on the whole space have a special
interest, since they lead to reconstruction formulas, as shown in the discrete case
in [9, 44, 43]. In the following result we show how reconstruction formulas can be
found by a distribution multiplier having a right or left inverse.
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Theorem 1 Let l, \ : - → D× be weakly measurable maps and < : - → C such
that the distribution multiplier "<,l,\ is defined on D.

1. If there exists � ∈ L(D) such that "<,l,\ � 5 = 5 for every 5 ∈ D, then the
weakly measurable map d : - →H defined by dG = �† (<(G)lG) satisfies

〈 5 |6〉 =
∫
-

〈 5 |dG〉〈\G |6〉3`, ∀ 5 , 6 ∈ D .

2. If there exists  ∈ L(D×) such that  "<,l,\ 5 = 5 for every 5 ∈ D the weakly
measurable map g : - →H defined by gG =  (<(G)\G) satisfies

〈 5 |6〉 =
∫
-

〈 5 |lG〉〈gG |6〉3`, ∀ 5 , 6 ∈ D .

Proof (1) Let � ∈ L(D) as in the statement. Then

〈 5 |6〉 = 〈"<,l,\ � 5 |6〉 =
∫
-

<(G)〈� 5 |lG〉〈\G |6〉3` =
∫
-

〈 5 |�† (<(G)lG)〉〈\G |6〉3`,

for all 5 , 6 ∈ D. (2) Let  ∈ L(D×) as in the statement. Then

〈 5 |6〉 = 〈 "<,l,\ 5 |6〉 = 〈"<,l,\ 5 | †6〉 =
∫
-

<(G)〈 5 |lG〉〈\G | †6〉3`

=

∫
-

〈 5 |lG〉〈 (<(G)\G) |6〉3`,

for all 5 , 6 ∈ D. �

Example 3 Let us consider again the rigged Hilbert space S(R) ⊂ !2 (R) ⊂ S× (R)
and l = \ the distribution frames defined by lG = \G = XG for every G ∈ R and
< ∈ �∞ (R) a function such that 0 < infG∈R |<(G) | ≤ supG∈R |<(G) | < ∞. The
multiplier "<,l,\ is of course defined on S(R) and "<,l,\ 5 = < 5 . Clearly, the
operator � : S(R) → S(R) defined by � 5 = <−1 5 belongs to L(S(R)) and the
operator  : S× (R) → S× (R) defined by  � = <−1� belongs to L(S× (R)).
Moreover,  "<,l,\ 5 = "<,l,\ � 5 = 5 for every 5 ∈ S(R). The reconstruction
formulas in Theorem 1 hold in particular with dG = gG = XG .

In Section 4 we will give conditions for a Riesz multiplier to be invertible with
bounded inverse.

4 Unbounded distribution multipliers

In Proposition 5 we gave a condition for a distribution multiplier to be bounded.
Not only bounded multipliers are interesting, of course; we refer to [4, 5] where
unbounded discrete multipliers have been studied in the context of non-selfadjoint
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hamiltonians. So in this section we want to analyze some aspects of unbounded
distribution multipliers.

Assuming thatD[C] is a reflexive Fréchet space,l, \ are Bessel distribution maps
and< ∈ !∞ (-, `), we easily see that"<,l,\ is actually a restriction ofM<,l,\ . In-
deed, � ("<,l,\ ) = { 5 ∈ D :M<,l,\ 5 ∈ H} and "<,l,\ =M<,l,\ |� ("<,l,\ ) .
This fact leads, for instance, to the following conclusions.

Proposition 6 LetD[C] be a reflexive Fréchet space. Let l, \ be Bessel distribution
maps and< ∈ !∞ (-, `). IfM<,l,\ : D → D× is bijective with a bounded inverse,
then

1. "<,l,\ : � ("<,l,\ ) → H is bijective, densely defined and has a bounded
inverse (consequently "<,l,\ is closed);

2. "<,l,\ ∗ = "<,\,l .

Proof 1. That "<,l,\ : � ("<,l,\ ) → H is bijective follows easily since "<,l,\
is a restriction of M<,l,\ . Since the inclusions D[C] ⊂ H ⊂ D× [C×] are
continuous

• there exists a continuous seminorm ? onD[C] and ‖ 5 ‖ ≤ ?( 5 ) for all 5 ∈ D;
• for all continuous seminorms @ on D× [C×] there exists U@ > 0 such that
@( 5 ) ≤ U@ ‖ 5 ‖ for all 5 ∈ D.

