
1

Novel algorithms for 3D surface point cloud boundary

detection and edge reconstruction

Carmelo Mineo*, Stephen Gareth Pierce, Rahul Summan

Department of Electronic and Electrical Engineering, University of Strathclyde

Royal College Building, 204 George Street, Glasgow G1 1XW, UK

* Corresponding author: carmelo.mineo@strath.ac.uk

Abstract
Tessellated surfaces generated from point clouds typically show inaccurate and jagged

boundaries. This can lead to tolerance errors and problems such as machine judder if the

model is used for ongoing manufacturing applications. This paper introduces a novel

boundary point detection algorithm and spatial FFT-based filtering approach, which

together allow for direct generation of low noise tessellated surfaces from point cloud

data, which are not based on pre-defined threshold values. Existing detection techniques

are optimized to detect points belonging to sharp edges and creases. The new algorithm

is targeted to the detection of boundary points and it is able to do this better than the

existing methods. The FFT-based edge reconstruction eliminates the problem of

defining a specific polynomial function order for optimum polynomial curve fitting.

The algorithms were tested to analyse the results and measure the execution time for

point clouds generated from laser scanned measurements on a turbofan engine turbine

blade with varying numbers of member points. The reconstructed edges fit the

boundary points with an improvement factor of 4.7 over a standard polynomial fitting

approach. Furthermore, through adding artificial noise it has been demonstrated that the

detection algorithm is very robust for out-of-plane noise lower than 25% of the cloud

resolution and it can produce satisfactory results when the noise is lower than 75%.

Keywords

Point-cloud, boundary detection, edge reconstruction

1. Introduction

Three-dimensional (3D) scanning is increasingly used to analyse objects or

environments in diverse applications including industrial design, orthotics and

prosthetics, gaming and film production, reverse engineering and prototyping, quality

control and documentation of cultural and architectural artefacts [1, 2]. Conventional

reconstruction techniques generate tessellated surfaces from point clouds. Such

tessellated models often show inaccurate and jagged boundaries that can lead to

tolerance errors and problems such as machine judder if the models are used for

ongoing manufacturing applications [3]. That is the reason why many existing

commercial computer-aided manufacturing (CAM) applications are not able to use

tessellated models, instead using precise analytical CAD models where the surfaces are

mathematically represented [4]. Whilst the conversion of analytical geometries into

meshed surfaces is straightforward, the reverse process of conversion of a tessellated

model into an analytical CAD model is challenging and time-consuming. There are

2

circumstances where the original CAD model of a component is not available or

deviates from the real part. New CAM software applications, able to use clean

tessellated models, are emerging [4]; they enable the direct use of triangulated point

clouds obtainable through surface mapping techniques. However, the point clouds

obtained through surface mapping are typically affected by noise. New algorithms for

optimum surface mesh refinement are required to improve the performance of emerging

applications and to overcome the limitations of typical approaches based on polynomial

smoothing. Different technologies can be used to build coordinate measuring machines

(CMM) or 3D-scanning devices [1]. Each technology comes with its own limitations,

advantages and costs. A common factor for many CMM and 3D scanners is that they

can measure the coordinates of a large number of points on an object surface and output

a point cloud of the scanned area. . However, point clouds are generally not directly

usable in most 3D applications, and therefore are usually converted to mesh models,

NURBS surface models, or CAD models [5-7]. Tessellated models have emerged as a

favoured technique; they are the easiest form of virtual models obtainable from point

clouds with minimal processing. There are two different approaches to create a

triangular meshed surface from a point cloud: using triangulation methods or surface

reconstruction methods. Triangulation algorithms use the original points of the input

point cloud, using them as the vertices of the mesh triangles. The Delaunay

triangulation, named after Boris Delaunay for his work on the topic from 1934 [8], is

the most popular algorithm of this kind. A bi-dimensional Delaunay triangulation

ensures that the circumcircle associated with each triangle contains no other point in its

interior. This definition extends naturally to three dimensions considering spheres

instead of circles. Surface reconstruction algorithms differ from the triangulation

method since they do not use the original points as the vertices of the mesh triangles but

compute new points, whose density can vary according to the local curvature of the 3D

geometry. Surface reconstruction from oriented points can be cast as a spatial problem,

based on the Poisson's equation [9, 10].

Both approaches are not able to reconstruct the surface boundaries accurately, which

makes the tessellated models unsuitable to be used for CAM toolpath generation.

Triangulation methods produce meshed surfaces with jagged boundaries, since the

original noisy points of the cloud are used as vertices of the mesh triangles.

Reconstruction methods produce smooth boundaries, but they can be quite far from the

original boundaries of the real surface. Indeed, Poisson’s surface reconstruction does

not follow the boundary of the point cloud and replaces the original points with new

points laying on a reconstructed continuous surface that satisfies the Poisson’s

differential equation.

The detection of cloud boundary points and the reconstruction of smooth boundary

edges would allow trimming of the reconstructed tessellated models, to refine the mesh

boundaries. Very few feature detection methods are optimized to work with point-

sampled geometries only. The major problem of these point based methods is the lack

of knowledge concerning point normal and connectivity. This makes feature detection a

more challenging task than in mesh based methods. Gumhold et al. [11] presented an

algorithm that first analyses the neighbourhood of each point via a principal component

analysis (PCA). The eigenvalues of the correlation matrix are then used to determine if

a point belongs to a feature. This technique for the detection of features in point clouds

is used as a pre-processing step for tessellated surface reconstruction with sharp features

3

[12]. There exist also several reconstruction methods that preserve sharp features during

the surface reconstruction of a point cloud without pre-processing; for example the

methods shown by Fleischmann et al. [13] and Öztireli et al. [14].

