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Abstract— The use of robotics is begining to play a key role
in automating the data collection process in Non Destructive
Testing (NDT). Increasing the use of automation quickly leads
to the gathering of large quantities of data, which makes it
inefficient, perhaps even unfeasable for a human to parse the
information contained in it. This paper presents a solution to
this problem by making the process of NDT data collection
an autonomous one. In order to achieve this, the robotic
data acquisition task is treated as an optimisation problem,
where one seeks to find the location within a component
being inspected, with the greatest damage index. The resulting
algorithm is a combination of ideas borrowed from uncertainty
quantification which enable the optimisation routine to be
probabilistic and damage detection from the field of data-
driven Structural Health Monitoring (SHM). The algorithm
operates sequentially, where a decision is made in every
iteration regarding the next most optimal physical location for
placing an observation. This is achieved by modelling the two-
dimensional field of novelty indexes, which are derived from a
robust outlier analysis procedure. More specifically, the model
of the novelty index involves the widely-used probabilistic and
nonlinear regression scheme of Gaussian Processes (GPs). The
value that performing inspection in this autonomous fashion
adds is that its output is not just data, it is the required
information from an NDT inspection: the probability that a
component contains damage. Most importantly, it does so while
also minimising the number of observations that it takes to
give such estimate, thus minimising the time and cost of data
gathering.

I. INTRODUCTION

Non Destructive Testing (NDT) forms an integral part in
the assessment of quality and structural integrity in engineer-
ing components in-service and post-manufacture. Whilst in
the present day, the majority of NDT is carried out manually,
recent increased attention to robotic-based inspection [1]
promises to change matters. The use of robotics in the
context of NDT is key when inspecting high value and/or
safety critical assets; it also serves the purpose of removing
humans from harm, when an inspection needs to be carried
out in harsh and dangerous environments.

Whilst the motivations for robotics-based NDT are clear,
and the relevant research is under-way [1], [2], little or
nothing has been done in the way of performing autonomous
as opposed to automated inspections. In an automated in-
spection scheme, the robot path is programmed prior to the
inspection, and the robot makes no decisions regarding what
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areas of a component it should prioritise. The data collected
has to be reported back to a human, or to further post-
processing algorithms in order to assess the state of the
component. In an autonomous scheme on the other hand,
a robot would make its own decisions regarding the path
it should take, and should also continuously perform its
own critical assessment of the component: does it contain
a defect or not, and with what probability? Has enough
area been inspected, and are there critical areas that need
more attention? The purpose of this paper is to formulate an
algorithmic framework for such autonomous inspection.

This paper will focus on the particular use of ultrasound-
based NDT, due to its current widespread use within engi-
neering industry. However, the reader will recognise that the
ideas presented are applicable to other types of testing. The
proposed algorithm is demonstrated here using an example
dataset, originating from a carbon fibre wing panel specimen
with two known areas of de-lamination, acquired using a
robotic system, which is described in detail in [1].

The rest of this introduction will provide a general intro-
ductory overview of the algorithm, with the following sub-
sections providing a general background to ultrasound-based
NDT, the challenges of autonomous inspection, as well as
spatial sampling, which is closely related to the algorithm
presented here.

A. Algorithm Overview

The first question to be asked is, what is the objective of
the robot? Here, this objective shall be clearly defined as:
determining, with high confidence, whether the component
being inspected contains a defect, flaw or damage of a given
minimum target size, ¢. Given such a clear objective, it is
then possible to cast the autonomous inspection problem,
as an optimisation problem. After an observation is taken,
the optimiser should decide what position (in two or three
dimensional space), should an observation be taken next, so
as to maximise the given objective. These decisions are thus
carried out sequentially as information is being gathered.
One method that deals particularly well with this sequential
design problem is Bayesian optimisation, which will be
covered in detail in Section III. The general idea behind
it is to fit a Bayesian nonlinear regression model, such as
a Gaussian Process (GP), to the objective function. This
allows one to infer the objective at unobserved locations.
The useful aspect of GP regression is that being a Bayesian
method, it can not only predict the objective at unobserved



locations, but also give an estimate of the uncertainty over
this prediction. Armed with this, it is then possible to place
observations in areas of both high uncertainty and with high
values of the objective function. This strategy maximises the
information gain of every single observation that is taken, it
can be carried out sequentially and in an autonomous fashion.

For this type of scheme to work, a good objective func-
tion is required. As discussed above, the objective of the
problem is to detect defects, so the objective should capture
information regarding whether a particular location contains
a defect or not. This task can be cast as a problem of
novelty detection, which is commonly used as a method of
damage detection in the field of data-driven Structural Health
Monitoring (SHM) [3]. The basic idea behind performing
novelty detection is to model the probability density of
data that is known to belong to an un-damaged class,
and to then compute a distance between new (unknown)
observations and the centre of that probability density. When
data is considered to be Gaussian, the relevant distance
is the Mahalanobis squared-distance, and it provides one
with a novelty index. One particularly useful aspect of the
Mahalnobis squared-distance is that it can deal well with
multivariate data, and this is useful in the general context of
analysing NDT data.

In the problem of autonomous inspection, a novelty index
provides an excellent objective for the optimisation scheme.
It is desirable to maximise it: if the highest values of
a novelty index are found, these correspond to the most
abnormal observations, with respect to the rest.

So, combining Bayesian optimisation, with a novelty index
such as a Mahalanobis squared-distance seems like a reason-
able idea so far. However, a major caveat appears when one
considers that the novelty detection must be computed both
on-line (since it must guide a robot sequentially) and must
also, for the purposes of capturing a reference un-damaged
set, ignore abnormal observations. If outlying observations
are taken into account for training of the reference set,
the novelty detector will become biased towards them. This
would in turn, result in potential damage sites being classed
as benign.

To remedy this, the authors have turned to robust statistics,
and in particular, the Minimum Covariance Determinant
(MCD): a robust method for estimating the parameters
of a Gaussian distribution. The MCD is discussed in de-
tail in Section II. In this introduction, it is important to
simply highlight that using a method that ignores outliers
present in the reference set is paramount to the success
of the autonomous inspection algorithm presented here, as
it automatically discriminates between outlying and inlying
observations when outliers are present in the training set, and
thus not biasing the reference set toward the outliers. This
enables an autonomous inspection algorithm that is entirely
data-driven - it does not use external information to form a
model of a healthy component.

An overview of the autonomous inspection scheme is
illustrated in Figure 1. Step one involves data collection and
feature extraction from raw data. Step two involves mod-
elling these features using robust outlier analysis. Steps three

and four form the Bayesian optimisation step, first modelling
the objective function with a GP, and then choosing a location
that maximises information gain.

A major assumption being made by this autonomous
inspection strategy is that the physical area being scanned
is nominally similar, in terms of material and geometrical
characteristics. It is a reasonable assumption that normal
variability in these characteristics plus any noise arising from
their physical observation and computation of features, could
be modelled as a (multivariate) Gaussian distribution. This
implies modelling the data as uni-modal. If a component had
two sections of different characteristics, this would add mul-
tiple modes to the underlying probability distribution of un-
damaged class features. In terms of pure novelty detection,
this could still be dealt with via a clustering analysis, and
appropriate novelty indices exist that capture this situation
well [4]. However, in this scenario of actively looking for
data that is dissimilar, how could one distinguish between
a new data cluster from an undamaged component section,
and a new data cluster arising from damage? In the absence
of any prior knowledge about the location or characteristics
of either the known undamaged sections or the expected
damage, it is effectively impossible to tell these two apart.
The key here is prior knowledge. It would be undesirable
to impose prior knowledge over the damaged state, as the
algorithm may simply fail to find any damage that does not
“look like” the expected prior assumption. A better use of
prior knowledge is to assume the robot knows which sections
of a component are expected to be nominally the same. This
can be achieved by performing independent inspections over
areas that are known to be homogeneous in their material
and geometrical properties. If a component happens to be
homogeneous, then this presents no issue. If not, this can
simply be achieved through elicitation of Computer Aided
Design (CAD) models, which has already been applied
to robotic path planning in NDT inspections [2]. In this
paper, the emphasis is placed on the algorithmic processes
required to achieve autonomous inspection, through the use
of Bayesian optimisation and robust outlier analysis.

B. Ultrasound signal features

This paper will use example data from ultrasound-based
NDT, due to its current widespread use in practice. For this
reason, this section provides a brief background to this type
of testing. The objective is to provide the reader with a
clear understanding of the type of signals, and the features
extracted from such signals, as well as the type of physical
testing required to collect ultrasound data. Readers familiar
with ultrasound-based NDT can safely skip this sub-section.

