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Abstract: We propose an iterative algorithm to select the smoothing parameters in

additive quantile regression, wherein the functional forms of the covariate effects are

unspecified and expressed via B-spline bases with difference penalties on the spline

coefficients. The proposed algorithm relies on viewing the penalized coefficients as

random effects from the symmetric Laplace distribution and it turns out to be very

efficient and particularly attractive with multiple smooth terms. Through simulations

we compare our proposal with some alternative approaches, including the traditional

ones based on minimization of the Schwarz Information Criterion. A real-data anal-

ysis is presented to illustrate the method in practice.
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1 Introduction

Quantile regression (QR) is nowadays a well established framework in observational

studies when interest is in modelling the quantiles of the response variable as a func-

tion of one or more covariates (Austin et al., 2005; Li et al., 2010). Implementation of

QR was first discussed by Koenker and Bassett (1978), and since then many tutorials

and books have appeared in the literature, the most notable being the one by Koenker

(2005). Some advantages of QR with respect to the more usual mean regression in-

clude robustness to possible outliers and influential observations, and the ability to

provide a complete picture of the response conditional distribution, see Austin et al.

(2005) and Waldmann (2018) for a gentle introduction and discussion.

The linear QR model belongs to the mainstream of statistical methodology now,

and the availability of specialized software makes it as simple to use as the familiar

mean regression model. See the quantreg package in R, the quantreg procedure in

SAS, and the qreg command in Stata, all of them focussing mainly on linear QR.

However, when linearity is questionable, alternative and more flexible approaches

should be considered. Nonparametric or flexible modelling in QR is crucial in data

analysis with important and noteworthy applications in many fields, the most famous

one being growth charts (Cole and Green, 1992; Wei et al., 2006; Li et al., 2010;

Muggeo et al., 2013). Here the anthropometric variable of main interest, e.g. weight

or height, is regressed on age, and a flexible relationship has to be fitted to obtain

‘reference’ values; the ultimate goal could be to identify observations out of such

reference intervals. Unfortunately flexible modelling of nonlinear effects within QR

appears to be somewhat limited, especially when multiple smooth, yet unspecified,

relationships have to be included in the same regression equation. In this context, the

gap with the corresponding counterparts for mean regression, such as the generalized

additive models (Wood, 2006), is somewhat substantial. A possible reason limiting

the widespread usage of additive QR is the lack of efficient algorithms able to fit

additive QR with automatic choice of the smoothing parameters.

Nonparametric smoothing in QR has been discussed using different techniques, such

as kernel (Xiang, 1996; Yu and Jones, 1998; Liu et al., 2019), smoothing splines from

both a frequentist as well as Bayesian paradigm (Thompson et al., 2010), and low

rank splines with or without penalty (Wei et al., 2006; He and Shi, 1994; Ng and

Maechler, 2007). Unpenalized splines strongly depend on the number and the posi-

tions of knots and therefore these are not recommended, especially when there exist
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regions in the covariate range with few observations. Penalized splines are effective to

deal with such ‘unlucky’ data configurations: Bosch et al. (1995) express the problem

in terms of cubic smoothing splines with an associated quadratic penalty, Koenker

et al. (1994) also use smoothing splines but with a total variation penalty on the

first derivative, and Ng and Maechler (2007) use splines with L1 or L∞ roughness

measures. Bollaerts et al. (2006) employ B-splines with a L1 penalty on the first or

second order differences of the coefficients. All the aforementioned papers proposing

the penalized approach, rely on a smoothing parameter which has to be selected for

producing the final fit. Methods to select the smoothing parameter include the tradi-

tional cross validation (Bollaerts et al., 2006) and the Schwarz Information Criterion

(Koenker et al., 1994; Koenker, 2011). Additional less-known approaches to select the

smoothing parameter in QR are the generalized approximate cross validation under-

stood as an approximation of the generalized comparative Kullback-Leiber distance

for quantile smoothing splines (Yuan, 2006), and the relatively new criterion based

on the L-curve originally proposed by Hansen (1992), discussed by Frasso and Eil-

ers (2015), and employed in the nonparametric QR by Andriyana et al. (2014). All

these methods are far from being efficient because they typically rely on grid search.

