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Abstract

In this paper, we derive implicit analytic solutions for a class of nonlinear fractional partial differ-

ential equation (PDE) which models the dynamics of deterministically excited viscoelastic nonlinear

Euler-Bernoulli beams. Precisely, the initial-boundary value problem (IBVP) for the corresponding

PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert

space. Then, by employing the cosine and sine families of operators, a variation of parameters rep-

resentation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed

point theorem is employed to prove the local existence and uniqueness of the solution. Relying on

the regularity properties of cosine and sine families, taking into account the form of the nonlinear

term, and considering the properties of the fractional derivative, the solution map of the abstract

problem is cast into a derivative-free implicit analytic solution for the IBVP. Results corresponding

to the limiting purely elastic and purely viscous cases are also provided.

∗Department of Mathematics, College of Engineering and Technology, American University of the Middle East, Kuwait,

e-mail: Konstantinos.Liaskos@aum.edu.kw
†Corresponding author: Department of Econometrics and Business Statistics, Monash Business School, Monash Univer-

sity, Wellington Rd, Clayton, Victoria 3800, Australia, e-mail: Athanasios.Pantelous@monash.edu
‡Department of Civil Engineering and Engineering Mechanics, The Fu Foundation School of Engineering and Applied

Science, Columbia University, 500 West 120th Street, New York, NY 10027, USA, e-mail: ikougioum@columbia.edu
§Department of Econometrics and Business Statistics, Monash Business School, Monash University, Wellington Rd,

Clayton, Victoria 3800, Australia, e-mail: Antonios.Meimaris@monash.edu
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1 Introduction

Since the beginning of 20th century (e.g. [29, 19]), fractional calculus has been developed and applied

to several real-world problems in many important areas of science and engineering. These include,

but are not limited to, the mechanical properties modeling of viscoelastic materials, the frequency-

dependent acoustic wave propagation in porous media, the performance enhancement of nano-image

processing, as well as the response analysis of various diverse mechanical systems endowed with

fractional derivative; see for instance, [26, 1, 28, 34, 11, 21, 12, 37, 18].

Specifically, the beam bending problem has received considerable attention in the field of engi-

neering mechanics over the past few decades (e.g. [33, 20, 35, 2, 7]). This is primarily due to both

its importance as a versatile structural model, and its use as a benchmark problem with closed-form

solutions for assessing the performance of numerical solution schemes. Nevertheless, only recently

there have been efforts towards determining the deterministic and/or stochastic response of bending

beams endowed with fractional derivative elements modeling (e.g. [10, 36, 13, 31, 32, 8]).

In this regard, the authors derived recently implicit analytic solutions for a stochastically excited

linear beam with fractional derivative terms [25]. In this paper, the solution methodology developed in

[25] is generalized to account for nonlinearities present in the beam modeling. From a mathematical

perspective, implicit analytic solutions are derived for the nonlinear fractional partial differential

equation (PDE) modeling the dynamics of a deterministically excited beam. In particular, following

[36], the equation governing the relatively large deflection v(t, x) of a deterministically excited beam

of length L, and subjected also to a nonlinear axial force N , takes the form

ρA
∂2v

∂t2
(t, x) + c0∂

α
t v(t, x) + EI

∂4v

∂x4
(t, x)−N ∂2v

∂x2
(t, x) =q(t, x), a.e. on (0, T )× (0, L),

v(0, x)=v0(x) ,
∂v

∂t
(0, x) =v1(x), a.e. on (0, L),

v(t, 0) = v(t, L) =
∂2v

∂x2
(t, 0) =

∂2v

∂x2
(t, L) =0, a.e. on (0, T ).


(1)
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where by 0∂
α
t v(t, x) we denote the Caputo fractional partial derivative [5, 6]

0∂
α
t v(t, x) =

1

Γ(1− α)

∫ t

0

∂v
∂s (s, x)

(t− s)α
ds, 0 < α < 1.

Note that Eq. (1) contains the appropriate initial conditions (i.e., initial deflection and slope along the

beam length), while the boundary conditions correspond to a simply supported beam [33, 25]. Further,

the fractional derivative describes the viscoelastic material behavior [29, 10, 31, 32], with the limiting

cases α = 0 and α = 1 representing a purely elastic and a purely viscous behavior, respectively; and

c0 is a parameter of the fractional derivative term. In the initial-boundary value problem (IBVP) (1),

the elastic modulus, the moment of inertia of the cross section, the mass density, the cross-sectional

area, and the nonlinear axial force term are denoted by E, I ρ, A and N , respectively, i.e.,

N =
EA

2L

∫ L

0
|∂v
∂x

(t, x)|2dx,

which is associated with the assumption of relatively large deflection. Furthermore, the excitation

q(t, x) is considered as a square integrable function on x and bounded on t. System (1) is an IBVP

for a fractional PDE. Considering that we can replace the integrals and derivatives (with respect to

the spatial variables) by operators in a proper functional space motivates the abstract treatment of

the IBVP (1). Further, considering the Hilbert space, L2(0, L), problem (1) is written as an initial

value problem (IVP) of a second-order nonlinear ordinary differential equation (ODE) in L2(0, L).

In our approach, the abstract theory of second-order equations is employed instead of reducing the

problem further to a first-order one. This is possible due to the fact that the governing operator of

the system (i.e., the fourth–order differential operator) and the corresponding cosine and sine families

can be explicitly evaluated, as well as their actions on its coefficients. Next, exploiting the abstract

theory and representing the nonlinear term and the fractional term in suitable forms, a variation of

parameters representation is introduced for obtaining the solution map of the IBVP (1). The derived

methodology and results can be considered as an important extension of [17] and [27] (see also [9, 3]

for additional relevant references) to account for fractional derivative terms, and as an interesting

generalization of the authors’ previous work [25] to account for nonlinearities in the fractional PDE.

The paper is organized as follows: The main results of the paper are presented in Section 2. In

particular, in Section 2.1 the viscous case is considered, where the abstract form of the equation is

derived and the nonlinear term is accounted for. In Section 2.2, attention is directed to the general

viscoelastic case and the treatment of the fractional derivative term. The elastic case is presented in

Section 2.3 under two distinct perspectives. In all three cases, a variation of parameters representation
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for the solution map of the problem is obtained and a local fixed point theorem is applied. The time

regularity of the solutions is considered separately in Section 3. Concluding remarks are presented in

Section 4.

2 Main results

For the reduction of an IBVP of a PDE (or a system of PDEs) to an IVP for an ODE in a suitable

Hilbert (or Banach) space, the interesting reader is directed to [14, 30, 23, 24] and references therein.

Regarding fundamental concepts on fractional derivative representations, as well as the utilization of

the Caputo fractional derivative in engineering applications, a detailed presentation can be found in

[10, 36, 25] and references therein. A thorough review of the abstract second order Cauchy problem in

Banach spaces and the properties of the associated cosine and sine families of operators can be found

in [15, 16, 38, 39, 4]. In what follows, we make use of Theorem 2.2 in [22] for the local existence and

uniqueness of a fixed point of the solution map.

To enhance the pedagogical merit of the derived results, we treat first the purely viscous case,

then we proceed with the viscoelastic case which is the most general one, and finally, we conclude

with the purely elastic case.

2.1 Purely viscous case

In the case of classical viscous damping (α = 1), the IBVP (1) becomes:

ρA
∂2v

∂t2
(t, x) + c

∂v

∂t
(t, x) + EI

∂4v

∂x4
(t, x)−N ∂2v

∂x2
(t, x) =q(t, x), a.e. on (0, T )× (0, L),

v(0, x)=v0(x) ,
∂v

∂t
(0, x) =v1(x), a.e. on (0, L),

v(t, 0) = v(t, L) =
∂2v

∂x2
(t, 0) =

∂2v

∂x2
(t, L) =0, a.e. on (0, T ).