A typical ultrasound pulse is shown in Figure 2a, with two
time indices marked as ¢, and ¢;. These times correspond to
reflections from the front and back wall of the inspected
specimen respectively. A pulse of this kind effectively con-
stitutes an A-scan. The information extracted from this is
the time difference ¢ty = ¢, — 14, and this is often referred
to as the ultrasonic Time of Flight (ToF). This can be
related to the thickness of the specimen, if the propagation
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Fig. 1: Overview of the steps involved in the autonomous inspection algorithm.

speed of bulk waves for the material is known. Another
feature of interest is the ratio x(¢,)/x(t) (where x(t) is the
measured amplitude of the ultrasound pulse), as this contains
information about the attenuation of the wave as it travelled
through the thickness of the component. An A-scan thus
gives information about a single physical coordinate on a
surface.

A B-scan can be formed by collecting a series of A-scans
along a line (illustrated in Figure 2b), while a C-scan is
formed by collecting a series of B-scans, to give a two-
dimensional grid of ultrasound pulse information (illustrated
in Figure 2c). Note that higher times of flight in Figure 2c
imply wider plate thickness. The salient features in Figure 2¢
are the stringers and the variable thickness of the wing panel.
The stringers are evident by a low ToF index, due to their
thickness being higher than the maximum value that can be
captured within the collected data. There are two regions of
delamination evident in Figure 2c.

C. Towards practical autonomous inspection

In practice, these A, B and C-scans are often performed
manually, with the aid of engineering expertise, in order to
carry out three key tasks:

Y

2)

Physically scan the structure with an ultrasound probe.
Interpret the results of the collected dataset and form
a decision over the quality of the data, and the state of
the component.

Decide if any which areas of the component need re-
scanning.

Provide an assessment of the best course of action, and
recommend an appropriate repair strategy.

3)
4)

Recently, there has been a move towards an increased
use of robotics for automating the process of acquiring the
necesary data, where ultrasound data acquisition hardware
is combined with robotic interfaces in order to automate
the physical scanning of the structure; task one, in the
hierarchy above. Examples of this can be found in [5]-[7]
and more recently in [1], [2], where problems such as path
planning and integrating Computer Aided Design (CAD)

geometries into the scanning process have been addressed.
Other important issues, such as dealing with uncertainty in
the positioning of autonomous robots, have been addressed
in [8] using Bayesian filtering methods.

The interpretation of results, the second task in the hi-
erarchy, has received a noteworthy amount of attention in
the NDT research community. Research has evolved from
investigation into the required signal processing methods to
extract useful features from the raw data [9]-[11], and into
the use of machine learning and novel statistical inference
methods applied to those features in order to detect, cluster
and classify defects [12]-[16].

The third task in the hierarchy involves deciding appro-
priate places to scan, based on information collected so far
about the component. The continuous path planning problem
using optimisation has been investigated before in a general
context [17], but significantly less research has been carried
out towards this end in NDT. The state of the art in path
planning for robotic ultrasound inspection, at the moment, is
to use CAD models to plan the scanning trajectory, where
research has focused around issues with the feedback control
of the ultrasonic probe head [2].

The objective of performing a scan is to find defects that
are larger than a minimum given size. The current solution
in pulse-echo ultrasound measurements is to define a spatial
grid with a high enough resolution to capture this minimum
expected flaw size. Whilst this approach has worked so far,
there are two major issues with it,

1) The scan can potentially take a long time, and there
are also cost implications associated with this.

2) A large quantity of data needs to be stored and post-
processed later.

These effects are exacerbated when large scanning areas
are involved, as is typical in aerospace industries. Depending
on the motivation for carrying out the inspection, the scan
time may not present an issue; if inspecting a high-value,
safety critical engineering component, large scanning times
are acceptable. However, the data storage and processing
requirements of a dense grid over a large area can make
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Fig. 2: Nlustration of a) single ultrasound reflection (A-scan), b) reflections along a phased array probe (B-scan) and c) time of flight map along the two

dimensions of a composite plate (C-scan).

the problem intractable.

The data storage requirement can be alleviated by com-
pressing the raw data for later post-processing, leveraging
advanced signal processing techniques such as wavelet trans-
forms [18], sparse signal modelling [19], and more recently
compressive sensing [20].

D. Spatial sampling

Evidently, efforts in developing compression algorithms
for time domain data will do little to address the problem of
dealing with large quantities of data in the spatial domain.
The question being asked here is: what is the minimum
number of observations required to capture the statistics of
the data collected from the component, in the spatial domain?
This spatial sampling problem has been studied for centuries,
though a recent twenty-first century review can be found in
[21]. The most active research communities in this field are
those of geo-statistical modelling, environmental modelling
[22], and disease mapping [23], where the motivations for
studying spatial sampling schemes arise from the fact that
these measurements can be sparse, which raises the need
to interpolate data in regions with low observation density,
while quantifying the uncertainty around those predictions.

In spatial statistics, the features of interest are treated
as random variables across space; they can be separated
into two categories, those which can be assumed to be
identically and independently distributed (iid), and those
that are autocorrelated across space. Intuitively, NDT data
falls within the second category, where values of NDT data
features will tend to be similar to those features observed a
small distance away (there is some experimental backing to
this notion [24]).

Modelling the spatial correlation of stochastic processes
has been central to the task of interpolation in spatial
analysis [25]. Spatial correlation quantifies the influence that
a variable has on its own value at a distance r away. In
spatial statistical analysis, this influence is modelled through
the use of a covariance, or correlation function. The quality
of spatial interpolation, based on correlations or covariates,
therefore relies heavily on the properties of the covariance
function used. The covariance function should encode the
overall smoothness of the random field being modelled, as
well as the overall length-scale over which this random field
influences itself. Analysis of spatial variation has been of
interest in NDT, and has been used as a tool to assess optimal
resolution and scanning strategies [24], [26].

Under the general context of spatial data interpolation,
when the application is risk-sensitive which is the case in
NDT data analysis, it is critical to use methods that are
probabilistic. This idea has led to the use of Gaussian Process
(GP) regression, a flexible tool for performing probabilistic,
nonlinear and nonparametric regression. The use of the GP
is central to the modelling of spatial data in this paper, and it
it will be discussed in more detail in Section III-C. Here, it is
worth noting that this method relies on the use of covariance
functions to model variation in space (or any other coordinate
in fact). In [26], for example, GPs are used to replace the
more tradition empirical variograms, when smoothing NDT
data features across space. One interesting application of
spatial modelling to outlier analysis is presented in [27]
where transformations to the standard formulation of the GP
were used to derive “extreme spatial processes”’, based on
standard extreme value distributions. In the present paper,
the flexibility of the GP is used to fit a surrogate model to



novelty scores from a robust outlier analysis procedure. This
approach is novel compared to other work in this area, where
GPs are often used to fit data features directly.

One important aspect of spatial variation and NDT data
analysis is that of Probability of Detection (PoD). This
describes the likelihood that an object will be detected in
a particular measurement scenario. Its origin can be traced
back to the development of radar technology, but in the
present day it is widely used to quantify the reliability of
NDT processes [28]. PoD curves describe the probability that
a particular NDT system will detect a flaw as a function of
the flaw size. Traditionally, these curves are built experimen-
tally, by performing blind scans of calibration pieces with
flaws of various sizes, and quantifying the false negative rates
[29]. PoD is affected by a number of factors: measurement
noise, spatial scanning resolution and the scattering charac-
teristics of the expected flaw with respect to the ultrasound
wave. Evidently, the spatial resolution of a scan will affect
the overall probability of detection of the procedure. The
problem of evaluating PoD curves from spatial random fields
that exhibit autocorrelation has been investigated in [30].
This is interesting from the point of view of the work
presented in the present paper, as it links the idea of the
surrogate model to the computation of the more classical
assessment of reliability of the NDT process based on PoD.
While in [30], the surrogate being used is Polynomial Chaos
model, this paper models spatial variation using a GP; the
analysis of PoD, however, would follow similar lines to those
of [30].

E. Outline of the paper

The focus of this paper is given to the development of
an autonomous scheme to perform a search for outliers
over a spatial field. As explained in Section I-A, and as
illustrated in Figure 1, the autonomous inspection algorithm
consists of two main ingredients: 1) robust outlier analysis,
and 2) Bayesian optimisation. The details of each individual
method matter in terms of understanding the full algorithm,
so for the benefit of the reader, they are both given thor-
ough discussions individually. Section II covers the details
of robust outlier analysis, while III will discuss Bayesian
optimisation. Their use in the context of the autonomous
inspection algorithm is discussed in Section IV where issues
such as initialisation, convergence and adjustment of risk
according to expected minimum flaw sizes are discussed.
Throughout the paper, illustrations of the various aspects
of the procedure are drawn from ultrasound data collected
from an aerospace panel. These will be subsets of the data
illustrated in Figure 2. Section V provides a more detailed
experimental investigation of the autonomous inspection
algorithm, using this data set, while Section VI will present
some and conclusions directions of future work.