By hypothesisM<,l,\
−1 : D× → D is bounded, so there exists a continuous

semi-norm @ on D× [C×] such that for all continuous semi-norms ? on D[C] we
have ?("<,l,\−1�) ≤ @(�) for all � ∈ D× [C×]. Hence, for all ℎ ∈ H

‖"<,l,\−1ℎ‖ ≤ ?("<,l,\−1ℎ) = ?(M<,l,\
−1ℎ) ≤ @(ℎ) ≤ U@ ‖ℎ‖.

Thus "<,l,\ has a bounded inverse. The continuity ofM<,l,\
−1 implies also

that � ("<,l,\ ) is dense, because � ("<,l,\ ) is the inverse image of H which
is dense in D× [C×].

2. Clearly, "<,l,\ ∗ is bijective and "<,\,l ⊆ "<,l,\ ∗. The conclusion of point
(1) holds also for"<,\,l since"<,\,l coincides with a restriction ofM†

<,l,\
=

M<,\,l . Thus we can conclude that "<,\,l = "<,l,\ ∗. �

Even though "<,l,\ is not necessarily bounded, Proposition 6 makes use of
boundedness of <. This may be a strong hypothesis, thus we now look for less
restrictive assumptions to ensure that "<,l,\ is densely defined.

In the discrete context it is very easy to prove that a multiplier "<,q,k of a
Hilbert spaceH , where q = {q=}=∈N is a Riesz basis and k = {k=}=∈N a sequence
of H , is densely defined whatever the symbol < = {<=}=∈N is. Indeed, there exist
a unique total sequence (in particular a Riesz basis) q̃ = {q̃=} biorthogonal to q,
i.e. 〈q̃< |q=〉 = X<,= (the Kronecker symbol) for all <, = ∈ N. Thus � ("<,q,k) is
dense, because it contains q̃.

On the contrary, whenD ⊂ H ⊂ D× is a rigged Hilbert space and l : - → D×
is a Riesz distribution basis, then we may not find a function d : - → D which is
biorthogonal to l in the sense that
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〈dH |lG〉 =
{

1 if G = H,
0 if G ≠ H.

Indeed, let us consider the Riesz distribution basis given by the Dirac deltaslG = XG ,
G ∈ R, on the rigged Hilbert spaceS(R) ⊂ !2 (R) ⊂ S(R)× (Example 1). Then there
is no G ∈ R and 5 ∈ S(R) such that 5 (G) := 〈 5 |XG〉 = 1 and 5 (I) := 〈 5 |XI〉 = 0 for
all I ≠ G. Thus we have to manage a new problem in order to study densely defined
distribution multipliers.

Taking again the example of lG = XG , G ∈ R, on S(R) ⊂ !2 (R) ⊂ S(R)×, we
note that for any symbol < : R→ C and for \ = l the multiplier "<,l,\ is densely
defined. We will give the proof in Theorem 2 in a more general context. Here we
confine ourselves to give the following remark. Note that we say that a subset + of
a Hilbert space H is total if 〈 5 |ℎ〉 = 0 for all 5 ∈ + implies ℎ = 0 (then the linear
span of + is dense inH ).

Remark 2 Let _ the Lebesgue measure on R. Let U : R → C be a positive _-
measurable function and define +U := { 5 ∈ �∞0 (R) : | 5 (G) | ≤ U(G), G ∈ R}. We
prove that the subset +U is total in !2 (R) dividing the proof into three steps.

First of all, U is locally bounded away from zero in a.e. G ∈ R, i.e. �2 := R\� is
measurable with measure zero, where

� = {G ∈ R : there exists an interval*G ⊂ R of G such that essinfH∈*G
U(H) > 0}.

Indeed, fix = ∈ N. For every G ∈ �2 , there exists a measurable set *=,G containing
G such that essinfH∈*=,G

U(H) ≤ 1
=
. Then �2 ⊆ ∪G∈�2*=,G ⊆ {H ∈ R : U(H) ≤ 1

=
},

thus the outer measure _> (�2) ≤ _({H ∈ R : U(H) ≤ 1
=
}) → 0 for = → ∞. Hence

�2 is measurable with measure zero.
Now, if G ∈ � and <G = essinfH∈*G

U(H) > 0, then <G j� ∈ +U where j� is
the characteristic function of any interval � ⊂ *G . Taking into account that �2 has
measure zero, we conclude that there is a subset + total in !2 (R) such that every
5 ∈ + satisfies 5 (G) = <j� (for some< > 0 and an interval �) and 0 ≤ 5 (G) ≤ U(G)
for every G ∈ R.

Finally, every function 5 ∈ + can be approximated with �∞0 functions { 5: } with
0 ≤ 5: ≤ 5 . Hence, +U is total.

