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Abstract 

Gully erosion is a form of accelerated erosion that may affect soil productivity, restrict land use, 

and lead to an increase of risk to infrastructure. Although an accurate mapping of these landforms 

is important, such an activity can be difficult because of the presence of dense canopy, which 

precludes the identification through aerial photogrammetry and other traditional remote sensing 

methods, and/or the wide spatial extent of some gullies, which makes their identification and 

characterization through field surveys a very large and expensive proposition. Even where 

possible, mapping of gullies through conventional field surveying can be an intensive and 

expensive activity. One cheaper and more expeditious way to detect gullies can be achieved in 

terms of morphological characteristics derived by Digital Elevation Models (DEMs). Moreover, the 

recent widespread availability of Very High Resolution (VHR) imagery, such as Laser Imaging 

Detection and Ranging (LIDAR) data, has led to a remarkable growth in the availability of terrain 

information providing a basis for the development of new methodologies for analyzing Earth 

surfaces. 

This work aims to develop a geographic object-based image analysis to detect and map gullies 

based on a set of rules and morphological characteristics retrieved by a VHR imagery. A one-meter 

resolution LIDAR DEM is used to derive different morphometric indices, which are combined, by 

using different segmentation and classification rules, to identify gullies. The tool has been 

calibrated using, as reference, the perimeters of two relatively large gullies that have been 

measured during a field survey in the Calhoun Critical Zone Observatory (CCZO) area in the 

Southeastern United States. The developed procedure has been then applied and tested on a 

greater area, corresponding to the Holcombe’s Branch watershed within the CCZO. Results were 

compared to previous works conducted over the same area demonstrating the consistency of the 

developed procedure. 

 



1. Introduction 

Overland flow erosion can be considered as a threshold process occurring only after resistance 

forces are exceeded (Francipane et al., 2012; Huggett, 1990). Entity and evolution of this 

phenomenon depend on several factors such as the hydrological regime, the geomorphological 

characteristics, the climate, and the land use of the basin (Francipane et al., 2015; Nearing et al., 

1999; Pimentel et al., 1995; Wilkinson and McElroy, 2007). All of these factors are related to each 

other and determine, to a different degree, the extent of the erosive process, changes on soil 

productivity, landscape evolution, and its variations in space and time (Henderson‐Sellers, 1994; 

Kirkby and Cox, 1995). 

Erosion typically starts as a series of subparallel rills parallel to the slope gradient. Slight variations 

in surface topography can produce greater depth of flow, resulting in increased erosive forces and 

in an accelerated erosion, which promotes the evolution of rills into more severe forms of erosion: 

the gullies (Ritter et al., 2011). The formation of gullies is highly sensitive to changes in the factors 

that control erosion and can be exacerbated from absence of vegetation, agricultural practices, low 

cohesion in soil, or more generally, by all those practices that lower resistance and infiltration 

capacity of soils. In some cases these landforms can make difficult the use of heavy equipment 

needed for plowing and harvesting, thus restricting land use of an area, and increase risk to 

infrastructure (Noto et al., 2017; Ritter et al., 2011). According to Poesen et al. (2003), the total soil 

losses caused by gully erosion could rise up to 90% in different parts of the world. For all of these 

reasons, gully erosion and their identification in the territory have always attracted the interest of 

the scientific community (Valentin et al., 2005). 

First attempts to study gullies go back to the 1930s, when Ireland et al. (1939) tried to study and 

describe the conditions governing the development of gullies in the Piedmont of South Carolina. In 

1960s, Tuckfield (1964) described the processes that led to the formation of gullies in the New 

Forest of Hampshire (England) and Seginer (1966) presented different methods to quantify gully 

erosion. In 1977, the Soil Conservation Service (SCS, 1977) used a multivariate analysis to predict 

the gully growth, while Stocking (1980) used multiple regression analysis to predict gully-head 

retreat on 66 gullies in Zimbabwe. 

The advent of digital elevation models (DEMs) led to the born and diffusion of quantitative land-

surface analysis (i.e., geomorphometry) (Grosse et al., 2012). For many years, the main problem 



related to the use of DEMs for land-surface analysis has been their relatively low spatial resolution. 

The issue seems to be overcome with the advent of very high-resolution (VHR) imageries, which 

started with the launch of IKONOS in 1999 and which finds nowadays its maximum expression in 

LIDAR  data, that allows to derive very high resolution Digital Surface Models (DSMs) and bare 

ground DEMs. These products, which constitute a basic support for activities such as the 

hydrological-hydraulic modeling and the identification of areas exposed to flood risk, have 

provided the opportunity to develop new methodologies for analyzing Earth surfaces (Tarolli et 

al., 2009) that have found a widespread use also in identifying the scares of gullies in landscape in 

the last decade (Francipane et al., 2018; Jackson et al., 1988; James et al., 2007; Noto et al., 2017; 

Ritchie et al., 1994).  

So far today, there are mainly two different procedures to deal with high-resolution DEM: a per-

pixel approach (pixel-based) and a per-object approach (object-based). The last one is often 

referred to as Object Based Image Analysis (OBIA or GEOBIA if it takes into account the 

GEographical aspect as well). While the pixel-based approach uses the classical rules of map 

algebra applied to the pixel, the object-based approach uses the concept of the image object. The 

second approach releases on the definition of objects as a group of neighbor pixels with similar 

characteristics. The main advantage of such an approach is that object characteristics (e.g., mean 

value, standard deviation, ratio, etc.) and features (e.g., shape and texture) can be calculated and 

used to differentiate land cover classes with similar spectral information. These extra types of 

information give OBIA the potential to produce classifications characterized by accuracies higher 

than those produced by traditional pixel-based method. According to Boardman (2006), which 

says that field detection and measurements of gullies are very accurate but can be feasible only at 

small scale, this new technique could be the only practical approach to detect very extensive gullies 

in large areas (Knight et al., 2007). 

One of the earlier efforts in detecting gullies by means of OBIA technique was made about ten years 

ago by Eustace et al. (2009). The authors developed a semi-automated method to predict the 

presence and volume of gullies for unsampled locations within the Fitzroy catchment into the Great 

Barrier Reef lagoon, on the east coast of Australia. They used data from twenty LIDAR transects 

acquired in 2007. Shruthi et al. (2015) conducted a study with the aim of quantifying temporal 

changes in gully system areas applying the OBIA to a 1-meter resolution DEM obtained from the 

IKONOS mission. The authors were successful in achieving the gullies by developing a set of 



improved rules based on the knowledge of gully landform and process related to their formation. 