II. ROBUST OUTLIER ANALYSIS

The process of outlier analysis often involves the eval-
vation of a distance metric, that measures how far away
any given observation lies from the centre of the data mass,

relative to its spread. In the case of the Gaussian-distributed
data assumption, the relavant metric is the Mahalanobis
Squared-Distance (MSD),

di=(yi—p) = (yi—n) (1

where the mean g and covariance X are the mean and
variance, respectively; the two parameters that characterise
a Gaussian density. The multivariate observation vector y
represents the data features. Novelty detection with an MSD
involves two steps. The first is training, and involves estimat-
ing the parameters p , 3 from a training data set derived
from a normal (un-damaged) condition set. Part of the first
step also involves the estimation of a novelty threshold for
the novelty indexes, 7', above which observations are to
be classed as novel. The second step is prediction, and
involves evaluating a novelty index at new observations, and
determining whether they fall under the novelty threshold.
This outlier analysis procedure has been extensively used
for the purposes of data-driven Structural Health Monitoring
(SHM) [3].

The top-level requirement in the data-driven autonomous
inspection scheme is for the system to make a decision about
whether the component contains outliers or not, based only
on the data collected on that component alone. The impli-
cation of this is that outlying observations can potentially
appear in the training set used for estimating p and X. This
problem is well-suited for the application of robust outlier
analysis, where robust measures of the mean and covariance
of the data are estimated, which ignore outlying observations
when computing these Gaussian distribution parameters.
Outlier analysis based on robust estimates of location and
scatter in multivariate data has recently seen applications in
the field of SHM [31], which, in terms of statistical inference,
is a closely related problem of NDE inspection. This paper
thus closely follows the ideas presented in [31].

A. Minimum Covariance Determinant Estimators

Two key ideas exist in the field of robust estimation
of Gaussian distribution parameters: the Minimum Volume
Ellipse (MVE) [32], [33] and the Minimum Covariance
Determinant (MCD) [34] (see [35] for a recent review).
MVE schemes seek to find an ellipsoid of minimum volume,
which encloses at least half of the total number of data
points. On the other hand, MCD schemes seek to find a
covariance matrix 3 with the smallest possible determinant
that leaves out h observations from the training set, where
h is the number of outliers. One of the advantages of the
MCD over the MVE is that the MCD is affine equivariant;
location and scale parameters will remain constant under re-
scaling and affine transformations of the data. Furthermore,
the estimates of p under MCD schemes have been shown
to be asymptotically normal [36]. Beyond these theoretical
guarantees, one useful practical advantage comes from the
existence of an efficient way to compute MCD parameter
estimates: the Fast-MCD algorithm [37]. Exact MCD esti-
mates are numerically expensive to compute, requiring an
evaluation of n x h subsets of size h. Fast-MCD uses an



iterative scheme in order to achieve an MCD estimate with
efficient computation. The Fast-MCD algorithm is relatively
simple, and is described in Algorithm 1. The key step is
to iteratively form h-subsets of the data matrix Y, which
contain values of low Mahalanobis distance (computed using
equation (1)) against the current estimates of 3 and u. The
full algorithm is relatively simple, and it is described in
Algorithm 1.

Algorithm 1 Fast-MCD Algorithm

procedure FAST MCD(Y, h)
set 7t to be a random sample of A indices of Y
H; + Y(w) > form an h-subset of the data
compute ft;,>; from mean and covariance of H;
while det(Xy) # det(Xy_1) do
d < mahal(Y, py,_1, Xk-1))
sort d in ascending order, store indices in 7
m < w(l:h) > Discard n — h largest distances
H; « Y(ﬂ')
compute p,,, 35, from mean and covariance of Hy,
k+—k+1
end while
return X, (1,
end procedure

While the Fast-MCD algorithm is naturally greedy, it does
enjoy the theoretical guarantee of either diminishing the
determinant of the covariance, det(3), or leaving it the same,
at every iteration [37]. This is why the stopping criteria for
the algorithm is such that it continues to run as long as
det(Xg) # det(Zp_1).

An application of the resulting covariance estimation of
the Fast-MCD algorithm is given in Figure 3 for an illustra-
tive synthetic data set. The data being fitted are samples from
a two-dimensional Gaussian random variable, contaminated
with outliers (on the top right). The original distribution
of the un-contaminated data is shown in light-grey, the
maximum-likelihood covariance is plotted with a dashed line,
while the Fast-MCD fit is shown with a solid line. The bias
that the outliers introduce to the covariance is clear: they
increase the scatter. The robust covariance on the other hand
gives a better approximation to the original density.

B. Application to NDT data

The computation of Mahalanobis distances, using robust
estimates of the data density, is central to the scanning
procedure presented in this paper, which combines Bayesian
optimisation with outlier analysis. The application of robust
outlier analysis to NDT data will be briefly discussed here,
in order to make clearer the application of Bayesian opti-
misation, presented in Section III, to the problem of outlier
analysis.

The goal is to assemble a mean and covariance of a
reference, undamaged condition, even when there are outliers
present on the data, which as discussed above, is often the
case.

® Data
O Outliers

Y2

U1

Fig. 3: Illustration of robust estimation of Gaussian distribution
parameters, in the presence of inclusive outliers.

Two common features used in NDT data analysis are the
Time of Flight (ToF) and attenuation, as discussed in Section
I-B. Here, these will be used to demonstrate the idea of nov-
elty detection, using robust measures. In order to simplify the
problem, the process is demonstrated as a one-dimensional
problem. For this, data from a cross section along the y-
axis of the aerospace panel shown in Figure 2 has been
used '. The ToF, together with the robust estimates (using
Fast-MCD) for its mean and variance are shown in Figure
4a. This cross-section was selected as it contains two small
regions where delamination of the carbon fibre composite
has occurred; these are evident as areas of much lower ToF
compared to the rest of the specimen, due to the reflection
of the wave from the delaminated section. On the bottom,
Figure 4b shows the resulting robust Mahalanobis distance
for all of the observations. The red horizontal line shows
the threshold, which has been defined as the Mahalanobis
distance of the 30 values of Y (just the ToF in this particualr
case). Any observations with a Mahalanobis distance above
this threshold are defined as abnormal, compared to the rest
of the data. The two regions where there is delamination have
clear excursions above the Mahalanobis distance threshold.
There are other outliers visible on the left side of the plot;
these are not known damaged locations, so it is likely that
they have arisen from electrical noise or bad contact between
the ultrasound probe and the specimen.

In any case, one would like to know about any observa-
tions that lie far from the bulk of the data, in order to later
be able to assert whether those observations are a genuine
flaw or defect, or simple noise. The next section describes
the strategy for spatially scanning a component based on this
robust Mahalanobis distance.

I1I. BAYESIAN OPTIMISATION

This section will describe the Bayesian optimisation
scheme used to select appropriate scanning points, based
on the robust outlier analysis results. Bayesian optimisa-
tion is a relatively advanced technique, used primarily in

IThe actual coordinates used in this example (with respect to Figure 2),
were constrained to 401 > y > 400 and 400 > x > 320
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Fig. 4: Illustration of outlier analysis on ultrasound-NDT data,
using time-of-flight as a feature, and a robust mean and variance to
compute a Mahalanobis distance.

situations where it is expensive to evaluate the function
being optimised, so a small number of function evaluations
are required. This is the case in the field of Design of
Experiments (DoE). This optimisation technique, the authors
find, tackles the problem of searching for spatial outliers
rather well. This section outlines the necessary background
theory for Bayesian optimisation, and this includes a brief
introduction to the underlying nonlinear regression scheme
used within it: the Gaussian Process. However, before delv-
ing into mathematical details, the motivation and reasoning
for selecting this type of optimisation algorithm over the
multitude of others will be described first, in Section III-A.
The following sub-sections will then provide a background
on general Bayesian optimisation, and on Gaussian Process
regression.

A. Reasoning and motivation

So far, the discussion has centred mostly around per-
forming outlier analysis on NDT data, and specifically on
using robust estimates of the location and scatter of key
features extracted from the raw data. These enable the
computation of robust novelty indices, which separate the
outliers from the bulk of the observations. The objective
is to generate an estimate of whether the component being
scanned contains anomalies, using the most efficient strategy
in terms of both time spent scanning and data storage. These
two requirements both translate to scanning the minimum
number of points in order to maximise the confidence in
the estimate of whether the component contains anomalies.
Armed with a method for separating outliers from the bulk of
the observed data, the question is now: what are the optimal
points to scan, or “query”, in order to achieve an estimate
of the condition of the component, to within a specified
confidence level? In this paper, this question is addressed
as a problem of optimisation.

In general, the optimisation task seeks to find the argu-
ments of a function that maximise (or minimise) an objective,
or cost, function. If at the end of a scan, one analyses the
data and finds that the greatest novelty score falls within a
novelty threshold, then confidence can be established over
the absence of anomalies. If, on the other hand, one, or
a significant number of observations lie above the novelty
threshold, this indicates a problem. The task of inspection
is thus a task of searching for the regions that are most
different from the rest; that contain the highest novelty score.
Therefore, the problem of searching for outliers in a spatial
domain can be cast as an optimisation problem, where the
objective, or cost function being maximised is the novelty
score.

