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Abstract: In the last few decades, the interest towards natural compounds, coming from a natural 

source and biodegradable, for biopolymers is always increasing because of a public request for the 

formulation of safe, eco-friendly, and sustainable materials. The main classes of natural compounds 

for biopolymers are: (i) naturally occurring fillers (nFil), such as nano-/micro- sized layered 

alumino-silicate: halloysite, bentonite, montmorillonite, hydroxyapatite, calcium carbonate, etc.; (ii) 

naturally occurring fibers (nFib), such as wood and vegetable fibers; (iii) naturally occurring 

antioxidant molecules (nAO), such as phenols, polyphenols, vitamins, and carotenoids. However, 

in this short review, the advantages and drawbacks, considering naturally occurring compounds as 

safe, eco-friendly, and sustainable additives for biopolymers, have been focused and discussed 

briefly, even taking into account the requests and needs of different application fields. 
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1. Introduction 

1.1. Increasing Interest towards Natural Compounds 

In the last two decades, the extraction and use of naturally occurring compounds experience 

growing popularity. Interestingly, the keyword “Natural Compounds” (specifically, keywords in the 

titles, abstracts, and paper keywords) is contained in about 14,040 scientific publications in 2019, 

based on Scopus data revelation on January 2020, and, in Figure 1, the trend since 1980 until today of 

published papers vs. publication years is plotted. 

 

Figure 1. The trend of published papers vs. publication year (Scopus data revelation in January 2020). 
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There is evidence that the number of publications increases exponentially in time, especially in 

the last two decades. Besides, the detected trend, based on Scopus data revelation in January 2020, 

suggests a continuously increasing interest towards this topic from a scientific point of view. 

Obviously, numerous scientific papers reveal also properties and performance improvement due to 

adding of natural compounds to polymers and biopolymers matrices, and this opens new 

applications for these innovative eco-friendly, sustainable, and safe materials. 

However, natural compounds, such as natural fillers (nFil), fibers (nFib), and antioxidant 

stabilizing molecules (nAO), are usually added to polymers and biopolymers during their processing 

and/or manufacturing in order to improve the performance, properties, and durability. Furthermore, 

in the last two decades, the gradual replacement of synthetic polymers with biopolymer counterparts, 

i.e., polymers coming from natural sources, has gained great interest, considering ever-increasing public 

interest towards the use of eco-friendly, sustainable, and safe materials, also because of their 

beneficial effects on human health and environment [1]. 

1.2. Why Add Natural Compounds to Biopolymers? 

The biopolymers coming from a natural source are very attractive materials, but overall, as 

extensively documented in current literature, the biopolymers macroscopical properties and 

performance, such as rigidity, mechanical and thermo-mechanical resistance, and barrier properties 

towards gas and water, are limited. Therefore, the drawbacks of biopolymers affect negatively their 

industrial applications, and it is necessary to add appropriate additives, such as fillers and fibers, in 

order to gain performance enhancement and large industrial productions [2]. 

Additionally, the biopolymers have also limited durability in terms of decay of their properties 

and performance during the service life. Apparently, it seems that durability and biodegradability of 

biopolymers are contraction terms, but really, there is not; as known, the durability of materials is 

related to maintaining unchanged properties and performance during materials service life, while 

the biodegradability of materials is related to their total bioconversion at the end-of-life into 

renewable resources, such as water, CO2, and other natural derivatives. Generally, the maintenance 

of the biopolymers properties and performance unchanged during the service life can be obtained by 

adding appropriate stabilizing systems, which are able to protect the organic materials against their 

oxidative stress [2–5]. 

To sum up, the naturally occurring compounds, such as fillers, fibers, and stabilizing molecules, 

are added to the biopolymers for three reasons, specifically: (i) to formulate bio-based systems, 

containing only natural compounds, (ii) to improve the properties and performance of the 

biopolymers, in terms of rigidity, resistance, barrier properties, etc., and (iii) to keep unchanged the 

properties and performance of the biopolymers during the service life, ensuring appropriate 

durability. 

1.3. Benefits of Adding Natural Compounds to Biopolymers 

First of all, the main benefits due to adding of naturally occurring compounds, such as natural 

fillers, fibers, and stabilizing molecules, to biopolymers are related to the formulation of totally bio-

based systems, i.e., at 100% natural matrix and additives, obtaining also complex systems with 

improved properties, performance, and service life. 

However, it is worth noting that the processing and manufacturing of biopolymers through melt 

processing can be performed profitably using processing technology similar to that of the synthetic 

polymer-based materials, but unfortunately, as known, the biopolymers “processing window” is very 

strength/short. The fusion temperatures (Tm) and thermal decomposition temperatures (Td) of 

biopolymers are very close between them, and, for this reason, their melt processing is a hard matter. 

For biopolymers, the solvent casting, using different solvents and low environmental temperature, 

appears to be an easy practicable production way [5]. Moreover, the introduction of appropriate 

naturally occurring compounds to the biopolymers can be considered a valid practicable way to 

improve their melt processability, as well as their thermal resistance, properties, and durability, and 

obviously, the latter leads to enlargement and extension of biopolymers application fields. 
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The natural fillers (nFil), such as nano-/micro- sized particles of layered alumino-silicate: 

halloysite, bentonite and montmorillonite, hydroxyapatite, calcium carbonate, and natural fibers 

(nFib), such as wood and vegetable fibers, exert reinforcement and protection actions, increasing 

significantly the system rigidity, thermal-resistance, and, in some cases, the durability [6–9]. For 

example, due to the introduction of fillers and fibers, the elastic modulus and tensile strength of 

polymer and biopolymer-based systems can significantly enhance, while the reduction of the 

elongational at break depends significantly on the added amount of fillers and their aspect ratio [7]. 

According to the literature, the aspect ratio of fillers and fibers is a determining factor for their 

dispersion and distribution into the organic matrices, and, obviously, the obtained fillers and/or 

fibers morphology influences significantly the final properties and performance of the polymer and 

biopolymer-based complex systems, enlarging their application fields. 

The natural fillers and fibers are often incompatible with host biopolymer matrices, and to 

improve their compatibility and dispersion and distribution into an organic medium, two different 

strategies are usually practiced, specifically: (i) introduction of compatibilizing agents; for example, 

modified polymers containing polar groups [10], and (ii) chemical surface treatment; for example, 

introducing fatty acids onto spherical calcium carbonate (CaCO3) particles [11,12], ammonium 

quaternary salts into alumino-silicates layers [13–15], acetylating wood/vegetable fibers [16,17], etc. 

Additionally, the presence of natural fillers and/or fibers can significantly limit the humidity and 

gas penetration into the biopolymers’ structure and bulk, improving their barrier properties and 

making these materials suitable for some packaging applications [9]. 

However, the biopolymers, as well as polymers, are subjected continuously to oxidative stress 

during both processing and service life, as known. The combined actions of atmospheric oxygen, 

humidity, mechanical stress, heat, and UV-light cause premature loss of the biopolymers’ 

performance and properties. Really, the chemical composition of biopolymers, as well as of polymers, 

changes upon oxidative stress, and there is the formation of radicals, unsaturations, oxygen-

containing groups, and/or other new chemical groups. Farther, the formation and accumulation of 

new chemical species lead to the gradual and irreversible changes also at macroscopical level, i.e., the 

organic materials lose their ductility and become even more rigid, until their total embrittlement. 