The existing techniques mentioned above are optimized to detect points belonging to

sharp edges. This paper presents novel algorithms targeted to the detection of boundary

points and the deterministic reconstruction of accurate and smooth surface boundaries

from 3D point clouds. A smart approach known as Mesh Following Technique (MFT)

[4], for the generation of robot tool-paths from STL models, has recently been

published. The technique requires virtual tessellated surfaces with smooth boundary

edges.

The algorithms presented in this paper are useful tools to refine the boundary of

tessellated surfaces obtained from 3D scanning point cloud data. They can be used to

trim Delaunay triangulation or Poisson’s reconstructed surface meshes, facilitating the

direct use of tessellated models, instead of analytical geometries. The remainder part of

the paper describes the algorithms and shows qualitative and quantitative results,

discussing advantages and disadvantages.

2. Detection of boundary points

Given a mapped surface in the form of a point cloud, the identification of the point

cloud borderline, thus the detection of boundary points, is not a trivial task. The human

brain is able to infer the border of a point cloud by simply looking at the arrangement of

the sparse points. In computer science and computational geometry, a point cloud is an

entity without a well-defined boundary. In the bi-dimensional domain, given a finite set

of points, the problem of detecting the smallest convex polygon that contains all the

given points of the cloud is solved through the quickhull method [15]. It uses a divide

and conquer approach. This method works well but is only able to detect the boundary

points that are part of the convex polygon and is only for bi-dimensional set of points. A

generalization of quickhull, able to handle concave regions and holes in the point cloud,

is the alpha-shape approach [16]. The Computational Geometry Algorithms Library

(CGAL) [17] has a robust implementation of alpha-shape for 2D and 3D point clouds.

For each real number 𝛼, the approach is based on the generalized disk of radius 1 𝛼⁄ .

An edge of the polygon that contains all the given points (alpha-shape) is drawn

between two members of the finite point set whenever there exists a generalized disk of

radius 1 𝛼⁄ containing the entire point set and which has the property that the two points

lie on its boundary. If 𝛼 = 0, then the alpha-shape associated with the finite point set is

its ordinary convex hull given by quickhull. The limitation of the alpha-shape approach

is that its performance depends on the set value of the parameter 𝛼. A value of α that

produces a satisfactory result for a point cloud may not be suitable for other point sets,

since point clouds can exhibit different point densities. This inconvenience is similar to

what happens when obtaining a black and white picture from a grayscale image, through

thresholding the pixel intensities; the optimal threshold value is affected by the average

brightness of the image. Moreover, when the point density of a point cloud varies

between across the cloud, the alpha-shape result can be satisfactory in some regions and

poor in others. Non-parametric edge extraction methods based on kernel regression [14]

and on analysis of eigenvalues [18] have been proposed in recent years. Such methods,

4

however, are optimized for the detection of internal sharp edges, rather than detecting

the point cloud borderline.

The boundary point detection algorithm presented in this paper, herein referred as BPD

algorithm, does not need the definition of any threshold values. For every region of the

cloud, it detects as many boundary points as possible, given the local resolution of the

region. A 3D-point cloud is unorganized and the neighbourhood of a point is more

complex than that of a pixel in an image. Generally, in 3D-point clouds, there are three

types of neighbourhoods: spherical neighbourhood, cylindrical neighbourhood, and k-

nearest neighbours based neighbourhood [19]. The three types of neighbourhoods are

based on different search methods. Given a point P, a spherical neighbourhood is

formed by all 3D points in a sphere of fixed radius around P. A cylindrical

neighbourhood is formed by all those 3D points whose 2D projections onto a plane (e.g.

the ground plane) are within a circle of fixed radius around the projection of P. The k-

nearest neighbourhood (k-NN) search method is non-parametric and it is used in this

work, since it does not need the definition of a radius value; it finds the closest k-

members of the cloud. Figure 1 shows a point cloud with the k-nearest neighbourhood

of 5 points (A to E), where k is set to 30. The points of the cloud belonging to the

neighbourhoods are indicated through filled circles. The other points of the cloud are

represented with empty circles. The semi-transparent circles, centred at the points from

A to E, highlight the best fit planes for each of the neighbourhoods. The normal

directions of such planes are also shown through arrows pointing outwards from the

neighbourhood parent points. The local cloud resolution for every member of the cloud

is estimated through the following steps. Given a point of the cloud 𝑃𝑖, for every point

of its neighbourhood (𝑃𝑖,𝑗), the minimum distance (𝑑𝑗,𝑘) between that point and all other

neighbours is computed. The local point cloud resolution (𝛽𝑖) in 𝑃𝑖 is estimated as 𝛽𝑖 =
 𝜇𝑖 + 2𝜎𝑖, where 𝜇𝑖 is the mean value of the minimum distances and 𝜎𝑖 is their standard

deviation. This method of computing the local resolution is robust, overcoming the

problematic noisy nature of some point clouds collected through optical and

photogrammetric method. If the distance values (𝑑𝑗,𝑘) are distributed according to a

Gaussian distribution, the addition of 2𝜎𝑖 to the mean value ensures that 97.6% of the

data values are considered and the major outliers are ignored.

Figure 1 – Point cloud with examples of two boundary points on

concave regions (A and B), an inner point (C) and two boundary

points on convex regions (D and E).

The alpha-shape method may not be able to detect some sections of the point cloud

boundary with high concave curvature, if 𝛼 is set too low. On the other hand, it may

5

detect unwanted boundary points, if α is too high. The new method described here is

capable of detecting boundary points belonging to convex and concave regions.

The BPD method exploits the fact that there is one and only one circle that passes

through three given points in the 3D space. Given the unclassified point 𝑃𝑖, the centre

and the radius of all circles that pass for 𝑃𝑖 and any two other points of its

neighbourhood are computed. The point is labelled as a boundary point if there is at

least one circle with radius equal or bigger that 𝛽𝑖 and if the sphere for 𝑃𝑖, whose centre

coincide with the centre of the circle, does not contain any other point of the

neighbourhood. This is the case for point A and B, shown in Figure 1. Point A and B are

two boundary points, since it is possible to find at least one circle that satisfies the

above conditions (Figure 2). In order to avoid unnecessary computational efforts and yet

consider all possible circles, all the originating point triples are identified through the

binomial coefficient [20]. Working with k-nearest neighbourhoods and being the

investigated point 𝑃𝑖 always part of the triples, the remaining points (k-1) are combined

in couples with no repetitions. Thus, the total number of circles is equal to:

𝑛 =
(𝑘−1)!