Namely one fixes a pre-specified grid of smoothing parameter values, and fits the

model for every candidate value in the grid. Then, the final fit is selected according

to the best value of the criterion. There are two possible pitfalls with this approach:

the optimal smoothing parameter value may depend on the number and position

of the “candidate” values and, more importantly, the computational burden becomes

particularly expensive when the regression equation involves multiple additive compo-

nents with the consequent multidimensional grid of smoothing parameters. To avoid

grid search, alternatively one could employ some numerical optimization methods to

optimize the objective as a function of the smoothing parameters only, for instance

via the simulated annealing option of optim in R, as in Koenker (2011). However the

computational load still remains an issue.

To the best of our knowledge there are some R packages implementing nonparametric

QR. Without the presumption of being exhaustive we cite some options. The well-

known quantreg package (Koenker, 2016) includes the function rqss() which allows

multiple smooth terms via qss, but it does not include automatic selection of the

smoothing parameters. The R package cobs (Ng and Maechler, 2016) has a built-in

function to perform automatic selection of smoothing parameter via the SIC, but it

works just with a single covariate. For additive QR models we mention the R packages

mboost (Hothorn et al., 2018; Mayr and Hofner, 2018) for a boosting-based approach,

and the recent qgam (Fasiolo et al., 2018) relying on the extended log-F distribution
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for the response. Both packages make use of P -splines, but not of L1 penalty.

The goal of this paper is to set up an efficient algorithm to fit additive QR mod-

els with L1 penalties where multiple smooth terms are included with corresponding

smoothing parameters to be estimated. The approach is similar to Geraci and Bottai

(2007), in that some coefficients are viewed as random effects coming from a Laplace

distribution. However, unlike Geraci and Bottai (2007), we deal with smoothing

methods and end up with a rather plain and efficient algorithm without performing

Gibbs sampling to solve intractable integrals. We presented our idea in a statistical

workshop (Torretta et al., 2015); here we provide details, justification of the approach

and report results from extensive simulation studies.

The rest of the paper is structured as follows. In section 2 we briefly review the P -

spline framework for smoothing in QR; in section 3 we describe the proposed algorithm

in detail, and in section 4 we present results from some simulation experiments.

Section 5 is devoted to the analysis of a real dataset and finally section 6 reports

conclusions and some discussions.

2 P-spline quantile regression framework

Let Y be the quantitative response variable, QY (τ |z, x) the τ -th quantile of the dis-

tribution of Y conditional to covariates z1, z2, . . . , zp and x1, x2, . . . , xK . The xs are

quantitative and understood to affect the response quantile through flexible relation-

ships; the zs are further covariates, possibly categorical, entering the model linearly.

The additive QR equation can be expressed via

QYi(τ |zi, xi) = zTi βτ + s1τ (x1i) + . . .+ sKτ (xKi), (2.1)

where βτ quantifies the linear effect of covariates z, and the {skτ (xk)}k=1,...,K are

smooth but otherwise unspecified functions. Following Bollaerts et al. (2006), Ng

and Maechler (2007), and Muggeo et al. (2013) among others, we use a low-rank B-

spline basis as smoother, thus skτ (xki) =
∑Jk

j bkτjBkj(xki), where Bkj(xi) is the j-th

spline function of the basis Bk(xki) = (Bk1(xki), Bk2(xki), . . . , BkJk(xki)) evaluated

at xki, and the bkτjs are Jk spline coefficients of the vector bkτ (Eilers and Marx,

1996). Jk is usually taken as a large number to build a generous basis guaranteeing

potentially flexible fits, for instance Jk = min{40, n/4}, as suggested by Ruppert
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et al. (2003). When the regression equation involves multiple smooth terms as in

(2.1) each basis has to be made identifiable. Among the different approaches, we

employ the sum-to-zero constraints such that the estimated smooth curve sums to

zero over the observed covariate space (Wood, 2006). Hereafter we assume each basis

is identifiable and the model intercept is included among the linear parameters βτ .