Obviously, to avoid unexpected changes of materials performance and properties, the degradation 

processes must be monitored and controlled through the introduction of appropriate stabilizing 

molecules, such as antioxidants and UV absorbers, who are able to stop or at least slow down the 

formation of radicals, unsaturations, oxygen-containing groups, and new chemical groups [18–20]. 

Natural antioxidants (nAO), such as phenols, polyphenols, vitamins, and carotenoids, are 

suitable stabilizing systems, which can protect the biopolymers against the thermo- and photo-

oxidative degradation, which occurs during manufacturing and in the service life [21–23]. As well 

known, the natural antioxidant compounds are used as suitable additives in the food sector to 

prevent quick decay of foods and beverages and to extend their storage, and in the pharmaceutical 

sector to scavenge free radicals and to prevent the tissue lipid oxidation. Some natural antioxidants 

have been considered as suitable stabilizing systems, also for polymers and biopolymers, in order to 

prevent their oxidative degradation [23]. Unexpectedly, some naturally occurring compounds, based 

on their chemical compositions, can cause the faster formation of oxygen-containing groups in the 

polymer and biopolymer-based systems, inducing premature loss of their performance and 

properties [23–26]. Additionally, if the natural fillers (e.g. montmorillonite) contain iron impurities, 

upon UV-light, the iron ions can change from Fe2+ to Fe3+, catalyzing the decomposition of the 

hydroperoxides, which are typical oxygen-containing products formed during the degradation of 

polymers and biopolymers. Besides, this reaction is auto-catalytic, leading to a significant acceleration 

of the degradation and loss of the performance for all systems containing this filler kind [27,28]. 

Overall, this brief review provides an overview of the advantages and disadvantages, coming 

from the introduction of naturally occurring compounds as sustainable and suitable additives for the 

formulation of totally biopolymer-based systems. At the same time, it gives notice about some 

unexpected drawbacks due to the adding of the natural additives into biopolymer matrices, pointing 

out how the drawbacks can affect negatively the large-scale application of these materials. 
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2. Natural Fillers (nFil) 

In the past, the introduction of micro-sized particles, such as calcium carbonate, approximately 

up to 40–50 wt.% to the polymer matrices, aiming to reduce the cost and to increase the rigidity of 

the systems, has been considered a consolidated practice at large industrial level. Therefore, in the 

last few decades, the formulation of complex polymer and biopolymer-based systems containing 

nano-sized fillers has gained great interest because by adding a low amount of nano-fillers, 

approximately maximum up to 10 wt.%, there is the possibility to obtain properties and performance 

enhancement, similar to that obtained using micro-fillers at a large amount. 

Overall, the adding of micro- or nano-fillers to polymers and biopolymers leads to a significant 

increase of their rigidity, thermal-resistance, stability, barrier properties, and durability [29–46], 

although in some cases, the presence of the fillers can induce a reduction of some properties due to 

the development of inappropriate morphology. Besides, the introduction of naturally occurring 

fillers (nFil), such as nano-sized layered alumino-silicates (e.g., halloysite, bentonite, beidellite, 

sepiolite, montmorillonite, etc.), hydroxyapatite, calcium carbonate, etc., to biopolymers offers the 

possibility to formulate eco-friendly and sustainable materials, also considering the growing public 

interest towards the formulation of safe materials. 

2.1. Natural Alumino-Silicates 

The alumino-silicates are minerals most abundant in nature and, due to their good properties 

and low costs, are considered excellent candidates for the formulation of advanced polymer and 

biopolymer-based nanocomposites for some industrial applications (e.g., automotive components), 

packaging applications (e.g., food packaging with selective permeability), some outdoor applications 

(e.g., mulch films), etc. [29–36]. 

Indeed, to gain a significant increase in the properties and performance of the biopolymers, it is 

necessary to obtain a good nanofillers dispersion and distribution into the matrices. For example, in 

the case of layered alumino-silicates, see Figure 2a [32], the achievement of well intercalated and/or 

exfoliated nanofiller morphology is imperatively required, see Figure 2b [34]. As noticeable, the 

interface between the nanofillers and polymeric matrix increases significantly due to nanofiller 

exfoliation, and, subsequently, the nanocomposite mechanical and barrier properties appreciably 

raise. 

 

  

(a) (b) 

Figure 2. (a) Structure of layered alumino-silicate and (b) intercalated (left) and exfoliated (right) 

morphology of layered alumino-silicate into polymer and biopolymer matrices [32], Reproduced with 

permission from Bayer G, Plast Addit Compound; published by Elsevier, 2002. 

Further, to improve the nanofillers dispersion and exfoliation into the polymer and biopolymer 

matrices, an organo-modification of the layered silicates, through the introduction of ammonium 

quaternary salts containing long alkyl chains, is usually practiced. The presence of the long alkyl 

chains between the silicate layers facilitates and helps the layers’ separation during the melt 

processing and/or manufacturing of the polymers and biopolymers-based nanocomposites, and, 

obviously, the latter has a great beneficial effect on the complex system properties and performance 

[29–36]. 
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However, let’s discuss some interesting cases and experimental results documented in the 

current literature. As reported by Fukushima et al., the adding of natural fillers, such as two organo-

modified montmorillonites: Cloisite 30B (CL) and Nanofil 804 (NF), and one unmodified sepiolite 

(SEPS9) to biodegradable polylactic acid (PLA) and ε-caprolactone (PCL). The introduction of all 

these kinds of nanofillers leads to an increase of both storage modulus (E’) and tan δ values at low 

and high temperatures, see Figure 3a,b and Tables 1 and 2, highlighting the formulation of more 

stable and thermally resistant nanocomposite systems, in comparison to the neat matrices [37]. 

Moreover, based on the morphological studies conducted by X-ray diffraction, the authors have 

reported that the highest thermal-mechanical enhancements have been obtained for PLA-based 

nanocomposites in comparison to the PCL-based nanocomposites, probably because of higher 

polymer/filler interactions. 

  
(a) (b) 

Figure 3. Storage modulus, E’, for (a) polylactic acid (PLA) and (b) PCL-based nanocomposite systems 

[37], Reproduced with permission from Fukushima K, Mater. Sci. Eng. C; published by Elsevier, 2009. 

Table 1. E′ value of nanocomposites of PLA at different temperature ranges. [37], Reproduced with 

permission from Fukushima K, Mater. Sci. Eng. C; published by Elsevier, 2009. 

Sample 
E’ at 30 °C 

(MPa) 

E’ at 50 °C 

(MPa) 

E’ at 60 °C 

(MPa) 

E’ at 80 °C 

(MPa) 

PLA 3058 2848 1544 5 

PLA + 5% 

CLO30b 
3578 3372 2761 12 

PLA + 5% 

NAN804 
3109 2902 2462 6 

PLA + 5% SEPS9 3815 3579 2246 10 

Table 2. E′ value of nanocomposites of PCL at different temperature ranges. [37], Reproduced with 

permission from Fukushima K, Mater. Sci. Eng. C; published by Elsevier, 2009. 

