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Cancers are one of the major challenges faced by modern medicine both because of their impact in terms of the amount of cases
and of the ineffectiveness of therapies used today. A concrete support to the fight against them can be found in the analysis and
understanding of the molecular mechanisms involving molecular chaperones. In particular, HSP60 and HSP10 seem to play an
important role in carcinogenesis, supporting tumours in their proliferation, survival, and metastasis. Efforts must be directed
toward finding ways to eliminate or block this “mistaken” chaperone. *erefore, the scientific community must develop
therapeutic strategies that consider HSP60 and HSP10 as the possible target of an anti-tumoural treatment and not only as
diagnostic biomarkers, since they contribute to the evolution of pre-cancerous respiratory pathologies in lung tumours. HSP60
acts at the mitochondrial, cytoplasmic, and extracellular levels in the development of cancer pathologies. *e molecular
mechanisms in which these chaperones are involved concern cell survival, the restoration of a condition of absence of replicative
senescence, the promotion of pro-inflammatory environments, and an increase in the ability to formmetastases. In this review, we
will also present examples of interactions between HSP60 and HSP10 and different molecules and ways to exploit this knowledge
in anticancer therapies for lung tumours. In order to improve not only chances for an earlier diagnosis but also treatments for
patients suffering from this type of disease, chaperones must be considered as key agents in carcinogenesis and primary targets
in therapeutics.

1. Introduction

Lung cancer incidence has been increasing in the last years,
in both developing and developed countries. It is one of the
main causes of death worldwide, and it has become a very
frequent malignant tumour for mankind. Although there are
several possible ways to treat lung cancer (chemotherapy,
radiotherapy, surgery, etc.), the patient survival rate at 5
years is 15% [1].*e survival rate increases when patients are
subjected to surgical treatment earlier, but only a small
proportion of subjects who have been diagnosed with lung
cancer can undergo this procedure [2]. *erefore, it is
necessary to optimize diagnostic procedures and to un-
derstand the molecular mechanisms of metastasization to
reduce the mortality of this pathology. Understanding the

molecular mechanism and signalling pathways in lung
cancer is also of fundamental importance for the creation of
new therapeutic strategies that can assist surgical treatment.
Although the number of possible molecular biomarkers is
high, the scientific community pays increasing attention to
the possible involvement of heat shock proteins in the es-
tablishment of lung cancer and its pathological progression.
Heat shock proteins (HSPs) are a group of highly conserved
proteins that help protect cells from various type of stress
(heat, cold, and abnormal levels of glucose or oxygen). *ey
help the correct folding of many proteins and protect cells
from deleterious consequences as protein misfolding, pre-
mature degradation, or aggregation [3–6]. HSPs normally
support other protein functions in normal cells, but they
may be present at high levels in cancer cells. *is
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deregulation in the levels of HSPs produced in cancer cells
alone could be the cause of metastatic progression, not only
in lung tumours but, more generally, in various types of
carcinoma [7]. Tumours usually appear as a result of several
factors, and, as mentioned above, HSPs should be consid-
ered among the genes involved in their progression. *is
means that some tumours can be considered chaper-
onopathies. In particular, regarding lung tumours, the sci-
entific evidence of a possible role of HSPs in molecular
pathways keeps growing. HSPs localization occurs in various
subcellular compartments such as mitochondria, endo-
plasmic reticulum, microvesicles, and even the nucleus [8].
*ey can be released out of the cells through different ways
(via Golgi or inside extracellular vesicles, such as exosomes),
acting as cross cellular messengers. Both a paracrine effect in
the proximity of the releasing cell and an endocrine effect
through the blood stream are to be considered as possible
effector pathways [9]. A massive production of HSPs by
neoplastic cells leads this class of proteins to favour the
tumour at the expense of the individual [10]. In fact, “pro-
tumour” HSPs support cancer cells in different processes,
such as their proliferation, growth, and resistance to che-
motherapy and radiotherapy treatments, and favour their
metastasization [9, 11]. *erefore, the study and develop-
ment of chaperonotherapy models is of fundamental im-
portance if contextualized within a treatment that already
includes classical approaches such as chemo-, radio-, and
immunotherapy in order to arrest the progression of
tumoural pathology. In addition to the possibility of using
HSPs as therapeutic targets in the fight against lung tumours,
this protein class appears to be an excellent candidate for
predicting disease onset [12–14]. *is is of the utmost im-
portance, considering what has been previously stated on the
benefits of an early diagnosis of lung tumour.