Denoting the response quantile in (2.1) by Qi, the penalized objective function to be

minimized can be written as

Lλ(β, b1, . . . , bK) =
n∑
i=1

ρτ (yi −Qi) +
K∑
k=1

{
λkτ

Jk−dk∑
j=1

|∆dkbkτ |j

}
, (2.2)

where ρτ (u) = u(τ−I(u < 0)) is the check function, and theK penalties λkτ
∑Jk−dk

j=1 |∆dkbkτ |j
control the wiggliness of the corresponding fitted curves ŝkτ (·) by shrinking the rele-

vant spline coefficients differences. More specifically ∆dk is the dk order difference

operator applied to the spline coefficients vector bk; for instance if dk = 1 it is∑Jk−dk
j |∆dkbkτ |j = |bkτ1−bkτ2|+|bkτ2−bkτ3|+. . .+|bkτJk−1−bkτJk |. λkτ is the positive

smoothing parameter regulating under- or over-smoothing of the fitted curve. Like for

mean regression, the fitted curve ŝk(·) approaches a dk − 1 degree polynomial when

λkτ gets larger, while λkτ = 0 indicates no penalization, resulting in a potentially

wiggly curve.

For fixed smoothing parameter, minimization of (2.2) is a relatively simple task since

standard linear programming techniques may be used (He and Ng, 1999; Bollaerts

et al., 2006; Koenker, 2011). Unfortunately the smoothing parameter is not fixed

in practice, and as briefly discussed in the Introduction, all of the current meth-

ods working with L1 penalties, select it via grid-search or numerical optimization.

This is sustainable for a single λ, but it can become time-consuming and possibly

infeasible with additive models where multiple smoothing parameters λk have to be

estimated. For instance, to alleviate the computational burden, Bang and Jhun (2012)

and Andriyana et al. (2014) propose to search for a unique λ, and compute the term

specific smoothing parameters via the ‘ad hoc’ adjustment λk = λ/max{|b̂jk|}j=1,...,Jk

or λk = λ/sdev{|b̂jk|}j=1,...,Jk , where the b̂jks are estimates from a preliminary un-

penalized fit. However such approach can clearly produce non-optimal solutions.

Alternatively two recent approaches to smoothing in QR deal with L2 penalty, via

the boosting (Fenske et al., 2013; Mayr and Hofner, 2018) or by means of a smooth

approximation of the check loss (Fasiolo et al., 2018). In the next section we discuss

an iterative algorithm to select the λks in an additive QR (2.2) with L1 objective and

penalties.
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3 The proposal: an iterative algorithm for smoothing

parameter selection in QR

To estimate the multiple lambda parameters of objective (2.2), we propose to use

an iterative algorithm which is sometimes referred in literature as ‘Schall algorithm’.

However the approach was discussed by Fellner (1986) for robust estimation of linear

mixed models based on equations of Harville (1977), and extended to generalized

mixed models by Schall (1991). The algorithm has also been employed for expectile

smoothing by Schnabel and Eilers (2009). The underlying idea of such ‘Harville-

Fellner-Schall’ algorithm exploits the link between penalized smoothing methods and

random effects models: the penalized coefficients are viewed as random effects having

relevant variance parameters, see Currie and Durban (2002) and Wand (2003) for

details. Viewing the penalized coefficients as random effects from a known distribution

allows us to estimate the smoothing parameter as the ratio of the error variance

divided by the variance of the ‘random effects’, namely of the penalized coefficients.