D'Oleire-Oltmanns et al. (2014) put together the GEOBIA analysis and the expert knowledge to set 

up an ensemble of rules to delineate gullies. They used as input a multispectral QuickBird 2 satellite 

image and calculated the accuracy by comparing the results of their classification with the 

reference data obtained by field surveys. After an initial multi-resolution segmentation, assigning 

different weights to the visible (RGB) and near infrared (NIR) bands, the authors detected the 

gully-affected areas through a 3-step classification. First of all, they extracted large homogeneous 

areas (i.e., plantations, residential areas). Then, they detected the gully-affected areas basing on 

the shadow of the Sun-diverted gully walls, which presents a spectral contrast between the 

surrounding surface and the sunlit opposite gully walls (D'Oleire-Oltmanns et al., 2014). The last 

step consisted of the removal of false positives to make more acceptable the results of the previous 

analysis. Yang et al. (2017) developed and applied a multidirectional hill-shading method to extract 

gullies with an OBIA approach. The approach allowed the authors to get boundaries of gullies with 

high location accuracy and solve the discontinuity and low location accuracy caused by the pixel-

based methods. Rahmati et al. (2017) put in evidence that the GEOBIA technique is less expensive 

than any other approach to detect gullies, such as soil erosion measurements, especially over the 

last few years because it leads to the highest values of accuracy. In their paper, gully erosion 

mapping was performed using a DEM, a SPOT-5 panchromatic satellite image, and a Multi-

Resolution segmentation. 

Starting from knowledge about morphology and geomorphological processes leading to gullies, 

this paper aims to develop a set of rules about morphometric aspects and processes related to the 

formation of these landforms for the identification of gullies within a GEOBIA framework. The 

framework is applied to the Calhoun Critical Zone Observatory where several gullies have been 

observed and mapped by other studies (James et al., 2007; Noto et al., 2017) and where a very high 

resolution (i.e., 1 m) LIDAR DEM is available. The procedure, firstly calibrated for two gullies 

detected during a field survey carried out in June 2015, will be applied to the CCZO and results 

compared to those obtained by Noto et al. (2017). The framework has been developed within the 

software eCognition developer 9.2 (Trimble Geospatial). 

 

2. Study area and dataset: The Calhoun Critical Zone Observatory 



The Calhoun Critical Zone Observatory (CCZO) is located in South Carolina (US) and is part of the 

Critical Zone Observatory (CZO) project, which involves different institutions with the main goal 

to study and understand the processes that shape the surface of Earth and support terrestrial life. 

The CCZO is a particularly interesting site for studying gully erosion since after more than a century 

of intensive crop production; terrains were abandoned and experimented a severe process of 

erosion that has led to the loss of almost 20 cm of top soil with the formation of numerous gullies. 

Today, the gullies are mainly blanketed by reforestation, but the scars of these particular 

landforms are still present. More details about this area can be found in James et al. (2007). 

With reference to the data, LIDAR DEM was obtained by the study of Noto et al. (2017). Following 

the same work scheme of Noto et al. (2017), a first area (SUBAREA-A) of about 1 km2 was used to 

develop the GEOBIA procedure, while a second area (SUBAREA-B) with an extension of about 4.3 

km2, corresponding to the Holcombe’s Branch watershed, was used to test the developed 

procedure. The SUBAREA-A, in particular, contains two gullies surveyed during a field survey 

carried out in June 2015 that were used to calibrate the GEOBIA procedure. Figure 1 shows the 

LIDAR DEM for the SUBAREA-A (left part of the figure) and the SUBAREA-B (right part of the 

figure). Detailed information about the data and the two sub-areas can be found in Noto et al. 

(2017). 

 



 

Figure 1 – LIDAR DEM of the SUBAREA-B (Holcombe’s Branch watershed) of the CCZO (on the right) and focus on the 
SUBAREA-A (on the left) containing the two gullies (left gully in red and right gully in blue) surveyed and used for the 
calibration of the GEOBIA procedure. 

 

3. Methods 

The methodology builds on the use of four different morphometric indices able to detect the 

presence of specific landforms, which can be interpreted as part of a gully (bottom and edges): the 

Topographic Position Index (TPI), the terrain slope, the roughness slope, and the length to width 

ratio. In particular, three of them have been derived with classical pixel-based procedures, while 

the remaining index with an object-based approach. In particular, only the TPI has been used to 

detect the internal part of gully, while the remaining three to identify the gully boundary (i.e., 

terrain slope, roughness slope, and length to width ratio).  

The Section 3 is organized as follows. Section 3.1 provides a brief description of the 

aforementioned indices. Section 3.2 summarizes the OBIA procedure developed to identify gullies 

within the SUBAREA-A with particular reference to the two main phases of OBIA: segmentation 

and its calibration (Section 3.2.1) and classification (Section 3.2.2). 

 

3.1. Morphometric indices 



3.1.1. TPI for gully bottom 

The TPI (Guisan et al., 1999; Jenness, 2006) is defined as the difference between the elevation of a 

central pixel, 𝑧, and the mean elevation, 𝑧𝛼̅, of its surrounding cells within the kernel of size 𝛼. 

Negative values mean the cell is lower than its surroundings. If 𝑧 is significantly lower than 𝑧𝛼̅, 

which implies significant low values of TPI, then the cell is likely at or near the bottom of depression 

(e.g., the bottom of a valley or a gully). In particular, we used the normalized TPI (nTPI) by dividing 

by the mean value of elevation within the used kernel: 

𝑛𝑇𝑃𝐼𝛼 =
(𝑧−𝑧𝛼̅̅̅̅ )

𝑧𝛼̅̅̅̅
,     (1) 

Since the TPI is kernel-dependent, in order to decide the size of the kernel to use, we used different 

kernel size  (see Section 3.2). The 𝑛𝑇𝑃𝐼𝛼 was calculated in QGIS (QGIS Development Team, 

http://qgis.org) starting from the existing GRASS r.neighbors function.  

 

3.1.2. Terrain slope for gully edge 

Terrain slope, which is the first spatial derivative of the terrain elevations, is one of the basic 

terrain parameters widely used in terrain analysis and landform classification. Slope has been here 

adopted as index of gully edge presence since the gully edges can be assimilated to abrupt changes 

of slope in the terrain (Liu et al., 2017; Shruthi et al., 2011). It was obtained in QGIS from the LIDAR 

DEM through using the existing GRASS r.slope.aspect tool.  

 

3.1.3. Terrain roughness for gully edge 

Terrain roughness is a morphometric measure expressing the local heterogeneous of terrain. Since 

a DEM-derived roughness characterizes the local variance of surface gradients, distinguishing 

between smooth and rugged landforms, might be a useful indicator of gully edge presence (Liu et 

al., 2017). The terrain roughness can be defined in several differing ways, depending on the field 

of study, the scale of analysis, and the aim of application (Milenković et al., 2015). According to Liu 

et al. (2017), here the terrain roughness is defined as the inverse of the cosine of slope angle. It was 

obtained using equation (2) within the raster calculator of QGIS: 

𝑟 =
1

cos(𝑠𝑙𝑜𝑝𝑒)
.      (2) 



Since the roughness is directly derived from slope, in order to verify that the information provided 

by the terrain roughness is not redundant in detecting the edges of gullies, some tests for the 

SUBAREA-A have been carried out. The results of the tests, which will not be here shown for the 

sake of brevity, demonstrated that considering this variable reduces the number of false positives, 

i.e., non-gully segments assigned to the class gully edge. For this reason, it was decided to include 

also this topographic feature in the process of edges’ detection. Moreover, this choice is 

strengthened by Liu et al. (2017), where both the terrain slope and roughness have been used to 

detect edges, obtaining high accuracy values as well. 