(2)

To recast equation (2) into an abstract ODE problem in a proper Hilbert space, the standard Hilbert

space of all square integrable functions H = L2(0, L) is considered, and the solution map v : [0, T ]×

[0, L]→ R as v : [0, T ]→ H is identified, where

v(t)(x) = v(t, x), t ∈ [0, T ], x ∈ [0, L]. (3)
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Next, we define the operator A : D(A)→ H as

Av(t) =
EI

ρA

∂4v

∂x4
(t, ·), t ∈ [0, T ], (4)

with

D(A) = {y ∈ H4(0, L) : y(0) = y(L) = y′′(0) = y′′(L) = 0}. (5)

From [17], [27], the self-adjoint operator A us positive on H with eigenvalues

λn =
EI

ρA
(
nπ

L
)4, n ∈ N (6)

and corresponding eigenvectors

en(x) =

√
2

L
sin(

nπ

L
x), n ∈ N, x ∈ (0, L), (7)

which determine an orthonormal basis of H = L2(0, L). Hence, the operator A has the spectral

representation

Ay =

∞∑
n=1

λn < y, en >H en, for y ∈ D(A), (8)

where

< y, en >H=

√
2

L

∫ L

0
y(x) sin(

nπ

L
x) dx (9)

is the inner product in H = L2(0, L). Further, −A generates a strongly continuous cosine family of

operators C(t), t ∈ R, on H, which takes the form

C(t)y =

∞∑
n=1

cos(

√
EI

ρA

n2π2

L2
t) < y, en >H en, for y ∈ H. (10)

Thus, the corresponding strongly continuous sine family of operators S(t), t ∈ R, on H, is of the form

S(t)y =

∫ t

0
C(s)y ds =

∞∑
n=1

√
ρA

EI

L2

n2π2
sin(

√
EI

ρA

n2π2

L2
t) < y, en >H en, for y ∈ H. (11)

For every t ∈ R, it yields that

‖C(t)y‖2H ≤
∞∑
n=1

| cos(

√
EI

ρA

n2π2

L2
t)|2| < y, en > |2H ≤

∞∑
n=1

| < y, en > |2H = ‖y‖2H , for y ∈ H. (12)

Therefore, ‖C(t)‖LH ≤ 1, for t ∈ R. Similarly, MS > 0 can be found such that ‖S(t)‖L(H) ≤MS ,

for t ∈ R. Hence, for M = max{1,MS} and ω = 0, Proposition 1 in [25] (see also [38]) is satisfied.

By utilizing fractional powers of A (see [17]), which are also self-adjoint operators, the spatial partial

derivatives are expressed as

A1/2v(t) = −

√
EI

ρA

∂2v

∂x2
(t, ·), (13)
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with

D(A1/2) = {y ∈ H2(0, L) : y(0) = y(L) = 0} (14)

which has the spectral representation

A1/2y =

∞∑
n=1

(λn)1/2 < y, en >H en, for y ∈ D(A1/2), (15)

and

A1/4v(t) = i 4

√
EI

ρA

∂v

∂x
(t, ·), (16)

with

D(A1/4) = {y ∈ H1(0, L) : y(0) = y(L) = 0}. (17)

Since the first order derivative operator,
∂v

∂x
: D(A1/4)→ H, is skew-adjoint under the assumption

that v(t, ·) ∈ D(A1/2), it follows that∫ L

0
|∂v
∂x

(t, ·)|2dx =<
∂v

∂x
(t, ·), ∂v

∂x
(t, ·) >H=< −∂

2v

∂x2
(t, ·), v(t, ·) >H=

√
ρA

EI
< A1/2v(t), v(t) >H ,

(18)

and consequently, for the nonlinear term of the axial force we obtain the important expression

− N

ρA

∂2v

∂x2
(t, x) =

A

2LI
< A1/2v(t), v(t) >H A1/2v(t). (19)

Setting

B =
c

ρA
I, (20)

where I is the identity operator on H and considering that q(t, ·) ∈ H, the IBVP (2) is now a second

order nonlinear ODE in H:

v′′(t) + Bv′(t) +Av(t) +
A

2LI
< A1/2v(t), v(t) >H A1/2v(t) =

1

ρA
q(t), a.e. on (0, T )

v(0)=v0 , v
′(0) = v1.

 (21)

At this point, we refer to a result provided in [25] on the commutation of the operator, A1/2, with

C(t), S(t), t ∈ R, generated by −A, as well as the uniform boundedness of A1/2S(t), t ∈ [0, T ] (see

conditions in [15, 38, 25]).

Lemma 1. [25] Let y ∈ D(A1/2). Then, for every t ∈ R, we have that C(t)y ∈ D(A1/2), S(t)y ∈ D(A)

and C(t)A1/2y = A1/2C(t)y, S(t)A1/2y = A1/2S(t)y, AS(t)y = A1/2S(t)A1/2y. Furthermore, the

family of bounded operators A1/2S(t), t ∈ R, on H, satisfies that ‖A1/2S(t)‖L(H) ≤ 1.
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To define properly the notion of a mild solution for the IVP (21) (when a variation of parameters

representation exists), note that the second order spatial derivative operator A1/2 is involved in the

nonlinear term. Even though the operator A will not appear in the solution form (since its action is

represented by the cosine and sine families), the nonlinear term will appear explicitly in the solution,

and in fact, will be convoluted with the sine family. Thus, the mild solution for the IVP (21) should

belong (at least) to D(A1/2). However, taking into account the regularity properties of the sine

and cosine families, and under sufficient conditions for the coefficients, v0, v1, q, it is also possible to

obtain a solution which belongs to D(A). In this regard, note that the square root of the generator

−A is the operator B = iA1/2. Considering that D(A1/2) = D(B) ⊆ E leads to the result that if

v(t) ∈ D(A), t ∈ [0, T ], then the term < A1/2v(t), v(t) >H A1/2v(t) ∈ D(A1/2), for t ∈ [0, T ]. Hence,

considering Proposition 1 in [25], the term S(t) < A1/2v(t), v(t) >H A1/2v(t) ∈ D(A), for t ∈ [0, T ].

This type of solution, under the condition that it is also twice differentiable on (0, T ), will be defined

as a classical solution for the IVP (21) in the Hilbert space H. The time regularity of this type of

solutions will be treated separately in Section 3.

Definition 1. A twice differentiable function, v : [0, T ]→ H, is called a solution of the IVP (21) if

(i) v(t) ∈ D(A), t ∈ [0, T ],

(ii) v(t) = (C(t) + S(t)B)v0 + S(t)v1 −
∫ t

0
C(t− s)Bv(s) ds

− A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds+

1

ρA

∫ t

0
S(t− s)q(s) ds, t ∈ [0, T ].

(22)

Since the solution map in Definition 1 is nonlinear, an appropriate fixed point theorem in a proper

Banach space is required in the ensuing analysis. Thus, consider the graph norm space

HA = (D(A), ‖ · ‖A), (23)

with

‖y‖2HA = ‖y‖2H + ‖Ay‖2H , y ∈ D(A), (24)

and the Banach space C = (C(0, T ;HA) , ‖ ‖C), of all HA−valued, continuous functions equipped

with the norm

‖f‖C = sup
t∈[0,T ]

‖f(t)‖HA . (25)

For the coefficients v0, v1, q, the following assumptions are considered, i.e.,

v0 ∈ D(A), v1 ∈ D(A1/2) (26)
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and

q ∈ L1(0, T ;HA1/2). (27)

Lemma 2. Let v ∈ C. Then, there is a positive number MA <∞ such that

1. sup
t∈[0,T ]

‖v(t)‖H ≤MA sup
t∈[0,T ]

‖Av(t)‖H .

2. sup
t∈[0,T ]

‖A1/4v(t)‖H ≤MA sup
t∈[0,T ]

‖Av(t)‖H .