We apply a similar idea to estimate the smoothing parameters in nonparametric QR

via minimization of (2.2). We first outline the algorithm and then postpone discussion.

The proposed algorithm for additive QR (2.1) at fixed τ , with p linear parameters

and K smooth terms, is summarized as follows.

1. Fix a (small) value for all smoothing parameters λ
(0)
kτ , k = 1, . . . , K;

2. Fit the QR (2.1) by minimizing the objective (2.2) at the fixed λ
(0)
kτ such that

parameter estimate b̂kτ and fitted quantiles Q̂i are obtained;

3. Compute φ̂τ =
∑
i ρτ (yi−Q̂i)

(n−p−
∑
k γkedfk)

and ψ̂kτ =
∑
j |∆dk b̂kτ |j
γkedfk

k = 1, . . . , K, where edfk

are the term-specific degrees of freedom to be defined later and γk ≥ 1 is a fixed

factor to further penalize for the complexity;

4. Compute λ̂kτ = φ̂τ
ψ̂kτ

, k = 1, . . . , K;

5. Set λ̂kτ → λ
(0)
kτ (k = 1, . . . , K) and repeat steps 2. to 4. till convergence.

Convergence in step 5 is established throughout relative changes in the smoothing

parameter values. Namely when the variation in absolute value between the current

and the previous iteration of each λk is less than a fixed tolerance, the algorithm stops

by returning the QR model fitted at the last λ value.
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3.1 A theoretical justification of the iterative algorithm

Here we illustrate the rationale behind the proposed algorithm. For the sake of

simplicity we consider just one set of coefficients being penalized with a single tuning

parameter λ, but extension to multiple λ is straightforward.

It is known that the objective function in QR may be obtained assuming an asym-

metric Laplace (AL) distribution for the response conditional distribution (Yu and

Moyeed, 2001; Geraci and Bottai, 2007). Formally Yi|b ∼ AL(Qi, φ, τ) with density

function f(yi|b;Qi, φ, τ) = τ(1−τ)
φ

exp{−ρτ (yi−Qi)
φ
}, where ρτ (u) = u(τ − I(u ≤ 0))

is the check function like in (2.2). Qi is the location parameter, φ > 0 is the scale

parameter, and τ ∈ (0, 1) the skewness parameter assumed known and fixed, see Yu

and Zhang (2005). Let the location parameters Qi depend on the values xijs via the

equation Qi =
∑J

j bjxij, and let the coefficients (b1, . . . , bJ) assumed independent ran-

dom effects from a zero-mean symmetric Laplace distribution with scale parameter

ψ, whose joint density is f(b1, . . . , bJ ;ψ) = (2ψ)−J exp{
∑

j |bj|/ψ}.

Hence, given the aforementioned assumptions and n independent observations, the

joint density f(y1, . . . , yn, b1, . . . , bJ) representing the likelihood is

{
τ(1− τ)

φ

}n
(2ψ)−J exp

{
−
∑

i ρτ (yi −Qi)

φ
−
∑

j |bj|
ψ

}
.

By using the simple re-parameterization ψ = φ
λ

and taking the log, yields the log

likelihood, apart from a constant,

` = −n log φ− J log φ+ J log λ−
∑

i ρτ (yi −Qi)

φ
−
λ
∑

j |bj|
φ

. (3.1)

If φ and λ are considered as nuisance, then maximization of (3.1) with respect to

the bjs justifies minimization of (2.2). Actually (2.2) is more general as it includes

multiple λk and penalty on the differenced coefficients, however the rationale is clearly

the same.