Sample 
E’ at - 125 °C 

(MPa) 

E’ at - 75 °C 

(MPa) 

E’ at - 25 °C 

(MPa) 

E’ at 30 °C 

(MPa) 

PCL 4715 3451 891 503 

PCL + 5% 

CLO30b 
5071 3882 1312 762 

PCL + 5% 

NAN804 
4864 3663 1075 599 

PCL + 5% SEPS9 4767 3602 1207 751 

Interestingly, the adding of organo-modified montmorillonite, such as commercial Cloisite 30B 

(CL), to fully bio-based blends (polylactic acid/polyamide 11, PLA/PA11), where PLA is the dominant 

component, allows to design and formulate complex systems with improved high temperature creep 

resistance, see Figure 4 [38]. As documented by Nuzzo et al., the selective positioning of the silicate 

nanoparticles in the more polar phase, i.e., PA11, and/or at the PLA/PA11 interface turns the blend 

morphology from droplet to co-continuous at high PLA content, i.e., around 70 wt.%. Particularly, 

the blend PLA/PA11=70/30 wt./wt.% keeps its structural integrity up to 160 °C, taking into account 
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that the neat PLA has a glass transition temperature around 100 °C, see Figure 4a, where the sample 

deflection as a function of the temperature is shown. Besides, in Figure 4b,c, reported pictures show 

the samples PLA/PA11=70/30 and PLA/PL11=70/30 containing silicate at the end of the test, that is 

after the temperature had reached ≈160 °C. 

It is evident that the bio-blend containing silicate show good thermal and dimensional stability 

at the end of the test at high temperature (approximately at 160 °C), in comparison to the same bio-

blend without nanofiller. 

Therefore, the preferential location of the nanofillers into the more polar polymer phase and/or 

at the interface between the two polymer phases, and subsequent morphology variation from droplet 

to co-continuous, suggests that the nanofillers can be considered as an efficient and suitable physical 

compatibilizer for some biopolymer blends. 

 

  

(a) (b) (c) 

Figure 4. (a) Sample deflection recorded during creep tests for the sample PLA (squares), polyamide 

11 (PA11) (diamond), PLA70 (circles), and PLA70-silicate at 3 wt.% (triangles). (b,c) The pictures show 

the samples PLA70 and PLA70-silicate at the end of the test, that is, after the temperature had reached 

≈160 °C [38], Reproduced with permission from Nuzzo A, Macromol. Mater. Eng.; published by Wiley, 2014. 

Commonly, the adding of layered alumino-silicates, especially organo-modified layered 

montmorillonite (OMMT), leads to an increase of the system rigidity, i.e., Young’s modulus (elastic, 

E), tensile strength (TS), flexural modulus (FM), flexural strength (FS), and, mostly, the ductility of 

the complex systems, i.e., the elongation at break (EB), remains almost unchanged, see Table 3, 

reported below [39].  

Table 3. Mechanical properties of virgin polylactic acid (PLA) and organo-modified layered 

montmorillonite (OMMT)—containing PLA [39]. 

Labels 
Flexural 

Strength (MPa) 

Flexural Modulus 

(GPa) 

Tensile 

Strength (MPa) 

Young’s 

modulus (GPa) 

Impact 

Strength (J/m2) 

PLA 33.5 (2.4) 2.54 (0.35) 29.0 (1.8) 1.21 (0.05) 3.4 (0.4) 

0.5/PLA 57.2 (3.8) 3.08 (0.40) 43.9 (2.2) 1.29 (0.09) 10.9 (2.2) 

1/PLA 42.2 (4.5) 3.59 (0.18) 37.3 (1.0) 1.36 (0.05) 7.3 (0.6) 

1.5/PLA 38.9 (4.0) 4.72 (0.17) 35.2 (2.1) 2.13 (0.18) 6.0 (0.7) 

2/PLA 38.1 (2.0) 3.49 (0.22) 29.1 (0.9) 1.54 (0.20) 4.8 (0.7) 

 Note: Values in the parentheses represent the standard deviations of replicates. 

Farther, the montmorillonite adding to biopolymers leads to an increase of the barrier properties 

towards gas and humidity because into the polymeric matrix, the way of the oxygen and water 

molecules becomes more tortuous. Additionally, the complex system crystallinity could increase if 

the nFil exerts a nucleating effect, or it could decrease if the nFil prevents and/or inhibits the 

macromolecules organization in regular crystalline structures [39]. 

An interesting study by Zhou et al. reported about the increase of the mechanical properties of 

biopolymer-based foam blends containing polylactic acid, PLA, and polybutylene succinate, PBS. In 

Figure 5a–c, the compressive strength, bending strength, and impact toughness of biopolymer foam 

blends-based on PLA/PBS, as a function of the added concentration (wt.%) of natural unmodified 
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montmorillonite (Na-MMT) and organo-modified montmorillonite (OMMT) are plotted. It can be 

observed that the adding of both Na-MMT and OMMT leads to an increase of the values of the 

considered compressive strength, bending strength, and impact toughness, in comparison to neat 

biopolymer-based foam PLA/PBS. As known, the compressive strength, bending strength, and 

impact toughness are the main critical mechanical parameters for the porous polymer-based 

materials. Specifically, the compressive strength increases by about 34% and 48% by adding of 3wt.% 

of Na-MMT and OMMT, respectively, see Figure 5a. Similar increases have been observed also for 

the bending strength and impact toughness upon the adding of unmodified and organo-modified 

montmorillonite, see Figure 5b,c, respectively. 

       
(a) (b) (c) 

Figure 5. Effect of natural unmodified montmorillonite (Na-MMT) and organo-modified layered 

montmorillonite (OMMT) on mechanical properties: compressive strength (a), bending strength (b) 

and impact toughness (c) of PLA/polybutylene succinate (PBS) foams [40], Reproduced with permission 

from Zhou J, J. Appl. Polym. Sci.; published by Wiley, 2014. 

Although the adding of nFil leads to a significant increase in the mechanical and thermo-

mechanical and mechanical resistance and rigidity of the polymers and biopolymers due to their 

excellent reinforcement action, i.e., most important beneficial effect, unfortunately, if the nFil contains 

iron ions, the system durability could be significantly compromised. As known, the iron ions can 

change from Fe2+ to Fe3+ upon UV-light, and the latter can catalyze the matrix degradation, limiting 

in this way, the nanocomposite outdoor applications [27,28]. Additionally, the reduced photo-

oxidative resistance of the polymers and biopolymers-based nanocomposites, containing organo-

modified alunimo-silicates can be understood considering two different issues: (i) presence of iron 

impurities in the native silicates structures, which are able to catalyze the degradation of the host 

matrices, and (ii) decomposition of the organo-modifier (i.e., surfactant agent) at high processing 

temperatures, typical for the processing of polymers and biopolymers. Besides, as known, the 

unwanted phenomenon, related to the decomposition of the organo-modifier (e.g., ammonium 

quaternary salts decompose following Hoffman’s elimination reaction at high processing 

temperatures), leads to the formation of α-olefins (a vinyl moiety) and amines, which are able to 

catalyze further the degradation of the host matrices. 

For example, in Figure 6a,b, the trends of dimensionless elongation at break (EB) and Young’s 

modulus (elastic modulus, E) for neat polyethylene (PE) film and PE films containing unmodified 

nanofiller (NF), native montmorillonite (MMT), and organo-modified montmorillonite (OMMT), 

without and with compatibilizer agent, such as maleic anhydride grafted polyethylene (PEgMA), as 

a function of accelerated UVB-light exposure (using UVB-lamps, having an emission peak at ~313 

nm), are plotted. The dimensionless values of EB have been calculated as a value at a given exposure 

time, EB(t), divided by the value before exposure, EB(t0); the same calculations have been performed 

also for the trends of elastic modulus. It can be observed that the presence of NF and MMT, even 

more, the presence of OMMT, leads to a more pronounced decrease of dimensionless EB and more 

pronounced increase of dimensionless E, highlighting that the presence of nanofillers accelerates 

significantly the photo-oxidative degradation, i.e., the ductility loss and rigidity increase. Besides, it 

is evident that these effects are exacerbated by the presence of the compatibilizing agent, such as 

PEgMA [28]. 
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Further, by Dintcheva et al., it has been demonstrated that the iron ions, if present in the 

alunimo-silicates structure, see Figure 6c and Table 4, upon UV-light exposure, are able to catalyze 

the decomposition of the hydroperoxides, which are the typical oxygen-containing products coming 

from the degradation of the polymeric materials.  