2! ∙ [(𝑘−1)−2]!
=

29!

2 ∙ 27!
=

29∙28

2
= 406 (1)

Figure 2 – A and B labelled as boundary points.

Although the presence of at least one circle that satisfies the above conditions allows to

classify the investigated point as belonging to the point cloud boundary, its absence

cannot be used to state that the point is an internal point of the cloud. Indeed the

investigated point Pi can be located on a convex region of the boundary as well as being

an internal point of the cloud. In such circumstances, although it may exist one circle

with radius equal or bigger that 𝛽𝑖, the sphere for Pi, centred at the centre of the circle,

will always contain some points of the neighbourhood. This is the case for the points C,

D and E shown in in Figure 1. For such kind of points, thus when the point cannot be

labelled as a boundary point through the first part of the detection algorithm described

above, the algorithm continues with further operations. Each investigated point and its

neighbours are projected to the best fit plane according to the normal vector associated

with the point. The resulting bi-dimensional neighbourhood cloud can be plotted in

polar coordinates, with Pi at the pole of the plot. Figure 3 shows the polar plots for point

C, D and E and their neighbours. Pi is shown in red and its neighbour points are shown

in blue. The blue and red dotted line of the plots in Figure 3 highlight, respectively, the

minimum and maximum angle of the angular sector spanned by the points in the

neighbourhood.

6

Figure 3 – Polar plot of point C, D and E and their neighbours. The solid and dashed

lines illustrate the application of the algorithm.

The fundamental idea behind the final step of the BPD algorithm is that the point of the

cloud Pi is a boundary point if it is not possible to find a path that surrounds it and

passes through the neighbour points. Each point on the polar plot is determined by the

distance from the pole (radial coordinate, 𝑅) and the angular coordinate (𝜃). Given a

neighbourhood, the developed algorithm creates a path that surrounds the parent point at

the pole. An incremental approach is used. All radial and angular coordinates of the

neighbours are normalized, so that the coordinates of the j-th neighbour point are:

𝑟𝑗 =
𝑅𝑗−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
 (2)

𝜗𝑗 =
𝜃𝑗−𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛
 (3)

where 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 are respectively the minimum and maximum values

of the radial and angular coordinates. In order to select the starting point of the

surrounding path, a characterizing parameter (𝛾) is given to each neighbour, such that:

𝛾𝑗 = 𝑟𝑗 + |𝜗𝑗 − 𝜗𝑏𝑖𝑠| (4)

where 𝜗𝑏𝑖𝑠 is the normalized angle of the direction bisecting the angular gap comprising

all neighbours (between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥). The neighbour point with the minimum value

of γ, as computed in Eq. 4, is selected as starting point for the surrounding path. From

the starting point the algorithm progresses through linking the other points of the

neighbourhood. The crossed neighbours are removed from the list of available points.

The characterizing parameter of the generic p-th remaining point is computed as:

𝛾𝑝 = 𝑟𝑝 + [(𝜗𝑝 − 𝜗𝑙𝑎𝑠𝑡) ∙ 𝑐] (5)

where 𝜗𝑙𝑎𝑠𝑡 is the normalized angular coordinate of the last crossed point and 𝑐 is a

factor equal to -1 if 𝑠𝑔𝑛(𝜗𝑝 − 𝜗𝑙𝑎𝑠𝑡) = 𝑠𝑔𝑛(𝜗𝑙𝑎𝑠𝑡 − 𝜗𝑙𝑎𝑠𝑡−1) or equal to 1 otherwise.

The factor 𝑐 facilitates the selection of a point that does not force a change of

surrounding direction. For example, if the last selected point produced a clockwise

rotation, any anti-clockwise rotation is penalised. The neighbour with the minimum

value of γ, as computed in Eq. 5, becomes the new last point of the path.

The incremental linkage of the neighbours keeps track of the spanned angle around the

pole. The sum of the angle increments considered with their sign (𝛼 = ∑ ∆𝛼) and the

sum of their absolute values (𝜏 = ∑|∆𝛼|) are updated each time a new point is selected

after the starting point. The incremental linkage stops when there are no more linkable

neighbour points or when 𝜏 > 2𝜋. If |𝛼| ≥ 2𝜋 the investigated point is an internal point

of the cloud (e.g. point C in Figure 3), otherwise it is a boundary point (e.g. D and E in

7

Figure 3). The stopping condition of the incremental algorithm (𝜏 > 2𝜋) avoids

superfluous computation efforts, since it is often possible to infer if a point belongs to

the boundary without linking all neighbours. The solid line in Figure 3 shows the

surrounding path created until 𝜏 > 2𝜋. For example, it is possible to determine that C

does not belong to the boundary, linking only 10 out of 29 neighbours, since |𝛼| > 2𝜋.

It is possible to state that D is a boundary point, through linking 18 out of 29

neighbours; it results |α| < 2π, although the sum of the absolute angle increments is

τ > 2π. In summary, the BPD method described here is capable of determining if a

point Pi belongs to a concave boundary sections (e.g. point A in Figure 1), when the

local curvature is as high as 1 𝛽𝑖⁄ . The method is also able to infer if a point belongs to

the boundary of a hole in the point cloud (e.g. point B in Figure 1), when the hole radius

is as small as 𝛽𝑖. Since 𝛽𝑖 is the local resolution, the method works well on point clouds

with variable point density.