Proof. Taking into account that

‖v(t)‖2H =
∞∑
n=1

|< v(t), en >H |2

and considering the spectral representation of A1/4, and Eqs. (16) and (17), leads to

‖A1/4v(t)‖2H =

√
EI

ρA

π2

L2

∞∑
n=1

n2 | < v(t), en >H |2.

Since v(t) ∈ D(A), t ∈ [0, T ], by the spectral representation of A, Eqs. (4) and (5), it yields that

‖Av(t)‖2H =

(
EI

ρA

)2 π8

L8

∞∑
n=1

n8| < v(t), en >H |2.

Setting MA = max

{(
EI

ρA

π

L

)−3/4

,

(
EI

ρA

π4

L4

)−1
}

, the results of Lemma 2 are obtained.

Theorem 1. Suppose that assumptions, (26) and (27) hold, and that the coefficients v0, v1, q, satisfy

the relations

T
√

1 +M2
A

[
c

ρA
+

3A

2LI
M2
A (R+ v?0)2

]
< 1, (28)

√
1 +M2

A

[
(2 +

c(MS + T )

ρA
)v?0 + v?1 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q? +RT

(
c

ρA
+

3A

2LI
M2
A (R+ v?0)2

)]
< R,

(29)

for some R > 0 and T > 0, with v?0 = ‖Av0‖H , v?1 = ‖A1/2v1‖H and q? = sup
t∈[0,T ]

‖A1/2q(t)‖H . Then,

the solution map (1) for the IVP (21) has a unique fixed point in B(v0, R).

Proof. Let define the map

Φ : C → C with Φ(v(t)) =

5∑
i=1

Φi(v(t)),

where v ∈ C and Φi(v(t)), i = 1, 2, . . . , 5, are the five terms of (1). To show that Φ is well defined,

we should prove first that Φ(v(t)), t ∈ [0, T ], is a D(A)−valued function, which is continuous on

8



t ∈ [0, T ] under the C-norm, see (25). As a second step, we have to prove that Φ satisfies the

assertions of Theorem 2.2 in [22].

Using the results of Proposition 1 in [25] and Lemma 1, since ξ0 ∈ D(A) and ξ1 ∈ D(A1/2), we obtain

that

Φ1(v(t)) = (C(t) + S(t)B)ξ0 ∈ D(A)

and that

Φ2(v(t)) = S(t)ξ1 ∈ D(A), t ∈ [0, T ].

Relying next on the commutation of A1/2 (on D(A1/2)) and A (on D(A)) for both C(t) and S(t), t ∈

[0, T ], on the strong continuity of C(t) and S(t)B on t ∈ [0, T ], and on the fact that the function

A1/2S(t)A1/2ξ1 is continuous on t ∈ [0, T ] for ξ1 ∈ D(A1/2) leads to

‖[AC(t+ h)−AC(t)]ξ0 + [AS(t+ h)B −AS(t)B]ξ0‖H ≤

‖ [C(t+ h)− C(t)]Aξ0 ‖H + ‖ [S(t+ h)− S(t)]BAξ0 ‖H → 0, as |h| → 0

and

‖[AS(t+ h)−AS(t)]ξ1‖H = ‖[A1/2S(t+ h)−A1/2S(t)]A1/2ξ1‖H → 0, as |h| → 0.

Next, we show that

Φ3(v(t)) = −
∫ t

0
C(t− s)Bv(s) ds ∈ D(A), t ∈ [0, T ].

Since v(t) ∈ D(A), t ∈ [0, T ], and B is a multiplicative operator (hence Bv(t) ∈ D(A), t ∈ [0, T ]), we

obtain that C(t − s)Bv(s) ∈ D(A) for s, t ∈ [0, T ]. Further, since ‖C(t)‖L(H) ≤ 1 for t ∈ R, we have

that

‖
∫ t

0
AC(t− s)Bv(s) ds‖H = ‖

∫ t

0
C(t− s)BAv(s) ds‖H ≤

∫ t

0
‖C(t− s)BAv(s)‖H ds ≤

∫ t

0
‖C(t− s)B‖L(H)‖Av(s)‖H ds ≤ T c

ρA
sup
t∈[0,T ]

‖v(t)‖HA <∞.

Thus, Φ3(v(t)) ∈ D(A) and A
(∫ t

0
C(t− s)Bv(s) ds

)
=

∫ t

0
AC(t− s)Bv(s) ds, by the closedness of

A. Moreover,

‖
∫ t+h

0
AC(t+ h− s)Bv(s) ds−

∫ t

0
AC(t− s)Bv(s) ds‖H =

‖
∫ t

0
A[C(t+ h− s)− C(t− s)]Bv(s) ds+

∫ t+h

t
AC(t+ h− s)Bv(s) ds‖H ≤∫ t

0
‖[C(t+ h− s)− C(t− s)]BAv(s) ‖H ds+

∫ t+h

t
‖C(t+ h− s)BAv(s)‖H ds ≤

9



∫ t

0
‖[C(t+ h− s)− C(t− s)]BAv(s) ‖H ds+ h

c

ρA
sup
t∈[0,T ]

‖v(t)‖HA → 0, as |h| → 0,

by the Lebesgue dominated convergence theorem and the strong continuity of C(t), t ∈ [0, T ]. There-

fore, Φ3(v(t)) t ∈ [0, T ] is continuous under the C-norm. For the nonlinear term

Φ4(v(t)) = − A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds, t ∈ [0, T ],

as mentioned previously, if v(t) ∈ D(A), t ∈ [0, T ], then

S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ∈ D(A), for s, t ∈ [0, T ].

By Lemmas 1 and 2, we obtain that

‖
∫ t

0
AS(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds‖H

= ‖
∫ t

0
A1/2S(t− s) < A1/2v(s), v(s) >H Av(s) ds‖H

≤
∫ t

0
‖ < A1/2v(s), v(s) >H Av(s)‖H ds

≤
∫ t

0
| < A1/2v(s), v(s) >H | ‖Av(s)‖H ds

≤
∫ t

0
‖A1/4v(s)‖2H ‖Av(s)‖H ds

≤ TM2
A

(
sup
t∈[0,T ]

‖v(t)‖HA

)3

<∞.

Hence, Φ4(v(t)) ∈ D(A), t ∈ [0, T ]. Further,

‖
∫ t+h

0
AS(t+ h− s) < A1/2v(s), v(s) >H A1/2v(s) ds

−
∫ t

0
AS(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds‖H =

‖
∫ t

0
[A1/2S(t+ h− s)−A1/2S(t− s)] < A1/2v(s), v(s) >H Av(s) ds +∫ t+h

t
A1/2S(t+ h− s) < A1/2v(s), v(s) >H Av(s) ds‖H ≤∫ t

0
‖[A1/2S(t+ h− s)−A1/2S(t− s)] < A1/2v(s), v(s) >H Av(s) ‖H ds

+hM2
A

(
sup
t∈[0,T ]

‖v(t)‖HA

)3

→ 0, as |h| → 0.
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Considering the Lebesgue dominated convergence theorem, the function A1/2S(t)y for y ∈ H is

continuous on t ∈ [0, T ]. Therefore, Φ4(v(t)), t ∈ [0, T ], is continuous under the C-norm. For

Φ5(v(t)) =
1

ρA

∫ t

0
S(t− s)q(s) ds,

it is observed that since q(t) ∈ D(A1/2), t ∈ [0, T ], then S(t − s)q(s) ∈ D(A), for s, t ∈ [0, T ].

Furthermore, by Lemma 1 and assumptions, (26) and (27), we obtain that

‖
∫ t

0
AS(t− s)q(s) ds‖H ≤

∫ t

0
‖A1/2S(t− s)A1/2q(s)‖H ds ≤

∫ T

0
‖q(t)‖HA1/2

dt <∞.