  

 

 

(a) (b) (c) 

 

Figure 6. (a) Elongation at break (EB) and (b) Young’s modulus (E) of different samples without and 

with montmorillonite and compatilizing agent as a function of accelerated weathering exposure, 

using UV-B lamps (~313 nm). (c) energy dispersive X-ray analysis (EDX) of Cloisite 15A [28], 

Reproduced with permission from Dintcheva NTz, Polym. Degrad. Stab.; published by Elsevier, 2009. 

Table 4. Chemical composition of OMMT (Cloisite 15A), determined by energy dispersive X-ray 

analysis (EDX) [28], Reproduced with permission from Dintcheva NTz, Polym. Degrad. Stab.; published by 

Elsevier, 2009. 

Element Wt % At % K-Ratio Z A F 

C   K 26.97 52.20 0.0566 1.1058 0.1896 1.0001 

O   K 11-45 16.64 0.0343 1.0845 0.2756 1.0004 

MgK 1.12 1.07 0.0080 1.0354 0.6855 1.0053 

AlK 7.96 6.85 0.0633 1.0101 0.7826 1.0068 

SiK 21.10 17.54 0.1795 1.0453 0.8099 1.0001 

AuM 24.61 2.90 0.1721 0.7099 0.9850 1.0000 

FeK 6.70 2.79 0.0609 0.9169 0-9869 1.0052 

Total: 100.00 100.00     

Element Net Inte. Bkgd Inte. Inte. Error P/B 

C   K 6.36 0.91 2.76 7.00 

O   K 3.06 1.74 5.13 1.76 

MgK 4.42 5.94 5.61 0.74 

AlK 36.50 5.91 1.17 6.17 

SiK 107.25 6.44 0.63 16.65 

AuM 66.12 6.63 0.83 9.97 

FeK 7.53 3.41 3.09 2.21 

Total:     

The decomposition of hydroperoxides is significantly exacerbated by the PEgMA presence 

because it enlarges the nanofiller exfoliation and dispersion, and the latter increases the interface area 

between the silicate layers and polymeric matrix, which is a critical point for the beginning of the 

degradation process of the nanocomposites. However, the accelerated photo-degradation of some 

polymeric nanocomposites, due to the presence of nanofillers, limits significantly their outdoor 

applications [28]. 

Therefore, biopolymer-based nanocomposites, containing organo-modified montmorillonite, 

similarly to the petroleum-based polyolefins upon UV-light exposure, degrade faster than the 

unfilled matrices because of the presence of some impurities in the structure of alumino-silicates, 

larger interface surface between matrices and exfoliated nanofillers, and decomposition of the 

surfactant in the structure of organo-modified alumino-silicates. 

An interesting study, related to water permeation through poly(lactic acid)-based 

nanocomposites containing montmorillonite, has been conducted by Duan et al. [41]. Really, the 
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authors examined accurately how the nanofiller concentration and dispersion, i.e., nano clay 

morphology, affect the barrier properties and thermal properties of PLA. 

Therefore, it is generally accepted that the presence of nanofillers platelets increases significantly 

the barrier properties of biopolymer-based nanocomposites, in comparison to that of neat matrices. 

The so-called “tortuous path” model, see Figure 7a, suggests that the rectangular nanoplatelets, 

aligned perpendicularly to the vapor and/or gases diffusion direction, can make difficult molecules 

pathway and diffusion into the host matrices. Besides, considering the Nielsen’s equation, reported 

below, the permeability of polymers and biopolymers composites (Pc) can be calculated taking into 

account the value of permeability of neat matrices (Pm), the volume fraction of fillers (Vf), and filler 

aspect ratio (L/D; where L is length, D is diameter/thickness). 

��
��

=
1 − ��

1 + (�/2�)��
 (1) 

Duan et al. [41] reported experimental proof, obtained by Transmission Electron Microscopy 

(TEM), about the obtained alignment of nanofiller particles into PLA-based nanocomposites, 

achieved following melt processing and compression molding, see Figure 7b. 

The water vapor rate transmission (WVRT), i.e., water permeability, of PLA-based 

nanocomposites decreases due to the presence of nanofillers particles, and this decrease is more 

pronounced for samples containing large number of nanoparticles, see Figure 7c. As expected, the 

water vapor barrier of PLA-based nanocomposites, being the reverse of WVRT, significantly 

increases due to the presence of aligned nanofillers platelets. 

 
 

 

(a) (b) (c) 

Figure 7. (a) Schematic representation of the “tortuous path” model for nanocomposites. (b) 

Transmission electron micrograph (TEM) of PLA nanocomposite containing 3 wt.% of 

montmorillonite, showing aligned clay platelets. (c) Water vapor transmission rates (WVTR) of PLA 

nanocomposites as a function of wt. nanofillers for two different PLA grades [41], Reproduced with 

permission from Duan Z, J. Membrane Sci.; published by Elsevier, 2013. 

However, similarly to the water vapor molecules, also the gas molecules have a tortuous 

pathway into the nanocomposites, rather than into the neat matrices. The biopolymer-based 

nanocomposites can be considered suitable and valid candidates for different packaging applications, 

due to their enhanced barrier properties, in comparison to neat matrices. 

2.2. Natural Hydroxyapatite 

The poly-L-lactic acid (PLLA) is a semi-crystalline thermoplastic, having excellent 

biocompatibility and biodegradability. This biodegradable polymer is suitable for different 

biomedical applications, such as porous biodegradable scaffolds for bone repair, where the rate of 

resorption in vivo vs. growth rate of the bone tissue must be imperatively monitored. The adding of 

hydroxyapatite (nHA), as suitable, sustainable, non-toxic, and bio-active nanofiller, has beneficial 

effects on the thermo-mechanical, mechanical, and resorption behavior of the PLLA-based 

nanocomposites for biomedical applications, such as porous biodegradable scaffolds for bone repair. 

An interesting study by Delabarde et al. [42] reported that the presence of nHA in PLLA, 

although leads to a slight increase of the system rigidity and maintenance of the ductility, see Figure 
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8a,b, it leads to an acceleration in the mass loss, and this effect is more pronounced for amorphous 

PLLA samples, see Figure 8c. Besides, the degree of crystallization of neat amorphous PLLA increases 

with increasing the aging time, while the adding of nHA leads to a decrease of the crystallinity of the 

PLLA, and this decrease becomes more pronounced with increasing the aging time, see Figure 8d. 

As discussed above, the well-dispersed nHA inhibits the organization of the macromolecules, and, 

subsequently, the nanofiller samples show a lower degree of crystallinity, in comparison to the neat 

PLLA one, and, besides, this effect becomes more pronounced at longer aging times.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. (a) Yield strength and (b) strain at break for poly-L-lactic acid (PLLA) samples before and 

after 5 weeks of aging as a function of hydroxyapatite (nHA) content. (c) Mass loss and (d) degree of 

crystallinity for amorphous sample, as a function of the aging time for PLLA containing nHA at 0, 5, 

and 10 wt.% [42], Reproduced with permission from Delabarde C, Polym. Degrad. Stab.; published by Elsevier, 

2011. 