3. Edge reconstruction

The application of the BPD algorithm to the point cloud sample shown in Figure 1 finds

all the boundary points, represented as empty circles in Figure 4. Also the 4 boundary

points of the internal circular hole, whose radius is just above the local point cloud

resolution, are detected as expected. The detected points need to be clustered, so that

points belonging to the same boundary are grouped together. Moreover, the points of

every cluster need to be ordered correctly. These tasks can be fulfilled through existing

algorithms. For example, the clustered points can be ordered through algorithms capable

of solving the so called travelling salesman problem (TSP). Given a random list of

points and the distances between each pair of points, the solution of the TSP is the

shortest possible path that crosses each point exactly once and returns to the origin point

[21]. Therefore a closed boundary path is obtained from every cluster. These

boundaries, given by the ordered points linked through line segments (see dashed lines

in Figure 4) can be quite jagged in some areas. Therefore, it is evident that such

boundaries are not suitable to trim the surface meshes obtainable from the point cloud.

The boundary curves need smoothing to better resemble the real surface borderlines.

This section of the paper introduces a novel raw boundary smoothing algorithm, herein

referred as RBS algorithm, to improve the reconstruction of surface point cloud

borderlines through accurate smoothing of the raw boundaries.

Figure 4 – Closed boundaries partitioned into edges, obtained through

clustering and ordering of the detected boundary points (jagged dashed line)

and reconstructed edges (solid lines).

8

3.1 Detection of key points

Before applying any smoothing algorithm to the closed loop boundary curves, it is

necessary to highlight that the position of some of the detected boundary points should

be preserved. This is the case for the borderline corners, where there is a sharp change

in the boundary directionality. Indeed, such points usually play a crucial role in the

definition of reference systems in CAM applications for the development of accurate

operations, where the correct registration of the part virtual model is required.

Therefore, the first step of the edge reconstruction algorithm is targeted to detect such

key points. Given the i-th point of a closed boundary path, the point is labelled as corner

if the radius of the circle for the investigated point, the precedent and the successive

point is smaller than the value of the local point cloud resolution, 𝛽𝑖 (as calculated in the

detection algorithm). This approach is able to identify the corner points from 𝑃1 to 𝑃5,

highlighted with asterisks in Figure 4. It is worth noticing here that, although the

corners can be found through applying a threshold value to the angle between the two

borderline segments for each investigated point [22], this approach is advantageous and

it is suitable to work with point clouds with variable density. The identified corners are

used to divide the closed loop boundary into sections, corresponding to the edges of the

surface geometry. The external boundary points of the cloud in Figure 4 are grouped in

5 edges. The 4 internal boundary points are grouped in one single closed loop edge,

since no corners are found there.

3.2 Limitation of traditional curve smoothing methods

Each edge could be smoothed through fitting a polynomial curve. Polynomial curve

fitting is a common smoothing method and the functionality is also implemented in

CAD/CAM commercial software applications (e.g. Rhinoceros®). Curve fitting is the

process of approximating a pattern of points with a mathematical function [23]. Fitted

curves can be used to infer values of a function where no data are available [24] (e.g. in

the gaps between sampled points). The goal of curve fitting is to model the expected

value of a dependent variable y in terms of the value of an independent variable (or

vector of independent variables) x. In general, the expected value of y can be modelled

as an nth degree polynomial function, yielding the general polynomial regression model

based on the truncated Taylor’s series:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝜀 (6)

where ε is a random error with null mean. Given the points of an edge and the order of

the target polynomial function, it is possible to compute the coefficients of the fitting

function. The limitation of this smoothing approach is that the order of the target

function is typically unknown and curve fitting remains a time-consuming iterative trial

and error process for edge reconstruction. When there is no theoretical basis for

choosing the order of the fitting polynomial function, the edges may be fitted with a

spline functions composed of a sum of B-splines [25]. The places where the B-splines

meet are known as knots. The main difficulty in applying this process is in determining

the number of knots to use and where they should be placed [26].

3.3 FFT-based reconstruction

The final step of the RBS algorithm, presented in this paper, introduces a robust

approach based on the Fast Fourier Transform (FFT). The FFT is a well-known way to

translate the information contained in a waveform from the time domain to frequency

9

domain. It is used for the spectral analysis of time-series and allows the application of

high or low-pass filters, to respectively attenuate low or high frequencies. Here the FFT

is applied to the pattern of the edge point Cartesian coordinates, to enable the

application of low-pass filters able to improve the smoothness of the boundary edges.

The exploitation of FFT to spatial patterns (waveforms sampled in the Cartesian domain

rather than the time domain) is not new (e.g. it has been used for image processing

[27]). However, there is no record of the FFT being applied to the problem of surface

edge reconstruction. The nuances of the adaptation of FFT to this problem are described

herein.

Consider a series 𝑥(𝑘) with N samples. Furthermore, assume that the series outside the

range between 0 and N-1 is extended N-periodic, which is 𝑥(𝑘) = 𝑥(𝑘 + 𝑁) for all k.

The FFT of this series will be denoted 𝑋(𝑘), it will also have N samples. The FFT

transform implies specific relationships between the series index and the frequency

domain sample index. For the common case, where the FFT is applied to series

representing a time sequence of length 𝑇, the samples in the frequency domain are

spaced by 𝑓𝑠 = 1 𝑇⁄ . The first sample 𝑋(0) of the transformed series is the average of

the input series. The frequency sample corresponding to 𝑓𝑁𝑦 = 𝑁 2𝑇⁄ is called Nyquist

frequency. This is the highest frequency component that should exist in the input series

for the FFT to yield uncorrupted results. More specifically if there are no frequencies

above Nyquist the original pattern can be exactly reconstructed from the samples in the

frequency domain. For the spatial problem of edge reconstruction, given the FFT is

applied to the edge Cartesian component pattern, plotted as function of the curvilinear

distance (𝑑), the spatial frequency is a measure of how often sinusoidal components (as

determined by the FFT) repeat per unit of distance. The spatial frequency domain

representation of any Cartesian component of a circular edge with radius (𝑅) and length

(2𝜋𝑅) contains only one frequency component 𝑓𝑐 = 1 2𝜋𝑅⁄ . Therefore it is possible to

deduce that, denoting the local curvature radius at the i-th point of the edge with 𝑅𝑖, the

main spatial frequency occurring at that point is equal to 𝑓𝑖 = 1 2𝜋𝑅𝑖⁄ . According to the

Nyquist theorem, when sampling an analogue signal in the time domain, the sampling

rate must be at least equal to 2𝑓𝑚𝑎𝑥, where 𝑓𝑚𝑎𝑥 is the highest frequency component.