Hence, Φ5(v(t)) ∈ D(A), t ∈ [0, T ], and

‖
∫ t+h

0
A1/2S(t+ h− s)A1/2q(s) ds−

∫ t

0
A1/2S(t− s)A1/2q(s) ds‖H =

‖
∫ t

0
[A1/2S(t+ h− s)−A1/2S(t− s)]A1/2q(s) ds+

∫ t+h

t
A1/2S(t+ h− s)A1/2q(s) ds‖H ≤∫ t

0
‖ [A1/2S(t+ h− s)−A1/2S(t− s)]A1/2q(s) ‖H ds+ h

∫ T

0
‖A1/2q(t)‖H dt → 0, as |h| → 0,

by the Lebesgue dominated convergence theorem, since A1/2S(t)A1/2y, for y ∈ A1/2, is continuous

on t ∈ [0, T ]. Therefore, Φ5(v(t)), t ∈ [0, T ], is continuous under the C-norm. In what follows, and to

complete the proof, the necessary conditions are determined for Φ : B(v0, R)→ C to be a contraction.

Let u1, u2 ∈ B(v0, R), then we have that

‖Φ(u1)− Φ(u2)‖C ≤ ‖Φ3(u1)− Φ3(u2)‖C + ‖Φ4(u1)− Φ4(u2)‖C . (30)

For the term ‖Φ3(u1)− Φ3(u2)‖C in (30), it is observed that

‖
∫ t

0
AC(t− s)B[u1(s)− u2(s)] ds‖H ≤

∫ t

0
‖C(t− s)B[Au1(s)−Au2(s)]‖H ds

≤
∫ t

0
‖C(t− s)B‖L(H)‖[Au1(s)−Au2(s)]‖H ds

≤ T c

ρA
sup
t∈[0,T ]

‖Au1(t)−Au2(t)‖H .

Thus, the following expression is derived, i.e.,

‖Φ3(u1)− Φ3(u2)‖C ≤ T
√

1 +M2
A
c

ρA
‖u1 − u2‖C . (31)

Regarding the term ‖Φ4(u1)− Φ4(u2)‖C in (30), we find that:

‖
∫ t

0
AS(t− s)

[
< A1/2u1(s), u1(s) >H A1/2u1(s)− < A1/2u2(s), u2(s) >H A1/2u2(s)

]
ds‖H

11



≤
∫ t

0
‖A1/2S(t− s)

[
< A1/2u1(s), u1(s) >H Au1(s)− < A1/2u2(s), u2(s) >H Au2(s)‖H

]
ds ≤

∫ t

0

‖ < A1/2u1(s), u1(s) >H (Au1(s)−Au2(s)) +
(
< A1/2u1(s), u1(s) >H − < A1/2u2(s), u2(s) >H

)
Au2(s)‖H ds

≤
∫ t

0

∣∣∣< A1/2u1(s), u1(s) >H

∣∣∣ ‖Au1(s)−Au2(s)‖H ds

+

∫ t

0

∣∣∣< A1/2u1(s), u1(s) >H − < A1/2u2(s), u2(s) >H

∣∣∣ ‖Au2(s)‖H ds

=

∫ t

0
‖A1/4u1(s)‖2H ‖Au1(s)−Au2(s)‖H ds

+

∫ t

0

∣∣∣‖A1/4u1(s)‖2H − ‖A1/4u2(s)‖2H
∣∣∣ ‖Au2(s)‖H ds

≤
∫ t

0
‖A1/4u1(s)‖2H ds sup

t∈[0,T ]
‖Au1(t)−Au2(t)‖H +

∫ t

0

∣∣∣‖A1/4u1(s)‖H − ‖A1/4u2(s)‖H
∣∣∣ (‖A1/4u1(s)‖H + ‖A1/4u2(s)‖H

)
‖Au2(s)‖H ds

≤
∫ t

0
ds

(
sup
t∈[0,T ]

‖A1/4u1(t)‖H

)2

sup
t∈[0,T ]

‖Au1(t)−Au2(t)‖H

+

∫ t

0
ds

[
sup
t∈[0,T ]

(
‖A1/4u1(t)‖H + ‖A1/4u2(t)‖H

)]
sup
t∈[0,T ]

‖Au2(t)‖H

× sup
t∈[0,T ]

‖A1/4u1(t)−A1/4u2(t)‖H .

Next, applying Lemma 2 yields

‖
∫ t

0
AS(t− s)

[
< A1/2u1(s), u1(s) >H A1/2u1(s)− < A1/2u2(s), u2(s) >H A1/2u2(s)

]
ds‖H

≤ T M2
A

( sup
t∈[0,T ]

‖Au1(t)‖H

)2

+ sup
t∈[0,T ]

(‖Au1(t)‖H + ‖Au2(t)‖H) sup
t∈[0,T ]

‖Au2(t)‖H


× sup

t∈[0,T ]
‖Au1(t)−Au2(t)‖H ≤

TM2
A

[
(‖u1 − v0‖C + ‖v0‖C)2 + (‖u1 − v0‖C + ‖u2 − v0‖C + 2‖v0‖C) (‖u2 − v0‖C + ‖v0‖C)

]
× ‖u1 − u2‖C =

TM2
A

[
(R+ v?0)2 + (2R+ 2v?0) (R+ v?0)

]
× ‖u1 − u2‖C =

3TM2
A (R+ v?0)2 × ‖u1 − u2‖C .
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Thus, Φ4 : B(v0, R)→ C is a contraction under the condition

T
√

1 +M2
A

3A

2LI
M2
A (R+ v?0)2 < 1. (32)

Combining (31) and (32), it is proved that Φ : B(v0, R)→ C is a contraction under the condition

h = T
√

1 +M2
A

[
c

ρA
+

3A

2LI
M2
A (R+ v?0)2

]
< 1. (33)

Therefore, the relation (28) in Theorem 1 is derived. Next, the conditions such that

‖Φ(v0)− v0‖C < R(1− h)

are sought for. In this regard,

‖AΦ(v0)−Av0‖H ≤

‖(C(t) + S(t)B − I)Av0‖H + ‖AS(t)v1‖H + ‖
∫ t

0
C(t− s)BAv0 ds‖H

+
A

2LI
‖
∫ t

0
AS(t− s) < A1/2v0, v0 >H A1/2v0 ds‖H +

1

ρA
‖
∫ t

0
AS(t− s)q(s) ds‖H ≤

(2 +
cMS

ρA
)‖Av0‖H + ‖A1/2v1‖H +

cT

ρA
‖Av0‖H +

TA

2LI

∣∣∣< A1/2v0, v0 >H

∣∣∣ ‖Av0‖+
T

ρA
‖A1/2q(s)‖H

≤ (2 +
cMS

ρA
)v?0 + v?1 +

cT

ρA
v?0 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q?.

Therefore, we obtain that

‖Φ(v0)− v0‖C <
√

1 +M2
A

[
(2 +

c(MS + T )

ρA
)v?0 + v?1 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q?
]

(34)

Combining now expressions (33) and (34), the relation (29) in Theorem 1 is derived.

In order to express the solutions maps as functions from [0, T ]× [0, L] to R, without involving any

spatial derivatives, the following result with respect to the nonlinearity term invoked.

Lemma 3. Let v(s) ∈ D(A1/2), s ∈ [0, T ]. Then, the term of the solution map which contains the

nonlinear term, considered as a function from [0, T ]× [0, L] to R, is expressed as

A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds =

2π2

L5

√
EA

ρI

∫ t

0

{ ∞∑
n=1

[
n2

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]
×

∞∑
n=1

[
sin[

√
EI

ρA

n2π2

L2
(t− s)]

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds.
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Proof. Similar computations as in the proof of Lemma 1 in [25] are provided with respect to the

family S(t)A1/2, t ∈ R. Thus, we obtain that

S(t− s)A1/2v(s) =
∞∑
n=1

sin[

√
EI

ρA

n2π2

L2
(t− s)] < v(s), en >H en =

2

L

∞∑
n=1

sin[

√
EI

ρA

n2π2

L2
(t− s)]

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x), s, t ∈ [0, T ], x ∈ [0, L].