The partial derivatives of (3.1) are easily obtained

∂`

∂λ
=

J

λ
−
∑

j |bj|
φ

∂`

∂φ
=

1

φ2

{
−φ(n+ J) +

∑
i

ρτ (yi −Qi) + λ
∑
j

|bj|

}
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The root of ∂`
∂λ

= 0 is λ̂ = φ∑
j |bj |/J

, while by the estimating equation ∂`
∂φ

= 0, after

plugging in λ̂, we get φ̂ =
∑

i ρτ (yi − Qi)/n. Namely the maximum likelihood (ML)

estimate of scale parameters ratio λ is

λ̂ =

∑
i ρτ (yi − Q̂i)/n∑

j |b̂j|/J
=
φ̂

ψ̂
, (3.2)

which justifies step 4. in the aforementioned algorithm, apart from the denominators

n and J . The rationale of replacing them with the effective degrees of freedom and

details about their computation are discussed in next subsections.

3.2 Remarks

As illustrated above, parameter estimation is justified via maximization of the joint

likelihood depending on fixed and random, i.e. penalized, parameters. Unlike Geraci

and Bottai (2007), it should be stressed that no tentative to integrate out the random

effects is carried out, and thus the objective to be optimized is the joint, rather than

the marginal, likelihood. It is worth noting that in the usual mixed models framework,

the variances ratio expression, i.e. the counterpart of (3.2) for mean regressions,

typically comes from the marginal likelihood maximization. However as discussed

by McCulloch (1997), it can be motivated under different likelihoods, including the

marginal, penalized and joint likelihood of fixed and random parameters as taken in

this paper for smoothing QR.

The scale parameter estimate ψ̂ in (3.2) depends on the numerator
∑

j |b̂j| which,

in turn, relies on independence of random effects as shown in subsection 3.1. Actu-

ally the coefficients of a B-spline basis with a difference penalty are not associated

with independent random effects, but it is straightforward to transform the B-spline

functions in order to take independence of the bjs (Currie and Durban, 2002). As an

alternative (Eilers and Marx, 2010), it is also possible to keep the B-spline basis and

to take the differenced coefficients
∑J−d

j |∆db|j as depicted in step 3. of the above

algorithm.

As illustrated by (3.2) in the previous section, λ̂ is the joint ML estimate under

the Laplace assumptions for the yis and bjs. In linear mixed models, a restricted

ML (REML)-like approach is well-known to attenuate bias of the variance parameter

estimators and to improve greatly their performance (e.g. Fellner, 1986; Schall, 1991;

Wand, 2003; Wood, 2006). Therefore we speculate a similar behaviour apply in

QR. Unfortunately a restricted version of log likelihood (3.1) is not straightforward
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to obtain and it has not been derived formally. However a natural and intuitive

choice to grant such adjustment is to consider the equivalent degrees of freedom in

estimation of ψ̂ and φ̂, namely replacing J and n respectively by the effective and the

residual degrees of freedom. Preliminary simulation experiments showing the better

performance of the REML-like with respect to the ML approach have also emphasized

a general tendency to under-smooth, namely to produce relatively too wiggly fitted

curves. A practical modification to fix this issue is to further penalize for the model

complexity in the generalized cross validation score, see Wood (2006, page 178): the

idea is to increase the amount that each edfk counts. We undertake a similar approach,

and therefore in step 3. of the algorithm we use REML-like estimates for the scale

parameters wherein each edfk is increased by a factor of γk > 1.

The proposed algorithm straightforwardly applies to so called varying coefficient mod-

els, i.e. regression equations involving also interactions between a smooth and a linear

term, such as zisτ (xi), see Andriyana et al. (2014). Detailed discussion of varying co-

efficients is beyond the goal of this paper, but it is worth noting that to include varying

coefficient terms it suffices to modify the basis spline such that each n-dimensional

column is multiplied element-wise by the n-dimensional covariate vector. Hence the

ith row of the B-spline related to the varying coefficient term can be written as

B̃(xi) = (ziB1(xi), ziB2(xi), . . . , ziBJ(xi))
T , and difference penalty on coefficients ap-

plies straightforwardly.