The Nyquist rule applied to the spatial domain means that 𝛽𝑖 (the local point cloud

resolution) limits the minimum edge radius that is possible to reconstruct at the i-th

point. The smallest radius that is possible to reconstruct will be the one associated to a

circumference of length 2𝜋𝛽𝑖 sampled with 2 points, corresponding to the spatial

frequency 𝑓∗ = 2 2𝜋𝛽𝑖⁄ = 1 𝜋𝛽𝑖⁄ . The maximum alias-free spatial frequency

component will be:

𝑓𝑚𝑎𝑥 = 𝑓∗ 2⁄ = 1 2𝜋𝛽𝑖⁄ . (7)

The smallest edge radius of curvature that is possible to reconstruct at the i-th point will

be equal to 𝑅𝑖
𝑚𝑎𝑥 = 𝛽𝑖.

The plots in Figure 5a and 5b regard, respectively, the x-component pattern of the edge

between 𝑃2 and 𝑃3 and of the closed loop internal hole edge of the cloud in Figure 4.

The patterns are plotted as functions of the normalized curvilinear distance of the edge

(𝑑∗ = 𝑑 𝐷⁄ , with 𝐷 being the total length of the edge). The original patterns, given by

the dashed line that goes through the x-component samples (shown through round

circles), are quite jagged. Figure 5 clarifies how a periodic waveform is obtained from

the original pattern of each Cartesian component of a given edge. The pattern is first

10

translated along the direction of the ordinate axis to move the first point of the pattern to

the origin of the plot. The pattern is then rotated by the angle 𝛼 to move the last point of

the pattern on the horizontal axis. A copy of the resulting pattern is inverted, flipped and

appended to the end extremity; it constitutes a complementary portion creating a period

with the translated and rotated version of the original pattern (Figure 5a). Since the FFT

assumes a constant sampling rate of the input pattern, the original randomly spaced

samples are replaced with interpolated equally spaced samples. The number of

interpolated samples (𝑁𝑝) is chosen appropriately to give a constant sampling interval

(𝑑𝑠), equal or smaller than the minimum original sampling distance. In order to ensure a

good filtering performance, it is necessary to have sufficient spatial frequency

resolution. For such reason the period is repeated to get a minimum of 1000 samples in

the input waveform of the FFT, giving a frequency resolution of 𝑓𝑠 = 1 (1000 ∙ 𝑑𝑠)⁄ .

Therefore a low-pass filter is applied, cancelling all spatial frequency components

higher than 𝑓𝑚𝑎𝑥, as expressed in Eq. 7. This produces a smoothed waveform for the

edge component. The FFT input waveform shown in Figure 5a, artificially constructed

to filter the x-component of the open edge comprised between 𝑃2 and 𝑃3, has a null

mean value. The original edge extremities lie on the horizontal axis (the mean value

line) and are not affected by the low-pass filtering. The Cartesian component values of

the extremities are preserved. The first part of the waveform (the portion up to the total

length 𝐷 of the original pattern) is rotated by negative 𝛼 and translated back to the

original position. The smoothed boundary is obtained through filtering all the Cartesian

components of all its edges. The preservation of the original edge extremity points

makes sure that, when a boundary consists of multiple edges, two consecutive edges

share a common point. Therefore, the chain of edges forms a closed boundary. If a

boundary is formed by only one closed edge, like in the case of the internal hole

boundary in Figure 4, the extremities of each of its Cartesian components have the same

value (𝛼 = 0). Moreover the complementary portion to construct the period is a mere

horizontally translated copy of the Cartesian component pattern (after its extremities are

brought to the horizontal axis). The copy of the original pattern is not inverted nor

flipped to create the complementary portion (Figure 5b). All points of the closed edge

are affected by the filtering. The smoothed edges relative to the boundaries of the

sample point cloud are shown through solid line curves in Figure 4.

11

Figure 5 – Creation of periodic waveform for application of spatial FFT to the

x-component pattern of an open edge (a) and a closed edge (b).

4. Results and performances

This section of the paper analyses the results obtainable through the use of the

introduced BPD and RBS algorithms. The computational performances are also

examined and quantitative figures are reported. Figure 6 shows a schematic summary of

the algorithm steps. The thick dashed line perimeters contain the novel algorithm

components introduced by this paper. The BPD algorithm (Figure 6a) allows the

unlabelled point of a surface point cloud to be grouped into two groups: boundary

points and internal points. The boundary points are clustered and ordered, through

existing algorithms, to constitute raw closed boundaries (jagged). The RBS algorithm

(Figure 6b) identifies the boundary corners and divides each closed boundary into the

constituting edges. Every edge is smoothed through spatial FFT-based filtering. A

crucial advantage of the introduced algorithms is that they are not based on any

threshold values that can be suitable for some point cloud but not suitable for others.

The BPD is capable of labelling all points, observing the local resolution of the cloud

for each point. The FFT-based edge reconstruction eliminates the problem of defining a

specific polynomial function order for optimum polynomial curve fitting. In the

approach introduced in this paper, the best edge smoothing performance is also ensured

through applying a spatial low-pass filtering with cut-off frequency defined at every

boundary point as a function of the local cloud resolution.