Optimisation is used to solve problems across the realm
of disciplines. In science and engineering, one of its most
popular uses is arguably that of estimating the parameters of
a model, be it a statistical or a physical one. Gradient descent
algorithms have been a popular solution to the parameter
learning problem since the day models started to be fit
to data. The general idea is that if a search for a better
parameter is carried out in the direction of greatest change
of the objective function, it will lead to the argument that
maximises it. The problem is analogous to finding the peak of
a mountain by walking in the uphill direction. The underlying
assumption in gradient-based methods is that the parameters
will cause smooth changes to the objective function, with a
positive gradient towards the optimum. This may be true in
some cases, but certainly not all. Gradient-based algorithms
are not suitable for the problem at hand; there is no reason
to believe that selecting the direction of greatest change in
novelty score will lead to finding the location of greatest
damage. The spatial location of damage can be discontinuous
in nature, and so may not not necessarily cause a smooth
increase in novelty score as the optimiser approaches it.
Therefore, this problem requires some form of gradient-free
global optimisation approach.

Because of the nature of the problem of inspection, it is
desireable for the optimisation method to be able to quantify
uncertainty on its predictions. This would allow the user to
tune the search according to the risk he or she is willing to
accept in a given inspection problem. Bayesian techniques
are well suited to the task of global optimisation where
a quantification of uncertainty is required. The underlying
principle of Bayesian inference is to solve for the probability
of the quantity of interest, 8, given some data, D. The
term O is used here as a general parameter vector, which
could describe, for example, a defect’s position, size, shape,
orientation, and other parameters. Using a combination of
the sum and product rules of probability leads to Bayes’
theorem, which provides a formulation for the probability
distribution of @ given D, or p(0|D),

p(D|6)p(6)
p(D)
There are three probabilities on the right-hand side of equa-

tion (2): the prior, the likelihood and the marginal. The
prior, p(@), should represent a prior belief about the process

p(0|D) = 2)



before it is observed. The likelihood, p(D|@) represents
the distribution of the model error, with respect to the
parameters. Finally, the marginal, p(D), can be expanded
using the sum rule of probability to yield the following
integral,

o0
POY) = [ p(Yl)p(6)as ®
— 00

which sums the product of the prior and likelihood (often
called the marginal), over all possible parameter values 6.
This is often an intractable integral, with no closed form
solution available. The solution of the marginal integral often
leads to one of two paths: approximations, or sampling
schemes. The Laplace approximation, and variational infer-
ence lie in the approximation paths, while Markov Chain
Monte Carlo (MCMC) methods lie in the sampling path.
Sampling techniques present one of the most robust ways
of performing Bayesian inference, but also one of the most
expensive. In the context of optimising efficient search paths,
given some underlying physical problem (ultrasound waves
in this case), MCMC methods are well suited to the case
when a suitable forward-model of the problem exists, that
takes @ as a input, and simulates the observations. In that
setting, MCMC is particularly well suited for the problem
of deriving a posterior over 8. In fact, this approach has
previously been investigated for ultrasound test parameter
optimisation [38]. This is a related problem to that of an
efficient search path, with the key difference that the aim
here is to achieve this both sequentially, and without the aid
of a forward-model. MCMC generally does not satisfy these
two requirements.

Additionally, it is necessary for the search algorithm to
yield an answer as to the state of the component with a
low number of observations. This requirement has led to the
development of Bayesian approaches to global optimisation,
that use the idea of fitting a surrogate statistical model
to the function being maximised [39], [40]. The motiva-
tion has arisen both from the side of conducting efficient
optimisations when using expensive computer simulation
models, and when collecting experimental data, as well as the
calibration between these two. The surrogate model approach
is particularly well suited for optimising over models for
which no analytic expression can be written down (black-box
models), and where its derivatives are not available. This is
true for the novelty scores across the surface of a component:
there is no closed-form expression for them, as they are
completely dependent on the data, and as discussed above,
computation of their derivatives would help little towards
finding the point of highest novelty score.

The surrogate models used to fit the function being
maximised are typically nonlinear and GPs probabilistic
regression models. Allowing the model to be GPs gives
flexibility as to the shape of functions that can be modelled,
while a probabilistic model implies that it makes predictions
over the whole probability distribution of the model outputs,
so it effectively quantifies the uncertainty in the model
predictions. The particular flavour of probabilistic regression
used within Bayesian optimisation is the Gaussian Process

(GP) model.

The use of probabilistic regression models, and the GP in
particular, is particularly suited to the problem at hand. It
can be used to leverage some of the features that physical
damage can exhibit, encoded into the model through the
Bayesian formalism of the prior. One of the key aspects
of physical damage is that it is usually localised in space,
and this, in turn, results in a spatial correlation of NDT
data features. A single outlying data point surrounded by
data with low novelty scores should be discarded as a noisy
observation. On the other hand, a cluster of outliers is
indicative of a problem area. The prior belief that a surrogate
model of the novelty scores can encode is: how much is the
novelty score expected to change, within a given distance,
z? The GP model can encode this information in a fairly
straight-forward manner. The necessary background for GP
regression will be discussed in Section III-C.

B. Bayesian Optimisation Background

Bayesian optimisation solves the sequential design prob-
lem: given all the observed data so far, D .; 2 what is the op-
timal point to observe next such that maximum information
gain is achieved? The information gain is estimated directly
from the surrogate model, by combining the prior and the
likelihood of equation (2) to form a posterior distribution
over the objective function, denoted here as f, given the data
observed so far. However, this does not involve a parametric
model any more; the parameter vector, 8, is thus replaced
with all the observed data so far, D;.;. This includes both
the arguments x and observations y, so D1y = {y¢, x¢}
This posterior can be written down as,

p(fD1:t) o< p(f)p(Drelf) “4)

This posterior distribution contains useful information
about where it is best to place the next observation, in
terms of both areas of high uncertainty as well as areas of
high values of f. The sequential search needs to balance
between the tasks of exploration and exploitation. Explo-
ration involves searching in areas of high uncertainty, whilst
exploitation involves placing observations in areas of high
function values, in order to narrow down to the values of x
that lead to globally maximising f. In Bayesian optimisation,
the balance between exploration and exploitation is achieved
through the use of an acquisition function, that evaluates an
expected utility u(x).

The general algorithm for performing Bayesian optimi-
sation is relatively straight-forward, and is described in
Algorithm 2. It involves iterations over evaluations of the
posterior over the objective, p(f|D;) in order to find the
points that maximise a utility function u(x), and acquisitions
of new data at those points.

Mockus established that a Bayesian optimisation technique
will converge to the optimum if [41], [42]:

1) The acquisition function is continuous and approxi-
mately minimises the risk.

2Note that the subscript ¢ in D¢, and other relevant variables is used here
to denoted observations up fo t



Algorithm 2 Bayesian Optimisation Algorithm
fort=1,2,... do
Xy — argmaxy u(x|Dy.4—1)
ye < f(x¢) +¢
Dy < A{D, (x4,91) }
end for

> Maximise utility
> Sample the objective
> Include new observations

2) The conditional variance converges to zero, or to an
appropriate measurement noise floor.

where the risk is defined as the discrepancy between the
inferred maximum and the true maximum. The continuity
condition is clearly satisfied in the outlier search problem,
given that the spatial field over which novelty scores are
sampled is continuous. The second condition relates to the
variance of the posterior distribution, p(f|D), and it states the
intuitive notion that once the variance of p(f|D) reaches the
variance of the true objective, no further improvement can
be achieved in the optimisation. This criteria is particularly
important in this sequential design context; it answers the
question: when should one stop searching? In practice, one
may actually want to stop the search once the variance
reaches a user-set confidence level, but this upper bound
on possible improvement is clearly necessary to perform
efficient, yet still thorough searches.

Having now discussed the general framework of Bayesian
optimisation from a general point of view, two details need
discussion: the computation of both p(f|D) and acquisition
functions. These are discussed in Sections III-C and III-E
respectively.

C. Gaussian Process regression

This section discusses the estimation of the posterior
density over the objective function given past observations,
through the use of Gaussian Process (GP) regression. The GP
model is one of the most widespread forms of nonparametric
and probabilistic regression models, both in machine learning
and statistical inference as well as in the specific field of
Bayesian optimisation. The use of GPs in the context of
Bayesian optimisation dates back to O’Hagan [43] and later
Zilinskas [44], as a better alternative to quadratic estimation
of cost functions in the case where it may be multi-modal.