 

3.1.4. Length to width ratio for gully edge 

Since gullies are usually tiny and long landforms whit flat bottoms and edges with changeable 

gradients, in an object-based procedure, elements representing the edges are likely to have one of 

the two dimension higher than the other one (D'Oleire-Oltmanns et al., 2014; Eustace et al., 2009). 

This information is contained within the length to width ratio, which gives an indication of the 

compactness of an element. In particular, values of length to width ratio greater than one means 

that the object is longer in one of its two dimensions. The index has been obtained in eCognition 

developer 9.2, which will be shortly described in the following. 

 

3.2. Description of gully detection within a GEOBIA framework 

The developed procedure can be summarized in the flow charts of Figure 2. The first step of the 

object-based procedure for the detection of gullies is the derivation of the first three 

aforementioned indices (nTPI, terrain slope, and terrain roughness). The fourth index (length to 

width ratio) will be derived at a later stage, since it first requires a further operation of 

segmentation detailed in Section 3.2.1. In particular, for the nTPI index, Evans and Lindsay (2010) 

suggest to choose the kernel size as a function of the typical width of the gullies to detect. In order 

to determine the best kernel size to detect gullies, nTPI was derived at three different kernel sizes, 

equal to 10, 20, and 30 m, respectively. The four indices previously defined have been used within 

the software eCognition developer 9.2 for the detection of gullies (bottom and boundaries). The 

software provides a collection of tools for GEOBIA, facilitating the classification of images in 

various application fields (e.g., remote sensing). 



The second step consists of using the nTPI layer within eCognition developer 9.2 as starting layer 

to apply the segmentation process, which is the main process of OBIA (Hay and Castilla, 2008), in 

order to derive homogeneous pixel clusters (also called segments or objects) that provide the base 

layer for the following analysis steps. Among the variety of segmentation algorithms, here it was 

decided to use the Multi-Resolution segmentation algorithm (Baatz and Schape, 2000). It is a 

bottom-up approach that aims to merge neighbor pixels having a heterogeneity parameter less 

than a specific threshold, fixed by the user. This leads to the creation of segments to whom is 

assigned the same class during the following classification process. Compared to the classical pixel-

based approach, this process leads to a number of elements to process lower than that of pixels 

that make the original image and, for this reason, easier and faster to be analyzed. The optimal 

values of parameters, in order to obtain the segments from the original image, have been defined 

through a calibration procedure of segmentation detailed in Section 3.2.1. 

A final phase of classification, based on different aspects of objects, such as spectral or textural 

attributes, allows the user to classify images and recognize a landform in the landscape (e.g., gullies 

in the present study). A developed rulesets section allows the user to set up an ensemble of rules 

aiming to automate the process and replicate it on different areas. A section called Image Object 

Information enables the user to query and get the values of some specific variables within an object 

and use them to set up a process tree of rules and/or algorithms aimed to detect a given object 

(e.g., gullies).  

 



 

Figure 2 - Flow chart of proposed gully detection procedure 

 

3.2.1. The Multi-Resolution segmentation algorithm 

Segmentation creates segments or objects representing features that may be spectrally variable at 

the level of the single pixel. The most important parameter in order to identify homogeneous 

objects is the scale parameter, e, consisting of the maximum heterogeneity, or degree of fitting, 

between two neighbor pixels or objects. As the scale parameter increases, the number of merged 

pixels into a single object or the number of merged objects into a bigger object increases as well. 

On the contrary, as the scale parameter decreases, the original image will be fragmented into a 

higher number of small objects.  

According to Baatz and Schape (2000), considering two objects within the same d-dimensional 

feature space (i.e., the layer or the ensemble of layers used to perform the multi-resolution 

segmentation), the degree of fitting indicates the heterogeneity, h, between the two objects in that 



feature space, calculated through equation (3), where the terms 𝑓1𝑑  and 𝑓2𝑑  stand for the values of 

the two objects in that feature space: 

     ℎ =  √∑ (𝑓1𝑑 − 𝑓2𝑑)2
𝑑 .     (3) 

Actually, the similarity between two adjacent objects is evaluated as a function of a spatial and a 

spectral component (Happ et al., 2010). The first one depends on the shape of the objects, while 

the second one is related to the spectral response of the pixels within the objects. Since the process 

is bottom-up, the process starts at the pixel-level; in this case, the pixels represent the segments. 

At the first step the algorithm calculates the heterogeneity between a selected pixel and all its 

neighboring as a fusion factor, f, in equation (4). The merging operation is performed between the 

selected pixel and the one having the lowest fusion factor, but only if it is less than the scale 

parameter, having the role of a threshold previously fixed by the user. At the second step the same 

process is repeated considering the segments resulting from previous step. The process will be 

repeated up to reach the final segmentation, when the heterogeneity between every segment of 

the final image and all its neighboring segments is greater than the scale parameter: 

    𝑓 = 𝑤𝑐𝑜𝑙𝑜𝑟 ∙ ℎ𝑐𝑜𝑙𝑜𝑟 + (1 − 𝑤𝑐𝑜𝑙𝑜𝑟) ∙ ℎ𝑠ℎ𝑎𝑝𝑒 .    (4) 

In equation (4) the spectral heterogeneity, ℎ𝑐𝑜𝑙𝑜𝑟 , and the spatial heterogeneity, ℎ𝑠ℎ𝑎𝑝𝑒 , are 

weighted by the term 𝑤𝑐𝑜𝑙𝑜𝑟 and its complementary to one, 𝑤𝑠ℎ𝑎𝑝𝑒, respectively. The spectral 

heterogeneity can be obtained through equation (5):  

  ℎ𝑐𝑜𝑙𝑜𝑟 =  ∑ 𝑤𝑐𝑜𝑙𝑜𝑟 ∙ (𝑛𝑜𝑏𝑗3 ∙ 𝜎𝑐
𝑜𝑏𝑗3

∙ (𝑖 𝑛𝑜𝑏𝑗1 ∙ 𝜎𝑐
𝑜𝑏𝑗1

− 𝑛𝑜𝑏𝑗2 ∙ 𝜎𝑐
𝑜𝑏𝑗2

)),  (5) 

where the index obj3 represents the object resulting from the merging operation between the 

selected segment (obj1) and the neighboring segment (obj2). Therefore, the equation (5) shows 

that ℎ𝑐𝑜𝑙𝑜𝑟 depends on the number of pixels included in the three analyzed objects (𝑛𝑜𝑏𝑗3, 𝑛𝑜𝑏𝑗1 and 

𝑛𝑜𝑏𝑗2) and also on the standard deviation of the spectral response for a generic band c (𝜎𝑐) of all 

the pixels belonging to those segments. 

The spatial heterogeneity depends on the shape of the objects and is calculated by using equation 

(6), as a function of the compactness, ℎ𝑐𝑚𝑝𝑐𝑡, and the smoothness, ℎ𝑠𝑚𝑜𝑜𝑡ℎ , factors. The terms 

ℎ𝑐𝑚𝑝𝑐𝑡 and ℎ𝑠𝑚𝑜𝑜𝑡ℎ  are weighted by 𝑤𝑐𝑚𝑝𝑐𝑡 and its complementary to one, 𝑤𝑠𝑚𝑜𝑜𝑡ℎ, respectively. 

