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Abstract 

In this work, we propose an integrated methodological approach aimed at identifying the most 

suitable strategy to improve the sustainability of the water softening industry via the treatment 

and recycling of the produced wastewater. For the first time, different concentration 

technologies and energy supply systems are compared to minimize the environmental impact 

of the industrial process and to ensure the economic feasibility of the treatment system. The 

comparison concerns three treatment chains, presenting the same pre-treatment step 

(nanofiltration and crystallization) and different concentration technologies: Multi-Effect 

Distillation (MED), Membrane Distillation (MD) and the coupling of Reverse Osmosis and 

Membrane Distillation (RO-MD). In the case of electricity supplied by the grid, the MED and 

the RO-MD chain are economically competitive with the state of the art (Levelized Brine 

Cost (LBC) between 4 and 6$/m3, lower than the regenerant solution cost, equal to 8$/m3). 

Moreover, the specific CO2 emissions due to the energy required by the treatment processes 

(10.8 kgCO2/m3
regenerant for the MED chain and 16.7kgCO2/m3

regenerant for the RO-MD chain) are 

lower than those produced by the current system (19.7kgCO2/m3
regenerant). Varying the feed 

flow rate, the MED-chain is more feasible at larger plant sizes for its lower energy demand, 

while the chain including RO-MD shows lower costs at smaller plant sizes for its lower 

Self-archived version of the article published in Desalination: 
M. Micari, M. Moser, A. Cipollina, A. Tamburini, G. Micale, V. Bertsch 

Towards the Implementation of Circular Economy in the Water Softening Industry: A 
Technical, Economic and Environmental Analysis, Journal of Cleaner Production, 255, 

2020, 120291. https://doi.org/10.1016/j.jclepro.2020.120291 



2 

 

investment costs. When a photovoltaic-battery system is coupled, both the MED-chain and 

RO-MD-chain show a CO2 emission reduction of more than 75% with respect to the state of 

the art. Furthermore, their LBC values are very competitive, especially if the plant is located 

in a region with high solar potential. 

Keywords 

Industrial Wastewater, Circular Economy, Treatment chain, CO2 emissions, Recycling, 

Membrane Processes 

 

1. Introduction 

Sustainable development (SD) is considered the only feasible answer to the simultaneous 

growth of energy and water demand and the increase in environmental pollution. According 

to the definition given by the Brundtland commission in 1987, SD is able to “meet the needs 

of the present without compromising the ability of future generations to meet their own needs” 

(World Commission on Environment and Development 1987). SD is typically presented as a 

three-dimensional concept, which accounts for environmental, social and economic aspects. 

Therefore, different criteria may be employed to assess the sustainability of a process, such as 

CO2 emissions, water and energy requirements, costs, labour conditions and economic growth 

(Janeiro and Patel 2015). One of the most acknowledged ways to achieve the SD consists in 

the application of the circular economy (CE) concept (Geissdoerfer et al. 2017). The concept 

was originally introduced by Boulding in 1966 and suggests that economy should be a 

circular system to ensure the sustainability of human life on Earth (Boulding and Jarrett 

1966). According to the definition given by the Ellen MacArthur Foundation, CE is “an 

industrial economy that is restorative and regenerative by intention and design” (Ellen 

MacArthur Foundation 2013). The main objective of CE is the promotion of a more 

appropriate and environmentally friendly management of resources, to achieve a cleaner 

industrial production (Ghisellini et al. 2016). To this aim, new business models (Gusmerotti 

et al. 2019) and, eventually, a redesign of the industrial processes (Zhijun and Nailing 2007) 

are required to decouple the economic growth and the consumption of resources (Suárez-

Eiroa et al. 2019). Different methodologies and indicators are used to assess the CE 

performances: most methods concern Life Cycle Assessment analyses and process design to 

enable the circularity (Sassanelli et al. 2019). The indicators, which were proposed in 2018 by 

the European Commission within a CE monitoring framework, mostly concern circularity 

degree, waste generation and production of secondary raw materials (Eurostat 2018). These 
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can be categorized according to the levels of application: micro (single processes or 

consumers), meso (industrial parks) and macro (cities, regions or nations) (Saidani et al. 

2019).  

Several works in literature focused on the implementation of CE at the micro-level, 

investigating new strategies to treat the industrial effluents and to produce (i) sellable raw 

materials and/or (ii) material streams to be reused in the industrial process. Significant 

attention has been devoted to the food industry (Mirabella et al. 2014). Depending on the 

specific food, different types of waste are produced and consequently different substances 

may be extracted (Cardinali et al. 2012), (Abdelkader et al. 2019). The sugar industry 

produces a significant amount of waste and the investigated waste valorisation strategies 

mostly regard the utilization of sugarcane biomass for energy (Gopinath et al. 2018) and 

biofuels production (Cardona et al. 2010). Also in textile industry, the production of 

wastewater streams represents a severe issue, because of the high content of colour, organic 

compounds and salt in the discharged dyeing solution (Holkar et al. 2016). Different strategies 

have been developed to treat and recycle the effluent as fresh dyeing solution: these include 

combinations of membrane processes, as ultrafiltration and nanofiltration (Nadeem et al. 

2019), advanced oxidation processes (Bilińska et al. 2017) and biological treatments (Sarayu 

and Sandhya 2012). Finally, other industrial sectors are characterized by high water 

consumption and, consequently, by the production of significant volumes of wastewaters, 

such as paper, laundering and coal mine industry. To achieve a sustainable production, the 

wastewater may be treated to reduce the organics content (Man et al. 2017) and to recover 

valuable materials, as water and detergent in the laundering industry (Giagnorio et al. 2017) 

and salts (Turek et al. 2008) as well as rare earth elements in the coal mine industry (Lopez et 

al. 2019). 

Another industrial process producing significant volumes of wastewater is the water softening 

industry. Water softening is a purification process aimed at removing the hardness from 

water, via the employment of Ion Exchange resins. Periodically, the resins are regenerated 

supplying a NaCl-water solution and the regeneration produces a wastewater stream, 

containing sodium, chloride and bivalent ions (magnesium, calcium and sulphate ions). 

Currently, this effluent is disposed into the environment, since there are no organic pollutants 

or harmful components. However, the frequent release of concentrated brine from Na-charged 

softeners is becoming a crucial concern as it is detrimental to agriculture and downstream 

water quality (Li et al. 2016). A few works in the literature focused on the design of 

alternative ion exchange resins (Li et al. 2016), (Birnhack et al. 2019) or alternative thermal 
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(Chandrasekara and Pashley 2015) and electrochemical regeneration processes (Chen et al. 