Finally, the authors concluded that the addition of nHA results in significantly less marked 

decreases in tensile strength and strain to failure as a function of aging time than the unmodified 

films. This unexpected result could be understood considering that the adding of nHA exerts a 

beneficial effect on both the toughness and ductility of PLLA-based film. The latter is of considerable 

interest, given that a primary aim in bioresorbable scaffolds is to maintain structural integrity at 

intermediate stages of resorption. 

Currently published study reports about the improvement of mechanical, thermal, and 

combustion resistance of polylactic acid (PLA) through adding of hydroxyapatite (HA) nanoparticles, 

previously modified phosphorus-based organic additive (PDA) [43]. Due to the adding of organo-

modified HA nanoparticles, the main mechanical properties, such as tensile strength (TS) and 

Young’s modulus (YM), of nanocomposites increase, while, the ductility, i.e., the elongation at break 

remains almost unchanged, see stress-strain curves in Figure 9a,b and main mechanical properties in 

Table 5.  



Polymers 2020, 12, 732 11 of 24 

 

  
(a) (b) 

Figure 9. (a,b) Stress-strain curves of neat PLA and PLA containing hydroxyapatite (HA) 

nanoparticles modified with phosphorus-based organic additives [43], Reproduced with permission from 

Hajibeygi M, Polym. Adv. Technol.; published by Wiley, 2019. 

Table 5. Values of the tensile strength (TS), Young’s modulus (YM), and elongation at break (EB) [43], 

Reproduced with permission from Hajibeygi M, Polym. Adv. Technol.; published by Wiley, 2019. 

 Tensile strength, MPa Young modulus, GPa Elongation at break, % 

PLA 44.89 ± 3.21 2.41 ± 0.11 2.46 ± 0.11 

PP8 64.17 ± 2.26 2.92 ± 0.18 2.45 ± 0.22 

PH8 52.30 ± 1.89 2.63 ± 0.23 2.79 ± 0.29 

PP2H6 88.07 ± 2.80 3.71 ± 0.13 2.89 ± 0.10 

PP6H2 95.58 ± 3.54 3.42 ± 0.14 3.21 ± 0.18 

PP4H4 88.17 ± 3.80 3.24 ± 0.36 3.00 ± 0.23 

Interestingly, also according to other studies reported in the literature, the presence of untreated 

HA nanoparticles increases the thermal and combustion resistance of PLA-based nanocomposites, 

while the presence of phosphorus-based organic modified HA advances slightly the thermal and 

combustion degradation of PLA because of the presence of the organo-modifier. The latter effect is 

very similar to that observed for the organo-modified alumino-silicates, and, unfortunately, this 

could compromise the applications of the nanocomposites in some specific fields, where an 

appropriate resistance to oxidation and/or degradation phenomena is required. 

2.3. Natural Calcium Carbonate 

The nanoparticle morphology, as mentioned before, is a determining factor for the achievement 

of enhanced properties and performance of the biopolymer-based nanocomposites, in comparison to 

the neat matrices. To improve the nanoparticles dispersion and distribution and to prevent the 

potential re-aggregation during melt processing, the nanofillers are often organo-modified, and, 

specifically, in the case of calcium carbonate, usually considered industrial practice is the introduction 

of fatty acids onto surface of the spherical particles. Really, the presence of fatty acids helps the 

dispersion of the calcium carbonate particles into the polyolefins in an efficient way, while, in the 

case of biopolymer matrices, the fatty acids can react with some specific functional groups, penalizing 

few macroscopical properties. Therefore, the application fields of calcium carbonate-containing 

biopolymer-based nanocomposites are very promising from industrial applications in the transport 

and construction sectors to the packaging and agricultural sectors. 

Nekhamanurak et al. investigated the effect of the presence of micro- and nano-sized CaCO3 on 

thermal stability and melt rheology behavior of PLA [44]. Surprisingly, the authors found that the 

micro- and nano- composites show lower thermal stability, i.e., the onset values of the thermal 

degradation of the composites are lower than the value of neat PLA, see Figure 10. As noticeable in 

Figure 10, the decomposition temperature (Td) for neat PLA is around 392 °C, while the Td for the 

micro- and nano- composites are around 295–356 °C, highlighting a significant reduction. 

Unfortunately, the chemical reaction between fatty acid and ester linkage of PLA induces chain 

scission and causes thermal degradation of PLA. 
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(a) 

 

(b) 

 

(c) 

Figure 10. TGA curves of the CaCO3-PLA bio-composites with various loading of CaCO3: (a) micro-

CaCO3-1740; (b) nano-CaCO3-1041; (c) nano-CaCO3-280 [44], Reproduced with permission from 

Nekhamanuraka B, Energy Procedia; published by Elsevier, 2014. 

Another similar study by Kumar et al. [45] reported that the degradation of PLA-based 

nanocomposites occurs at lower temperatures than that of neat PLA one. In Figure 11 and Table 6, 

the TGA curves and temperatures at which the samples’ weight is reduced at 10% and 50% of their 

initial values are reported. As noticeable, the reduction of 10% of sample weight for PLA-based 

nanocomposites occurs at lower temperatures for the nanocomposites containing calcium carbonate 

(T10) compared to the unfilled PLA one. This could be understood considering that the degradation 

process of the organo-modifier of the nanoparticles begins before the degradation of the PLA. 

 

Figure 11. (a) TGA thermogram of CL–PLA/CC nanocomposites. [45], Reproduced with permission from 

Kumar V, Composites: Part B; published by Elsevier, 2014. 

Table 6. TGA data of CL–PLA/CC nanocomposites. [45], Reproduced with permission from Kumar V, 

Composites: Part B; published by Elsevier, 2014.  

Sample T10 T50 

CC 1.5 238 282 

CC 3.0 231 281 

CC5.0 224 281 

CC 7.0 213 279 

CL PLA 246 278 

Besides, the nanocomposites are more susceptible to oxidation also because the presence of the 

nanoparticles hinders the organization of the macromolecules in regular structures, and, overall, the 

crystallinity degree decreases. Interestingly, the reduction of the sample weight at half (i.e., T50) for 

neat PLA and PLA-based nanocomposites occurs at very close temperatures because, at higher 

temperatures, the influence of the presented fatty acids onto calcium carbonate particles is 

significantly reduced. Upon further temperature increase, as expected, the reduction of sample 

weight is more pronounced for neat PLA. 

Therefore, the effect of the micro- and nano-sized calcium carbonate on the thermal stability of 

the composites can be explained considering two complementary effects: first, the CaCO3 particles 

are typically treated by fatty acid to prevent their re-agglomeration during storage and handling, and 

second, the presence of both untreated CaCO3 or organo-modified particles can decrease the 
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crystallinity degree of the host matrices. The possible interaction/reaction between the fatty acids and 

host polymer matrices depends significantly on the chemical nature of presented functional groups 

onto the polymer structures, for example, the petroleum-based polyolefins, such as polyethylene, 

polypropylene, polystyrene, do not react with the fatty acids, while the bio-polyesters, having 

numerous esters groups, are able to react with the fatty acids, inducing a negative effect due to the 

adding of calcium carbonate particles. Additionally, the presence of particles into semi-crystalline 

host polymer matrices could prevent the organization of the macromolecules in ordered crystalline 

structures, reducing in this way the composite crystalline degree. As known, the amorphous 

structures are subjected to faster oxidation, which occurs also at lower temperatures, in comparison 

to neat matrices, because of easy oxygen penetration, highlighting the formation of less thermal-

resistant structures. 