The reason of talking about the example lG = XG , is that it suggests to consider
variations of the condition of biorthogonality as stated in the next definitions. For
a better comparison, we rewrite a property of +U (with U : R → C a positive
measurable function) in the following way: for every 5 ∈ +U there exists a bounded
subset - 5 ⊂ R and |〈 5 |XG〉| ≤ U(G) for G ∈ - 5 and 〈 5 |XG〉 = 0 for G ∉ - 5 .

Definition 8 Let D ⊂ H ⊂ D× be a rigged Hilbert space and l : - → D× a
weakly measurable function. We say that

1. l is pseudo-orthogonal if there exists a subset + ⊂ D total in H such that
for every 5 ∈ + there exists a measurable subset - 5 ⊂ - with `(- 5 ) < ∞,
supG∈- 5

|〈 5 |lG〉| < ∞ for G ∈ - 5 and 〈 5 |lG〉 = 0 for G ∉ - 5 ;
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2. l is hyper-orthogonal if for every positive measurable function U : - → C there
exists a subset +U ⊂ D total in H such that for every 5 ∈ +U there exists a
measurable subset - 5 ⊂ - with `(- 5 ) < ∞, |〈 5 |lG〉| ≤ U(G) for G ∈ - 5 and
〈 5 |lG〉 = 0 for G ∉ - 5 .

Note that these definitions are covered by a Riesz (discrete) basis {q=}=∈N (more
generally by a sequence {q=}=∈N having a total biorthogonal sequence {k=}=∈N,
i.e. 〈q= |k<〉 = X=,<). Furthermore, if l is hyper-orthogonal then it is also pseudo-
orthogonal. We are now able to formulate results about the density of domains of
distribution multipliers. We denote by !2

;>2
(-, `) the space of measurable functions

5 on - such that 5 ∈ !2 (*) for every bounded measurable subset* ⊆ - .

Theorem 2 Let D[C] ⊂ H ⊂ D× [C×] be a rigged Hilbert space, l : - → D× a
weakly measurable function, \ : - → D× a bounded Bessel distribution map with
Bessel bound �\ and < : - → C a `-measurable function.

1. If l is pseudo-orthogonal and < ∈ !2
;>2
(-, `), then the distribution multiplier

"<,l,\ is densely defined.
2. If l is a bounded Bessel distribution map and hyper-orthogonal, then the distri-

bution multiplier "<,l,\ is densely defined.

Proof 1. Let + and - 5 be as in Definition 8(1). For 5 ∈ +, 6 ∈ D we have by
Cauchy-Schwarz inequality that����∫

-

<(G)〈 5 |lG〉〈\G |6〉3`
���� ≤ � ∫

- 5

|<(G) | |〈\G |6〉|3` ≤ ��
1
2
\
‖<‖!2 (- 5 ) ‖6‖,

where� = supG∈- 5
|〈 5 |lG〉|. Thus 5 ∈ � ("<,l,\ ), and consequently� ("<,l,\ )

is dense because + is total.
2. The proof is divided into three parts. If < ∈ !∞ (-, `), then the conclusion

follows by Proposition 5 since � ("<,l,\ ) = D. If |<(G) | ≥ 1 a.e., then we take
U(G) = |<(G) |−1 a.e. in Definition 8(2). Thus there exists +U ⊂ D total in H
such that for every 5 ∈ +U there exists a compact subset - 5 ⊂ - and����∫
-

<(G)〈 5 |lG〉〈\G |6〉3`
���� ≤ ∫

- 5

|<(G) | |<(G) |−1 |〈\G |6〉|3` ≤ `(- 5 )
1
2 �

1
2
\
‖6‖,

for every 6 ∈ D (the last inequality is due to Cauchy-Schwarz inequality). This
means that � ("<,l,\ ) is dense. Finally, let < be a generic measurable function.
Then it is possible to write < as sum of two measurable functions < = <1 + <2
such that <1 ∈ !∞ (-) and |<2 | ≥ 1. Then "<1 ,l,\ is well-defined on D
and "<2 ,l,\ is defined on a subspace of D dense in H . As consequence, also
"<,l,\ = "<1 ,l,\ + "<2 ,l,\ is densely defined. �

We show other examples of weakly measurable maps satisfying Definition 8.