Furthermore, by the spectral representation of A1/2, we have that

< A1/2v(s), v(s) >H=

〈 ∞∑
n=1

√
EI

ρA

n2π2

L2
< v(s), en >H en ,

∞∑
m=1

< v(s), em >H em

〉
H

=

∞∑
n=1

√
EI

ρA

n2π2

L2
| < v(s), en >H |2 =

∞∑
n=1

[√
EI

ρA

n2π2

L2

2

L

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]

=

2π2

L3

√
EI

ρA

∞∑
n=1

[
n2

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]
.

Finally, returning to the initial problem (2), we obtain an implicit analytic expression for the

solution v(t, x), Eq. (3). However, prior to presenting it, the following expressions are defined:

v1(t, x) :=
2

L

∞∑
n=1

[
cos(

√
EI

ρA

n2π2

L2
t)

(∫ L

0
v0(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, (35)

v2(t, x) :=
2cL

π2
√
EIρA

∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
t)

(∫ L

0
v0(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, (36)

v3(t, x) :=
2L

π2

√
ρA

EI

∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
t)

(∫ L

0
v1(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, (37)

v4(t, x) :=
2c

LρA

∫ t

0

{ ∞∑
n=1

[
cos(

√
EI

ρA

n2π2

L2
(t− s))

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds, (38)

v5(t, x) :=
2π2

L5

√
EA

ρI

∫ t

0

{ ∞∑
n=1

[
n2

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]
, (39)

v6(t, x) :=
∞∑
n=1

[
sin[

√
EI

ρA

n2π2

L2
(t− s)]

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds (40)

v7(t, x) :=
2L

π2
√
EIρA

∫ t

0

{ ∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
(t− s))

(∫ L

0
q(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds.

(41)
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Thus, by employing Eqs. (35) – (41), the implicit analytic solution v(t, x) is provided by

v(t, x) =

3∑
k=1

vk(t, x)− v4(t, x)− v5(t, x)× v6(t, x) + v7(t, x). (42)

2.2 Viscoelastic case

Adopting the analysis of Section 2.1, the IBVP (1) obtains the form of a second order nonlinear ODE

in the Hilbert space H, which now involves a fractional derivative term as well:

v′′(t) +
c

ρA
0D

α
t v(t) +Av(t) +

A

2LI
< A1/2v(t), v(t) >H A1/2v(t) =

1

ρA
q(t), a.e. on (0, T ),

v(0)=v0 , v
′(0) = v1.


(43)

The IVP (43) admits a unique solution, i.e.,

v(t) = C(t)v0 + S(t)v1 −
c

ρAΓ(1− α)

∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds

− A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds +

1

ρA

∫ t

0
S(t− s)q(s) ds, t ∈ [0, T ].

Furthermore, to treat the fractional derivative term, and obtain a derivative-free expression, the

following important result is proved:

Lemma 4. Assume that v ∈ C and that v′(t)
1

tα
∈ L1(0, T ;H). Then, the following expressions hold;

that is,

1. ∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds =

∫ t

0

(∫ s

0
C(s− r)v(r) dr − S(s)v(0)

)
1

(t− s)α
ds, (44)

2.

d

dt

(∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds

)
=

∫ t

0

(
−
∫ s

0
AS(s− r)v(r) dr + v(s)− C(s)v(0)

)
1

(t− s)α
ds.

(45)

3. If also v′ ∈ L1(0, T ;HA1/2), then

d2

dt2

(∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds

)
=

∫ t

0

(
v′(s)−

∫ s

0
AS(s− r)v′(r) dr

)
1

(t− s)α
ds. (46)
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Proof. Note that ∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds = S(t) ∗ (

1

tα
∗ v′(t)),

where ∗ denotes the convolution f(t) ∗ g(t) =

∫ t

0
f(t− s)g(s) ds. Results 1 and 2 have been proved

in [25]. For the Result 3, the differentiation and properties of the convolution are used. Thus, we

observe that

d2

dt2

(∫ t

0
S(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds

)
=

d

dt

(∫ t

0
C(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds

)

= −
∫ t

0
AS(t− s)

∫ s

0

v′(r)

(s− r)α
dr ds+

∫ t

0

v′(s)

(t− s)α
ds =

−AS(t) ∗ (
1

tα
∗ v′(t)) +

∫ t

0

v′(s)

(t− s)α
ds = − 1

tα
∗ (AS(t) ∗ v′(t)) +

∫ t

0

v′(s)

(t− s)α
ds

=

∫ t

0

(
v′(s)−

∫ s

0
AS(s− r)v′(r) dr

)
1

(t− s)α
ds,

which is well defined under the condition v′ ∈ L1(0, T ;HA1/2).

Definition 2. A twice differentiable function v : [0, T ]→ H, is called a solution of the IVP (21) if

(i) v(t) ∈ D(A), t ∈ [0, T ],

(ii) v(t) = C(t)v0 + S(t)v1 −
c

ρA Γ(1− α)

∫ t

0

(∫ s

0
C(s− r)v(r) dr − S(s)v0

)
1

(t− s)α
ds

− A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds +

1

ρA

∫ t

0
S(t− s)q(s) ds, t ∈ [0, T ].

(47)

Applying Lemma 4 (in particular, result 1) and similar techniques as in the proof of Theorem 1

of section 2.1, we prove the following theorem is proved:

Theorem 2. Suppose that assumptions (26) and (27) hold, and the coefficients v0, v1, q, satisfy the

following relations

h = T
√

1 +M2
A

[
cT 1−α

(1− α)ρA Γ(1− α)
+

3A

2LI
M2
A (R+ v?0)2

]
< 1, (48)

√
1 +M2

A

[(
2 +

cT 1−α(T +MS)

(1− α)ρAΓ(1− α)

)
)v?0 + v?1 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q?
]

+Rh < R, (49)

for some R > 0 and T > 0, with v?0 = ‖Av0‖H , v?1 = ‖A1/2v1‖H and q? = sup
t∈[0,T ]

‖A1/2q(t)‖H .

Then the solution map of Definition 2 for the IVP (43) has a unique fixed point in B(v0, R).
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Proof. For the solution map of Definition 2, attention is directed to the term which corresponds to

the fractional derivative only, since all the other terms have been addressed in Theorem 1. It is first

shown that

Φ3(v(t)) =

∫ t

0

(∫ s

0
C(s− r)v(r) dr − S(s)v0

)
1

(t− s)α
ds ∈ D(A),

for t ∈ [0, T ]. Since v(t) ∈ D(A), t ∈ [0, T ], and v0 ∈ D(A), we have that C(s − r)v(r) ∈ D(A),

for r, s ∈ [0, T ], and that S(s)v0 ∈ D(A), for s ∈ [0, T ]. Furthermore, considering ‖C(t)‖LH ≤ 1, for

t ∈ R yields

‖
∫ s

0
AC(s− r)v(r) dr‖H = ‖

∫ s

0
C(s− r)Av(r) dr‖H ≤

∫ s

0
‖C(s− r)Av(r)‖H dr

≤
∫ s

0
‖Av(r)‖H dr ≤ T sup

t∈[0,T ]
‖v(t)‖HA <∞. (50)