2.4. Nanocrystalline Cellulose 

The nanocrystalline cellulose (NCCs) is generally named rigid rod-like nanoparticles having 

diameters 10–20 nm and length of a few hundred nanometers [46]. As known, the NCCs contain 

numerous hydroxyl groups, which can be subjected to different chemical surface treatments. The 

production of NCCs includes two different preparation techniques: first, the removal of amorphous 

portions between the natural fibers’ structure by acid treatments, and, second, bacterial synthesis. 

The bacterial cellulose is a highly pure form, i.e., free of hemicellulose, lignin, and pectin, and, 

additionally, the bacterial cellulose membranes are highly porous materials, having high liquids and 

gases permeability and high-water uptake. 

According to the literature, to produce advanced nanocomposites, the NCCs are successfully 

introduced in polylactic acid (PLA), polycaprolactone (PCL), and thermoplastic starch (TPS) as 

suitable reinforcement agents. Therefore, the final performance of NCCs-containing polymers and 

biopolymers nanocomposites depends on nanoparticle aspect ratio, surface area, and its dispersion 

in the matrix. The retaining of nano-dimensions, i.e., as separate nanoparticles and uniform 

dispersion in polar and nonpolar matrices, is a challenge, and, as currently reported in the literature, 

different preparation techniques have been adopted to overcome the nanoparticles’ aggregation. 

Therefore, the applications of NCCs-containing nanocomposites at the industrial scale are still 

under investigation and must be established and exploited, although there have many promising 

achievements at the laboratory or pilot scale. Interestingly, the NCCs, together with alunimo-silicates 

or carbon-based nanofillers, are promising additives for biopolymers for the formulation of advanced 

nanocomposites, having improved properties and performance [46]. 

Finally, to sum up, the nFil influences the performance and properties of biopolymers in 

different ways, as follows: 

(i) nanocomposites rigidity increases without ductility loss, i.e., the elastic modulus and tensile 

strength increase, while the elongation at break remains almost unchanged; 

(ii) barrier properties towards water and gasses molecules increase because the presence of well-

dispersed and exfoliated nanoparticles makes the tortuous way of all kind of molecules; 

(iii) thermo-mechanical resistance, deflection temperature, and dimensional stability 

significantly increase; 

(iv) thermal and crystallization behavior could be accurately evaluated; the nFil can exert 

nucleating effect (enhancing the crystallinity) or can hinder the organization of the macromolecules 

in the crystalline structures (decreasing the crystallinity); 

(v) durability and resistance to oxidative stress can be penalized if the nFil is organo-modified 

or, in its composition, is present some impurities and/or contaminants. 

3. Naturally Occurring Fibers (nFib) 

The development of high-performance materials based on natural resources is a world-widely 

increasing issue, as mentioned above. Different natural fibers (nFib), i.e., wood and vegetable fibers, 

such as flax, hemp, jute, kenaf, sisal, bamboo, etc., are widely taken in consideration for the 

formulation of eco-friendly, sustainable, and safe biopolymer-based materials [47–71]. Interestingly, 
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nowadays, abaca, pineapple leaf, coir, oil palm, bagasse, and rice husk fibers have also gained 

interest and importance because of their availability and specific properties. Therefore, the 

biopolymers containing naturally occurring fibers have numerous applications in different fields, 

such as automotive, constructions and indoor decors, packaging with selective permeability, etc. 

It should be mentioned that the nFib is a multi-component system and is mainly composed of 

cellulose, hemicellulose, lignin, and waxes, in different weight percentage, as reported in Table 7 [71]. 

Therefore, the nFib shows highly variable properties, such as sensitivity to temperature, moisture, 

and UV radiation, because their location and time of harvest are totally different. Besides, due to 

different nFib compositions, the nFib is not fully compatible with host polymers and biopolymer 

matrices, and, for this reason, an appropriate physical and/or chemical surface treatment of the fibers 

and/or use of compatibilizers between fibers and matrices are usually practiced [47–71]. 

Table 7. Basic chemical composition of some common natural fibers [71], Reproduced with permission 

from Faruk O, Progr. Polym. Sci.; published by Elsevier, 2012. 

Fibers 
Cellulose,  

wt.% 
Hemicellulose, wt.% 

Lignin,  

wt.% 

Waxes,  

wt.% 

Flax 71 18–20 2.2 1.5 

Hemp 68 15 10 0.8 

Jute 61–71 14–20 12–13 0.5 

Kenaf 72 20 9 - 

Sisal 65 12 10 2 

Bamboo 26–43 30 21–31 - 

Oil palm 65 - 29 - 

Rice husk 35–45 19–25 20 14–17 

Due to variable compositions and properties of different kinds of natural fibers, the effect of the 

fibers on the properties and performance of the host matrices need to be evaluated for each individual 

case. For example, the flax or sisal fibers can exert a reinforcement effect on the polylactic acid (PLA) 

matrix, but, based on their different aspect ratio and compositions, can exert a different effect on the 

thermal and crystallization behavior.  

An interesting study by Oksman et al. [50] reported about the optimization of the mechanical 

properties of PLA/flax composites, without and with plasticizer, such as triacetin. Besides, the 

properties of PLA/flax and PP/flax systems have been compared, and the obtained results suggest 

that the flax fibers are appropriate reinforcing additive for PLA, like PP. 

In Figure 12a–c, the main mechanical properties, such as tensile stress, tensile modulus, and 

unnotched Charpy impact strength, are reported for neat PLA and PLA/flax composites, containing 

also different amount of plasticizer, such as triacetin (0–15 wt.%). As known, PLA is a brittle 

biopolymer, and to improve its processability and ductility, the suitable plasticizer is usually added. 

Based on experience and obtained results, the authors assert that the efficient amounts of flax fibers 

and plasticizer, in terms of mechanical performance enhancement, are at 30–40 wt.% and 12–15 wt.%, 

respectively. As noticeable in Figure 12a, the tensile stress decreases with increased triacetin content, 

and this trend is even more pronounced in PLA/flax composites, rather than in neat PLA. Similar 

considerations can be made, also for the stiffness trends, and the triacetin presence affects negatively 

the stiffness of PLA/flax composites, while it does not affect the stiffness of neat PLA, see Figure 12b. 

The impact values of PLA/flax remain almost unchanged due to the presence of triacetin, while a 

slightly pronounced beneficial effect of plasticizer is noticed for neat PLA, see Figure 12c. 
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(a) (b) (c) 

Figure 12. Mechanical properties: (a) tensile stress, (b) tensile modulus, and (c) unnotched Charpy 

impact strength of neat PLA and PLA/flax, without and with triacetin [50], Reproduced with permission 

from Oksman K, Compos. Sci. Technol.; published by Elsevier, 2003. 

A very interesting study by Graupner et al. [67] deals with the design and tunes the properties 

of PLA-based composites containing different kind of fibers. The authors assert that by learning the 

role and function in plants, there is a possibility to design biopolymer-based composites by adding 

seed fibers with high elongation for improved impact and stem fibers for improved stiffness. In 

Figure 13a–d, the tensile strength, Young’s modulus, elongation at break, and Charpy impact 

strength for PLA-based composites containing different kinds of fibers are reported. The dashed lines 

represent the main mechanical characteristics of neat PLA, while, due to different fibers orientation, 

for all the PLA-based composites, there is the difference between the values in the machine direction 

(MD) and cross direction (CD). 