In order to show the potentialities of the new algorithms, an aircraft turbine engine fan

blade, 640 mm long and 300 mm wide (in average) was scanned through a coordinate

measuring machine. The FARO Quantum Arm was used in conjunction with a laser

profile mapping probe [28]. This 3D scanning equipment has a volumetric maximum

deviation of ±74μm. The blade surface was scanned to obtain a uniform point cloud

with circa 14 thousand points (approximately 72 points per square centimetre).

12

Figure 6 – Schematic summary of the algorithm steps: boundary point detection (a) and edge reconstruction (b).

The cloud points were decimated to obtain four different point cloud versions, with

target resolution respectively equal to 4, 8, 16 and 34mm. An additional point cloud was

generated with variable point resolution, between 2 and 34mm. Such generated point

clouds allowed testing the algorithms under controlled situations and facilitated the

analysis of the results. In order to introduce well-defined internal boundaries, the points

found within three spheres centred at fixed positions and with radius equal to 16, 32 and

64mm were removed from the clouds. Therefore, each cloud presents three holes (H1,

H2 and H3), with radii approximatively equal to the original generating spheres. The

resulting five point clouds are shown by the top row plots in Figure 7. These plots show

the detected boundary points through darker round point marks. The external and

internal boundary points are detected as expected. The smallest radius of the hole

detectable in a point cloud depends on the cloud resolution, as described in Section 2.

Only four points of the 16mm and 32mm radius holes (H1 and H2) are detected in the

clouds of Figure 7d and 7e, since the resolution of these clouds is close to their radii. H1

cannot be detected on the 34mm resolution cloud (Figure 7e).

Figure 8 shows the boundary points detected in the Stanford bunny [29], an open source

computer graphics test meshed model, obtained through range scanning [30]. Similarly

to how many researchers have used this model, as input for surface reconstruction

algorithms, the mesh connectivity has been stripped away and the vertices have been

treated as an unorganized point cloud in this work. It presents 35947 points and has an

average resolution of 1.2mm. Boundary points were detected using a method based on

principal component analysis (PCA) [11] (Figure 8a) and the new detection algorithm

(Figure 8b). To appreciate the differences in performance it is important to differentiate

boundary points and edge points; the latter points are located in areas where there is a

sharp ripple (like in the bunny ears). The PCA method detected points that are either on

sharp crease lines or on the borderline of the point cloud holes. The BPD algorithm is

https://en.wikipedia.org/wiki/Computer_graphics

13

targeted to exclusively find borderline points; therefore it found two holes in the base of

the bunny, originating from the original clay model (it was a hollow model). It should

be noted that the BPD algorithm should not detect the extra edge and crease points

detected by PCA (e.g. in the ears of the bunny). It is designed to detect boundary points

(around holes or areas where the point density drops drastically), so that a boundary

edge can be reconstructed and the tessellated surface can be trimmed. The BPD

algorithm was capable of detecting four additional groups of boundary points (one

group under the bunny chest, one group between the bunny front legs and two groups

on the base), corresponding to the borderline of areas with poor range scanning

coverage. The smallest two of these areas were not detected by the PCA method,

showing how the BPD algorithm is more accurate for the detection of borderline points.

The bottom row plots of Figure 7 shows the reconstructed boundary edges. The

effectiveness of the FFT-based filtering algorithm is evident observing the smoothness

of the edges. The smoothed boundaries of the internal holes, given by single closed

edges, faithfully reproduces the roundness of the theoretical intersection between the

original generating sphere and the blade surface. Only the boundaries of H1 and H2,

reconstructed through only four detected points, show visible distortion. Although

explaining how mesh trimming works is out of the scope of this paper, the reconstructed

boundary edges can be used to trim the Poisson mesh, producing the clean boundary

meshes highlighted in Figure 7.

Figure 7 – Detected points (top row) and reconstructed boundary edges (bottom row) for point clouds with fixed

resolution of 4 (a), 8 (b), 16 (c) and 34mm (d) and with variable resolution between 2 and 34mm (e).

14

Figure 8 – Detected points on the Stanford bunny [29], with a method based

on principal component analysis [11] (a) and with the BPD algorithm (b).

The algorithms were tested, using a computing machine based on an Intel® Core(TM)

i7-6820HQ CPU (2.70GHz), with 32Gb of RAM. The tests were carried out through

MATLAB® 2016a, running on the Windows 10 64-bit operating system. Table 1

reports quantitative outcomes obtained from the application of the BPD algorithm to the

point clouds given in Figure 7. The initial rows of the table report the minimum, the

mean, the maximum cloud resolution (𝛽) and its standard deviation (σ), followed by the

number of points in the clouds. Therefore the table gives the number of boundary points

detected by the detection algorithm and the time taken (in milliseconds [ms]) for its

complete execution. The elapsed time is always lower than 3 seconds for all examined

point clouds.

Table 1 – Performances obtained from the application of the BPD

algorithm.

Cloud a b c d e

Min 𝜷 [mm] 3.82 7.77 15.53 32.29 1.98

Mean 𝜷 [mm] 4.19 8.44 16.87 34.52 3.71

Max 𝜷 [mm] 4.85 9.36 18.98 40.42 34.86

SD (σ) [mm] 0.11 0.20 0.52 1.14 4.30

Number of points 12309 3095 791 203 7458

Boundary points 632 315 156 72 397

Detection time [ms] 2606 944 340 289 1892

Ω [% of 𝜷𝒊] 25% 24% 27% 25% 26%

Ψ [% of 𝜷𝒊] 80% 113% 84% 157% 75%

The point clouds obtained through some 3D scanning methods are affected by out-of-

plane noise, meaning that the sampled points deviate from their ideal version lying on

the surface. It is important to estimate how much the proposed detection algorithm is

tolerant to such noise. Therefore the detection algorithm was repeatedly applied to

versions of the point clouds with increasing random noise added to the original points.