   ℎ𝑠ℎ𝑎𝑝𝑒 = 𝑤𝑐𝑚𝑝𝑐𝑡 ∙ ℎ𝑐𝑚𝑝𝑐𝑡 + (1 − 𝑤𝑐𝑚𝑝𝑐𝑡) ∙ ℎ𝑠𝑚𝑜𝑜𝑡ℎ.   (6) 



For each object the compactness factor, ℎ𝑐𝑚𝑝𝑐𝑡, can be calculated by dividing its perimeter by the 

square root of the number of pixels within it, while the smoothness factor, ℎ𝑠𝑚𝑜𝑜𝑡ℎ , as the ratio 

between its perimeter and the perimeter of the box bounding the object.  

That being said, considering the perimeter of the object as a constant value, as the ℎ𝑐𝑚𝑝𝑐𝑡 grows 

the number of pixels within the object decreases, leading to thinner and less compact segments. In 

the same way, fixing a constant rate of the length of the boundary box, as the ℎ𝑠𝑚𝑜𝑜𝑡ℎ  increases the 

segments tend to become longer and thinner. In order to perform the Multi-Resolution 

segmentation algorithm, it is necessary to input in eCognition developer 9.2 the weights 𝑤𝑠ℎ𝑎𝑝𝑒 and 

𝑤𝑐𝑚𝑝𝑐𝑡 related to the spatial and spectral heterogeneities, respectively.  

One way to optimize the values of above parameters is to calibrate the segmentation procedure 

(Clinton et al., 2010; Liu et al., 2017; Liu et al., 2012). According to Liu et al. (2012), the overlay 

between the reference polygon (e.g., the actual gullies boundaries) and the corresponding 

segments could generate under-segmented and over-segmented areas, apart from the overlapped 

areas (Figure 3). As it is possible to see in Figure 3, in the relationships between the reference 

polygons (continuous line in Figure 3) and the corresponding segments (dashed line in Figure 3) 

can be: one-to-many, one-to-one, and many-to-one. 

 

Figure 3 - Comparison between the reference polygon and the corresponding segments. (a) displays the one-to-many 
relationship, (b) the one-to-one and (c) the many-to-one. Figure from Liu et al. (2012). 

 



According to the schemes depicted in Figure 3, it is possible to affirm that the goodness of the Multi-

Resolution segmentation result, as far as concerned the geometric relationships, can be measured 

through the following three metrics: 

      𝑂𝑆 =  
∑|𝑟𝑖−𝑠𝑘|

∑|𝑟𝑖|
,     (7) 

      𝑈𝑆 =
∑|𝑠𝑘−𝑟𝑖|

∑|𝑠𝑘|
 ,     (8) 

      𝐸𝐷1 =  √
𝑂𝑆2+𝑈𝑆2

2
.     (9) 

In equations (7) and (8) the term 𝑟𝑖 stands for the reference polygon and the term 𝑠𝑘 represents 

the segment that has to be compared with the reference polygon. In general, equation (7) provides 

the Over-Segmentation factor (𝑂𝑆), because it sums up the areas included in the reference polygon 

but not in its corresponding segments. The output given by equation (8) is the Under-Segmentation 

factor (𝑈𝑆), since it is representative of all those pixels included in the segments, but that are 

outside the reference polygon. Besides, the output provided by equation (9) is the Euclidean 

Distance 1 (𝐸𝐷1) and is the distance from the perfect geometric segmentation result. By analyzing 

the equations (7), (8), and (9), it is easy to affirm that in the ideal case of perfect match between 

the reference polygon(s) and the segment(s) all the three metrics should be equal to zero. The 

over-segmentation and the under-segmentation are two of the main limitations of object-based 

approach of images (Figure 3), which can affect the subsequent classification process in two ways: 

i) under-segmentation results in image objects that cover more than one class and thus introduce 

classification errors because all pixels in each mixed image object have to be assigned to the same 

class and ii) features extracted from images affected by over-segmentation or under-segmentation 

do not represent the properties of real objects on the Earth such as shape and/or area (Liu and Xia, 

2010) 

In order to take into account the arithmetic relationships as well, Liu et al. (2012) proposed the 

following new indices: 

      𝑃𝑆𝐸 =  
∑|𝑠𝑖−𝑟𝑘|

∑|𝑟𝑘|
,     (10) 

      𝑁𝑆𝑅 =
|𝑚−𝑣|

𝑚
,     (11) 



      𝐸𝐷2 =  √𝑃𝑆𝐸2 + 𝑁𝑆𝑅2.    (12) 

where PSE and NSR stand for Potential Segmentation Error and Number of Segment Ratio, 

respectively, while m and v represent the number of reference polygons and the number of 

corresponding segments, respectively. 𝐸𝐷2 is the Euclidean Distance 2 and measures the distance 

from the perfect arithmetic segmentation. 

In order to come up with a single index value that took into account both the geometric and 

arithmetic segmentation results, the 𝐸𝐷1 and 𝐸𝐷2 have been combined into the key performance 

indicator, KPI (Goepel, 2018), of equation (13): 

𝐾𝑃𝐼 = ∑ 𝑤𝑖 ∙ 𝐼𝐶𝑖
𝑘
𝑖=1 ,     (13) 

where k=2 (i.e., 𝐸𝐷1 and 𝐸𝐷2), 𝑤𝑖 is the weight of 𝐼𝐶𝑖, here assumed equal to 0.5 for both 𝐸𝐷1 and 

𝐸𝐷2, and 𝐼𝐶𝑖 is calculated by means of equation (14): 

𝐼𝐶𝑖 = 100 ∙
𝑃𝐼𝑖−𝑏𝑎𝑠𝑒𝑖

𝑡𝑎𝑟𝑔𝑒𝑡𝑖−𝑏𝑎𝑠𝑒𝑖
,    (14) 

where 𝑃𝐼𝑖 is the value of the ith index (i.e., 𝐸𝐷1 and 𝐸𝐷2), 𝑏𝑎𝑠𝑒𝑖 is the value indicating the worst 

performance of the ith index and 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 is the value indicating the best performance of the ith index 

(i.e., zero for both 𝐸𝐷1 and 𝐸𝐷2). The KPI ranges between 0 and 100, whit 100 indicating a perfect 

match in terms of geometric and arithmetic results. 

 

3.2.2. The object-based Classification 

Object-based classification involves categorization of pixels on the base of the spatial relationship 

with the neighboring pixels. Differently from the pixel-based classification, the object-based 

classification attempts to mimic what the human eyes do during visual interpretation basing on 

the spectral properties (i.e., color), size, shape, and texture of objects obtained with the 

segmentation. 

The process relies on the construction of one or more rules sets that can be used in cascade across 

a variety of layers to classify the segments resulted from the Multi-Resolution segmentation 

algorithm; such a procedure allows the user to produce a repeatable methodology. Depending on 

the purpose of the classification, it is possible to set different kinds of rules. As an example, some 



rules aim to classify objects on the base of a threshold. In this case, the threshold value can be 

calibrated on the base of literature indications or, in the absence of those, querying the values of 

some specific variables within objects falling within an interest area. Some other rules can be 

written up on the base of adjacency or distance between segments.  