2016) to avoid the release of a high amount of Na+. However, in most cases, the technical 

investigation is not coupled with an economic and environmental analysis of the proposed 

systems.  

This work focuses on proposing and demonstrating a methodological approach for the 

identification of the most suitable treatment chains to achieve a cleaner production in the 

industrial water softening, integrating technical, economic and environmental analyses. The 

proposed treatment chains are devised to reduce the demand of raw materials in the industrial 

process and to limit the environmental pollution due to the effluent disposal. In fact, in the 

proposed configurations, the Na-rich effluent is not disposed into the environment, as it is 

treated and then recycled to the industrial process. The chains present a pre-treatment and a 

concentration step, as shown in Figure 1. The pre-treatment processes (nanofiltration and 

crystallization) aim at separating the bivalent ions, while in the concentration steps the 

remaining NaCl-water solution is concentrated up to the concentration of the fresh regenerant 

solution to be recycled. Three alternative concentration technologies are considered: (i) multi-

effect distillation (MED), (ii) membrane distillation (MD) and (iii) reverse osmosis coupled 

with membrane distillation (RO-MD).  

 

Figure 1. Scheme of the treatment chains for the presented case study. The industrial process is 
represented by the box framed in yellow (solid line), the pre-treatment steps by the ones in blue 
(dashed line) and the concentration step alternatives in red (dash-dotted line). The box on the left 
(black dotted line) represents the current industrial process. 
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Firstly, the chains with different concentration technologies are compared, by assessing the 

economic feasibility, the energy requirements and the environmental impact due to the CO2 

emissions. Secondly, we investigate the impact of different drivers on the selected 

technologies, with a focus on the self-generation of electricity via a PV-battery system and on 

the solar radiation conditions of the region selected for the plant location.  

Overall, for the first time, this work aims at establishing a methodological approach that 

allows for identifying the most economically feasible and environmentally friendly strategy to 

move towards a CE approach in the water softening industry, comparing different 

concentration technologies and energy supply systems.  

 

2. Methodological Approach 

The methodological approach followed in this work is sketched in the block diagram of 

Figure 2. This novel multi-step approach provides various levels of investigation. Firstly, 

techno-economic models are developed and implemented for each process on the basis of 

literature equations, experimental data and data given by the vendors. Secondly, the most 

significant technical and economic inputs and outputs of the models are defined and, 

accordingly, the models are interconnected. Different systems can be devised depending on 

how the models are interconnected and, correspondingly, different treatment chains can be 

simulated. Finally, for a given set of operating conditions and input data, the performance of 

each chain is estimated via the definition of global outputs, accounting for technical, 

economic and environmental aspects.  

 

 

Figure 2. Block diagram showing the methodological approach followed in this work. 

 

2.1 Development of technical and economic models 
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In the following, a short description of the techno-economic models is reported. The models 

of NF and MED were described in previous works (Micari et al. 2019a, Micari et al. 2019b) 

and RO and MD models are presented in the Supplementary Materials.  

Nanofiltration.   

Nanofiltration is a pressure-driven membrane process, which is suitable to remove bivalent 

and multivalent ions thanks to the high membrane rejection.  

We implemented a multi-scale model including three different scales. The low-hierarchy 

model assesses the membrane behaviour and is based on the Donnan Steric Pore Model with 

Dielectric Exclusion (Geraldes and Brites Alves 2008). The model solves the extended 

Nernst-Plank equation within the thickness of the membrane and takes into account the 

boundary conditions given by the exclusion mechanisms (Labban et al. 2017). The main 

results of the low-hierarchy model are the ionic rejections and the water flux. These are some 

of the inputs of the medium-hierarchy model, which describes the NF unit along the feed main 

flow direction. Thus, mass balances are applied to define the concentration and flow-rate of 

permeate and feed for each discretization step (Roy et al. 2015). Finally, the high-hierarchy 

model estimates the required size of the NF plant, given by NF units arranged in series and in 

parallel, to achieve a certain total recovery (ratio between permeate and feed flow-rates). 

Regarding the energy demand, the NF process requires electricity to pump the feed up to the 

defined pressure. The economic model follows the Verberne cost model (Van der Bruggen et 

al. 2001).  

 

Crystallization.   

Two crystallization units are included in the chains to produce Mg(OH)2 and Ca(OH)2, using 

a NaOH-water solution as alkaline reactant. Each crystallizer is followed by a filter, where the 

crystals are obtained from the magma produced in the crystallizer. For this process, we 

implemented a simplified model based on mass balances under the assumption of a 100% 

conversion of the dissolved Mg2+ and Ca2+ into Mg(OH)2 and Ca(OH)2 respectively (Cipollina 

et al. 2014). Concerning the energy demand, two terms are estimated: (i) the pumping energy 

to pump the solutions to the crystallizers and (ii) the electric energy required by the filters. 

Finally, regarding the economic model, the Module Costing Technique is applied for the 

estimation of the capital costs, with suitable parameters for crystallizers and filters found in 

literature (Turton et al. 2012). The operating costs are due to the reactant and the energy 

supply, while the revenues are given by the minerals, which are supposed to be sold at the 

current market price. 
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Multi-Effect Distillation.   

The MED process has been widely investigated in literature, mostly for seawater desalination 

purposes (Kamali et al. 2008), (El-Dessouky and Ettouney 1999). The MED plant modelled 

for this work presents a forward-feed arrangement, since this is more suitable to the high 

temperatures and concentrations expected in the investigated cases (Ortega-Delgado et al. 

2017). The plant is composed of a certain number of stages in series, each one presenting a 

heat exchanger, where the feed partially evaporates, and a preheater, where the feed is heated 

up before entering inside the stage. The model includes an iterative procedure, which runs 

until three conditions are simultaneously achieved: (i) the areas of the heat exchangers of each 

stage are equal, (ii) the areas of the preheaters are equal and (iii) the outlet distillate flow-rate 

fulfils the overall mass balances, depending on the required brine concentration. The distillate 

is supposed to be pure water, which can be sold at the current market selling price. 

Concerning the energy requirements, the thermal energy is the prominent term, given by the 

steam flow-rate multiplied by the latent heat at the given pressure. The electricity demand is 

fixed and equal to 1.5kWh/m3
dist (Gebel and Yuce 2008). The details of the economic model 

are reported in a previous work (Micari et al. 2019b). 