Thus, by the closedness of A, we obtain that

A
(∫ s

0
C(s− r)v(r) dr

)
=

∫ s

0
AC(s− r)v(r) dr, s ∈ [0, T ],

and that

A
(∫ s

0
C(s− r)v(r) dr − S(s)v0

)
=

∫ s

0
C(s− r)Av(r) dr − S(s)Av0 s ∈ [0, T ].

Moreover, applying standard arguments and properties of the convolution, we obtain in a straightfor-

ward manner that

‖
∫ t

0
A
(∫ s

0
C(s− r)v(r) dr − S(s)v0

)
1

(t− s)α
ds‖H

= ‖
∫ t

0

∫ s

0
C(s− r)Av(r) dr

1

(t− s)α
ds−

∫ t

0
S(s)Av0

1

(t− s)α
ds‖H

≤ ‖ [C(t) ∗ 1

tα
] ∗ Av(t)‖H +

∫ t

0
‖S(s)Av0

1

(t− s)α
‖H ds

≤
∫ t

0
‖
∫ s

0
C(s− r) 1

rα
dr Av(t− s)‖H ds+MS‖Av0‖H

∫ t

0

1

sα
ds

≤
∫ t

0
‖
∫ s

0
C(s− r) 1

rα
dr‖L(H) ‖Av(t− s)‖H ds+MS‖Av0‖H

∫ t

0

1

sα
ds

≤
∫ t

0

∫ s

0

1

rα
dr ‖Av(t− s)‖H ds+MS‖Av0‖H

s1−α

1− α

∣∣∣∣t
0

≤ T 2−α

1− α
sup
t∈[0,T ]

‖Av(t)‖H +MS
T 1−α

1− α
‖Av0‖H <∞. (51)
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Hence, Φ3(t) ∈ D(A), for t ∈ [0, T ]. We will show now that Φ3 is continuous on [0, T ] under the

C-norm. By employing the properties of convolution and some direct calculations, we obtain that

‖AΦ3(t+ h)−AΦ3(t)‖H =

‖
∫ t+h

0

(∫ s

0
C(s− r)Av(r) dr − S(s)Av0

)
1

(t+ h− s)α
ds

−
∫ t

0

(∫ s

0
C(s− r)Av(r) dr − S(s)Av0

)
1

(t− s)α
ds‖H

≤ ‖
∫ t

0

(∫ s

0
C(s− r)Av(r) dr − S(s)Av0

)(
1

(t+ h− s)α
− 1

(t− s)α

)
ds‖H

+‖
∫ t+h

t

(∫ s

0
C(s− r)Av(r) dr − S(s)Av0

)
1

(t+ h− s)α
ds‖H =

‖
∫ t

0

∫ s

0
C(s− r)

(
1

(r + h)α
− 1

rα

)
dr Av(t− s) ds−

∫ t

0
S(s)Av0

(
1

(t+ h− s)α
− 1

(t− s)α

)
ds‖H

+‖
∫ t+h

t

∫ s

0
C(s− r) 1

(r + h)α
dr Av(t− s) ds−

∫ t+h

t
S(s)Av0

1

(t+ h− s)α
ds‖H

≤ ‖
∫ t

0

∫ s

0
C(s− r)

(
1

(r + h)α
− 1

rα

)
dr Av(t− s) ds‖H

+‖
∫ t

0
S(s)Av0

(
1

(t+ h− s)α
− 1

(t− s)α

)
ds‖H

+‖
∫ t+h

t

∫ s

0
C(s− r) 1

(r + h)α
dr Av(t− s) ds‖H

+‖
∫ t+h

t
S(s)Av0

1

(t+ h− s)α
ds‖H = T1 + T2 + T3 + T4. (52)

For T1, we have that

T1 ≤
∫ t

0
‖
∫ s

0
C(s− r)

(
1

(r + h)α
− 1

rα

)
dr Av(t− s)‖H ds

≤
∫ t

0

∫ s

0

∣∣∣∣ 1

(r + h)α
− 1

rα

∣∣∣∣ dr ‖Av(t− s)‖H ds

≤
∫ t

0

(s+ h)1−α − h1−α − s1−α

1− α
ds sup

t∈[0,T ]
‖Av(t)‖H → 0, as |h| → 0. (53)

For T2, we have that

T2 ≤
∫ t

0
‖S(s)Av0

(
1

(t+ h− s)α
− 1

(t− s)α

)
‖H ds

≤MS‖Av0‖H
∫ t

0

∣∣∣∣ 1

(t+ h− s)α
− 1

(t− s)α

∣∣∣∣ ds
18



≤MS‖Av0‖H
(t+ h)1−α − h1−α − t1−α

1− α
→ 0, as |h| → 0. (54)

For T3, we have that

T3 ≤
∫ t+h

t
‖
∫ s

0
C(s− r) 1

(r + h)α
dr Av(t− s)‖H ds

≤
∫ t+h

t

∫ s

0

1

(r + h)α
dr ‖Av(t− s)‖H ds

≤
∫ t+h

t

(s+ h)1−α − h1−α

1− α
ds sup

t∈[0,T ]
‖Av(t)‖H → 0, as |h| → 0. (55)

For T4, we have that

T4 ≤
∫ t+h

t
‖S(s)Av0

1

(t+ h− s)α
‖H ds

≤MS‖Av0‖H
∫ t+h

t

1

(t+ h− s)α
ds

≤MS‖Av0‖H
h1−α

1− α
→ 0, as |h| → 0. (56)

Let u1, u2 ∈ B(v0, R). Then, for ‖Φ3(u1)− Φ3(u2)‖C we find that:

‖Φ3(u1)− Φ3(u2)‖C = sup
t∈[0,T ]

c

ρA Γ(1− α)
‖
∫ t

0

∫ s

0
C(s− r) (u1(r)− u2(r)) dr

1

(t− s)α
ds‖HA . (57)

Next, taking into account that

‖
∫ t

0

∫ s

0
C(s− r)A (u1(r)− u2(r)) dr

1

(t− s)α
ds‖H

≤
∫ t

0
‖
∫ s

0
C(s− r) 1

rα
dr A (u1(t− s)− u2(t− s)) ‖H ds

≤
∫ t

0

s1−α

1− α
‖A (u1(t− s)− u2(t− s)) ‖H ds

≤
∫ t

0

s1−α

1− α
‖A (u1(t− s)− u2(t− s)) ‖H ds

≤ T 2−α

1− α
sup
t∈[0,T ]

‖A (u1(t)− u2(t)) ‖H

yields

‖Φ3(u1)− Φ3(u2)‖C ≤
√

1 +M2
A

cT 2−α

(1− α)ρA Γ(1− α)
‖u1(t)− u2(t)‖C . (58)

Combining (32) of the proof of Theorem 1 and (58), we find that Φ : B(v0, R)→ C is a contraction,

under the condition

h = T
√

1 +M2
A

[
cT 1−α

(1− α)ρA Γ(1− α)
+

3A

2LI
M2
A (R+ v?0)2

]
< 1. (59)
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which is the expression (48) of Theorem 2. The conditions such that

‖Φ(v0)− v0‖C < R(1− h)

are determined next. In this regard, observe that

‖AΦ(v0)−Av0‖H ≤

‖(C(t)− I)Av0‖H + ‖AS(t)v1‖H+‖ c

ρA Γ(1− α)

∫ t

0

(∫ s

0
AC(s− r)v0 dr −AS(s)v0

)
1

(t− s)α
ds‖H

+
A

2LI
‖
∫ t

0
AS(t− s) < A1/2v0, v0 >H A1/2v0 ds‖H +

1

ρA
‖
∫ t

0
AS(t− s)q(s) ds‖H ≤

2‖Av0‖H + ‖A1/2v1‖H +
c

ρAΓ(1− α)

(∫ t

0
‖
∫ s

0
C(s− r) 1

rα
dr‖ ds+

∫ t

0
‖S(t− s) 1

sα
‖ ds

)
‖Av0‖H

+
TA

2LI

∣∣∣< A1/2v0, v0 >H

∣∣∣ ‖Av0‖+
T

ρA
‖A1/2q(s)‖H

≤ 2v?0 + v?1 +
cT 1−α (T +MS)

(1− α)ρAΓ(1− α)
v?0 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q?.