The software eCognition developer 9.2 allows the user to create different rules working with one 

or more layers, since they can be linked through logical or and and operators. Each rule can be 

independent from the others or linked to them in a cascade of rules, where each rule operates on 

the classified segments from the previous ones. 

As it is possible to understand from the above considerations, a good classification requires a good 

a priori knowledge of the area and the types of land cover under investigation, which may not 

necessarily be available. Further, there is no definitive algorithm or parameters for the creation of 

image objects.  

 

4. Method setup and calibration: application to the SUBAREA-A 

Following the approach proposed by Clinton et al. (2010) and later applied by Liu et al. (2017) to 

identify gullies in the Yaojiawan catchment (Shaanxi Province, China), the proposed method has 

been previously calibrated on the two surveyed gullies of SUBAREA-A already shown in Figure 1. 

Such an optimization process is very convenient, since enables to compute segments fitting the 

actual boundaries of the two considered gullies in the most proper way. 

The proposed methodology involves making choices of many different parameters, which may 

influence the resulting outcome in terms of accuracy of the identification of gullies. Main choices 

regard the nTPI kernel, 𝛼, and the segmentation parameters (i.e., e, 𝑤𝑠ℎ𝑎𝑝𝑒, and 𝑤𝑐𝑚𝑝𝑐𝑡). With 

reference to the nTPI, three different kernel sizes (i.e., 10, 20, and 30 m) were fixed a priori on the 

base of a simple qualitative visual analysis and considering that the two gullies of the SUBAREA-A 

have both a width of about 20m. With reference to the segmentation parameters, instead, a certain 

range of variability for the scale parameter (i.e., 3, 5, 10, and 20) and the weights related to the 

spatial heterogeneity and the compactness factor has been explored. More in details, 𝑤𝑐𝑚𝑝𝑐𝑡 has 

been set equal to 0.2, 0.45, and 0.9, while 𝑤𝑠ℎ𝑎𝑝𝑒 equal to 0.2, 0.6, and 0.9. 



The KPI (see Section 3.2.1) has been used to obtain the set of parameters that provides the best 

segmentation and the confusion matrix to evaluate the goodness of the final classification. 

 

4.1.1. Multi-Resolution segmentation 

Based on morphology and most common shape of gullies, the expected result of segmentation 

should have thin and long segments in correspondence of the gully-affected areas and more 

compact segments outside them. Considering what said in Section 3.2.1, once fixed the scale 

parameter, e, these results should be obtained for low weights of the spatial heterogeneity and 

compactness factor.  

In order to perform the Multi-Resolution segmentation algorithm, the only layer of the nTPI has 

been used. In order to calibrate the process, a number of 108 possible combinations resulting from 

the considered ranges of variability of nTPI (3), e (4), 𝑤𝑠ℎ𝑎𝑝𝑒 (3), and 𝑤𝑐𝑚𝑝𝑐𝑡 (3) have been 

considered by setting up an ensemble of segmentation attempts and evaluating, for each of them, 

the goodness of the results in terms of KPI. The results of calibration, here not shown for the sake 

of brevity, demonstrated that the more suitable size for the kernel of the nTPI was 30 m (hereafter 

nTPI30). With reference to the two gullies of SUBAREA-A, a visual inspection of nTPI30 layer seems 

to ensure that pixels belonging to the gully-affected areas, either bottom or edges, and to the gully 

not-affected areas are likely to be included in the same kernel. In terms of Multi-resolution 

segmentation, this means that all the pixels covering the bottom of a gully are likely merged into 

objects with strongly negative values of nTPI30 while; similarly, the edges of gullies are merged 

into objects still having negative values of nTPI30 but closer to zero than the object representing 

the bottom. Figure 4 shows the 36 possible combinations and their results in terms of 𝐾𝑃𝐼 for the 

segmentation obtained with the nTPI30 (circles in Figure 4). In order to explore how the 

segmentation performance varies within the space of parameters, the 𝐾𝑃𝐼 values have been 

interpolated with the IDW method in QGIS maintaining constant the scale parameter. 

 



 

Figure 4 – Results of the Multi-Resolution segmentation in terms of punctual and interpolated KPI values for nTPI = 30 m 
and a) e=3, b) e=5, c) e=10, and d) e=20.  

 

As it is possible to observe in Figure 4, theoretically, the best segmentation results correspond to 

e = 10 and lower values of 𝑤𝑐𝑚𝑝𝑐𝑡 (Figure 4c). Actually, looking at the values of 𝐸𝐷1 and 𝐸𝐷2 for 

e=10, here not shown for the sake of brevity, it is possible to notice that at the high values of KPI 

correspond high values of 𝐸𝐷1 and low values of 𝐸𝐷2, which mean for what said in Section 3.2.1, 

that there is a good arithmetic segmentation but not a good geometric segmentation. This is mainly 

due to a high under-segmentation rate. In this case, the image is fragmented in a very low number 



of wide segments. This situation is even more exacerbated in the case of e=20 (Figure 4d). 

Moreover, from the observation of Figure 4, it is possible to notice a higher variability of KPI for 

lower values of e (i.e., higher sensibility of KPI to 𝑤𝑐𝑚𝑝𝑐𝑡 and 𝑤𝑠ℎ𝑎𝑝𝑒). 

On the contrary, looking at the Figures 4a and 4b it is possible to notice a higher variability of KPI 

in the ranges of 𝑤𝑠ℎ𝑎𝑝𝑒 and 𝑤𝑐𝑚𝑝𝑐𝑡. In both the cases, the segmentation performance, in terms of 

KPI, get worse when 𝑤𝑠ℎ𝑎𝑝𝑒 and 𝑤𝑐𝑚𝑝𝑐𝑡 grow together. In these cases, looking at the values of 𝐸𝐷1 

and 𝐸𝐷2, it is possible to notice that there is a good geometric segmentation (i.e., low values of 𝐸𝐷1) 

but not a good arithmetic segmentation (i.e., very high values of 𝐸𝐷2). In fact, the combination of 

high values of 𝑤𝑠ℎ𝑎𝑝𝑒 and 𝑤𝑐𝑚𝑝𝑐𝑡 along with low values of the scale parameter leads to a very 

fragmented image, tending to the pixel-based approach in the extreme case, which means a very 

good match in term of geometry but not in terms of number of segments. 