As noticeable in Figure 13, the best characteristic values are obtained in Lyocell-PLA composites, 

although no good bonding between the matrix and fibers occurs. Cotton-PLA composites show high 

elongation at break, while the hemp, hemp/kenaf, and kenaf-PLA composites show good results in 

terms of tensile strength, elongation at break, and elastic modulus values, in comparison to 

cotton/PLA one. The kenaf fibers—added as single fiber or together with other fibers—could act as a 

crack inhibitor, at the same time, causing an impact improvement for PLA. Unfortunately, the authors 

assert that by modeling the tensile strength of the composites through the rule of mixture, the 

calculated values are multiple times higher than the measured values. A second important point of 

this research is related to the adding of a combination of two different kinds of fibers; for example, 

the best results in terms of tensile properties are obtained by adding hemp and Lyocell to PLA. 
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(c) 

 

(d) 

 

Figure 13. Mechanical properties: (a) Tensile strength, (b)Young’s modulus, (c) elongation at break, 

and (d) Charpy impact strength of the composites and neat PLA (MD—machine direction; CD—cross 

direction; standard deviation are shown as error bars; the letter in the figures a, b, c, d, and e means 

that there are significant differences between the mean values measured in MD) [67], Reproduced with 

permission from Graupner N, Composites: Part A; published by Elsevier, 2009. 

Therefore, to improve the compatibility between the nFib and host polymer or biopolymer 

matrices, usually, specific compatibilizing agents, such as adhesion promoters, coupling agents, or 

plasticizers, are introduced during the composites processing [71]. Additionally, the chemical 

treatment of the natural fibers is usually practiced, although it is not enough for good 

compatibilization and efficient force transmission. The chemical treatment of the natural fibers, 

usually, is a good practice to eliminate some contaminants of the fiber surface and to create new 

chemical groups that are more compatible with the groups presented onto the macromolòecuels or 

onto the compatilizing agents. 

Finally, to sum up, the adding of nFil to biopolymers is a very attractive field, having positive 

effects on the system rigidity and impact properties (crack inhibition), the system elasticity, i.e., the 

elongation at break, if the composites are significantly reduced. The addition of appropriate adhesion 

promoters, coupling agents, or plasticizers can further improve the stress force transmission of 

composites, amplifying the composite application fields. 

4. Naturally Occurring Antioxidant Molecules (nAO) 

Since ancient times, the natural antioxidant molecules have been extracted by plants, vegetables, 

and fruits and used because of their excellent health effect, such as anti-aging, anti-bacterial, 

antioxidants, etc. Farther, due to the powerful antioxidant effect of numerous naturally occurring 

molecules, currently, they are considered as stabilizing molecules for food and beverage storage and 

as efficient anti-cancer agents [72,73]. Therefore, in the last two decades, the nAO is also proposed 

and used as stabilizing molecules for polymers and biopolymers because of their efficient 

antioxidation and protection abilities, similar to those exerted by the synthetic stabilizing molecules 

[74–97. The main classes of nAO considered for the protection of biopolymers are the natural phenols 

and polyphenols, vitamins, and carotenoids. The application fields of biopolymers containing nAO 

are numerous, for example, safe food packaging, mulch films, pharmaceuticals and cosmesis, 

biomedical devices, human body tissue, and implants, etc. 

However, phenols and polyphenols exist in a large variety in nature; they account for 

approximately 200,000 [23]. Really, their classification depends on the number of phenolic units: 

phenolic acids contain one phenol functionality; flavonoids and stilbenes contain two phenol 

subunits; tannin and other – more phenol subunits, see Table 8. The phenolic acids are classified into 

two main groups: hydroxycinnamic acids, such as p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, 

etc., and hydroxybenzoic acids, such as p-hydroxybenzoic acid, vanillic acid, gallic acid, syringic acid, etc., 

see Table 8. 
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Vitamins, such as Vitamin A, C, and E, and carotenoids, such as β-carotene, lycopene, lutein, etc., are 

very popular and used in food, pharmaceutical, and cosmetic industries as protective agents, 

colorants, and food supplementary. Currently, vitamin E and β-carotene, chemical formulas shown 

in Table 3, are successfully used as melt processing stabilizers and as UV-light protector, respectively, 

for both polymers and biopolymers. 

Table 8. Basic chemical structures of most common natural antioxidants [23], Reproduced with 

permission from Dintcheva NTz, ACS Sustainable Chem. Eng.; published by ACS Publications, 2019. 

Natural 

Antioxidants (nAO)  
Chemical Formula 

Natural 

Antioxidants (nAO) 

 

Chemical Formula 

Hydroxycinnamic 

acids 
 

Resveratrol 

 

Hydroxybenzoic acids 

 

Catechin 

 

Flavene backbone 
 

Vitamin E 

 

Quercetin 

 

β-carotene 

 

However, the nAO is able to scavenge and react with the free radicals and oxygen- and nitrogen-

containing species. The nAO can act as chain-breaking antioxidants, i.e., named primary AO, or as 

protective antioxidants, i.e., named secondary AO, and, really, numerous of them have multiple 

functions because their protective actions are exerted by both primary and secondary protective ways 

[74–97]. 

In the current scientific literature, different studies about the stabilization of the main classes of 

biopolymers having an industrial impact, i.e., starch-based biodegradable polymers and 

biopolyesters, using naturally occurring molecules, are published [74–97]. All these papers agree that 

the natural stabilizers are able to protect the biopolymers against the oxidative stress in a similar way 

as the synthetic antioxidant and/or light stabilizers. 

In particular, the starch-based biodegradable polymer, named Mater-Bi® (MB), has been added 

with the extract of polyphenols and with quercetin (Q) and vitamin e (V-E) [79], in order to protect 

the MB against both thermo-mechanical-oxidation during melt processing and photo-oxidation in 

service life. Thin neat MB film and MB films containing different nAO and commercial synthetic 

antioxidants (AO) and light stabilizers (LS) have been subjected to UV-light exposure using UVB-

lamps having an emission peak at 313 nm. In Figure 14a,b, the trends of dimensionless elongation at 

break (EB), i.e., the ratio between the values of the EB(t) at given exposure time and the EB(t0) before 

exposure, of MB as a function of the irradiation time are shown, and the results are compared with 

those obtained using synthetic stabilizers. As known, the trends of elongation at break as a function 

of the exposure time is the most important mechanical parameter for some outdoor applications of 

the films, especially as mulching and coverage agricultural films. 

In Figure 14a,b, it can be observed that the trends of the dimensionless EB in the presence of the 

natural antioxidants (nAO) and synthetic AO and LS are very similar, highlighting good protection 

abilities of Q and V-E, comparable to those offered by the synthetic molecules. The latter could be 

understood considering that the natural antioxidants are able to entrap radicals, formed during melt 

processing of MB, and protect in an efficient way the MB films, although the best results have been 

obtained using quercetin. 
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Figure 14. Dimensionless elongation at break, EB(t)/EB(t0), of the starch-based biodegradable film 

(Mater-Bi®), additivated with (a) vitamin E (V-E) and quercetin (Q) and (b) synthetic antioxidant (AO) 

and light stabilizer (LS) [79], Reproduced with permission from Dintcheva NTz, J. Polym. Eng.; published by 

De Gruyter, 2014. 