 

Reverse Osmosis.  

Reverse Osmosis is a desalination process, based on a membrane separation under an applied 

pressure. The model has a hierarchical structure, as shown in detail in the Supplementary 

Materials: it goes from the investigation of the membrane properties and the estimation of the 

fluxes to the design of a whole plant. The RO plant typically presents many vessels arranged 

in parallel to reach a certain total recovery, similarly to the NF plant (Dow Water and Process 

Solutions). Each vessel contains a number of RO units in series with spiral-wound geometry. 

Concerning the energy demand, RO requires only electricity to pump the feed up to the inlet 

pressure. Finally, the economic model includes the calculation of the capital costs, composed 

of the costs of membrane elements, pressure vessels, high pressure pumps, piping and intake 

costs (Wilf and Bartels 2005), (Malek et al. 1996). The operating costs account for electricity 

demand, maintenance (3%/y of the investment plus 20% of the annual labour cost), labour, 

chemicals and membrane replacement (Vince et al. 2008). 

 

Membrane Distillation.  
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MD is a separation process, which presents a microporous hydrophobic membrane, permeable 

only to water vapour. A temperature gradient between the two membrane interfaces leads to a 

vapour pressure difference, which generates a vapour flux through the membrane. The present 

model describes a Direct Contact MD (DCMD) configuration, which was selected for its 

simplicity and the high vapour fluxes (Winter et al. 2011). The details of the implemented 

model are reported in Supplementary Materials. In the DCMD membrane model, the trans-

membrane vapour flux is calculated combining heat and mass transfer equations (Qtaishat et 

al. 2008). In the DCMD unit model, mass and energy balances are set up to investigate flow-

rate, concentration and temperature profiles along the feed stream-wise direction (Hitsov et al. 

2017). Finally, the DCMD plant model simulates a high-scale plant, where the MD units are 

arranged in series and in parallel to reach a high recovery (Ali et al. 2018). Regarding the 

energy consumption, heat is required to increase the temperature of the feed from the intake to 

the inlet temperature and in each intermediate heater. Electricity is required to pump the feed 

and the permeate entering each module in series. The economic model estimates the capital 

costs, given by the costs of modules, membrane, pumps and heat exchangers, together with 

the cost for intake and pre-treatment (Hitsov et al. 2018). Conversely, the operating costs 

comprise the electricity and heat demand, maintenance (2.5%/y of the investment cost without 

the cost of membranes and modules), labour, chemicals and membrane replacement cost (Al-

Obaidani et al. 2008).  

 

2.2 Definition of inputs and outputs 

Every treatment process presents inlet and outlet material and energy flows, which correspond 

to inputs and outputs of the technical models. Most of the outputs generated by the technical 

models are fundamental for costs’ estimation. The most important inputs and outputs for each 

model are reported in Table 1, where the outputs constitute the inputs for the relevant 

economic model. 
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Table 1. Main inputs and outputs of the technical models.  

MODEL INPUTS OUTPUTS 

Nanofiltration 
(NF) 

- Feed flow-rate and composition 
- Feed pressure 
- Total recovery  
- N° of elements (vessel) 
- Membrane rejection 

- Permeate flow-rate and composition 
- Retentate flow-rate and composition 
- N° of vessels in parallel 
- Electricity demand 

Crystallization 
(cryst) 

- Feed flow-rate 
- Feed concentration (Mg2+ and Ca2+) 
- Alkaline solution concentration 

- Produced flow-rate of hydroxides 
- Flow-rate of alkaline solution 
- Effluent flow-rate and composition 
- Electricity demand 

Reverse 
Osmosis 

(RO) 

- Feed flow-rate and concentration  
- Retentate outlet concentration 
- N° of stages and of elements (vessel) 

- Permeate flow-rate and composition 
- Retentate flow-rate  
- N° of vessels in parallel 
- Electricity demand 

Membrane 
Distillation 

(MD) 

- Feed flow-rate and concentration 
- Retentate outlet concentration 
- Inlet feed and permeate temperatures 
- Intake temperature 

- Distillate and retentate flow-rate 
- N° of elements (series and parallel) 
- Heat and electricity demand 

Multi-Effect 
Distillation 

(MED) 

- Feed flow-rate and concentration  
- Retentate outlet concentration 
- N° of effects 
- Steam temperature 

- Area of heat exchangers  
- Steam flow-rate 
- Heat and electricity demand 

 

2.3 Development of the treatment chains 

The techno-economic models are integrated and interconnected in a simulation platform 

called Remote Component Environment (RCE) (https://rcenvironment.de/). Figure 3 shows 

the workflow generated to simulate the chain with RO-MD (NF-cryst-RO-MD). The blocks 

corresponding to the processes call the relevant models and exchange data (e.g. the NF 

retentate concentration and flow-rate constitute the concentration and flow-rate of the 

crystallizer feed). Analogous workflows are built for the other two chains, with MED (NF-

cryst-MED) and with MD (NF-cryst-MD). 
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Figure 3. Workflow of the NF-cryst-RO-MD chain as implemented in RCE. The dark-blue blocks 
represent the units in the pre-treatment step and the red blocks the units in the concentration step; the 
green units the input values or files; the light blue blocks the outputs; the light orange blocks the 
intermediate tools (mixing units). (Q: flow-rate; C: concentration; P: pressure; T: temperature) 

 

2.4 Definition of global outputs 

To properly compare the treatment chains, we defined some representative output parameters, 

relevant to the technical, economic and environmental performances of the whole system. 

Concerning the technical aspects, the heat and electricity demands [kW] have been adopted as 

reference outputs. Regarding the economic analysis, the total annualized capital costs 

(CAPEX [$/y]) and the total operating costs (OPEX [$/y]) are the most significant parameters 

for each unit. For each treatment chain, a levelized cost is used, which represents the price at 

which the main product of the chain should be sold to break-even and which includes all the 

capital and operating expenses of the units and the revenues coming from the by-products. In 

the present case, the main product is the concentrate brine (Qbrine) which can be reused as a 

reactant in the industrial process and a global parameter called Levelized Brine Cost (LBCtot 

[$/m3
brine]) is taken as the reference economic output (Micari et al. 2019b). The LBCtot is 

given by the combination of the terms relevant to the capital costs (LBCcap) and to the 

operating costs and the revenues (LBCop). 