2. HSP 60

*e heat shock protein 60 or HSP60 is a protein, weighing of
60 kDa, belonging to the chaperone family. It is used by the
cell for the correct folding of other proteins [15]. HSP60 is a
highly conserved protein that is present in many species of
living organisms [16]. In addition to its main biological
function, this class of proteins is the subject of a growing
study regarding tumour progression [17, 18]. In different
tumour types, the levels of HSPs are altered; therefore, their
variation from standard values could be associated to those
changes occurring during the processes of carcinogenesis
[19].

Under normal conditions, HSP60 and its biological
partner (co-chaperonin) HSP10 are two molecular chap-
erones with mitochondrial localization that, like the other
proteins of their family, protect cells from different types of
stress, closely related to mitochondrial integrity [20]. HSP60
and HSP10 form a folding cage through their rings and
produce large and efficient protein-folding machinery that
facilitates proper folding and assembling of mitochondrial
imported proteins and corrects misfolded polypeptides [21].
HSP60 assembles into an oligomer with a precise quaternary

structure to perform its characteristic role of chaperone. In
addition, participation in the process of seven HSP10
subunits and ATP hydrolysis is necessary, with a final as-
sembling of a bell-shaped form [22, 23]. In this review, we
are going to illustrate the link between the alterations of
HSP60 and HSP10 levels or localization and the occurrence
of lung tumours, a relationship which has already been
found in other carcinogenic processes such as colorectal,
pancreatic, tongue, urinary bladder, prostatic, vesical, and
exocervical tumours. It is curious how in some of these
tumour forms the levels of HSP60 are increased, while, in
others, the expression of the chaperone is reduced [24–44].
*is alternation of conflicting results is also maintained
when we observe the relationship between HSP60 and the
prognosis of several tumours: an apparently anomalous
behaviour that can be explained by the dual pro- and anti-
apoptotic activity of an over-expression of HSP60. Another
property linked to excess of HSP60 is the loss of replicative
senescence of tumour cells [45, 46]. Similarly, an increase in
synthesis levels of HSP10 is associated with different tumour
types. Prostate cancer, exocervical cancer, large bowel
cancer, and serous ovarian cancer are all cases in which this
condition is present. On the contrary, as with HSP60, it is
possible to find examples of tumours in which the levels of
HSP10 are reduced, an example being lung cancer [47–51].

Another important factor in the functioning of HSP60 is
its location within the cellular compartment [52]. As
mentioned, normally, the HSP60/HSP10 complex finds its
natural localization within the mitochondrial compartment,
while in tumour cells it is not unusual to find HSP60 at the
level of the cytoplasm. HSP60 has also been localized in lipid
rafts that are rich in cholesterol and glycosphingolipids
[26, 53, 54]. Even HSP10 that is normally localized inside the
mitochondrial matrix can be found in other localizations,
such asmicrovesicles or cell cytoplasm [55]. It is curious how
high extracellular levels of HSP10 can be found during
pregnancy. In fact, this is referred to as early pregnancy
factor, and there are studies that have shown its importance
in cell proliferation and differentiation [56, 57].