Example 4 For G ∈ R consider the function lG defined by lG (H) := 4−2c8GH for
H ∈ R. Then lG is a distribution on !1 (R) ∩ !2 (R) and in Example 3.17 of [46] it
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was proved that l is a distribution frame. Choosing+ = { 5 ∈ !2 (R) : 5̂ ∈ �∞0 (R)},
where 5̂ denotes the Fourier transform of 5 , in Definition 8, we conclude that l is
pseudo-orthogonal.
Now let U : R→ C be a positive measurable function and define+U = { 5 ∈ !2 (R) :
5̂ ∈ �∞0 (R) and | 5̂ (G) | ≤ U(G), G ∈ R}. By the considerations in Remark 2 and
since the Fourier transform is unitary in !2 (R), the set +U is total, i.e. l is also
hyper-orthogonal.

Example 5 Let D[C] be a dense subspace of !2 (R) endowed with a locally convex
topology C, stronger than the topology of !2 (R), and such that �∞0 (R) ⊂ D.
Let 6 ∈ !2 (R) have support in a bounded interval �. Define lG (C) = 6(C − G) for
C ∈ R. Then the weakly measurable map l : R → !2 (R) is pseudo-orthogonal
(again one can take + = �∞0 (R)).

We conclude this section by turning the attention to a sufficient condition for a
distribution multiplier to be closable.

Proposition 7 Let l, \ : - → D× be weakly measurable functions and < : - → C
be a `-measurable function. If "<,\,l is densely defined (in particular if l, \
are bounded Bessel distribution maps and \ is hyper-orthogonal), then "<,l,\ is
closable.

Proof For 5 ∈ � ("<,l,\ ) and 6 ∈ � ("<,\,l) we have 〈"<,l,\ 5 |6〉 =
〈 5 |"<,\,l6〉. This means that "<,l,\ ⊆ ("<,\,l)∗, i.e. "<,l,\ is closable. �

5 Riesz distribution multipliers

In this section, we examine the case where l and \ are Riesz distribution bases,
reconsidering the Examples 4.1 and 4.2 of [46]. Let l and \ be distribution Riesz
bases, ľ and \̌ their extensions to H with the limit procedure described just after
Definition 3, and a `-measurable function < : - → C such that the integral:∫

-

<(G)〈 5 |ľG〉〈\̌G |6〉3`

is convergent for all 5 , 6 ∈ H . Since \ is a Riesz basis, the analysis operator )∗
\

is a topological isomorphism of H onto !2 (-, `), then )∗
\
(H) = !2 (-, `). It

follows that <(G)〈 5 |ľG〉 ∈ !2 (-, `) for all 5 ∈ H . Furthermore, the operator
"<,l,\ : D → H :

"<,l,\, 5 =

∫
-

<(G)〈 5 |lG〉\G3`, ∀ 5 ∈ D,

is well-defined. Analogously, for all 6 ∈ H one has <(G)〈6 |\̌G〉 ∈ !2 (-, `) and the
operator "†

<,l,\
: D → H :
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"
†
<,l,\

6 := "<,\,l6 =
∫
-

<(G)〈6 |\G〉lG3` ∀6 ∈ D,

is well-defined. One has:

〈"<,l,\ 5 |6〉 = 〈 5 |"†<,l,\6〉, ∀ 5 , 6 ∈ D .

Then "<,l,\ is a closable operator inH . It is not difficult to show that the domain
of the closure � ("<,l,\ ) is { 5 ∈ H :

∫
-
|<(G)〈 5 |ľG〉|23` < ∞}. In general, the

operators "<,l,\ are unbounded, so their product is not always defined. However,
if they belong to the space L† (D), they can be multiplied. In the following example,
some cases of unbounded multipliers in L† (D) are considered.

Example 6 Let us consider the rigged Hilbert space S(R) ⊂ !2 (R) ⊂ S(R)×. We
write 5̂ and 5̌ for the Fourier transform and inverse Fourier transform of 5 ∈ S(R),
respectively.

Define: lG = XG and \G (H) := 4−2c8GH for H ∈ R, thus XG , \G ∈ S(R)×. Let
O" (R) be the space of �∞-functions which, together with their derivatives, are
polynomially bounded (see [32]). If < ∈ O" (R), for 5 ∈ S(R) we have:

"<,l,l 5 = < 5 , "<,l,\ 5 = <̌ ∗ 5̌ , "<,\,l 5 = < 5̂ and "<,\,\ 5 = <̌ ∗ 5 .

The above considerations lead in particular to the case of a Riesz basis l and its
dual \ of Example 4.2 [46]. To simplify the notation, we denote the multiplier
as "< := "<,\,l . In Example 4.2 [46], it is shown that <(G) is a generalized
eigenvalue of "<, i.e.:

〈("†<)×\G |6〉 = <(G)〈\G |6〉,∀6 ∈ D, `-a.e. G ∈ -,

and <(G) is a generalized eigenvalue of "†< i.e.:

〈("<)×lG |6〉 = <(G)〈lG |6〉∀6 ∈ D, `-a.e. G ∈ -.