 

(1) 

LBC୲୭୲ = LBCୡୟ୮ +  LBC୭୮ =

=  
∑ CAPEX ୳୬୧୲ୱ

Qୠ୰୧୬ୣ 
+

∑ OPEX୳୬୧୲ୱ − Revenue୑୥(୓ୌ)మ
− Revenueେୟ(୓ୌ)మ

− Revenue୵ୟ୲ୣ୰  

Qୠ୰୧୬ୣ 
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Finally, regarding the environmental aspects, all chains allow minimizing the direct discharge 

of effluent into the environment, which, instead, occurs in the current system. Another 

important aspect consists in the CO2 emissions due to the heat and electricity supply. In the 

present work, we focused only on the operational CO2 emissions, as these resulted to be much 

higher than the ones due to the construction of desalination plants (Liu et al. 2015). The CO2 

emissions per m3 of produced brine [kgCO2/m3
brine] are used to compare the different chains 

and to compare each chain with the current system.  

 

3. Description of case study and scenarios 

The general methodological approach described in Section 2 has been developed to be 

flexible and applicable to different case studies. In the present work, we followed this 

approach to identify the most suitable treatment chain for the effluent produced by the 

regeneration of ion exchange resins employed for water softening. In this section, we present 

the case study and the scenarios investigated.  

3.1 Description of the case study 

The regeneration process producing the effluent is sketched in Figure 4. The effluent is given 

by the sum of the regenerant and the rinse solutions, which contribute to the outlet flow-rate 

with an approximate ratio of 1:9. Under the assumption of a continuous operation, a plant 

producing around 130m3/h of effluent firstly receives the regenerant solution with a flow-rate 

of 13m3/h and secondly receives pure water, as the rinse solution, with a flow-rate of 

117m3/h.  

 

Figure 4. Schematic description of the IEX resins regeneration phase assuming a continuous 
operation. 

The effluent contains sodium, chloride and bivalent ions removed from the spent resins during 

the regeneration process. The composition of the wastewater produced by a real water 

softening plant located in Rotterdam, The Netherlands, is reported in Table 2. 
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Table 2. Composition of the effluent produced by the water softening process. 

 CNa CCl CMg CCa CSO4 

[mol/m3] 173.9 662.2 55.6 191.7 3.1 

[ppm] 3,892 22,556 1,298 7,462 292 

 

The treatment chains are devised to produce a concentrate solution (brine) with a NaCl 

concentration equal to the one of the fresh reactant required by the regeneration process. 

Therefore, for any chain, the main constraint consists in the concentration of the produced 

brine (MED concentrate or MD retentate solution), which has to be equal to 90,000ppm. In 

the case of the RO-MD chain, firstly, the solution is concentrated up to 70,000ppm in the RO 

unit (this is the maximum achievable concentration in RO (Kesieme et al. 2013)) and then up 

to 90,000ppm in the MD unit. 

Concerning the operating conditions, the NF plant operates with a feed pressure of 20bar and 

a recovery of 25% (Micari et al. 2019a). The membrane rejections are equal to 94.8% for 

Mg2+, 83% for Ca2+, 93.6% for SO4
2-, -50.6% for Na+ and 49.9% for Cl-, which are in line 

with values reported in literature (Zhou et al. 2015). The MED plant includes 13 stages, on the 

basis of a previous MED cost minimization analysis (Micari et al. 2019b) and the thermal 

energy is supplied in the form of vapour at a pressure of 1bar. The RO plant includes two 

stages (presenting 8 and 6 elements per vessel), since the recovery is between 50 and 70%. 

Finally, regarding the MD plant, the inlet feed and permeate temperatures are equal to 80°C 

and 20°C and each MD module presents 6 units wounded in parallel. 

For the economic analysis, the capital costs are annualized by defining depreciation period 

and discount rate, while the operating costs depend on several factors, such as plant capacity 

and pumps’ efficiency. These parameters, the specific costs of the utilities and the selling 

price of the products are reported in Table 3. 
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Table 3. Parameters used for the economic analyses. 

Parameter Value Units 

Discount rate 6 % 

Units’ life time  

(Straight line depreciation) 

 NF, structure: 30 (Van der Bruggen et 
al. 2001) 

 NF, electrical and mechanical: 15  
 Crystallizer: 20 
 RO: 25 (Vince et al. 2008) 
 MED: 25 (Papapetrou et al. 2017) 
 MD: 10  (Hitsov et al. 2018) 
 PV and battery: 25  

y 

Capacity factor 0.94 - 

Pumps’ efficiency 0.8  - 

Cost of electricity (grid) 0.103 $/kWh 

Cost of thermal energy 0.01 $/kWh 

Replacement rate of 

membranes 
RO, MD: 15 (Al-Obaidani et al. 2008) 
NF: 20 (Van der Bruggen et al. 2001) 

%/y 

Price of Mg(OH)2 1200 (U.S. Department of the Interior 2017) $/ton 

Price of Ca(OH)2 300 (U.S. Department of the Interior 2017) $/ton 

Price/cost of water 1 (Mezher et al. 2011) $/m3 

Cost of NaCl for the 
regenerant solution 
(current technology) 

80 (Micari et al. 2019b) $/ton 

Cost of PV modules 1000 (Fraunhofer ISE 2015) €/kW 

Cost of battery 400 (Breyer et al. 2017) €/kWh 

Cost of converter 200 (Breyer et al. 2017) €/kWh 

 

3.2 Definition of the scenarios 

To assess the role of the electricity supply on the costs and the environmental impact, we 

defined two scenarios: 

1. in the first, electricity is completely taken from the grid;  

2. in the second, electricity is mostly supplied by a photovoltaic (PV) power system, with 

Li-Ion battery storage units operating in conjunction, while the remaining fraction of 

required electricity is taken from the grid. The PV technology has been chosen rather 

than the wind technology, because it is more modular and its power production is less 

uncertain compared to wind. The natural irregularity of wind requires implementation 
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of oversized batteries, which lead to much higher Levelized Cost of Electricity 

(LCOE) values. 

 

Regarding the first scenario, we considered the current mix of electricity carriers of the grid 

in The Netherlands (since we are making reference to a real water softening plant located in 

Rotterdam), with the corresponding efficiencies and CO2 emission factors, reported in Table 

4. The combination of the emission factors of the single carriers, their efficiency and share of 

the electricity output gives rise to a global CO2 grid intensity equal to 0.471kgCO2/kWh. 