The noisy clouds were artificially obtained by moving each point along the normal

direction of the local k-neighbourhood best fit plane. Each point was moved by

distances equal to a percentage of the local cloud resolution. Starting from 0%, the noise

percentage was increased by 1% at every repetition of the detection algorithm. The

maximum percentage value after which at least one of the boundary points is not

detected (false negative) is denoted as Ω. The value of Ω is around 25% for all the

clouds of Figure 7. If the noise percentage is increased above Ω, some internal points of

the cloud may be labelled as boundary points (false positives). The maximum

percentage value after which at least one of the internal points is labelled as boundary

point is denoted as Ψ. The value of Ψ in Table 1 are all above 75%. Therefore, the

detection algorithm is very robust for out-of-plane noise lower than 25% of the cloud

resolution and it can produce satisfactory results when the noise is lower than circa

15

75%. With noise values between 25% and 75% of the cloud resolution, the detection

algorithm will miss some boundary points but no outliers will be generated.

Figure 9 compares, for the 16mm average resolution point cloud, polynomial fitting

and B-spline edges of 2nd and 3rd order with the edges reconstructed through the new

RBS approach (as described within the thickest dashed perimeter in Figure 6b). It is

evident that the polynomial fitting produces unsatisfactory edges, especially for the

internal boundaries. B-spline edges present excessive wrinkling, thus poor smoothing.

Figure 9 – Comparison of reconstructed edges (red line) with polynomial

fitting and B-spline edges (black line) of 2nd and 3rd order.

Table 2 gives quantitative results on the performance of the RBS algorithm, compared

to 3rd order polynomial fitting and B-splines, for all point clouds in Figure 7.

16

Table 2 – Performances of the RBS algorithm, compared to 3rd order

polynomial fitting.

Cloud a b c d e

N
ew

 m
et

h
o

d
 Reconstruction time [ms] 528 305 143 71 385

Mean dist. to points [mm] 0.41 0.84 0.96 1.38 0.22

Max dist. to points [mm] 2.17 4.16 6.73 3.76 2.43

Mean dist. to mesh [mm] 0.07 0.25 0.95 1.20 0.73

Max dist. to mesh [mm] 0.80 1.68 4. 51 4.23 5.77

P
o

l.
 f

it
ti

n
g
 Reconstruction time [ms] 20 19 17 15 19

Mean dist. to points [mm] 3.61 3.78 4.95 5.64 3.83

Max dist. to points [mm] 34.8 33.0 32.7 40.0 30.1

Mean dist. to mesh [mm] 1.00 0.89 1.08 1.43 1.27

Max dist. to mesh [mm] 7.03 5.98 6.56 7.70 12.5

B
-S

p
li

n
es

Reconstruction time [ms] 102 60 39 25 69

Mean dist. to points [mm] ≈0 ≈0 ≈0 ≈0 ≈0

Max dist. to points [mm] ≈0 ≈0 ≈0 ≈0 ≈0

Mean dist. to mesh [mm] 0.05 0.11 0.24 0.46 0.45

Max dist. to mesh [mm] 0.78 1.12 1.35 3.08 3.30

Although the execution time of the new FFT-based algorithm is always one order of

magnitude higher than the time for polynomial fitting and for B-spline computation, the

smooth edges produced by the new approach fit the surface contour better than

polynomial fitting and B-splines. The table reports the mean, maximum and standard

deviation (STD) values for the distances between the boundary points and the smoothed

edges and for the distance between the reconstructed surface mesh and the reconstructed

edges. In average, the reconstructed edges computed through the new approach fit the

boundary points 4.7 times better than the 3rd order polynomial edges. Moreover they

follow the reconstructed surface mesh contour 77% better than the polynomial fitting

edges. Although the B-splines seem to follow the reconstructed mesh better than the

new approach, 3rd order B-splines do not produce significant smoothing of the original

boundary points; the distance between the B-splines and the points being circa equal to

0 is not a sign of good performance. The accuracy with which the polynomial and B-

spline edges fit the boundary points and the reconstructed surface can be improved by

increasing the order of the functions, but this impacts on the time required to compute

the function coefficients. Moreover high order polynomials often suffer from severe

ringing between the data points. The RBS approach reconstructs the optimum edges

without the need to specify any parameter, unlike the function order in the polynomial

and the B-spline fitting.

5. Conclusions

Tessellated surfaces generated from point clouds typically show inaccurate and jagged

boundaries. This can lead to tolerance errors and problems such as machine judder if the

model is used for ongoing manufacturing applications. This is the reason why many

existing commercial computer-aided manufacturing (CAM) applications are not able to

use tessellated models. This work presented novel algorithms to refine the boundary of

meshed surfaces obtained from 3D scanning point cloud data. The BPD algorithm

allows the unlabelled point of a surface point cloud to be grouped into two groups:

boundary points and internal points. Existing detection techniques are optimized to

17

detect points belonging to sharp edges and creases. The BPD algorithm is targeted to the

detection of boundary points and it is able to do this better than the existing methods.

The RBS algorithm identifies the boundary corners and divides each closed boundary

into the constituting edges. Every edge is smoothed through spatial FFT-based filtering.

A crucial advantage of the introduced algorithms is that they are not based on any

threshold values that can be suitable for some point cloud but not suitable for others.

The FFT-based edge reconstruction eliminates the problem of defining a specific

polynomial function order for optimum polynomial curve fitting. The algorithms were

tested to analyse the results and measure the execution time for point clouds generated

from laser scanned measurements on a turbofan engine turbine blade with varying

numbers of member points. Through adding artificial noise it has been demonstrated

that the BPD algorithm is very robust for out-of-plane noise lower than 25% of the

cloud resolution and it can produce satisfactory results when the noise is lower than

circa 75%. With noise values between 25% and 75% of the cloud resolution, the

detection algorithm will miss some boundary points but no outliers will be generated.