A consequence is the following:

Proposition 8 Let "<1 and "<2 be multipliers of a Riesz basis l and its dual \,
such that "<8

∈ L† (D), 8 = 1, 2. Then "<1"<2 = "<1<2 .

Proof For all 5 , 6 ∈ D

〈("<2"<1 ) 5 |6〉 = 〈"<1 5 |"†<26〉 =
∫
-

<1 (G)〈 5 |lG〉〈\G |"†<26〉3` =

=

∫
-

<1 (G)<2 (G)〈 5 |lG〉〈\G |6〉3` = 〈"<1<2 5 |6〉

and the proof is completed. �

Analogously, "†<1 and "†<2 can be multiplied, and ("<1"<2 )† = "
†
<2"

†
<1 . This

shows that the multipliers inL† (D) of dual Riesz bases is a †-subalgebra inL† (D).
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Furthermore, if both "−1
< and " 1

<
are defined in L† (D), by Proposition 8 one has

that "−1
< = " 1

<
. The considered case of multipliers in L† (D) allows to handle

easily the symbolic calculus, but operators in L† (D) are, in general, unbounded.
What can be said about the case of bounded operators? Obviously, if < ∈ !∞ (-, `)
and l and \ are Riesz bases, "< is bounded. Vice versa, the following proposition
holds:

Proposition 9 Let l be a distribution Riesz basis with dual \. If the multiplier
"<,l,\ is bounded then < ∈ !∞ (-, `).

Proof The proposition is true for the diagonal operator �<,Z , i.e. a multiplier of
the Gel’fand basis: l = \ = Z (see Example 4.1 of [46]). The same holds for
"<,l,\ : in fact "<,l,\ and �<,Z are similar via , of b) of Proposition 4, i.e.
"<,l,\ = ,�<,Z,

−1 (see Example 4.2 of [46]), where "<,l,\ and �<,Z are their
closure. �

For conditions of invertibility of a multiplier, we can state the following in a more
general form.

Proposition 10 Let l, \ : - → D× be weakly measurable maps and <(G) ≠ 0
`-a.e. in - . Then

1. If l is `-independent and \ is total, then "<,l,\ is injective.
2. If l is total and \ is `-independent, then "<,l,\ has dense range inH .

Proof Assume that"<,l,\ 5 =
∫
-
<(G)〈 5 |lG〉\G3` = 0. Since \ is `-independent,

we have <(G)〈 5 |lG〉 = 0 a.e., that is 〈 5 |lG〉 = 0 a.e.; but l is total, then 5 = 0.
For the range, let 6 ∈ D such that 〈"<,l,\ 5 |6〉 = 0 for all 5 ∈ D, that is
〈"<,l,\ 5 |6〉 =

∫
-
<(G)〈 5 |lG〉〈\G |6〉3` = 0. Since l is `-independent, we have

<(G)〈\G |6〉 = 0 a.e. and 6 = 0, because \ is total. �

In particular, if l, \ are Riesz bases and <(G) is nonzero a.e., then "<,l,\ is
invertible with densely defined inverse. To have a bounded inverse we can make use
of an additional assumption.

Proposition 11 Let "<,l,\ be a Riesz distribution multiplier. If there exists � > 0
such that 0 < � ≤ |<(G) | for all G ∈ - , the inverse of "<,l,\ is bounded.

Proof By Proposition 10, the inverse exists. Let �l , �l and �\ , �\ be the lower and
upper bounds of l and \, respectively. The operator "<,l,\ has closure extension
"̂<,l,\ := )\�<)∗l . By Proposition 4, the operators )∗l , )l , )\ , )∗\ are bounded,
invertible with bounded inverses, so we have:

�\ �l�‖ 5 ‖ ≤ �\�‖)∗l 5 ‖2 ≤ ‖)\�<)∗l 5 ‖, ∀ 5 ∈ � ("<,l,\ ),

and the proof is completed. �
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6 Conclusions

Some questions about symbolic calculus in a more general set-up (not only in the
case of dual Riesz bases) are open. For instance, it is known that in L(D,D×)
a partial multiplication is defined (see [2, 47]), thus a symbolic calculus may be
developed for multipliers in L(D,D×). The idea behind Definition 8 are connected
to localization frames which were introduced in [29] and further studied (sometimes
with variations) in [6, 7, 11, 22, 23, 28]. More precisely, some result in Section 4 can
be extended considering a certain decay of G ↦→ 〈 5 |lG〉 instead of assuming that
〈 5 |lG〉 is null outside a bounded set.
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