According to Baatz and Schape (2000), who assert that “no segmentation result - even if 

quantitatively proofed - will convince, if it does not satisfy the human eye”, in order to decide the 

combination of e, 𝑤𝑠ℎ𝑎𝑝𝑒, and 𝑤𝑐𝑚𝑝𝑐𝑡 to use for the segmentation, we also evaluated the visual 

match between objects and surveyed gullies shape. Figure 5 shows the comparison between the 

segmentation for the case e = 10, 𝑤𝑠ℎ𝑎𝑝𝑒 = 0.9, and 𝑤𝑐𝑚𝑝𝑐𝑡= 0.2, which is the best result in terms of 

KPI, and the case e = 5, 𝑤𝑠ℎ𝑎𝑝𝑒 = 0.2, and 𝑤𝑐𝑚𝑝𝑐𝑡= 0.2 that, not considering the results for e = 10, is 

the best result obtained in terms of KPI (i.e., 54.32 in Figure 4b). In particular, Figures 5a and 5b 

show the results of segmentation in correspondence of the two surveyed gullies of SUBAREA-A 

relatively to e = 10, 𝑤𝑠ℎ𝑎𝑝𝑒 = 0.9, and 𝑤𝑐𝑚𝑝𝑐𝑡= 0.2, while Figures 5c and 5d show the results of 

segmentation for e = 5, 𝑤𝑠ℎ𝑎𝑝𝑒 = 0.2, and 𝑤𝑐𝑚𝑝𝑐𝑡= 0.2. The image segments displayed in Figures 5 

are only those intersecting the actual gully-affected areas.  

It is possible to notice in Figure 5 that, as the scale parameter increases, the size of objects increases 

as well. Looking at the Figures 5a and 5b (e = 10), segmentations resulted into a low number of 

large objects leading to high values of OS and/or US and, consequently, higher values of 𝐸𝐷1. More 

importantly, there is a coarse segmentation inside the actual gullies that could result in a raw 

classification. The opposite considerations can be made by observing the Figures 5 c and 5d, where 

e = 5. In this case, a higher number of long and narrow objects allows for a better description of 

geometry but a worse segmentation in terms of arithmetic results. 

 



 

Figure 5 - Segmentation results for e = 10, 𝒘𝒔𝒉𝒂𝒑𝒆 = 0.9, and 𝒘𝒄𝒎𝒑𝒄𝒕 = 0.2 for the a) left basin and the b) right basin 

and e = 5, 𝒘𝒔𝒉𝒂𝒑𝒆 = 𝒘𝒄𝒎𝒑𝒄𝒕 = 0.2 for the c) left basin and the d) right basin. Black lines indicate segmentation. 

 

Considering the previous arguments, according to Baatz and Schape (2000) it has been decided to 

select the following values for the segmentation of SUBAREA-A: e = 5, 𝑤𝑠ℎ𝑎𝑝𝑒 = 𝑤𝑐𝑚𝑝𝑐𝑡 = 0.2. 

Starting from this segmentation has been possible to retrieve different information at the segment 

scale, among which the length to width ratio, useful for the next step of classification. 

 

4.1.2. Classification 

Figure 6 shows the two surveyed gullies of SUBAREA-A overlaid to the spatial distributions of the 

four indices above mentioned: nTPI30 (Figure 6a), terrain slope (Figure 6b), terrain roughness 

(Figure 6c), and length to width ratio (Figure 6d). Looking at the Figure 6a, as already discussed in 



Section 4.1.1, it is possible to notice that the objects belonging to the bottom of gullies are 

characterized by negative values (blue color in Figure 6a), while edges are identified by still 

negative values but closer to zero (yellow color in Figure 6a). By observing the slope and the 

terrain roughness, shown in Figures 6b and 6c, respectively, it is clear that the higher values of 

both these variables are in correspondence of gullies edges (red color in both Figures 6b and 6c). 

Finally, from the Figure 6d, it is possible to see that if the element is tiny and long, as gullies usually 

are, has high values of length to width ratio (yellow to red color in Figure 6b).  

 

Figure 6 - Spatial distribution of the four indices used to detect gully bottom and edges: a) TPI30, b) slope, c) terrain 
roughness, and d) length to width ratio. 
 

Starting from information contained within the segmented objects that, differently from the 

classical pixel-based approach, can concern also the values of min, max, mean, standard deviation, 

etc., of a given variable, we tried to detect landforms connected to gullies. Investigation of previous 

layers allowed to set up an ensemble of rules and algorithms to detect the bottoms and the edges 

of the two surveyed gullies of SUBAREA-A. 



First of all, we identified the bottom of gullies by using the nTPI layer. As already said in Section 

3.1.1, low values of TPI indicate a cell at or near the bottom of a valley that is likened to the bottom 

of a gully. That being said, by querying the mean value of nTPI30 for both those segments within 

and outside the surveyed gullies, it was possible to identify and calibrate the value of a threshold, 

T1, distinguishing between bottom and other landforms.  

Once identified the bottom part of gullies within the SUBAREA-A, for the identification of edges, a 

similar process led to the identification of three thresholds (i.e., 𝑇2, 𝑇3, and 𝑇4) for the terrain slope, 

terrain roughness, and length to width ratio layers, respectively.  

By means of a Boolean process it was possible to discriminate between elements belonging to a 

gully and not. 

This process resulted in the writing of equation (15), which is the first rule of the cascade process, 

for the identification of bottom, and equation (16) for the identification of edges:  

𝑀𝑒𝑎𝑛 (𝑛𝑇𝑃𝐼30) < 𝑇1,     (15) 

{

𝑀𝑒𝑎𝑛 𝑠𝑙𝑜𝑝𝑒 > 𝑇2            
𝑀𝑒𝑎𝑛 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 > 𝑇3.
𝐿𝑒𝑛𝑔𝑡ℎ/𝑤𝑖𝑑𝑡ℎ > 𝑇4       

     (16) 

Equation (15) affirms that, for each segment, if the average nTPI30 within the object is less than T1 

it is classified as a gully bottom. Equation (16) puts three different conditions together through an 

and spatial operator and, therefore, it represents an intersection. For this reason, only those 

objects where all of the three conditions are contemporary satisfied are classified as gully edges.  

In particular, from previous analysis, values of 𝑇1, 𝑇2, 𝑇3, and 𝑇4 resulted to be equal to -2, 20°, 1.15, 

and 1.5, respectively. 

All the segments classified as bottom or edges have been merged into a single class labeled gully, 

while all the unclassified objects have been assigned to a class labeled non-gully. The boundaries 

of the two surveyed gullies, highlighted in continuous black line, overlaid to the classification 

results (red polygons) are shown in Figure 7.  



 

Figure 7 - Results of the classification procedure for the SUBAREA-A after applying equations (15) and (16). 

 

In order to verify the goodness of the achieved classification, the Accuracy Assessment tool 

provided by eCognition developer 9.2 has been used for the same two rectangular frames 

surrounding the two gullies of SUBAREA-A retrieved by Noto et al. (2017) (see Box-SX and Box-DX 

Figure 2a of Noto et al. (2017)). The tool returns the overall, the user, and the producer accuracies 

for the classes gully and non-gully and the K-index for both the two classes and takes into account 

all of the pixels contained into an object. In particular, the overall accuracy is the percentage of 

pixels correctly classified over the total number of them in the confusion matrix. The user accuracy, 

for each class, can be obtained through the ratio between the total number of pixels correctly 

classified and the total number of pixels associated to that class. The producer accuracy, for each 

class, is measured through the ratio between the total number of pixels correctly classified and the 

total number of pixels actually included in that class. The K-index, finally, takes into account the 

fact that a random classification returns overall, user, and producer accuracies values greater than 

zero. From the conceptual point of view, it measures the difference between the probability of 

correct classification and the probability of correct classification achieved by chance. Once the 

confusion matrix is completed, K-index can be calculated through the equation (17): 

𝐾 =
𝑁∙𝐴−𝐵

𝑁2−𝐵
,      (17) 

where the term N stands for the total number of pixels in the confusion matrix, the term A 

represents the total number of pixels correctly classified, calculated as the sum of the elements in 



the diagonal of the confusion matrix and the term B indicates the cumulative sum of the products 

between the total number of pixels in the rows and those in the columns. 