At this point, it is now necessary to formally define the
GP, and to discuss the computation of the posterior p(f|D).
In the same way that a Gaussian distribution fully describes
the distribution over a random variable y, using a mean
and a variance, a Gaussian process defines a probability
distribution over a function f(x), using a mean m(x), and
a covariance function k(x,x’),

f(x) = GP(m(x), k(x,x')) (5)

The GP could be viewed as an extension of a Gaussian
distribution to the infinite-dimensional space of functions.
This infinite-dimensional space represents a stochastic pro-
cess, with a covariance represented by k(x, x’). In this space,
any finite combination of dimensions can be represented by a
Gaussian distribution, which will be defined by a covariance

matrix K, whose entries are defined by an evaluation of
the covariance function on a finite set of points on x,
K;; = k(x;,x;). This link between an intangible infinite-
dimensional space described by the covariance function,
and the practical and tangible space of finite dimensions
described by the covariance matrix, is a fairly powerful idea
that allows for the practical computation of probabilities over
functions. A GP is fully defined by both its mean m(x), and
covariance function k(x, x’), although in practice the mean
function is often set to zero. This works well provided one
removes the mean of the data being modelled, and this shall
be assumed in the discussions that follow.

The covariance function plays a central role in the predic-
tive process of the GP, as it captures the influence that any
given point in the space of x has on all the other points.
In other words, the covariance function models the fact that
given a value pair for (x1,y;), other values of y at nearby
values of x are likely to be similar to y;. Exactly how similar,
depends on the specific form of the covariance function. Two
of these will be discussed later in Section III-D.

Now that the GP has been defined, the next step is to show
how one could use it to make predictions of the posterior
probability over the function given all of the observed data
so far. Observed data so far are represented by D>, while the
candidate test locations, for which the posterior probability
will be computed, are denoted as x*. Likewise, the function
values at those candidate locations are denoted as f*. Note
that all observations are assumed to be contaminated by
Gaussian noise, so that one never directly observes the actual
function values, only the contaminated version:

y=[fx)+e e~N(0,0) (6)

where A(0,02) denotes a Gaussian distribution with zero
mean and variance o2.

The predictive distribution of the GP conditioned on
observations up to t is defined as a Gaussian distribution,

with mean m; and covariance v; given by [45],
m; = K(x*,x,)P 'y (7)
vi = K(x*,x*) — K(x*, %) P K (x4, x*) 8
where the matrix P is defined as:
P = K(x¢,%x¢) + 021 )

This predictive mean and covariance fully define the
posterior predictive distribution of the GP, and thus have
great practical value when performing Bayesian optimisation,
and subsequently autonomous inspection.

D. Covariance functions

As alluded to before, the covariance function plays an
important role in defining the region of influence between
points in the input space, x. Covariance between pairs of
observations can be represented by the pairwise distance

between observations:
r=|x—x|

(10)

3Note that this shorter notation will be used from here on, for clarity of
presentation



In his seminal work investigating the issue of spatial vari-
ation, applied to the problem of forest surveying, Matérn de-
veloped a family of functions that are suitable for modelling
spatial random fields. The family of correlation functions he
developed encode the ability to control both the smoothness
and the lengthscale of the random field through turning
parameters v and k. The functional form of this family is
given by

1—v v

Fyar(r) = UJ%?(T) ( ivr> Ky ( ivr> (11)
where /C, is a modified Bessel function of order v, and
¢ and v are scale and smoothness parameters respectively.
The process variance is defined as the scaling parameter
0'}%. There are certain properties of the Matérn family that
make it very useful. One of these is that it is (v — 1)-
times mean-square differentiable, which relates to its ability
to model both smooth and non-smooth processes. This is
in comparison to the often used squared-exponential covari-
ance function in spatial interpolation applications, which is
infinitely mean-square differentiable and thus imposes too
much smoothness to characterise real-world processes [25].
One of the interesting points of the Matérn class is the
recurring theme of its ability to describe physical processes
that can be described by differential equations.

Whilst there is no appropriate differential equation to
describe the spatial correlation of novelty scores across
the spatial field of NDT data, this could be appropriately
modelled as a random field, with the characteristic that it
will generate extreme, non-smooth changes in the boundary
between the normal condition and damage. The Matérn
famility is thus well suited to model this problem. The
particular flavour that will be used in this paper is the case
where v = 2, which is given by,

kmasn (r) = 0F (1 - ?) exp (_\/€§r> (12)

Figure 5 illustrates GP predictions with the same data set
used in the robust outlier illustration of Figure 3. For com-
parison purposes, the GP predictions are shown using two
different covariance functions; the Matérn 3/2 of equation
(12) and the squared-exponential kernel which is popular
and often the first choice of kernel when modelling smooth
processes [45].

Figure 5 zooms into a region around the boundary between
an undamaged and damaged condition. Whilst outside this
region, the data may be represented well as a smooth process,
the boundary introduces a discontinuity. The purpose is
to illustrate how the Matérn kernels deal well with this
step change, as well as with the smooth process in non-
damaged regions. The length-scales in this case were fixed
to £ = 10 and the noise variance was set o2 = 10, for this
particular example. It is clear that the squared-exponential
kernel imposes too much smoothness to the data, whereas
the Matérn 3/2 kernel is far superior at modelling the step
between undamaged and damaged conditions.
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Fig. 5: Illustration of GP posterior fit to novelty scores across a
one-dimensional slice of ultrasound NDT data, comparing the use
of squared-exponential and Matérn 3/2 covariance functions.

E. Acquisition functions

Having discussed how to compute the posterior probability
over the objective, represented by m; and vy, the last step
is to use these to guide the search in an intelligent manner,
that balances between exploring areas of high uncertainty
and exploiting regions of high function values, by assembling
an acquisition function. Maximising the acquisition function
should lead to the next best point in the space of x to place
an observation at. Thus, an acquisition function is designed
to be high in areas of high uncertainty, v, high estimates my,
or both. In the discussion that follows, the highest observed
objective will be denoted as y;, while the highest point of
the GP mean (with observations up to t) will be represented
as m;'.

Early work in Bayesian optimisation focused around the
use of probability of improvement (PI) [46], over the current
best point, denoted as x*, that previously maximised the
acquisition function. PI is defined as the probability that f(x)
is greater than f(x*),

PI(x) = p(f(x) > f(x7))
_q)(mt—ﬂxﬂ) (13)

Vi

where @ represents a normal cumulative distribution func-
tion, and as before, m; and v; represent the mean and
variance predictions of the GP. The drawback of the PI is that
it performs pure exploitation and no exploration. Once the
search finds areas of x with high values, PI will choose points
around that region. A tuning parameter can be introduced in
order to force PI to explore the space more, but this can
be considered to be more of a hack that yields optimisation
algorithms that are “extremely sensitive” to the choice of
tuning parameter [47].

Expected Improvement (EI) [48] provides a better al-
ternative to PI; it takes into account the probability of
improvement, but also accounts for the expected magnitude
of improvement that candidate points would give. PI is
defined as the quantity,

I(x) = max(f(x") — f(x*),0) (14)



The expected improvement is simply the expectation over
the improvement function given above, FE[I(x)], which,
under the case of a Gaussian density assumption, and using
integration by parts yields [48],

E[I(x)] = (f* — m;)®(z) + v,¢(2)
(ft —my)

Vi

5)

7z =

where ¢ and ® denote the probability density and cumulative
probability density functions of a normal Gaussian distribu-
tion, respectively.

Other acquistion functions exist for the Bayesian optimi-
sation problem, ranging from the simple, such as the up-
per/lower confidence bound method [49], and more recently
developed entropy search methods [50]. In this paper, E
will be used as an acquisition function within the Bayesian
optimisation framework. While other methods exist, the
justification for this choice in this case is given by the balance
between exploration and exploitation that EI provides, which
is sufficient for the problem at hand. There is no reason other
acquisition functions could not be used within the framework
being presented. However, a full comparison of different
functions is outside the scope of this paper.

IV. AUTONOMOUS INSPECTION

The two main components of the autonomous inspection
framework have been discussed so far: robust outlier analysis
and Bayesian optimisation. In this section, the strategy for
combining these two elements in order to create an efficient
outlier search algorithm is laid out.

A. Initialisation

Both in the context of robust outliers as well as Bayesian
optimisation, it would not be a good idea to initialise the
algorithm with zero observations.

Considering first the robust estimates of the mean and
covariance, one of the issues arises from the dimensionality
of the features extracted from the data. In general, one would
require at least twice as many observations as there are
dimensions in the feature vector for the covariance to be well
defined. From this point of view, at least 2d observations
are required prior to commencing a scan. The issue is
exacerbated by the fact that some of the observations may
be potentially discarded from the set used to compute the
covariance, during the FastMCD algorithm. This may bring
the number of observations available to compute the feature
covariance matrix down to too low a number.

On the other hand, one has the problem of the number of
initial observations required to start a Bayesian optimisation
scheme. In general, it is not a wise idea to initialise this type
of sequential optimisation scheme with zero observations, as
this would lead to undefined covairnace matrices, and the
GP would be completely unable to make any predictions of
the objective functions. For the GP to be rendered usable, at
least one observation is required. Event in the limit of such
low observations, this one shot sequential design results in an
initial GP model that is performing pure extrapolation at the

initial stage of the algorithm. Its predictions of where high
function values and uncertain regions lie will tend to be poor
in this extrapolation setting. The result would be an optimiser
that takes much longer to converge to an optimum. Here,
this means requiring more observations to reach a conclusion
over the state of the component.