 

Table 4. Electricity carriers’ mix in the grid in The Netherlands in 2016: electricity output, efficiency 
and CO2 emission factor for each carrier (International Energy Agency 2018), (IPCC 2006). 

Electricity Carriers 

The Netherlands (2016) 

Electricity 

output 

[%] 

Efficiency 

(total output) 

[-] 

CO2 emission 

factor 

[kg/kWhprim] 

Hard Coal, coal products 37.69 0.42 0.335 

Natural Gas 44.87 0.54 0.201 

Biomass 4.45 0.34 - 

Mineral oil product 1.27 1 0.27 

Nuclear 3.72 0.33 - 

Hydro 0.09 1 - 

PV 1.00 1 - 

Wind 6.90 1 - 

Total 100 
 

 

 

Concerning the second scenario, the share of energy demand covered by the PV-battery 

system is estimated running an integrated model implemented in INSEL (Moser et al. 2014). 

More details are given in the Supplementary Materials. The produced power corresponds to a 

certain share of the total load, given by the electricity demand of the treatment chain in one 

year [MWh/y]. The plant is supposed to work in stationary operation conditions, therefore the 

total electricity demand is considered always constant. The remaining demand is supplied by 

the grid, with the electricity carriers’ mix used in the previous scenario (Table 4). In this case, 

the CO2 emissions are only due to the fraction of electricity supplied by the grid. Finally, the 

PV-battery system located in The Netherlands is compared with an analogous system located 

in one of the European regions with the highest solar potential, i.e. Valencia in Spain. 
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Concerning the costs, in the first scenario the current cost of electricity for non-household 

consumers is considered (Eurostat 2019). In the second scenario the cost is calculated as the 

combination of the LCOE due to the PV-battery system and the cost of electricity from the 

grid. Within the first term, the capital costs are given by the cost of the PV modules and the 

battery. The operating cost of the PV and the battery are calculated as 1.5%/y and 2.5%/y of 

the investment cost, respectively. Finally, within this scenario, in one case we assumed that no 

taxation is imposed on the CO2 emissions, while in the other case we considered an average 

CO2 price of 80 €/tonCO2 (International Energy Agency 2018).  

 

3.3 Overview of the performed analyses 

Having defined the operating conditions and the scenarios, we carried out simulations varying 

technical (Qfeed), economic (CostEl and CostHeat) and environmental (fCO2,emission) inputs. The 

overview of the analyses performed within the two scenarios is reported in Table 5. 

 

Table 5. Summary of the analyses reported in the present work. 

 Scenario Variable input Fixed inputs 

Wastewater: spent 
IEX regenerant 

solution 

Scenario 1. 
Electricity supply: 

grid only 
(Section 4.1) 

Qfeed (10-150m3/h) 
(Section 4.1.1) 

CostEl=0.103 $/kWh 
CostHeat=0.01$/kWh 

Qfeed and CostHeat 
(different heat sources) 

(Section 4.1.2) 
CostEl=0.103 $/kWh 

Scenario 2. 
Electricity supply: 

PV-battery-grid 
(Section 4.2) 

CostEl and fCO2,emission 
(different PV-battery 

system configurations) 
(Sections 4.2.1 and 

4.2.2) 

Qfeed=130 m3/h 
CostHeat=0.01$/kWh 

 

 

4. Results and Discussion 

 

All analyses are performed applying the same circularity concept: the brine produced by the 

concentration step is recycled to the IEX resins as the fresh regenerant. Therefore, the target 

concentration of the brine is fixed for all cases and, consequently, on the basis of the global 

mass balances, its flow-rate is always around 40% of the effluent flow-rate. In other words, 

the chains are able to produce around 4 times the volume of solution required for 
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regeneration, thus they ensure the self-sufficiency for raw materials (i.e. the regenerant 

solution), which is one of the CE indicators provided by the European Commission. 

Moreover, the three chains present the same pre-treatment unit, which is able to recover more 

than 95% of dissolved Mg2+ and Ca2+ as Mg(OH)2 and Ca(OH)2. Finally, all chains are 

devised to allow the complete recycling of the effluent and to minimize the waste generation. 

Overall, the CE approach is analogous in the three chains, while the costs and the energy 

demands for its implementation depend on the processes and will be compared in the 

following sections. 

 

4.1 Scenario 1. Electricity supply from the grid 

In Scenario 1, electricity is supplied from the grid at a constant cost, which is the current cost 

of electricity for non-household consumers in The Netherlands, equal to 0.086€/kWh 

(0.103$/kWh in 2018).  

4.1.1. Feed flow-rate variation 

Firstly, the three chains are compared varying the inlet effluent flow-rate: this variation causes 

a variation of both capital and operating costs, since the required size of the plant and the 

energy consumption depend on the flow-rate. The trends of LBCcap and LBCop vs. the feed 

flow-rate are reported in Figure 5. 

  

Figure 5. LBCcap (A) and LBCop (B) of the three chains (NF-cryst-MED, NF-cryst-RO-MD, NF-cryst-
MD) as a function of Qfeed [m3/h]. Grid supply, CostEl=0.103$/kWh; waste heat, CostHeat=0.01$/kWh. 
 

In agreement with economy of scale, for each system, the highest levelized cost is found at 

the lowest flow-rates, while much lower and slowly decreasing values are observable at high 

flow-rates (Figure 5A). At small scales, the plants with RO and MD show lower capital costs 
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with respect to the one with MED, since RO and MD are modular technologies, typically 

suitable to small scales. Conversely, at higher flow-rates, the gap between the LBCcap of the 

RO-MD and the MED chain significantly decreases and the MD chain reports the highest 

LBCcap because of the high number of required modules. The design flow-rate of each 

commercial MD module is fixed and defines the number of branches in parallel. Moreover, 

since the recovery of the single MD unit is thermodynamically low, it is necessary to arrange 

more modules in series and in particular, each branch in parallel presents 15 modules in series 

in the first stage and 8 in the second.  

Regarding the operating costs (Figure 5B), at low flow-rates, the trends present an evident 

diminution, due to the variation of the maintenance costs, which depend directly on the 

investment costs. Conversely, at higher flow-rates, the profiles are almost constant, since most 

of the operating costs are due to the energy demand, which is linearly proportional to the feed 

flow-rate. Notably, the MD-chain operating costs are much higher than the others in the 

whole range of Qfeed because of the high MD thermal demand. The combination of LBCcap 

and LBCop (which includes the revenues coming from minerals and water production) gives 

rise to LBCtot, reported in Figure 6.  