As mentioned above, when the chaperonins take the
extracellular pathway, they can influence different cytotypes,
in particular, HSP60 has an immunomodulatory effect on
cells such as macrophages [58, 59] and neutrophils [60, 61].
An increased number of neutrophils and macrophages is a
characteristic key to a pathology that usually evolves into
lung tumour pathology: the chronic obstructive pulmonary
disease (COPD). COPD is a pathology that owes its de-
velopmentmainly to cigarette smoking, and patients affected
by this condition are characterized by a progressive and
irreversible loss of their lung function. Several epidemiologic
studies have showed that, in smokers with COPD, the in-
cidence of lung cancer is five times higher than in smokers
without COPD. At the same time, there is a greater ease of
onset of lung cancer in patients with a severe level of airway
obstruction. *e ability of extracellularly released HSPs to
modulate the secretions of proinflammatory cytokines
probably plays a key role in the progression of COPD itself
and in its potential evolution to a carcinogenic level [61–64].
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3. Lung Cancer: HSP60 and HSP10
Molecular Interactions

Analysing the broad set of proteins with which HSP60 and
HSP10 interact, there are several of them that can play a role
in the development and progression of lung cancer. How-
ever, there are further interactions that may have a protective
effect in counteracting the onset of tumours.

3.1. Fragile Histidine Triad (FHIT) Protein. Fragile histidine
triad protein (FHIT), also known as bis (5′-adenosyl)-tri-
phosphatase, is a member of the histidine triad gene family
involved in purine metabolism. FHIT is characterized by an
unusual genomic fragility. As a consequence of this con-
dition, its expression is reduced, if not absent, in many
cancers. Although the precise function of FHIT is still not
fully understood, it is clear that this protein acts as a tumour
suppressor.*e interaction between FHITand the molecular
chaperone complex HSP60/HSP10 has been demonstrated,
and it is probably fundamental for the entry of FHIT into the
mitochondria, where it plays an important role in electron
transportation. FHIT has been shown to have considerable
relevance in lung cancer. Studies conducted in vitro on
tumour cells have shown that its expression, associated with
a condition of cellular stress, leading tumour cells to trigger
apoptotic processes. Furthermore, reduced expression levels,
mainly due to genomic damage, have been found in hy-
perplastic lung lesions, but also in precancerous conditions
in those smokers who maintain an apparently normal

bronchial epithelium.*e entry at the mitochondrial level of
FHIT, made possible by the interaction with HSP60/HSP10,
is crucial for the antitumour activity of FHIT itself. In fact,
through the interaction with Fdxr, at 54-k flavoprotein, it is
able to trigger the apoptotic process generating reactive
oxygen species (ROS) via p53. A reduced expression of
HSP60/HSP10 is therefore linked with a defective mito-
chondrial internalization of FHIT with consequent loss of
apoptotic function by ROS. Otherwise, recent studies have
brought to light a new possibility: exploiting the importance
of oxidative phosphorylation for a particular cell population,
cancer stem cells. Lung tumour cells are sensitive to treat-
ments based on selective inhibitors of oxidative phos-
phorylation that act on the mitochondrial complex III, while
these are ineffective when FHIT is present. *erefore, an
assessment of HSP60/HSP10 levels (in association with the
expression of FHIT) appears fundamental in choosing the
kind of therapy to be used against lung cancer [65–69]
(Figure 1).

3.2. Toll-Like Receptor (TLR). As previously stated, the
different levels of expression (high or low) of HSP60 present
a dichotomy when compared to precancerous conditions,
such as COPD, or lung tumours. Human bronchial epithelial
cells subjected to a high level of oxidative stress (such as
cigarette smoke) increase the release of HSP60 in extra-
cellular compartment. Once HSP60 is released outside the
cell, it can bind different receptors present on immune cells,
usually promoting an inflammatory state. Among the HSP60
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Figure 1: *e tumor-suppressor FHIT protein interacts with HSP60, and possibly is folded by the chaperoning complex HSP60/HSP10
inside mitochondria. *erefore, any quantitative or qualitative defect of HSP60 (chaperonopathy by defect) may decrease the level of
functional FHIT protein, causing a failure of tumor suppression and favoring carcinogenesis.
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target molecules are toll-like receptors, in particular TLR-4
and TLR-2. Specifically, the expression of TLR-4 is directly
associated with the epithelial tissue, allowing it to feed the
inflammatory condition via cytokine release. Among the
possible ways of activation, the one via MyD88 appears to be
the most likely since high levels of this TLR adapter have
been found in association with the extracellular release of
HSP60. In close association with TLR activation, an increase
in extracellular HSP60 levels leads to an upregulation of
CREB1 (a nuclear transcription factor) which results in a
massive production of IL-8, thus creating the ideal condi-
tions for a proinflammatory environment [62, 70–74]. A
condition of this type, often closely associated with con-
tinuous external insults such as cigarette smoke, can easily
develop a preneoplastic state in lung tumours.