It is beneficial to initialise the algorithm with a small
number of points, by performing a low resolution scan with
a space-filling design. In the field of Optimal Experimental
Design (OED) a popular choice for this is Latin Hypercube
Sampling (LHS) [51]. Its main feature is that it ensures that
samples are well distributed over the space of each individual
dimension. The result is a GP that performs interpolation,
as much as possible, right from the start of the sequential
steps. One of the drawbacks of LHS is that it tends to under-
estimate the variance of the objective function [52], and this
can have a serious impact on the performance of objective
function as a novelty detector. For this reason, random
sampling from a uniform distribution, in the interval between
the minimum and maximum z, y coordinates is used. This is
sub-optimal in terms space-filling, but is known to provide
an un-biased estimate of objective function variance [52],
which is ultimately more useful here.

The last, and perhaps most important reason to use a
space-filling design such as LHS in the autonomous inspec-
tion scheme is so that the objective function being optimised
is clearly defined. In this case, the objective function being
maximised is the MSD given by equation (1). The MSD is
a function of the data features and the Guassian distribution
parameters, w, 3. These parameters are themselves a func-
tion of the data, estimated through FastMCD. The problem is
that the optimiser decides where to place observtions based
on the objective function, but these observations eventually
change the definition of the objective function. This is an
undesireable situation, but one that can be easily remedied by
initialising the inspection with a space fillling design, of an
appropriate sample size that ensures. Initialisation provides
a stable objective function for which to optimise over. After
initialisation, further updates to the mean and covariance
of the data features are possible as new data arrives, as
these parameters will converge to a stable solution as more
observations are gathered.

Given the discussion above, the problem of exactly how
many samples are required for initialisation translates to
a problem finding the number of samples n required to
correctly capture the parameters of a Gaussian distribution of
dimension p. This problem has been investigated since the
early days of application of pattern recognition algorithms
to one-class classification problems [53] (to which novelty
detection belongs), and continues to be a problem of interest
in the present day [54]. The recommendation in [54] is to
use a sample size of at least 14p in order to avoid non-
convexities in the log-likelihood function used for estimation
of the data feature covariance matrix. This specifies the
minimum necesary to have a well-determined problem. The
minimum number of samples required to correctly capture
the variance of the novelty scores is a different one, and will
in practice tend be greater than 14p. The important aspect is
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Fig. 6: Illustration of outlier search using Bayesian optimisation, on a one-dimensional slice of NDT data. The novelty scores (black)
and its GP mean and 3o-bounds (green), and acquired observations (orange circles) are shown on the left axis. The red horizontal line
represents a 30 threshold on the novelty scores. The expected improvement (blue) is overlaid and shown on the right axis.

gather enough samples to correctly capture the variance of
the novelty indexes, so in this paper Monte Carlo samples
are gathered until the novelty index variance converges to
a stable value. In the wing panel ultrasound data used in
this paper, in practice, 100 samples tend to yield a stable
variance. However, this is domain-dependent.

B. Algorithm Iterations

After the algorithm is initialised, the main iterations follow
Figure 1, where the four main elements of the iteration are:

1) Collect data and evaluate features.

2) Update robust mean and covariance including new
observations and evaluate novelty indices for the entire
set.

3) Condition the GP model on the new novelty indices.

4) Evaluate the Expected Improvement to find next best
suitable location to gather data.

The overall search algorithm, incorporating the robust
estimates of mean and covariance of NDT data features into
the Bayesian optimisation framework is shown in Algorithm
3. Note that in this case, the multi-dimensional features of
raw data are denoted as the vector z, whilst the novelty
scores are denoted as y (and y for arrays), in order to keep
consistency with the input-output notation usually used in GP
literature. The feature vector z could consist of features that
are sensitive to flaws, such as ToF or attenuation, as discussed
in the introduction of this paper. It is worth reiterating that
the Mahalanobis distance computes novelty scores for multi-
dimensional data, so it is possible to use high dimensional,

informative features such as an autocorrelation function or
an entire ultrasound pulse sequence. The use of such high-
dimensional features in the context of ultrasound NDT and
SHM has been investigated in the past [55].

An illustration of the application of Algorithm 3 is pre-
sented in Figure 6. The autonomous search was carried out
using the same ultrasound data as the one utilised in Section
II to demonstrate the application of robust outliers to NDT
data. The data was taken along a one-dimensional cross-
section of an aerospace carbon fibre plate specimen, that
includes an area of delamination. The cross-section selected
for the example shown in Figure 6 was selected as it cuts
across two regions that contain damage. The example shows
the output of the iterations for increasing number of observa-
tions, and initialised with five random samples. At the point
of initialisation, the uncertainty close to observed values is
low, and grows at points far away between observations.
Overlaid on the plots, in light blue is the EI. Its maximum
indicates the location where the next observation is to be
taken. It can be observed from Figure 6 that as expected, the
algorithm carries out a balancing act between exploration
and exploitation. In the initial stage, it places slightly more
observations at high novelty index values, but then moves
away to explore areas of low novelty index values but high
uncertainty. As more observations are gathered and areas of
low novelty are explored (and thus its variance reduced),
EI starts to weight more heavily those locations with high
function values. On the last instance shown in Figure 6,
observations have been placed evenly in areas of low novelty
indexes, and there is a higher density of observations placed
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around the areas of delamination. Furthermore, on this last
instance the EI indicates a clear priority for high novelty
indices, meaning that if the algorithm were to run more
iterations it would concentrate around areas of damage.

The mean and covariance of the data are re-estimated at
every iteration of the algorithm in a robust manner using
FastMCD. It has been discussed above how the autonomous
inspection algorithm presented here tends to place more
observations in regions of damage. On the other hand there
is the fact that the MCD method defines inliers as those
representing at least 50% of the data. From these two
points, it is easy to see how placing more than 50% of the
observations around damaged regions will result in a shift
where the damage area defines the data inliers, and the data
for rest of the undamaged component are defined as outliers.
This is of course undesired. In order to remedy this, any
observations flagged as outliers after the initialisation step,
have to be excluded from the set used to re-estimate the mean
and covariance of the data. For this reason, the initialisation
step is also very important. The LHS sampling scheme used
for initialisation is agnostic to whether a region is damaged
or not, so the locations where observations are placed are
not biased in this sense. The use of the MCD is most critical
at this stage. After initialisation, outliers can be removed
through simple use of a threshold. However, MCD is an
excellent way to to separate outliers in the type of batch
data generated by the initial scan.

Algorithm 3 Autonomous Inspection

Initialise g and ¥ and z;,, with low resolution C-scan
while v;_; > aafL Vit > budget do
Xy < arg maxy u(x|Di_1)
z; <— Acquire data at x
y < mahal(Zin, pu, X) > Compute novelty scores
Zin, < 2]y < T > Update outlier-excluding set
w, X < FastMCD(z;,) > Update robust statistics
Dy« {D, (x¢,91)} > Include new observations
end while

> Maximise utility

C. Threshold estimation

One important aspect of the algorithm, in particular the
novelty detection part, is the definition of a threshold over
the MSD above which observations are defined as outliers.
There is more than one way of tackling the threshold
selection problem. Methods commonly used in SHM for this
include the use of percentiles, Monte Carlo sampling [3],
and extreme value statistics [?], [?]. In this paper, a simple
threshold-selection method was used, for the sake of simplic-
ity. The threshold was determined by computing the MSD of
points six robust standard deviations away from the robust
mean, along each dimension. This thresholding methodology
makes use of the robust covariance computed by FastMCD,
which has already been tuned for the separation of inclusive
outliers.

D. Estimating probability of damage

The desired output from the search algorithm is a sum-
mary of the probability that the component being inspected
contains flaws. An observation is flagged as abnormal if its
novelty score is higher than the damage threshold. The GP
provides a probabilistic estimate of the novelty scores over
a two-dimensional spatial field. The probability that a given
novelty score at spatial coordinate x corresponds to damage,
is given by the probability that its novelty score is under the
threshold T (computed as discussed in Section IV-C). This
can be obtained using the mean and variance estimates from
the GP, which define a local Gaussian distribution for the
novelty scores through m; and v,.

The probability that this uncertain measurement lies above
the threshold, is thus given by the integral of the Gaussian
probability density function between the threshold and infin-
ity:

ply>T)= /;P N(my,vy)dy (16)
which can be evaluated in a straightforward manner from the
cumulative density function of the Gaussian:

Vi

so>1 = an
where, as before, ® represents a Gaussian normal cumulative
density function. Note that this is effectively the same
quantity as the PI acquisition function, used in Bayesian
optimisation, but where the maxima is given by the novelty
threshold. This quantity is then assessed at every spatial
coordinate for which a GP prediction is available. When the
variance of the GP is high, implying it is predicting at points
far away from any observations, the natural tendency will be
for the probability of damage to be high, as there will be a
high probability mass between the 7" and occ. Note that this
measure is sensitive to the definition of T', so an estimate of
the threshold should be used that truly captures the variability
of the maxima of the novelty indexes. The probability of
damage assumes the meaning of the probability that the GP
prediction exceeds the highest novelty index that would be
attributed to a normal-condition process.