 

Figure 6. (A) LBCtot of the three chains (NF-cryst-MED, NF-cryst-RO-MD, NF-cryst-MD) as a 
function of Qfeed [m3/h] and (B) a zoom in the low flow rates region to compare NF-cryst-MED and 
NF-cryst-RO-MD chains. Grid supply, CostEl=0.103$/kWh; waste heat, CostHeat=0.01$/kWh. 
 

The comparison of the LBCtot of the three systems highlights that the chains with MED and 

with RO-MD behave similarly, while the chain with MD shows much higher LBCtot in the 

whole range of Qfeed, because of the crucial operating costs of MD. Interestingly, the curves of 

LBCtot of the two most performing plants intersect at a feed flow-rate of around 40m3/h (see 

the zoom in Figure 6B): at lower flow-rates the RO-MD plant is more convenient because of 
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its modularity which leads to lower investment costs, while at higher flow-rates the MED 

chain is more feasible thanks to the lower energy requirements. Finally, it is remarkable that 

in a very wide range of Qfeed (higher than 60m3/h for the MED chain and higher than 70m3/h 

for the RO-MD chain) the LBCtot falls below the current cost of the fresh regenerant solution 

(Figure 6A). This implies that both chains are more economically convenient than the state of 

the art which provides a continuous supply of fresh reactant at a cost of 8$/m3.  

Furthermore, the total electricity and heat requirements of the three chains varying the feed 

flow-rate are reported in Figure 7.  

 

Figure 7. Electric (A) and thermal (B) power demand for the three chains varying Qfeed. 

 

Firstly, in all cases, both electricity and heat demand show a linear trend, as expected. The 

RO-MD chain shows the highest electricity demand, since the RO unit is a pressure-driven 

process. Conversely, the MD-chain exhibits a significantly higher heat demand, because of 

the high MD specific thermal consumption (around 900kWhth/m3
dist). Moreover, in the RO-

MD chain, MD leads to an increase of the thermal demand of the chain beyond that of the 

MED one, even if it is supposed to cover only a fraction of the concentration change (from 

70,000ppm to 90,000ppm). 

To compare our results with previous works, we calculated the system costs and the energy 

consumption per equivalent of hardness removed during regeneration (the removed hardness 

was calculated from the concentration of Mg2+ and Ca2+ in the effluent, shown in Table 2). 

For the case of a plant producing 130m3/h of effluent, we found a cost 0.022$/eqhardness 

without the revenues coming from the by-products. For an alternative treatment system 

providing also the recycle of the NaCl regenerant solution, a previous work reported a cost of 
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0.172$/eqhardness (Birnhack et al. 2019). Concerning the energy consumption, they presented a 

solely electricity-driven treatment process with a consumption of around 0.132kWhel/eqhardness. 

Our chain with MED shows lower values of electricity demand (~0.0062kWhel/eqhardness) but 

it requires also thermal energy (~0.138kWhth/eqhardness). However, it is difficult to perform an 

exact comparison, since the involved processes and the scale of the systems are different.  

Finally, the environmental impact of the three chains is assessed looking at the CO2 emissions 

due to the energy production. Since the thermal energy is supposed to be industrial waste heat, 

additional electricity is considered for pumping and compressing the heat. The guidelines 

report a default value of 0.09GJ of electricity required per GJ of heat recovered (Harmelink 

and Bosselaar 2013). Thus, this electricity demand is also accounted for the calculation of the 

CO2 emissions. Figure 8 shows the CO2 emissions due to the total energy demand of the three 

chains. 

 

 

Figure 8. CO2 emissions of the three chains, considering the current power generation mix from the 
grid and assuming a demand of 0.09GJel for each GJ of waste heat recovered. 

 

Also from an environmental point of view, the MD-chain is the worst performing, because of 

its large energy demand. Conversely, the other two chains show lower emissions. To compare 

the CO2 emissions of the chains with the current industrial process, it has to be considered that 

around 10,000ton/year of NaCl are required for the preparation of the regenerant solution with 

the flow-rates reported in Section 3.1. The NaCl production is very energy intensive: the 

electricity demand for salt crystallization by mechanical vapour recompression is 
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450kWh/tonsalt (Sedivy 2006). The energy demand of the salt production process, considering 

the yearly requirement of salt in the plant, leads to around 2.1kton/y of CO2 emissions. On top 

of this, the emissions due to the production of the demineralized water used for the 

preparation of IEX regenerant solution and the salt transportation should be accounted. 

However, these terms are too site-specific and, conservatively, have not been considered in 

this study. For comparison, we calculated the ratio between the CO2 emission and the fresh 

regenerant (brine) flow-rate, which results equal to 19.7kgCO2/m3
brine for the current system. In 

the proposed treatment schemes, the MED and the RO-MD chains treat the same flow rate of 

effluent (130m3/h) and produce around 53m3/h of brine solution, reusable as regenerant. The 

chains show global values of CO2 emissions equal to 4.7 and 7.3kton/y respectively, which 

correspond to a ratio between the CO2 emissions and the produced brine of 10.8 and 

16.7kgCO2/m3
brine. Thus the CO2 emissions can be reduced, with both chains, even considering 

the current energy mix of the grid.  

4.1.2 Simultaneous variation of feed flow-rate and energy cost 

To investigate also the role of the heat cost, we performed a simultaneous variation of feed 

flow-rate and thermal energy cost. Three heat sources are considered: industrial waste heat 

available in the site, gas turbine co-generation cycle and boiler burning natural gas. The 

relevant heat costs define a range, which goes from 0 up to about 0.07$/kWhth, in the case of 

the boiler where natural gas at a cost of 0.065$/kWh is burnt with an efficiency of 90% (EIA 

2019).  