Thus,

‖Φ(v0)− v0‖C <
√

1 +M2
A

[(
2 +

cT 1−α(T +MS)

(1− α)ρAΓ(1− α)

)
v?0 + v?1 +

TA

2LI
M2
A(v?0)3 +

T

ρA
q?
]

(60)

By considering expressions (59) and (60), the relation (49) of Theorem 2 is derived.

Returning to the IBVP (1), an implicit analytic expression for the solution v(t, x), Eq. (3) is

obtained. However, prior to presenting it, the following definitions are introduced:

v8(t, x) :=
2L

π2

√
ρA

EI

∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
t)

(∫ L

0
v1(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, (61)

v9(t, x) :=
2c

LρA Γ(1− α)

∫ t

0

{∫ s

0

{ ∞∑
n=1

[
cos(

√
EI

ρA

n2π2

L2
(s− r))

(∫ L

0
v(r, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
dr

1

(t− s)α

}
ds

(62)

v10(t, x) :=
2cL

π2
√
EIρA Γ(1− α)

∫ t

0

{ ∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
s)

(∫ L

0

v0(z) sin(
nπ

L
z) dz

)
sin(

nπ

L
x)

]
1

(t− s)α

}
ds

(63)

Thus, from Eqs. (35), (39) – (41) and (61) – (63), the implicit analytic solution v(t, x) of the IBVP

(1) is given by

v(t, x) = v1(t, x) + v8(t, x)− v9(t, x) + v10(t, x)− v5(t, x)× v6(t, x) + v7(t, x). (64)
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2.3 Purely elastic case

For the elastic case (α = 0), the term v(t, x) − v(0, x) replaces the fractional derivative term, and

thus, the equations admit the form

ρA
∂2v

∂t2
(t, x) + c(v(t, x)− v(0, x)) + EI

∂4v

∂x4
(t, x)−N ∂2v

∂x2
(t, x) =q(t, x), a.e. on (0, T )× (0, L),

v(0, x)=v0(x) ,
∂v

∂t
(0, x) =v1(x), a.e. on (0, L),

v(t, 0) = v(t, L) =
∂2v

∂x2
(t, 0) =

∂2v

∂x2
(t, L) =0, a.e. on (0, T ).


(65)

The IBVP (65) derives as follows:

v′′(t) +Av(t) +
c

ρA
(v(t)− v0) +

A

2LI
< A1/2v(t), v(t) >H A1/2v(t) =

1

ρA
q(t), a.e. on (0, T ),

v(0)=v0 , v
′(0) = v1,


(66)

Definition 3. A twice differentiable function v : [0, T ]→ H, is called a solution of the IVP (66) if

(i) v(t) ∈ D(A), t ∈ [0, T ],

(ii) v(t) = C(t)v0 + S(t)v1 −
c

ρA

∫ t

0
S(t− s)(v(s)− v0) ds−

A

2LI

∫ t

0
S(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds +

1

ρA

∫ t

0
S(t− s)q(s) ds, t ∈ [0, T ]. (67)

Applying the same techniques as in the proofs of Theorem 1 and Theorem 2, it is possible to

find similar relations to (28), (29) and (48), (49) for the existence of a unique fixed point in B(v0, R)

for the IVP (66). This unique fixed point has the form of Definition 3. However, note that a more

convenient form of the solution of the IVP (66) than this of Definition 3 can be found. To this aim,

for c > 0, the operator A1 : D(A1)→ H is defined as

A1v(t, ·) = (A+
c

ρA
I)v(t, ·) = (

EI

ρA

∂4v

∂x4
+

c

ρA
I)(t, ·)

with

D(A1) = D(A).

The operator A1 = A+ c
ρAI is also positive and self-adjoint on H with eigenvalues

µn =
EI

ρA
(
nπ

L
)4 +

c

ρA
, n ∈ N
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and corresponding eigenvectors

en(x) =

√
2

L
sin(

nπ

L
x), n ∈ N, x ∈ (0, L).

The corresponding C1(t) and S1(t) on H, generated by −A1, take the form

C1(t)y =
∞∑
n=1

cos

(√
EI

ρA

n4π4

L4
+

c

ρA
t

)
< y, en >H en, for y ∈ H.

and

S1(t)y =

∞∑
n=1

√
ρA

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
t

)
< y, en >H en, for y ∈ H.

The IBVP (65) takes now the following form of a second order nonlinear ODE in H:

v′′(t) +A1v(t) +
A

2LI
< A1/2v(t), v(t) >H A1/2v(t) =

c

ρA
v0 +

1

ρA
q(t), a.e. on (0, T ),

v(0)=v0 , v
′(0) = v1,

 (68)

Definition 4. A twice differentiable function v : [0, T ]→ H, is called a solution of the IVP (68) if

(i) v(t) ∈ D(A), t ∈ [0, T ],

(ii) v(t) = C1(t)v0 + S1(t)v1 −
A

2LI

∫ t

0
S1(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds +

c

ρA

∫ t

0
S1(t− s)v0 ds+

1

ρA

∫ t

0
S1(t− s)q(s) ds, t ∈ [0, T ]. (69)

Once again, applying the same techniques as in the proofs of Theorems 1 and 2, we are able to

find similar relations to (28), (29) and (48), (49) for the existence of a unique fixed point in B(v0, R)

for the IVP (68) which has the form of Definition 4.

Returning to the IBVP (65), an implicit analytic expression for the solution v(t, x), Eq. (3) is

obtained. In this regard, considering the definition

v11(t, x) :=
2cL

π2
√
EIρA

∫ t

0

{ ∞∑
n=1

[
1

n2
sin(

√
EI

ρA

n2π2

L2
(t− s))

(∫ L

0

(v(s, z)− v0(z)) sin(
nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds

(70)

and employing Eqs. (35), (39) – (41), (61) and (70), the implicit analytic solution v(t, x) of the IBVP

(65) is given by

v(t, x) = v1(t, x) + v8(t, x)− v11(t, x)− v5(t, x)× v6(t, x) + v7(t, x). (71)

Finally, to obtain a more convenient form of the solution of the IBVP (65), corresponding to the

formulation of the IVP (68), the following result is proved first:
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Lemma 5. Let v(s) ∈ D(A1/2), s ∈ [0, T ], P-a.s. Then, the non-linear term in the solution map of

Definition 4, considered as a function from [0, T ]× [0, L] to R, takes the expression

A

2LI

∫ t

0
S1(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds =

4π4

L7

√
EA

ρI

∫ t

0

{ ∞∑
n=1

[
n2

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]
×

∞∑
n=1

[
n2

√
EI

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds.

Proof. By similar computations as in the proof of Lemma 1 in [25], we obtain that

S1(t− s)A1/2v(s) =
∞∑
n=1

[√
ρA

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)
< A1/2v(s), en >H en

]
=

∞∑
n=1

[√
ρA

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)〈[ ∞∑
m=1

√
EI

ρA

m2π2

L2
< v(s), em >H em

]
, en

〉
H

en

]
=

∞∑
n=1

[
n2π2

L2

√
EI

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)
< v(s), en >H en

]
=

2π2

L3

∞∑
n=1

[
n2

√
EI

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, s, t ∈ [0, T ], x ∈ [0, L].

Furthermore, by Lemma 3 and the spectral representation of A1/2, we have that

< A1/2v(s), v(s) >H=
2π2

L3

√
EI

ρA

∞∑
n=1

[
n2

(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)2
]
.