Figure 13 provides an illustration of the problem using a
small subset of the ultrasound NDT data from the wing panel.
On the left Figure 13a shows a set of MSDs corresponding to
the training data. Note that no values above the threshold are
shown because, as per Algorithm 3 and the above discussion,
these observations are discarded for the purpose of building a
reference covariance model. On the right, Figure 13b shows
four different predictions of a GP, corresponding to 1) a low
mean with low variance, 2) a low mean with high variance,
3) a high mean with high variance and 4) a high mean
with low variance. Overlaid on the probability densities is
the probability of damage, computed using equation (17).
This provides an intuitive view of this quantity; it is simply
the amount of total probability mass above the threshold. In
the case of an inlier GP prediction with low variance, this
quantity is negligible, and thus close to zero; one can be
confident that the observation is not an outlier. If variance



increases, a more significant amount of probability mass lies
above the threshold, and hence the probability of damage
rises, even though the mean may still be within the threshold.
In the case of outlying means, a high variance will tend to
lower the probability of damage, while a low variance will
have the effect of getting it closer to one.

Note that the GP prediction is characterised by a Gaussian
distribution. Its tails decay to infinity, so there will always
be some small probability mass either under or over the
threshold, therefore never allowing a probability of damage
of zero or one. In practice, if either a very low, or very high
variance exist, finite numerical machine precision means it
is possible that a probability of one or zero to results from
equation (17).

One important aspect to highlight is that there is a lower-
bound on the probability of damage that can be predicted
by the GP, and it is given by o2 (see equation (9)). This
noise variance sets the minimum variance to be predicted
by the GP at any given input location. In principle the
lowest achievable MSD of any given observation is zero,
as that means one has an observations that exactly matches
the mean of the data. By construction, the lower-bound on
damage probability can be obtained by setting m; = 0 and
vy = 0, in equation (17). This lower-bound is of particular
practical value when considering the termination criteria for
the algorithm. This is discussed further in Section IV-G.

E. Two-dimensional example

An illustration of the autonomous inspection procedure in
a two-dimensional subset is shown in Figure 8. Note that
this is a subset of the data shown in Figure 2. As in the
previous illustrations, ToF and ultrasound signal attenuation
were used as features. The section shown in Figure 8 is the
region around the delaminated area of the composite, on the
top section. Algorithm 3 was applied to this data set.

The figure shows the evolution of the location of the obser-
vations as data is gathered, illustrating the mean and variance
of the GP, and the probability of damage derived from them.
Note that as soon as a region of high novelty values is
discovered, the search prioritises exploitation around this
region, until the uncertainty around it is significantly reduced,
so it becomes more worth-while to explore somewhere else.
Note that the result of the search is close to a grid search in
regions of low novelty, with a resolution given by ¢, while a
higher resolution of observations is placed around potentially
damaged regions.

FE. Adjusting the level of risk via the GP prior

Even though the GP is often branded as a “nonparametric”
regression technique [45], it does depend on a small number
of hyperparameters, and their values will greatly influence
the result of the optimisation. The interesting point is that
their values will effectively dictate the level of uncertainty
one is willing to accept about finding a flaw of a specific
size. It has already been discussed in Section III-D how
a covariance function can be interpreted as modelling the
expected correlation between two pairs of observations,

separated by a Euclidean distance r apart. By specifying
the length-scale parameter of the covariance function, one
effectively specifies the expected distance from observed
points, where observations will be correlated.

As previously discussed in III-D, the Matérn kernel will
be used in the experimental investigations of this paper.
Referring back to (12), the relevant hyper-parameters in this
case are the characteristic length-scale, ¢2, and the scaling
parameter, UJ%, of the covariance function. Since observations
are assumed to be corrupted with noise, a variance term, Ufl,
is also required to model the additive noise on top of the
functional input-output relationship.

The length-scale, ¢ controls the rate, in the input space, at
which the variance grows as one moves away from observed
values. In this problem of spatial sampling, it means that
small length-scales will result in variance growing at high
rates between observations far apart, while long length-scales
will result in the GP predicting a lower variance between
those same observations. This point is illustrated in Figure
9 where the variance is shown for a GP conditioned on two
observations for a range of growing length-scales.

This point of the length-scale controlling the variance rate
of growth is emphasised here because it effectively controls
the risk one is willing to accept regarding detecting a specific
flaw size. This is the tuning parameter of this algorithm that
will have the most impact on the resulting data acquisition,
and overall probability of damage estimates. It will influence
the acquisition of data, as this is decided based on the
acquisition function (EI in this case), and this will be guided
partly to place observations in areas of high uncertainty.
Short length-scales will mean observations will be placed
closer together, and vice-versa.

The recommendation here is that the length-scale used
should match the minimum expected flaw size. The form of
the covariance function used can shed some light into what
this implies. For instance, the (unscaled) Matérn 3/2 function
used in this paper in particular, yields a correlation of 1/2 at
a distance ¢ apart, and a sharp decay in correlation beyond
that. This means that good interpolation is expected from the
GP at a distance of at least ¢ and placing observations closer
to this is inefficient, whilst placing observations further away
increases risk.

If a component were to be scanned that contained no
anomalies whatsoever, this autonomous inspection scheme
based on Bayesian optimisation should result in a scan with
an average spatial resolution of ¢ (the acquisition of data
would change when high novelty scores are found).

The other two hyperparameters also play an important role
in the uncertainty quantification given by the GP; the process
variance a]% and the noise variance o2. The process variance
will place an upper bound on the total possible uncertainty. It
effectively specifies prior information on the uncertainty and
defines the variance in the absence of any observations. The
noise variance does exactly the opposite and places a lower-
bound on the uncertainty by specifying the variance around
regions where plenty of observations exist. In other words,
the noise variance provides an indication of the inherent
variability in novelty indexes that is to be expected by taking
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the same observation multiple times at the same location. actual data collected, so that it represents the true noise floor

that the optimiser is working towards.

As intuition would now dictate, the length-scale controls
the total number of observations required to achieve a given
spatial resolution, and to shirnk the uncertainty elsewhere to
the lower-bound. Short length-scales therefore lead to low
convergence rates and vice-versa. This effect is illustrated
in Figure 10, where the average variance and its 30 bounds
are shown for 800 iterations of Algorithm 3 over a two-
dimensional sub-section of a composite specimen.

G. Convergence

An important question to ask is when should the algorhtm
stop searching? This is non-trivial. If it were to be collecting
observations forever, then it would bear no advantage against
a simple grid search. All three hyperparameters affect con-
vergence characteristics, each in a different way.

The lower bound on the variance given by o2 is clearly
important from the point of view of convergence criteria. If
all the regions of high function values have been explored
and the uncertainty across the whole range of possible
measurement locations has been shrunk to a level close to
afl, then there is no more information to be gained from
further observations, so the optimisation has converged and
the search should be stopped. The noise variance is therefore
a critical value and it is crucial that it be estimated from the

The process noise of the GP o, has the ability to control
the exploration-exploitation characteristics of the optimiser.
Because it defines an upper limit on vy, if it is set too low,
even with a low number of observations, most areas of the
space will default to aj%. The result is that the acquisition
function (assuming EI, or a similar measure is used) will
choose to only scan at points of high mean values, thus
performing pure exploitation. This would lead to a high
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resolution scan around areas were flaws are suspected (high
m,), but an under-exploration of the rest of the space. On the
other hand, setting a high value of 0]2[ would result in pure
exploitation, as it would lead to extremely high uncertainty in
the space observations. A middle ground is clearly necessary,
and one reasonable solution would be to scale the data to
unit standard deviation, and set scaling hyper-parameter to a
reasonable value such as o2 = 1. However, the data in this
case are novelty scores, evaluated sequentially, so the re-
scaling of the data would also need to happen sequentially,
introducing another layer of complexity.

H. Hyperparameter selection

As discussed in Section IV-F, selection of ¢ should be done
purely in terms of expected flaw size, so this should be user
and problem dependent. The process and noise variances on
the other hand, should be estimated from the data, as these
control the optimiser behaviour and the convergence criteria.
There are a number of methods available to do so, and a
discussion of these is outside the scope of this paper. The
view of the authors, however, is that some effort should be
taken so that these two hyperparameters at least approximate
the best fit of the data. In this paper, hyperparameters are
learned using the data gathered at the initialisation stage,
using Bayesian optimisation with the marignal likelihood of
the GP as an objective function. More details on the general
use of Bayesian optimisation for machine learning models
is given in [56]. There are various ways of carrying out
the hyper-parameter seleciton in the general case of GPs,
some are discussed in [45]. Some interesting results using
Sequential Monte Carlo (SMC) to update hyperparameter
estimates in an optimisation setting are presented in [57].