Figure 9 reports the contour-maps of LBCtot for the NF-cryst-MED and the NF-cryst-RO-MD 

chains varying feed flow-rate and heat cost. The NF-cryst-MD chain was not further analysed 

since it reported the worst results in all cases. The line in black collects all the points where 

LBCtot is equal to 8$/m3, which is the value used as a threshold, since it is the current cost of 

the regenerant solution. In both cases, the feasibility area, i.e. the region above the line, 

enlarges as Qfeed increases, since the levelized capital costs are lower and a higher expense for 

the thermal energy can be met within the feasibility region. Comparing the two technologies, 

the NF-cryst-RO-MD chain shows a smaller feasibility area and this is explicable considering 

its higher energy requirement. However, the minimum flow rate found in its feasibility region 

is lower (around 38m3/h) and this demonstrates that the RO-MD system is more economically 

convenient in the case of smaller plant size. Overall, both systems show a significantly wide 

range of operating conditions where they result more competitive than the state of the art. 
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Figure 9. Heat maps of the LBCtot of the NF-cryst-MED chain (left) and of the NF-cryst-RO-MD 
chain (right) varying Qfeed[m3/h] and CostHeat[$/kWh]. Grid supply, CostEl=0.103$/kWh. Black line: 
LBCtot equal to 8$/m3 (current cost of the fresh regenerant solution). 

 

4.2 Scenario 2. Electricity supply from a PV-battery system 

In Scenario 2, electricity is supplied by a dedicated PV-battery system. On the basis of the 

meteorological characteristics of the location, the electricity self-sufficiency (i.e. the share of 

the demand covered by the PV-battery system) is derived; the rest is taken from the grid, 

assuming the cost used in Scenario 1. 

4.2.1 PV-battery system configurations: global LCOE and emission factors 

Parametric analyses varying the installed PV power and the capacity of the battery give rise to 

a scatter of LCOE values as a function of the CO2 emission factor. The configurations found 

in correspondence to the lower envelope of the scatter plots, shown in Figure 10, are used to 

define the LCOE values and the corresponding emission factors in Scenario 2. In chart A, the 

emissions are not subjected to taxation, while in chart B the CO2 emissions are taxed with a 

price of 80€/ton. More details about the PV-battery system simulations are given in the 

Supplementary Materials. 
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Figure 10. LCOE [$/kWh] of the PV-battery-grid supply as function of the CO2 emission factor from 
the grid [kg/kWh] varying the Pinst/Pdemand ratio from 0.5 to 10 (step of 0.5) and the full load hours of 
the battery from 0 to 17.5h (step of 2.5h). For Figure A no taxation on the CO2 emissions is 
considered, while in Figure B the CO2 emissions have a cost of 80€/tonCO2. The asterisk symbol (*) 
indicates the grid supply point. 

4.2.2 Treatment chains results 

Figure 11A shows the trends of LBCtot of the NF-cryst-MED and NF-cryst-RO-MD chains 

varying the LCOE within the ranges reported in Figure 10A and B. Notably, for each chain, 

the LBCtot trends with or without the taxation on the CO2 emissions are partially overlapped, 

since part of the estimated LCOE range is the same, even if in correspondence to different 

CO2 emission factors (see Figure 10A and B). The two chains exhibit a linear trend of LBCtot 

vs. LCOE, since the operating cost due to the electricity demand is the only varying term and 

it linearly depends on the given LCOE. Remarkably, even if the LCOE becomes more than 

two times the value of the electricity cost from the grid, the competitiveness of both chains is 

ensured almost in all cases: the MED chain presents values of LBCtot much lower than the 

threshold in the full range of LCOE, while the RO-MD chain presents values of LBCtot 

slightly higher than the threshold only for LCOE higher than 0.25$/kWh. Figure 11B shows 

how much the LBCtot increases when the CO2 emissions decrease, in correspondence to higher 

shares of renewables in the energy supply system. As expected, the difference between the 

cases with or without taxation becomes more evident when higher shares of electricity are 

taken from the grid. Finally, it is remarkable the difference in the CO2 emissions between 

Scenario 1, represented by the star marker and the cases analysed in Scenario 2. Therefore, 

with a PV-battery system, it is possible to reduce dramatically the emissions and, at the same 

time, ensure the economic feasibility of both chains. In the case with CO2 taxation, the most 

environmentally friendly and feasible systems are the MED chain with LBCtot of 6.1$/m3
brine 
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and CO2 emissions of 2.9kgCO2/m3
brine and the RO-MD chain with LBCtot of 7.9$/m3

brine and 

CO2 emissions of 5.1kgCO2/m3
brine. Therefore, the MED chain ensures a CO2 emissions 

reduction with respect to the current system of 85% and the RO-MD chain of 75%.  

 

Figure 11. LBCtot vs. LCOE (A) and LBCtot vs. the CO2 emissions (B) for the NF-cryst-MED and the 
NF-cryst-RO-MD chains, with and without taxation on the CO2 emissions. The asterisk symbol (*) 
represents the cases of grid supply (Scenario 1).  
 

4.2.3 Impact of the meteorological characteristics: comparison with a plant in Valencia, 

Spain  

The analysis discussed above is performed also considering a different plant location: 

Valencia in Spain, which was selected since it is one of the European areas with the highest 

solar potential. Figure 12 shows the lower envelopes of the scatter plots of LCOE vs. CO2 

emission factor for the case of a PV-battery system located in Rotterdam (shown in Figure 10) 

and in Valencia, with or without CO2 taxation. Notably, the LCOE values found are much 

lower than the ones found for Rotterdam and the difference between the corresponding curves 

increases moving to the region of lower CO2 emissions. This is because the installed PV 

power necessary to reach high electricity self-sufficiency decreases dramatically for the plant 

located in Valencia. Moreover, it is evident that the LCOE trend is flatter in this last case, 

especially in the scenario with the tax on the CO2 emissions.  
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Figure 12. Lower envelopes of the scatter plots of LCOE [$/kWh] vs. the CO2 emission factor 
[kg/kWh], varying PPV,inst/Pdemand between 0.5 and 10 (step of 0.5) and Cbattery between 0 and 17.5h (step 
of 2.5h), for the case of a plant located in Rotterdam and in Valencia. Thinner lines: no taxation on the 
CO2 emissions, thicker lines: taxation of 80€/tonCO2. 
 