3.3 Quantifying the effective model dimension

The aforementioned algorithm in step 3. requires to quantify the term-specific degrees

of freedom edfk. To the best of our knowledge, there is no consensus in quantifying

them for additive QR. Some criteria aimed at selecting the amount of smoothing, such

as the cross validation (Bollaerts et al., 2006) or L-curve (Andriyana et al., 2014), do

not need term-specific degrees of freedom, while other criteria, such as the Akaike or

the Schwarz Information Criterion just require the overall effective model dimension.

For instance in Koenker (2011), the multiple smoothing parameters in additive QR,

are selected by

SICλ = log

[
n−1

n∑
i

ρτ (yi − Q̂i)

]
+ 0.5n−1edf log(n), (3.3)

where only the total edf are computed via the null residuals; see also Koenker (2005,

pp 134, 234) for a general discussion, and Li and Zhu (2008) for a rigorous proof

on computing the model complexity via the number of interpolated points. In a
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REML-like framework, the term specific edfk should clearly depend on the selected

λk, namely edfk = Jk when λk = 0, and edfk → dk − 1 if λk → ∞. Two approaches

could be undertaken to compute edfk at intermediate values of λk.

The L1 penalty leads to null estimates of some basis coefficients involved in the

penalty term. Thus a natural way to quantify complexity of the fitted curve is via

the corresponding non-zero penalized estimates. More specifically, for the smooth

term k expressed by a Jk-rank basis and Jk − dk penalized coefficient differences,

we count the number of non-zero difference estimates and the number of underlying

dk−1 unpenalized coefficients; formally edfk = #{∆dk b̂k 6= 0}+(dk−1). For instance

if we set dk = 2 and λk gets very large, we get all zero estimated differences, leading

to edfk = dk − 1 = 1 which corresponds to the resulting linear fit.

The second viable approach relies on a smooth approximation of the L1 norm in

both the fidelity and penalty term. The goal is to build an approximate hat ma-

trix in order to define the edfks accordingly. Among the several smooth approxi-

mations which could be used (e.g. Muggeo et al., 2012), we use the simple iden-

tity |u| = u2/
√
u2 (Schnabel and Eilers, 2013). However while Schnabel and Eilers

(2013) use that to estimate multiple quantile curves with P -splines via iterative least

squares, we exploit the smooth approximation only to build the hat matrix. Thus,

given parameter estimates obtained via optimization of the L1-norm objective (2.2),

residuals ei = yi − Q̂i and weights wτi = τ − I(ei < 0) arranged into the ma-

trix Wτ = diag(wτ1, . . . , wτn), we note the parameter estimates can be expressed

via (β̂, b̂λ)
T = (XTWτX + Pλ)

−1XTWτy, where X is the design matrix including

linear covariates and the B-spline basis functions for the smooth terms and Pλ is

a block diagonal matrix including the zeroes for unpenalized coefficients and the

penalty matrices relevant to the different smooth terms. For instance, the block

relevant to the kth smooth term would be λkD
dkT
k VkD

dk
k , where Ddk

k is the dk-order

difference matrix and Vk includes the reciprocals of the same differenced coefficients

such that the quadratic form penalty equals the original L1-norm penalty, namely

bTkD
T
k VkDkbk =

∑
j

(∆dk bk)2j√
(∆dk bk)2j

=
∑

j |∆dkbk|j.

The least squares formulation allows to define the hat matrix whence the model

degrees of freedom may be obtained. More specifically, the elements on the main

diagonal of (XTWτX + Pλ)
−1XTWτX represent the degrees of freedom of each coef-

ficient associated to the corresponding column of the design matrix. By summing the

Jk elements corresponding to the coefficients bk1, . . . , bkJk relevant to the kth B-spline

basis, the term-specific edfk are obtained. Of course the trace quantifies the overall
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model edf .

4 Simulation Studies

We assess the performance of the proposed approach via some simulation experiments.