Quantitative results on the performance of the RBS algorithm were also presented. The

reconstructed edges computed through the new approach fit the boundary points by a

factor of 4.7 times better than polynomial edges. Moreover they follow the

reconstructed surface mesh contour with an improvement of 77% compared to the

polynomial fitting edges.

Acknowledgements

This work is part of the Autonomous Inspection in Manufacturing and Re-

Manufacturing (AIMaReM) project, funded by the UK Engineering and Physical

Science Research Council (EPSRC) through the grant EP/N018427/1. The authors also

wish to thank Dr Maxim Morozov for acquiring the point cloud of the turbofan engine

turbine blade considered in this paper.

References

[1] B. Curless, "From range scans to 3D models," ACM SIGGRAPH Computer

Graphics, vol. 33, pp. 38-41, 1999.

[2] M. Levoy and T. Whitted, The use of points as a display primitive: University of

North Carolina, Department of Computer Science, 1985.

[3] T. Beard, "Machining From STL Files," Modern Machine Shop, vol. 69, pp. 90-

99, 1997.

[4] C. Mineo, S. G. Pierce, P. I. Nicholson, and I. Cooper, "Introducing a novel

mesh following technique for approximation-free robotic tool path trajectories,"

Journal of Computational Design and Engineering, 2017.

[5] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A.

Levine, et al., "A survey of surface reconstruction from point clouds," in

Computer Graphics Forum, 2017, pp. 301-329.

[6] T. Hinks, H. Carr, L. Truong-Hong, and D. F. Laefer, "Point cloud data

conversion into solid models via point-based voxelization," Journal of Surveying

Engineering, vol. 139, pp. 72-83, 2012.

[7] L. Truong-Hong, D. F. Laefer, T. Hinks, and H. Carr, "Flying voxel method

with Delaunay triangulation criterion for façade/feature detection for

18

computation," Journal of Computing in Civil Engineering, vol. 26, pp. 691-707,

2011.

[8] B. Delaunay, "Sur la sphere vide," Izv. Akad. Nauk SSSR, Otdelenie

Matematicheskii i Estestvennyka Nauk, vol. 7, pp. 1-2, 1934.

[9] F. Calakli and G. Taubin, "SSD: Smooth signed distance surface

reconstruction," in Computer Graphics Forum, 2011, pp. 1993-2002.

[10] M. Kazhdan and H. Hoppe, "Screened poisson surface reconstruction," ACM

Transactions on Graphics (TOG), vol. 32, p. 29, 2013.

[11] S. Gumhold, X. Wang, and R. S. MacLeod, "Feature Extraction From Point

Clouds," in IMR, 2001.

[12] C. Weber, S. Hahmann, and H. Hagen, "Methods for feature detection in point

clouds," in OASIcs-OpenAccess Series in Informatics, 2011.

[13] S. Fleishman, D. Cohen-Or, and C. T. Silva, "Robust moving least-squares

fitting with sharp features," in ACM transactions on graphics (TOG), 2005, pp.

544-552.

[14] A. C. Öztireli, G. Guennebaud, and M. Gross, "Feature Preserving Point Set

Surfaces based on Non‐Linear Kernel Regression," in Computer Graphics

Forum, 2009, pp. 493-501.

[15] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for

convex hulls," ACM Transactions on Mathematical Software (TOMS), vol. 22,

pp. 469-483, 1996.

[16] N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E. Mücke, and C. Varela,

"Alpha shapes: definition and software," in Proceedings of the 1st International

Computational Geometry Software Workshop, 1995, p. 66.

[17] L. Kettner, S. Näher, J. E. Goodman, and J. O'Rourke, "Two computational

geometry libraries: LEDA and CGAL," in Handbook of Discrete and

Computational Geometry, ed: Chapman & Hall/CRC, 2004, pp. 1435-1463.

[18] D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo, "Fast and robust edge extraction

in unorganized point clouds," in Digital Image Computing: Techniques and

Applications (DICTA), 2015 International Conference on, 2015, pp. 1-8.

[19] M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet, "Semantic point cloud

interpretation based on optimal neighborhoods, relevant features and efficient

classifiers," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 105,

pp. 286-304, 2015.

[20] N. L. Biggs, "The roots of combinatorics," Historia Mathematica, vol. 6, pp.

109-136, 1979.

[21] A. Schrijver, "On the history of combinatorial optimization (till 1960),"

Handbooks in operations research and management science, vol. 12, pp. 1-68,

2005.

[22] H. Ni, X. Lin, X. Ning, and J. Zhang, "Edge detection and feature line tracing in

3d-point clouds by analyzing geometric properties of neighborhoods," Remote

Sensing, vol. 8, p. 710, 2016.

[23] S. Arlinghaus, Practical handbook of curve fitting: CRC press, 1994.

[24] D. Johnson and R. P. D. Williams, "Methods of Experimental Physics:

Spectroscopy," ed: Academic Press, New York, 1976.

[25] G. D. Knott, Interpolating cubic splines vol. 18: Springer Science & Business

Media, 2012.

19

[26] C. de Boor, "On the convergence of odd-degree spline interpolation," Journal of

approximation theory, vol. 1, pp. 452-463, 1968.

[27] R. C. Gonzales and R. E. Woods, "Digital Image Processing, Addison & Wesley

Publishing Company," Reading, MA, 1992.

[28] J.-P. Monchalin, C. Neron, P. Bouchard, and R. Heon, "Laser-ultrasonics for

inspection and characterization of aeronautic materials," Journal of

Nondestructive Testing & Ultrasonics(Germany), vol. 3, p. 002, 1998.

[29] G. Turk and M. Levoy, "The Stanford Bunny, the Stanford 3D Scanning

Repository," ed, 1994.

[30] G. Turk and M. Levoy, "Zippered polygon meshes from range images," in

Proceedings of the 21st annual conference on Computer graphics and

interactive techniques, 1994, pp. 311-318.