3.3. p53/HSP60 Complex. Acting against the inactivation of
the replicative senescence is one of the possible strategies to
use in the fight against cancerous pathologies. Factors such
as oxidative stress, telomere shortening, and DNA damage
can trigger a state of replicative senescence that blocks the
normal cell cycle. Cancer cells have lost this inhibition to cell
proliferation, and the possible restoration of a replicative
senescence would guarantee a greater success rate in anti-
cancer treatments. Several studies have demonstrated how
important is HSP60 in the loss of replicative senescence in
many different tumours. In fact, a reduction of these pro-
teins is associated with the appearance of senescence features
and a reduction/arrest of tumour-cell expansion. It is pos-
sible to explain this function of chaperonins, if we consider
how they are not implicated exclusively in protein folding,
but focusing on their antiapoptotic role. Among the proteins
with which HSP60 forms complexes, one of the most rel-
evant is certainly p53.*e formation of anHSP/p53 complex
leads to a reduction in the interaction of p53 itself with the
promoters of cell cycle arrest genes, thus preventing the
onset of a state of replicative senescence in tumour cells. A
further therapeutic strategy could therefore be to modify the
interaction domains between HSP60 and p53. Previous
studies on mucoepidermoid cell lines in human lungs have
already shown the benefits of a doxorubicin treatment that
promotes HSP60 acetylation with a consequent reduction of
its levels and ability to form a stable complex with p53,
leading to a restoration of replicative senescence
[29, 46, 75–78].

3.4. SAHA (SuberoylanilideHydroxamicAcid). *e effects of
Suberoylanilide hydroxamic acid (SAHA) as an anti-tumour
molecule are already known. It is a member of the histone
deacetylase inhibitor family (HDACi), and as the name
suggests, this class of compounds is involved in the acety-
lation of histones resulting in a modification of the ex-
pression of the chromatin and the consequent
transcriptome. SAHA and similar compounds also acetylate
other proteins, among these, one of the targets is HSP60.
Previous work had already shown that SAHA was able to
acetylate other chaperonins such as HSP90 and HSP70. *is
does not happen, however, for HSP60: in fact, it has been

revealed that, in this chaperonin, the induced posttransla-
tional modification is a nitration at the level of the tyrosines
222 and 226, two amino acids present on the apical domain
of HSP60. A study conducted on a cell line derived from
human lung cancer (H292) has shown that, as a result of this
nitration, intracellular HSP60 levels are reduced exclusively
at a post-translational level. *e nitration of tyrosine
probably depends on the reactive nitrogen species created by
SAHA activity inside tumoural cells. As a result, there is a
reduced capacity of ATP-hydrolysis by HSP60 and an in-
creased difficulty in binding to the co-chaperonin HSP10. In
the future, antitumour treatments involving various HDAC
is, and SAHA in particular, must take in consideration their
ability to interact with HSP60 indirectly, with a pathway that
is not linked to their principal mechanism. *e property of
SAHA to edit post-translational molecules like HSP60 can
open new strategies for antitumour therapeutic protocols at
a design level [79–84].