We follow some settings employed in Koenker (2011), but we also consider additional

scenarios. Data were generated according to yi = g(xi) +σ(xi)ei, where the covariate

xi ∼ U(0, 1) and the signal g(xi) is defined according to four different functions:

linear 0.2 + 0.4xi, logarithm log(xi), sinusoidal sin(2πxi), and ‘square root sinusoidal’

indicated by g0(xi) =
√
xi(1− xi) sin((2π(1+2−7/5))/(xi+2−7/5)). The scale function

is either constant σ(xi) = 0.2, or depending on the covariate itself, i.e. σ(xi) =

0.2(1 + xi). The errors ei are iid from four different distributions, Gaussian, χ2
3, t3,

and t1, such that the τ -th quantile equals zero. The sample size is n = 400 and five

percentiles τ = {0.10, 0.25, 0.50, 0.75, 0.90} are considered. To provide an idea of the

signal to noise ratio in the considered scenarios, Figure 1 portrays a set of simulated

data (at τ = 0.5) according to the different signal functions and error distributions.
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Figure 1: Some simulated data according to the signal curves and error distributions

with constant scale function. The continuous line represents the true median signal.

In the manuscript we contrast three competitors: i) the P -spline smoother (using

min{40, n/4} cubic B-spline functions with difference penalty d = 3) and λ selected

using the extra penalty factor γ = 2 in the Harville-Fellner-Schall step 3 of the

proposed algorithm (‘psplines+hfs’); ii) the same P -spline smoother with λ selected
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by the SICλ reported in (3.3), (‘psplines + sic’); iii) the quantile smoothing splines

with a total variation penalty and λ selected again by minimization of the SICλ,

(‘ssplines + sic’). Differences of the proposed ‘pspline+hfs’ with respect to other

possible approaches, such as cross-validation (CV) and the so-called L-curve criterion,

are reported in Supplementary Material. Both CV and L-curve have been employed

in literature to select just a single and not multiple, smoothing parameter in QR.

Extension of ten-fold, say, CV is prohibitive in practice due to its computational

load, and L-curve for bivariate smoothing has been proposed in linear regression only

(Frasso and Eilers, 2013), and further studies and research are needed to assess its

applicability in additive QR (2.1) . Therefore both CV and L-curve could not be

considered as effective competitors in additive QR, and discussion and comparative

assessment has been reported in supplementary material which also includes some

comparisons with the boosting approach.
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Figure 2: Constant scale function σ(x) = 0.2. Contrasting three competitors for

smoothing parameter selection in terms of MISE (on log scale) by different error

distributions and signals: ‘sspline+sic’ (light grey box), ‘pspline+sic’ (medium grey

box) and ‘pspline+hfs’ (dark grey box).

The three aforementioned main approaches are contrasted in terms of Mean Inte-

grated Square Error (MISE) defined as the mean of squared differences between the

true quantile curve and the corresponding fitted curve across 500 replicates, and also
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Figure 3: Non-constant scale function σ(x) = 0.2(1 + x). Contrasting three com-

petitors for smoothing parameter selection in terms of MISE (on log scale) by different

error distributions and signals: ‘sspline+sic’ (light grey box), ‘pspline+sic’ (medium

grey box) and ‘pspline+hfs’ (dark grey box).

the Mean Integrated Absolute Error, similar to MISE but involving the absolute dif-

ferences rather than the squares. Here we report results for the MISE values, while

the MIAE results are reported in the Supplementary Material.

Figures 2 and 3 report the comparisons in terms of MISE: for all the error distributions

considered and for every signal (linear, logarithmic, sinusoidal and sqrt+sinusoidal

‘g0(·)’), each panel reports the boxplots of the log MISE values across the replicates for

the five τ values. The two figures refer to homoscedastic and heroscedastic scenarios.