Applying Lemma 5 to the solution map of Definition 4, the solution of the IBVP (65), correspond-

ing to the form of the IVP (68), is presented in the following. In this regard, defining

ṽ1(t, x) :=
2

L

∞∑
n=1

[
cos

(√
EI

ρA

n4π4

L4
+

c

ρA
t

)(∫ L

0
v0(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]
, (72)

ṽ6(t, x) :=

∞∑
n=1

[
n2

√
EI

EI n
4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)(∫ L

0
v(s, z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

]}
ds,

(73)

ṽ7(t, x) :=
2

L
√
ρA

∫ t

0


∞∑
n=1

 1√
EI n

4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)(∫ L

0

q(s, z) sin(
nπ

L
z) dz

)
sin(

nπ

L
x)

 ds,

(74)
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ṽ8(t, x) :=
2
√
ρA

L

∞∑
n=1

 1√
EI n

4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
t

)(∫ L

0
v1(z) sin(

nπ

L
z) dz

)
sin(

nπ

L
x)

 ,
(75)

ṽ10(t, x) :=
2c

L
√
ρA

∫ t

0


∞∑
n=1

 1√
EI n

4π4

L4 + c
sin

(√
EI

ρA

n4π4

L4
+

c

ρA
(t− s)

)(∫ L

0

v0(z) sin(
nπ

L
z) dz

)
sin(

nπ

L
x)

 ds,

(76)

and considering Eqs. (39) and (73) – (76), the implicit analytic solution v(t, x) of the IBVP (65) is

given by

v(t, x) = ṽ1(t, x) + ṽ8(t, x)− 2π2

L
v5(t, x)× ṽ6(t, x) + ṽ10(t, x) + ṽ7(t, x). (77)

3 Time regularity of the solutions

For all the solution forms in the viscoelastic, and the purely viscous and the purely elastic cases, the

following theorem is obtained. Note that to avoid repetition and for the sake of concise presentation,

the corresponding proof is omitted taking into account that similar techniques are utilized as the ones

employed in the proofs of Theorems 1 and 2.

Theorem 3. Suppose that assumptions, (26) and (27) hold, and v ∈ C. Then v′ ∈ C(0, T ;HA1/2) and

v′′ ∈ C(0, T ;H).

In what follows, we present the first and second derivatives of the solutions for each case.

3.1 Viscous case

Differentiating formally the solution map of Definition 1 yields

v′(t) = (−AS(t) +
c

ρA
C(t))v0 + C(t)v1 +

c

ρA

∫ t

0
AS(t− s)v(s) ds− c

ρA
v(t)

− A

2LI

∫ t

0
C(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds+

1

ρA

∫ t

0
C(t− s)q(s) ds, t ∈ [0, T ].

Since assumptions, (26) and (27), hold, and v ∈ C(0, T ;HA), applying similar techniques to the

proof of Theorem 1, it can be proved that v′(t) ∈ D(A1/2), t ∈ [0, T ], and that v′ is continuous un-

der the usual norm of C(0, T ;HA1/2). Furthermore, differentiating the above expression, we derive that
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v′′(t) = (−AC(t)− c

ρA
AS(t))v0 −AS(t)v1 +

c

ρA

∫ t

0
AC(t− s)v(s) ds− c

ρA
v′(t)

+
A

2LI

∫ t

0
AS(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds− A

2LI
< A1/2v(t), v(t) >H A1/2v(t)

− 1

ρA

∫ t

0
AS(t− s)q(s) ds+

1

ρA
q(t), t ∈ [0, T ].

By similar techniques applied in the proof of Theorem 1, in conjunction with the continuity of the

inner product and v′, it can be proved that v′′(t) is a well defined H−valued function for t ∈ [0, T ],

and that v′′ is continuous under the usual norm of C(0, T ;H).

3.2 Viscoelastic case

Applying Lemma 4 (Result 2) to differentiate the solution map of Definition 2 leads to

v′(t) = −AS(t)v0 + C(t)v1 +
c

ρAΓ(1− α)

∫ t

0

(∫ s

0
AS(s− r)v(r) dr − v(s) + C(s)v0

)
1

(t− s)α
ds

− A

2LI

∫ t

0
C(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds+

1

ρA

∫ t

0
C(t− s)q(s) ds, t ∈ [0, T ].

Since assumptions, (26) and (27), hold, and v ∈ C(0, T ;HA), applying similar techniques to the

ones for proving Theorems 1 and 2, it can shown that v′(t) ∈ D(A1/2), t ∈ [0, T ], and that v′ is

continuous under the usual norm of C(0, T ;HA1/2). Furthermore, differentiating the above expression

and applying Lemma 4 (Result 3), we obtain that

v′′(t) = −AC(t)v0 −AS(t)v1 +
c

ρAΓ(1− α)

∫ t

0

(
v′(s)−

∫ s

0
AS(s− r)v′(r) dr

)
1

(t− s)α
ds

+
A

2LI

∫ t

0
AS(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds− A

2LI
< A1/2v(t), v(t) >H A1/2v(t)

− 1

ρA

∫ t

0
AS(t− s)q(s) ds+

1

ρA
q(t), t ∈ [0, T ].

By resorting to similar techniques as the ones involved in the proofs of Theorems 1 and 2, in con-

junction with the continuity of the inner product and v′, it can be proved that v′′(t) is a well defined

H−valued function for t ∈ [0, T ], and that v′′ is continuous under the usual norm of C(0, T ;H).
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3.3 Elastic case

Differentiating formally the solution map of Definition 3 yields

v′(t) = −AS(t)v0 + C(t)v1 −
c

ρA

∫ t

0
C(t− s)(v(s)− v0) ds

− A

2LI

∫ t

0
C(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds+

1

ρA

∫ t

0
C(t− s)q(s) ds, t ∈ [0, T ].

Since assumptions, (26) and (27), hold, and v ∈ C(0, T ;HA), applying similar techniques to the

ones in the proof Theorem 1, it can shown that v′(t) ∈ D(A1/2), t ∈ [0, T ], and that v′ is continu-

ous under the usual norm of C(0, T ;HA1/2). Furthermore, differentiating the above expression leads to

v′′(t) = −AC(t)v0 −AS(t)v1 +

∫ t

0
AS(t− s)(v(s)− v0) ds− c

ρA
(v(t)− v0)

+
A

2LI

∫ t

0
AS(t− s) < A1/2v(s), v(s) >H A1/2v(s) ds− A

2LI
< A1/2v(t), v(t) >H A1/2v(t)

− 1

ρA

∫ t

0
AS(t− s)q(s) ds+

1

ρA
q(t), t ∈ [0, T ].

Clearly, v′′(t) is a well defined H−valued function for t ∈ [0, T ], and is continuous under the usual norm

of C(0, T ;H). Hence, for all the three cases, the solution map v : [0, T ] → H, is twice continuously

differentiable.

4 Concluding remarks

In this study, implicit analytic solutions have been obtained for a nonlinear fractional PDE modeling

the dynamics of a deterministically excited viscoelastic nonlinear Euler-Bernoulli beam. This has been

yielded, first, by recasting the nonlinear PDE as a second order nonlinear IVP in the Hilbert space

L2. Next, the abstract theory of second order ODEs in Hilbert spaces, which involves special families

of operators, has been employed for deriving a variation of parameters representation for the solution

map of this problem. In this regard, local existence and uniqueness of a fixed point for this solution

map have been obtained as well. Next, representing both the nonlinear and the fractional terms in

suitable forms and invoking properties of the fractional derivative as well as properties of the cosine

and sine families of operators, this implicit solution has been expressed in an analytic derivative-free
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form. Note that the solutions for the limiting cases a = 0 (elastic case) and a = 1 (viscous case) have

also been derived in similar forms.

The herein derived results are of considerable importance given the increasing number of applica-

tion of fractional calculus in diverse areas of engineering and science [37]. Apart from the theoretical

merit of the determined implicit form solutions, these closed-form expressions can be used, potentially,

as an important step to derive very efficient and fast numerical solutions. The latter is identified as

a topic for a following paper.
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