3.5. LipidRaftsandPlasmaMembrane. In this section, rather
than single interactions between HSP60 and target proteins,
some anomalous localizations of chaperonin in lung cancer
cells will be analysed. On two different cell lines deriving
from lung tumours, HSP60 molecules have been detected at
the level of the plasma membrane and not at the usual
mitochondrial location.*e cell lines in question were A549,
derived from a human lung adenocarcinoma, and H292,
created from a human lung mucoepidermoid. Furthermore,
a temporal analysis shows a different presence of HSP60 at
the level of the cytoplasmic membrane, probably the result of
different stages leading to its secretion. *is hypothesis is
further confirmed by pointing out that there is an accu-
mulation of HSP60 in the cytoplasmic compartment near
the membrane itself, suggesting an active localization of the
molecular chaperone in this precise cellular district. Ana-
lysing the localization on the plasma membrane of the tu-
mour cells in even more detail, the HSP60s have a
preferential aggregation at the level of lipid rafts. Since lipid
rafts are often the “departure stations” from which micro-
vesicular bodies originate, the use of treatments with lipid
raft pathway inhibitors would reduce the amount of HSP60
released at the extracellular level by cancer cells [55, 85–87].

3.6. Pro-Caspase 3. As already explained in the cases ana-
lysed above, HSP60 concentration levels can suffer varia-
tions, if compared to a basal expression, in case of lung
tumours or conditions that can evolve into cancerous dis-
eases (such as COPD). Various examples have been men-
tioned, both of cases in which expression levels were
increased or decreased, and of cases of ectopic localizations.
As a result of oxidative stress, tests on mucoepidermoid
carcinoma cell lines have shown an increase in the cyto-
plasmic concentration of HSP60; if paired with a massive
release from mitochondrial compartment, the role of HSP60
is pro apoptotic; otherwise, if the mitochondrial release is
absent, the chaperone performs an anti-apoptotic action.
Studies have shown that HSP60 is able to bind to the inactive
form of caspase 3, pro-Caspase 3 (p-C3). *is shows how it
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plays an anti-apoptotic action at the level of lung cancer cells.
Indeed, subsequent work has shown that by inhibiting the
binding of HSP60 with p-C3, tumour cells prove to be more
susceptible to apoptosis. Tumour growth is then interrupted
by the activation of the caspase cascade following the ac-
tivation of p-C3 in caspase 3 (its active form).*erefore, it is
necessary to consider the use of drugs and compounds
which reduces the binding that stabilizes the inactive form of
caspase as a possible therapeutic option, in order to favour a
better prognosis and successful treatment in patients suf-
fering from lung cancer [27, 45, 88–90].

4. Conclusions

*e examples reported in this review and the molecular
interactions that will be discovered in the future will con-
stitute an important weapon for doctors, not only in the
treatment of lung tumours, as they will also lead to better
diagnostic methods, but also the creation of therapies against
precancerous conditions that can evolve into lung cancer.
Continuous stress conditions in the respiratory mucosa (a
clear example is cigarette smoking) increase the levels of
chaperonins at the extra-mitochondrial level; the high
concentration of HSP60 has a positive effect on cell survival,
by inhibiting both apoptotic processes and cellular senes-
cence. *is increase in the cytoplasmic levels of the mo-
lecular chaperone leads to its release through different
mechanisms (multivesicular bodies, exosomes, etc.), feeding
a proinflammatory state by acting on the immune cells.
*anks to this positive feedback an ideal environment is
created for the development of lung tumours.

*e number of cases of individuals with lung cancer is set
to increase in the years to come. Both its impact on the world
population and its costs on national health systems will be
influenced by this trend. *e development of new com-
pounds and new therapeutic strategies, associated with an
increased knowledge of pathways, will provide a new
weapon in the fight against lung tumours, in which the
contribution of the HSP60 and HSP10 chaperonins appears
increasingly relevant. *e time has come to assign a much
more important role to these molecular chaperones, making
them evolve from simple biomarkers to leading actors in the
development and evolution of lung tumours.
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