The LCOE values calculated for the system in Valencia are employed as inputs for the two 

selected chains and the LBCtot values (only the ones including the taxation on the CO2 

emissions) are reported vs. the CO2 emissions in Figure 13. Both chains show a much flatter 

trend of LBCtot vs. the specific CO2 emissions, because of the flatter LCOE trend in the case 

of Valencia. It is remarkable the shift of both curves towards lower CO2 emissions, since the 

self-sufficiency (fraction of self-generated electricity) reaches 92%, while in the Rotterdam 

case the maximum self-sufficiency was around 73%. Moreover, in this case, both chains 

result economically feasible in the whole range of LCOE, since LBCtot is always lower than 

the threshold cost. This analysis shows the high potential of the proposed systems, which 

result economically competitive and able to guarantee a significant reduction of the CO2 

emissions. In fact, the CO2 emissions go down to 0.77kgCO2/m3
brine in the case of the MED 

chain and to 1.26kgCO2/m3
brine in the case of the RO-MD chain. Thus, in both cases, an 

emission reduction higher than 90% compared to the current system is achieved. 
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Figure 13. Comparison of the LBCtot trends [$/m3
brine] of the two chains (NF-cryst-MED and NF-

cryst-RO-MD) vs. the CO2 emission [kg/ m3
brine], assuming CO2 taxation of 80€/tonCO2, for the case of 

a plant located in Rotterdam (case study, in black) and in Valencia, Spain (in blue).  

 

4.3 Implications 

We compared the global outputs obtained in the two scenarios, to highlight the implications of 

the proposed strategies in terms of economic feasibility and environmental impact. Figure 14 

reports the LBCtot and the CO2 emissions per m3 of brine. In particular, the current CO2 

emissions due to the fresh NaCl salt production are compared with the ones due to the chains’ 

energy demand (i) when the electricity is taken from the grid and (ii) when the electricity is 

partially supplied by a PV-battery system, in the two different locations and with the 

maximum share of renewables at which the LBCtot resulted below the threshold. The 

corresponding values of LBCtot are compared with the current cost of the fresh regenerant 

solution. Notably, all systems ensure a reduction of the CO2 emissions and a more 

competitive LBCtot in comparison with the current system. The employment of renewable 

energy sources allows a net reduction of the CO2 emissions, but the LBCtot are higher than in 

scenario 1; conversely, the relatively low cost of the electricity from the grid leads to lower 

LBCtot but the reduction of CO2 emissions is less significant than in scenario 2.  
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Figure 14. Values of CO2 emissions per m3
regenerant (figure above) and the corresponding LBCtot (figure 

below) for the current system and for the analysed scenarios. For scenario 2, LBCtot refer to the cases 
with carbon tax and minimum emissions (maximum self-sufficiency). Qfeed=130m3/h; waste heat, 
Costheat=0.01$/kWhth. 
 

5. Conclusions 

This work presents an integrated methodological approach used to conduct a comprehensive 

analysis of different strategies to move towards Circular Economy in the water softening 

industry. These strategies aim (i) at recycling the effluent as reactant in the regeneration of 

IEX resins and (ii) at recovering valuable raw materials. Using the developed approach, for 

the first time, different concentration technologies and energy supply systems are proposed to 

identify the most economically convenient and environmentally friendly system to treat the 

wastewater. The proposed treatment chains include a pre-treatment step, composed of 

nanofiltration and crystallization, and a concentration step. Three alternative concentration 

steps are evaluated: MED, MD and the combination of RO and MD. For these, we set a 

common target concentration of the treated solution, which has then to be recycled to the 

industrial process. Therefore, the systems present the same circularity degree, which in turn 

corresponds to different costs and energy demand depending on the processes involved. The 

chains with RO-MD and with MED showed a wide range of feasible flow-rates and heat 
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costs. In particular, the RO-MD chain resulted more convenient at small scales for its lower 

investment costs, while the MED chain resulted more feasible at larger scales, for its lower 

energy requirements. Concerning the environmental impact of the two chains, the CO2 

emissions per m3 of brine reusable as regenerant, were lower than those due to the production 

of the fresh regenerant, when electricity is taken from the grid. In particular, for a feed flow-

rate of 130m3/h, the two chains are economically feasible since the LBCtot is equal to 4.6 and 

6.4$/m3 for the MED and the RO-MD chain respectively (both lower that the current cost of 

the regenerant, i.e. 8$/m3). Also, they have lower carbon footprints, since the respective 

operational CO2 emissions amount to 10.8 and 16.7kgCO2/m3
brine, while the currently produced 

ones to 19.7kgCO2/m3
brine. The chain with MD only reported the worst results in terms of costs 

and CO2 emissions, for the high MD thermal demand. 

Furthermore, we investigated the possibility to couple the chains with a PV-battery system 

and we considered two locations: Rotterdam (The Netherlands, location of the real softening 

plant) and Valencia (Spain, for its high solar potential). A large decrease of the emissions was 

found: in Rotterdam, the CO2 emission per m3
brine resulted 75% and 85% lower than the 

current ones for the RO-MD and the MED chain, respectively and in Valencia, the reduction 

was higher than 90% for both chains. Moreover, the plants resulted economically feasible, 

even when the LCOE was more than two times the electricity cost from the grid.  

Overall, the MED chain resulted more economically convenient and showed lower emissions 

in most cases, because of the lower energy requirements. However, the chain with RO-MD 

proved to be more feasible at lower scales and, in general, this system should be taken into 

account for its higher modularity and flexibility. Concluding, the NF-cryst-MED and NF-

cryst-RO-MD chains should be regarded as valuable options for the implementation of a CE 

approach in the water softening industry.  

Future works will investigate the other terms having an environmental impact, beyond the 

energy requirements of the treatment systems. The analysis will include the assessment of the 

CO2 footprints due to the construction of the treatment units. Other future developments will 

consist in the application of the presented methodological approach to other case studies with 

different industrial effluents, to evaluate the most feasible and environmentally friendly 

strategy to treat and recycle the wastewater. 
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Nomenclature 

C  Concentration 
Cbattery  Capacity of the battery [h] 
CAPEX  Capital Expenditure 
CE  Circular Economy 
CostEl   Electricity cost [$/kWh] 
CostHeat  Thermal energy cost [$/kWh] 
Cryst  Crystallizer 
DCMD Direct Contact Membrane Distillation 
fCO2,emission  CO2 emission factor [kgCO2/kWh] 
IEX  Ion Exchange resins 
LBC   Levelized Brine Cost 
LBCCAP  Capital Levelized Brine Cost 
LBCOP  Operating Levelized Brine Cost 
LCOE   Levelized Cost of Electricity 
MD  Membrane distillation 
MED  Multi-effect distillation 
NF  Nanofiltration 
OPEX  Operating Expenditure 
P  Power [kW] 
PV  Photovoltaic 
Q   Flow rate [m3/h] 
RCE   Remote Component Environment 
RO  Reverse osmosis 
SD  Sustainable Development 
 
Subscripts 
Prim  primary energy 
PV,inst installed PV power 
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