1. Managing the computational burden of the GP

Note that in order to evaluate them, the matrix P, defined
in Equation (9) has to be inverted. The covariance matrix
K (x,x;) will have a size of n; x n;, where n; is the number
of training observations. Inversion of P, therefore carries
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Fig. 10: Ilustration of convergence rate with varying lengthscales.
The solid line represents the average variance of the GP predictions
in two-dimensional space, the shaded area represents the 3¢ bounds
for the GP variance (the variance of the variance).

a computational complexity of O(n;)3. As the number of
training observations increase, the computational burden can
be a problem for the GP model. Various methods exist in
order to aleviate this, most of which leverage the idea of
approximating the posterior over f using inducing points.
Reviews of inducing-point approximations can be found in
[58] and more recently in [59]. Applications of sparse GPs to
modelling large quantities of spatial data can also be found
in [60]. Note that while sparse approximations to GPs are
practical in certain situations, to the authors’ awareness, their
application to the problem of Bayesian optimisation has not
been investigated in detail, so any use of it should be carried
out carefully.

In the context of inspection, the matrix inversion problem
will only arise when scanning large areas with a small target
minimum flaw size, as this would lead to a problematic
number of large training points. A straight-forward way to
deal with the computational burden would be to break the
inspection area down to a smaller number of manageable
sections, each with their own local GP.

Another source of computational burden is the evaluation
of the covariance function between pairs of training and
testing points, K (x,x*) where, in the spatial domain, x*
defines the field over which the GP posterior is to be
evaluated. The number of training points, x should be small
compared to the field over where a mean and variance of the
GP are sought (if not then one may as well just do a high
resolution C-scan instead). Due to the potentially large size
of x, the simple task of evaluating this covariance matrix
could be fairly burdensome, to the point where computation
at each step may take longer than the physical data collection.

This problem can be dealt with by evaluating only a small
number of points in x, chosen by sampling a uniform distri-
bution over their indices, at every iteration of the Bayesian
optimisation scheme. This would alleviate the computational



burden, but also ensure that in the limit of a large number of
random draws from the physical coordinates, the evaluated
field will approximate the true field of the GP.

V. EVALUATION OF ALGORITHM PERFORMANCE

This section presents an experimental investigation of the
application of the autonomous inspection scheme presented
so far. The test specimen being presented is an aerospace
composite panel manufactured from carbon fibre compos-
ite. The specimen contains at least two regions where de-
lamination has occurred.

It is important to highlight that the algorithm is being ap-
plied to pre-recorded data. This allows for the investigation,
presentation and discussion, to be of a general nature and
focused on the statistical inference side of the algorithm,
without having to consider the integration and constraints
that would apply to any specific robotic interface.

A. Experimental set-up and data acquisition on composite
wing panel

An 800mm x 550mm composite panel was scanned using
a six-axis robotic head, with a water-coupled ultrasound
probe. The probe consists of 64 transducers, each of which
fires a SMHz tone burst, and also acts as a receiver. The
resolution of the scan can be adjusted, but for these results,
the speed of the probe was adjusted to yield a spatial
resolution of 0.8mm in the direction of the probe travel. The
C-scan shown in Figure 2c was generated using this data set.
Details of this experimental procedure have been published
in [1], where the interested reader is referred to for further
details.

In order to capture the range of different depths of this
composite specimen, an acquisition time of 9.6us was used.
This equates to 480 samples at a sample rate of 50 MHz.
The original ultrasound pulses collected through the water-
coupled probe are susceptible to misalignment with respect
to the arrival time of the first burst (the front wall reflection).
This is evident, for example, in the illustrative B-scan shown
in Figure 2b.

Two data features extracted from the ultrasound pulses
were used: ToF and attenuation, between the front and
back wall of the specimen. In order for the missaligment
across B-scans not to affect the data features, the ToF and
attenuation were both estimated using a Hilbert envelope
of the autocorrelation of each pulse, where the location of
the maximum lag specifies the ToF and the attenuation is
extracted from the argument of the envelope at that time lag.
Note that these computation could be performed directly in
a compressed domain, thus requiring an even lesser quantity
of data, adopting the techniques developed in [20].

Specimens containing different types of realistic damage
are hard to come by, so in order to demonstrate the algorithm
on a real specimen, the same specimen available was divided
into a total of 8 different regions, some containing damage
and some not. These regions are shown in Figure 11.
Note that only regions from nominally similar areas of the
composite specimen are considered here. These are the thin
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Fig. 11: Divisions of composite specimen used for experimental
investigation. Colour-map indicates ultrasonic ToF.
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Fig. 12: Probability of damage contours resulting from the auto-
mated inspection algorithm, applied to eight local regions in the
composite specimen.

wall sections, as there are two areas of known delamination
in this region, as well as enough area free of damage in order
to demonstrate the inspection results in both cases.

B. Results

The probability of damage resulting from the application
of the autonomous inspection algorithm is shown in Figure
12, as contours overlaid over the spatial coordinates of each
of the eight sub-sections analysed individualy. The damage
probability contours, correctly localise the two known areas
of de-lamination with a near 100% probability of damage.
The two de-laminated regions have cross-sections of no less
than 50mm. As such, the result is not too surprising, given
that a length-scale of ¢/ = 10mm was used for this search,
so any regions with observations at a spacing much more
than ¢ will develop high uncertainty, and thus be prioritised
by the search. This makes the identification of damage in
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Fig. 13: Probability of damage evolution during sequential data acquisition, for the eight different regions analysed.

regions two and six, almost guaranteed. More interesting is
the fact that the small area of de-lamination that was caught
up in zone three has been detected with high probability,
even though the maximum size of the de-laminated area, (as
observed through the original high resolution C-scan) it has
an overal maximum length of Smm.

As observations are collected sequentially, one is inter-
ested in the evolution of the probability of damage for every
region. This is shown in Figure 13. For each region of
inspection, the interesting metric overal maximum observed
damage, so in order to summarise this, the 99th percentile
of the estimated damage prbability per region is plotted in
Figure 13. Note that this “test” was run with a maximum
budget of 500 observations per region, although some termi-
nated early, due to the lowest predicted GP variance reaching
the estimated o2. In zones two and seven, where a probability
of damage of 100% has been estimated, termination occured
as the algorithm attempted to collect data at a previously
observed location, of high novelty index value. This is an
artifact of applying the algorithm to pre-recorded data, as
there is a finite discretisation grid. The only region that did
not converge in this case is region eight, albeit with a very
small probability of damage of 10x 10750,

During the first 100 observations, the damage probability
tends to jitter. This is due to the fact that the robust statistics
were re-estimated througout the first 100 observations, and
held fixed afterwards. Also, in regions with small man-
ufacturing imperfections (evident as small round features,
predominantly in regions one and four), the 99" percentile
of the damage probability tends to jitter around, instead of
converging down to a small value.

It is easy to note that in the regions where damage
was found, this was found with a very low number of

observations, and any more observations from that point
onwards only help to confirm the presence, location and
extent of damage (exploitation, in the Bayesian optimisation
context), as well as exploring the remaining space, once
the damage has been characterised well. Conversely, regions
without damage take more observations to converge to a low
damage probability, as it simply takes more observations to
reduce the uncertainty along all spatial coordinates by means
of exploring the space. It is also interesting to see that in zone
six, where only a Smm region of damage exists, the damage
probability did not reach a level close to 100% until around
300 observations were acquired.

The advantage of applying this autonomous inspection
scheme is made clear when one considers that the originald
C-scan data for each zone consists of approximately 39000
observations (individual ultrasound pulses, or A-scans). Per-
forming the data collection sequentially using the Bayesian
optimisation scheme reduces this significantly, while at the
same providing the required information output in the form
of a damage probability.

VI. CONCLUSIONS

A fully data-driven framework for autonomous inspection
based on a combination of Bayesian optimisation ideas, and
robust outlier analysis has been presented, and demonstrated
on an NDT data set consisting of ultrasound measure-
ments on a high value aerospace composite specimen. The
demonstration of the algorithm on this specific specimen
was chosen as it contains damage-free regions as well as
de-laminated sections. The algorithm is data-driven as it
makes use of robust inference of the mean and covariance
of the NDT data features, which means that outliers that
are present in the data set, either because they represent



anomalies or simply bad data, are identified and exluded
from the estimation of the data statistics. The inspection
scheme presented here is probabilistic, and it is aimed at
minimising risk against an expected flaw size. The risk
minimisation is provided by utilising standard Bayesian
optimisation techniques, which also allow this algorithm to
run sequentially. The impact is that the damage inference can
be performed on-line, and terminated either when no further
information can be gained from the scanned, or when damage
has been found. Bayesian optimisation is designed to find
optimal points using the minimum number of observations
possible. In the context of inspeciton, this implies that if
a specimen does contain damage, or other anomalies, they
will be found quickly, and the inspeciton will focus around
this areas. If no damage is present, the inspection will focus
on minimising risk, by means of exploring the space. This
paper has focused on the presentation of the algorithm,
with demonstrations on real-world robotic platforms left as
motivation for future work.
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