In another study, to protect efficiently the biopolyester, i.e., polylactic acid (PLA), using nAO, 

the PLA has been additivated with resveratrol (R) at 0, 1, and 3 wt.% and prepared thin films have 

been subjected to UV-light exposure [82]. In Figure 15a–c, the trends of carbonyl accumulations, 

molecular weight variations, and elongation at break (EB) of PLA/R in comparison to neat PLA as a 

function of the irradiation time are shown. According to the literature, the hydrolytic degradation 

pathway of PLA, upon environmental humidity, leads to the formation of carboxylic acids end 

groups, while the main degradation pathway of PLA, upon UV exposure, proceeds with hydrogen 

abstraction on the polymer backbone and subsequent formation of radicals, which upon reacting with 

oxygen form peroxy radicals and hydroperoxides. The decomposition of the peroxy radicals and 

hydroperoxides, through β-scission reactions, leads to the formation of anhydrides. Therefore, the 

actions of both mentioned mechanisms lead to the significant decrease of PLA molecular weight due 

to the fragmentation of the macromolecules. Overall, as known, the UV exposure of polymers and 

biopolymers causes the formation of new chemical groups, e.g., carbonyl and hydroxyl 

functionalities, and, contemporarily, macromolecular chain scission, which leads to the loss of the 

macroscopical performance, such as reduction of elongation at break. In Figure 15a,b, the trends of 

carbonyl accumulation and molecular weight variation of neat PLA and PLA/R are reported, and it 

can be observed that the presence of R leads to less pronounced accumulation of carbonyl 

functionalities and reduction of the molecules’ weight, highlighting the protection ability of R 

towards UV irradiation. Additionally, the EB for neat PLA film goes to very low values at short 

exposure time than the samples of PLA containing 1 and 3 wt.% of R, suggesting again a good 

protection ability of R towards irradiation, see Figure 15c. As expected, the protection ability of R is 

even more pronounced at high R concentration. As mentioned above, the photo-oxidation process of 

PLA upon UVB exposure proceeds with random chain scission and formation of anhydrides and the 

formation and decomposition of hydroperoxides, leading to the formation of esters and 

unsaturations, if PLA is subjected to UVA [93]. 
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Figure 15. (a) Carbonyl functionalities, (b) molecular weight variation, and (c) elongation at break of 

neat PLA (PR0) and PLA containing 1 and 3 wt.% of R (PR1 and PR3) as a function of the irradiation 

time [82], Reproduced with permission from Agustin-Salazar S, ACS Sustainable Chem. Eng.; published by 

ACS Publications, 2014. 

Therefore, if the PLA is subjected to UVB exposure, the variation of the anhydride absorption 

band can be considered a valuable tool to follow the photo-degradation process. In Figure 16, the 

variations of anhydride band area for PLA sample, added with (a) 0.5 and 1 wt.% [96] and (b) 2 and 

3 wt.% of ferulic acid (FA) [26], are plotted. 

First of all, there is a need to take into account that the thickness of PLA samples in (a) and (b) 

are different, and, for this reason, the irradiation times are different. However, in Figure 16a, it can 

be observed that the adding of 0.5 wt.% of FA is able to protect the PLA, while the adding of 1 wt.% 

of FA leads to a larger accumulation of anhydrides, and, surprisingly, the FA exerts a concentration-

dependent anti-/pro-oxidant behavior [93]. In Figure 16b, it can be clearly observed that doping PLA 

with 2 and 3 wt.% of FA leads to a large accumulation of anhydride functionalities, and, additionally, 

no significant difference is noticeable in the trends for PLA containing FA at 2 and 3 wt.% [26].  

 

(a) 

 

(b) 

  

Figure 16. Variation of anhydride band area for neat PLA and PLA containing (a) 0.5 and 1 wt.% [93], 

Reproduced with permission from Dintcheva NTz, Polym. Degrad. Stab.; published by Elsevier, 2017, and (b) 

2 and 3 wt.% of ferulic acid (FA) [26], Reproduced with permission from Dintcheva NTz, Polym. Degrad. 

Stab.; published by Elsevier, 2018. 

The pro-oxidant activity of naturally occurring antioxidant is a surprising effect for biopolymers, 

but there is a well-known effect in medicine. Besides, Paracelsus (1493–1541) spoke that the toxicity 

of naturally occurring compounds is the matter of dose, and the toxicological risks arise if the daily 

doses are above threshold limits. Additionally, there is a need to take into account that the balance 
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between the benefits and toxicity of natural compounds depends on their oxidative activity, 

concentration, circumscribed conditions, such as pH, temperature, other active species, etc. 

Therefore, in the current literature, are available also other studies that report about the pro-

oxidant activity of the naturally occurring antioxidant, for example, vitamin E and β-carotene [23]. 

All authors agree that at high processing temperatures, typical for the processing of polymers and 

biopolymers, the nAO can activate H-atoms abstraction from the macromolecules, which induces 

faster radical formations, and, in the presence of oxygen, the formation of oxygen-containing 

products, leading to premature pro-oxidation. Really, this mechanism could be considered a valuable 

tool to accelerate the accumulation of the oxygen-containing groups for the biodegradable polymers, 

opening a new avenue toward the control of the biopolymer degradation time. 

5. Conclusions Remarks and Future Perspectives 

The interest towards naturally occurring compounds for biopolymers and polymers is always 

continuous because of a public request for the formulation of safe, eco-friendly, and sustainable 

materials. As discussed above, the naturally occurring compounds for biopolymers are of three kinds: 

 (i) naturally occurring fillers (nFil), such as nano-/micro-sized layered alumino-silicate: 

halloysite, bentonite, montmorillonite, hydroxyapatite, calcium carbonate, etc.;  

(ii) naturally occurring fibers (nFib), such as wood and vegetable fibers;  

(iii) naturally occurring antioxidant molecules (nAO), such as phenols, polyphenols, vitamins, 

and carotenoids, highlighting the main advantages and disadvantages in considering them as 

sustainable and suitable additives. 

The presence of nFil and nFib, if they are dispersed and distributed appropriately, can enhance 

significantly the properties and performance, such as mechanical and thermo-mechanical resistance, 

barrier properties towards water and gasses, and durability of the formulated composite materials, 

in comparison to that of the neat host matrices. Unfortunately, if the nFil and nFib contain impurities 

and/or organo-modifiers (required to improve the compatibility and dispersion with host matrices), 

the durability of the complex systems could be penalized because of unwanted interactions and/or 

reactions with some functional groups present in the biopolymer macromolecules. 

The nAO can protect efficiently the biopolymers against their thermal- and photo-oxidative 

stress, during both processing and service life, through the well-known antioxidant mechanism. 

Unfortunately, if the nAO is added at high concentrations to biopolymers, it can induce faster H-

atom extraction from the macromolecules and can exert a pro-oxidant effect. Obviously, controlling 

the concentrations of nAO and circumscribed conditions, the nAO pro-oxidant effect could be 

appropriately considered for controlling the degradation times of biopolymers. 

Finally, in this short review, the advantages and drawbacks, considering naturally occurring 

compounds as safe, eco-friendly, and sustainable additives for biopolymers, have been focused and 

discussed briefly, even considering the requests and needs of different application fields. 

The future perspectives, in the opinion of authors, in using naturally occurring compounds as 

suitable additives for biopolymers is related to three main issues: (i) exploring and discovering new 

natural additives, (ii) improving bio-based materials’ properties and performance through interface 

engineering and employing new additives, and (iii) achieving target properties in order to extend the 

applications fields of bio-based materials containing only naturally occurring additives. 
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