The results of accuracy for the left gully and the right gully of SUBAREA-A are shown in Table 1, in 

the form of confusion matrix, computed as a comparison between the classified image (Figure 7) 

and a reference image, i.e., a Boolean mask having the value 1 in correspondence of the surveyed 

gullies and the value 0 elsewhere. As it is possible to notice in Table 1, the tool is able to correctly 

identify 2,331 pixels within the class gully and 10,821 pixels within the class non-gully, while it 

generates 251 false positive and 468 missed correct classifications for the left gully. Moreover, the 

producer accuracy for the left gully is high for both the two classes, indicating that more than the 

83% of the area of the surveyed gullies and almost the 98% of the area not-affected by gullies have 

been correctly classified. Similar results have been obtained also for the right gully (Table 1). In 

particular, the tool is able to correctly identify 2,422 pixels within the class gully and 5,457 pixels 

within the class non-gully, while it generates 230 false positives and 591 missed correct 

classifications for the left gully. The producer accuracy for the right gully is high for both the two 

classes, indicating that about the 80% of the area of the surveyed gullies and about the 96% of the 

area not-affected by gullies have been correctly classified. The overall K-index (calculated on both 

the Box-SX and Box-DX) resulted equal to 0.816 that is a little bit lower than that calculated by 

Noto et al. (2017), which was equal to 0.876, thus demonstrating a good performance of the 

developed procedure. 

Since the overall accuracy is very satisfactory (almost the 95% for the left gully and 91% for the 

right gully), in order to test the procedure developed for the SUBAREA-A, the same rules here 

discussed have been applied to detect gullies in the SUBAREA-B. 

 

Table 1 - Results for the left gully of SUBAREA-A provided by the Accuracy Assessment tool of eCognition developer 9.2. 

User\Reference 
LEFT Gully RIGHT Gully 

Gully Non-gully Sum Gully Non-gully Sum 

Gully 2,331 251 2,582 2,422 230 2,652 

Non-gully 468 10,821 11,289 591 5,457 6,048 

Sum 2,799 11,072   3,013 5,687   

              

Accuracy             

Producer 0.833 0.977   0.803 0.959   

User 0.903 0.958   0.913 0.902   

K-index per class 0.794 0.878   0.718 0.867   



              

Totals             

Overall Accuracy 0.948     0.906     

K-index 0.834     0.786     

 

4.2. Application of the developed procedure to the SUBAREA-B 

As said in Section 4.1.2, since the accuracy assessment related to the SUBAREA-A is satisfying, the 

same classification rules have been applied to detect the gullies within the SUBAREA-B. Because of 

the greater extension and the more complex morphology of the SUBAREA-B, as compared to the 

SUBAREA-A, in addition to the developed rules for the SUBAREA-A, other rules have to be used in 

order to exclude some morphological features (e.g., some parts of hydrological network and the 

bank erosion areas) which, at the watershed scale, can be erroneously classified as gullies. 

In particular, for the correction of those objects belonging to the hydrological network, all of those 

objects with a mean value of flow accumulation lower than a threshold, 𝑇5, have been correct as 

non-gully. The layer of flow accumulation for the Holcombe’s Branch watershed was previously 

derived from the DEM in QGIS. For the correction of those objects belonging to the bank erosion 

areas, instead, it was used a distance threshold, 𝑇6, from those elements corrected as hydrological 

network at the previous step. In this case, all of those segments with a distance from the 

hydrological network lower than 𝑇6 have been correct as non-gully. This process resulted in the 

implementation of two new rules in eCognition developer 9.2:  

𝑀𝑒𝑎𝑛 (𝐹𝑙𝑜𝑤 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) > 𝑇5,     (18) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ℎ𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 < 𝑇6.    (19) 

In particular, investigation of objects belonging to the river network and to the bank erosion areas 

led to set 𝑇5𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 4,000 𝑝𝑥𝑙 and 𝑇6𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 30 𝑝𝑥𝑙. 

In this case, since a spatial distribution of the digitalized actual gullies is not available, in order to 

assess the appropriateness of the developed procedure, the spatial map of results for the object-

based procedure and the pixel-based procedure, developed for the same area by Noto et al. (2017), 

have been compared (Figure 8). 

 



 

Figure 8 – Comparison between the gullies achieved through a GEOBIA technique (yellow lines) and a pixel-based image 
analysis (cyan polygons). Boxes yellow, blue, and red show some focuses on the Holcombe’s Branch watershed. 

 

From an overview of Figure 8, it is possible to notice that the number of gullies detected with the 

object-based approach (yellow contours in Figure 8) is higher than that obtained with the pixel-

based approach (cyan polygons in Figure 8). Moreover, while in some cases there is almost a 

perfect match between the gullies detected with the two approaches (see blue boxes in Figure 8), 

in some other cases the match is only partial (see red box in Figure 8) and in some others there is 

not a match at all (see yellow box in Figure 8). Rarely the pixel-based approach detects gullies that 

the object-based approach is not able to identify. However, observing the morphology of the 

Holcombe’s Branch watershed in Figure 8, it seems plausible that the landforms identified by the 

object-based approach are likely gullies and there is a failure in identifying correctly these 

landforms from the pixel-based approach. 

Starting from the distribution map of the gullies in Figure 8 we derived some indices of the gullies 

such as the area, the boundary length (i.e., perimeter), and the compactness index, and their 

empirical distribution function (ecdf, Figure 11). According to Noto et al. (2017), the compactness 

index was defined as the ratio between the perimeter of the gully and the root square of its area 

(multiplied by 4π). It ranges between 1.28 (most compact gully) and 5.31 (very elongated gully) 



and characterizes the shape of the extracted gullies; more it is close to 1, more the shape of the 

gully is close to a circle. 

A total number of 143 gullies were identified with an area ranging between 20 m2 and about 10,700 

m2 (Figure 11a), whereas the perimeter ranges from 24 m to about 1,950 m (Figure 11b). The 

compactness index (Figure 11c) ranges from a minimum of 0.04 (very elongated gullies) to a 

maximum of about 0.6 (more compact gullies). In order to compare the results of the this study 

with the results of the pixel-based approach provided by Noto et al. (2017), Figure 9 shows also 

the ecdf for the area, perimeter, and compactness index returned by that study. As it is possible to 

notice from Figure 11, apart for the compactness index, which is perfectly overlapped to that from 

Noto et al. (2017), the object-based approach led to identify more extended gullies (e.g., larger area 

and perimeter) than the pixel-based approach. This difference is due to the two different 

approaches and, mainly, to the fact that the object-based approach works with elements, which are 

aggregation of pixels, where the minimum size of the element is not that of the pixel anymore.  

The main statistical characteristics of extracted gullies are listed in Table 2 where measures of 

variability (standard deviation and coefficient of variation) show the strongest spatial variability 

of area and perimeter (CV equal to 1.34 and 1.07, respectively) and a greatest homogeneity (low 

CV) for compactness index.  

 

Figure 9 – Empirical cumulative distribution function (ecdf) of morphometric characteristics of gullies identified by the 
proposed methodology over SUBAREA-B: a) area, b) perimeter, and c) compactness index. 

 

Table 2 - Statistics of classified gullies for SUBAREA-B: minimum, maximum, and mean values (Min, Max, Mean, 

respectively), standard deviation (STD), and coefficient of variation (CV) of the three gully characteristics. 

 Min Max Mean STD CV 

Area [m2] 20.01 10,732.51 1,256.10 1,683.09 1.34 

Perimeter [m] 24.01 1,950.68 301.31 320.89 1.07 

Compactness Index [-] 1.28 5.31 2.39 0.86 0.36 



 

5. Discussion 

Spatial distribution of gullies identified by the object-based approach here developed for the 

Holcombe’s Branch watershed (Figure 8) seems to provide a good definition of the spatial pattern 

of gullies. The application of the procedure to SUBAREA-B provided the identification of gullies on 

the base of segmentation and classification previously developed, calibrated, and tested for the 

SUBAREA-A. Differently than the study of Noto et al. (2017), which removed the main river channel 

and the bank erosion landforms in the SUBAREA-B manually or by means of a threshold for the 

gullies area, here we used a couple of rules related to the contributing area and to the distance 

from the channels, respectively.  

In order to minimize the errors due to the over-segmentation and under-segmentation of images 

(Figure 2) some geometric and arithmetic relationships have been used to calibrate the 

segmentation on the SUBAREA-A, where two gullies were surveyed during a field survey carried 

out in June 2015. While the geometric relationship ensures the best match possible in terms of area 

and shape, the arithmetic relationship ensures the best segmentation in terms of number of objects 

(i.e., as less objects as possible). The geometric and arithmetic relationships have been combined 

in a unique index representative of the goodness of segmentation. According to Baatz and Schape 

(2000), who assert that “no segmentation result - even if quantitatively proofed - will convince, if it 

does not satisfy the human eye”, to decide the best parameters to use for the segmentation we also 

evaluated the fit of the objects with the actual gullies shape of SUBAREA-A. The set of chosen 

parameters was e = 5, 𝑤𝑠ℎ𝑎𝑝𝑒 = 0.2, and 𝑤𝑐𝑚𝑝𝑐𝑡= 0.2. For the classification of objects, a set of rules 

based on parameters thresholds and/or adjacency or distance from other objects has been used. 

Since a gully can be usually characterized by a bottom and some edges, which are defined by 

different characteristics, it has been preferred to set up a rule for the identification of the bottom 

and three rules in cascade for the identification of the edges. For the first case, we used the nTPI30 

parameter, while for the edges we used the terrain slope, the terrain roughness, and the length to 

width ratio. 

One of the most important advantages of the proposed method consists in the reproducibility of 

the developed procedure also for other areas of the Earth, while some limitations of the approach 

are the fact that parameters, being calibrated using data of manual survey (SUBAREA-A), are 



sensitive to the average size of those gullies and, for this reason, they should be recalibrated in 

areas characterized by gully patterns different from those present in the CCZO study area.  

The evaluation process carried out for SUBAREA-A, based on the Accuracy Assessment tool 

provided by eCognition developer 9.2, has not be applied to SUBAREA-B because of the lack of data 

due to the great difficulties related to a complete survey over the entire watershed area. For this 

reason, only in this case, the physical consistency of the developed procedure has been evaluated 

by comparing the gullies pattern provided by the proposed method with that of Noto et al. (2017). 

Even though in some cases the results are not perfectly matching, from the observation of 

morphology provided with the LIDAR DEM of the Holcombe’s Branch watershed it is plausible to 

say that the GEOBIA procedure is able to detect also gullies, or parts of those, that have not been 

detected by the pixel-based approach, thus providing to be a reliable tool to identify gullies once 

the procedure has been calibrated and tested.  

The comparison of ecdf for some characteristics of the gullies such as the area, the perimeter, and 

the compactness index (Figure 11) showed that the object-based procedure leads to gullies with 

bigger ranges of area and perimeter than those identified by Noto et al. (2017). While the difference 

in terms of upper limits depends on the developed methodology, the different lower limit is mainly 

due to the fact that, differently from Noto et al. (2017), we did not eliminate from classification 

those gullies with an area smaller than a given threshold.  

 

6. Conclusions 

An object-based approach to detect landforms is presented in this study. The approach, differently 

from the classical pixel-based approach, uses the characteristics and features of groups of pixels, 

called objects or segments, to differentiate land cover classes with similar spectral information. As 

compared to the pixel-based approach, the possibility to consider this extra information gives 

GEOBIA the potential to produce land cover thematic maps with a higher accuracy. 

The GEOBIA has been applied to the Calhoun Critical Zone Observatory (CCZO), an area of South 

Carolina particularly interesting since characterized by the presence of numerous gullies due to a 

very intense erosion activity due to the abandonment of terrains used for intensive crop 

production in the past century.  



The software used to carry out the study is the eCognition developer 9.2, developed by Trimble 

Navigation Ltd, which provides a collection of tools for OBIA and GEOBIA, facilitating the 

classification of images in various application fields. The software allows the user to develop a 

procedure that starts from the segmentation of an image to create groups of homogeneous pixels 

(also called objects or segments) to whom is assigned the same class during the following 

classification process. The main advantage of the developed procedure, as compared to a classical 

pixel-based approach, is that the number of elements to process is highly lower than that of pixels 

that make the image and, for this reason, easier and faster to be analyzed. 

Two areas, the SUBAREA-A and the SUBAREA-B, inside the CCZO have been used to calibrate and 

test, respectively, the developed procedure. The first area is characterized by the presence of two 

gullies detected during a field survey in June 2015. The surveyed gullies have been used as 

reference to calibrate the GEOBIA procedure and thus obtain the optimal segmentation and 

classification. The procedure, then, has been applied to the SUBAREA-B, corresponding to the 

Holcombe’s Branch watershed, to test the goodness of the developed procedure. 

Results showed that the GEOBIA procedure developed in eCognition developer 9.2 is able to detect 

gullies with a good accuracy even though, since the absence of surveyed gullies for the SUBAREA-

B, the results have been evaluated using as reference the results from a pixel-based approach 

developed for the same area by Noto et al. (2017).  

Although the approach surely requires further test to other gullied systems where good quality 

topographic data is available, the demonstrated capability of eCognition developer 9.2 in 

developing OBIA or GEOBIA procedures to identify gullies in a given area of Earth, coupled with 

the increasing availability of LIDAR data, allow to say that this automated technique has potential 

for individuation of different landforms (e.g., landslides) and applications across a range of 

environments. 
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