Overall, no important difference emerges across the scenarios. Occasionally some

criterion appears to perform slightly better/worse than the others: for instance ‘ss-

pline+sic’ returns higher MISE values at higher quantiles with log(x) signal and

gaussian errors; the proposed ‘pspline+hfs’ exhibits slightly lower mean square er-

rors at linear signal and middle percentiles (0.25,0.50,0.75), but at the same middle

percentiles, it depicts higher values when the signal is log(x) or g0(x) and errors

follow the Cauchy distribution. However no systematic patterns come out, and no

difference among the homoscedastic or heteroscedastic case is noteworthy. Hence,
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while performances in terms of statistical efficiency are substantially the same across

the scenarios, the gain in computational efficiency is not negligible; more details are

postponed to section 4.1.

The same simulation scenarios were run with an additional linear covariate to assess

possible impacts on the sampling distribution of the linear coefficient estimators. No

difference was observed among the MISE values and the sampling distributions and

results are not shown for shortness.

We consider the more interesting scenarios of additive models, namely more smooth

relationships in the QR equation. To illustrate, we consider the true quantile function

1 + 2 cos(x1i) + sin(2πx2i) with independent uniform covariates x1i ∼ U(−4, 4) and

x2i ∼ U(0, 1), sample size n = 400, the four aforementioned error distributions and

five quantile curves. Figure 4 shows the log MISE, for the aforementioned competitors

‘sspline+sic’, ‘pspline+sic’ and the proposed ‘pspline+hfs’.
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Figure 4: Contrasting the three competitors (in terms of log(MISE)) for smooth-

ing parameter selection with 2 additive terms by different error distributions and

quantile curves: ‘sspline+sic’ (light grey box), ‘pspline+sic’ (medium grey box) and

‘pspline+hfs’ (dark grey box). Right panels: constant scale function; Left panels:

non-constant scale function. The true signal is 1 + 2 cos(x1i) + sin(2πx2i).

Unlike the single covariate case, here some differences are noteworthy. For the ho-

moscedastic scenario the traditional ‘sspline+sic’ performs bad most of times, no-

ticeably quite worse than the others with Gaussian and Cauchy errors especially

at extreme quantiles (τ = 0.1 and 0.90). On the other hand, ‘pspline+sic’ and

‘pspline+hfs’ behave about the same, with ‘pspline+hfs’ exhibiting lightly but con-

stantly lower MISE values at middle quantiles (τ = 0.25, 0.50, 0.75) with somewhat



Additive regression quantiles 15

remarkable differences in the t1-distribution case. With heteroscedastic errors pat-

terns are even more pronounced, especially with asymmetric errors where the MISE

values from ‘sspline+sic’ are far higher than the others.

Differences in terms of MISE exhibit approximately the same patterns and are re-

ported in the supplementary material which also shows comparisons relevant to

smoothing parameter selection in varying coefficient models.

4.1 Computational issues

As previously discussed, computational efficiency is a major feature of our proposal.

The benefit with respect to crude grid search approaches could be somewhat expected,

especially when multiple smoothing parameters have to be estimated: in fact grid-

search approaches require multidimensional evaluation grids leading to quite taxing

procedures since a large number of fits have to be obtained to pick up the best

lambdas values optimizing the selected criterion, such as the SIC or L-curve. CV is

even heavier, since for each candidate lambda value in the grid, the model has to be

fitted and tested several times to training/testing sub-datasets.

Table 1: Computational times to fit additive quantile regresion with 1 or 2 smooth

terms for n = 1000 observations. Entries refer to averages (on 10 fits) of the elapsed

components obtained via the system.time() function in R. Times refer to build-

ing the B-spline basis and the penalty matrices. Computations run on R 3.6.1 on

Windows, Intel i7-8700 CPU 3.20 GHz, RAM 16 GB.

n. smooth execution

terms criterion method time (sec.)

1 sspline+sic grid-search (15) 0.12

grid-search (30) 0.21

pspline+sic grid-search (15) 0.12

grid-search (30) 0.22

pspline+hfs iterative 0.07

2 sspline+sic grid-search (15× 15) 57.3

grid-search (30× 30) 228.7

pspline+sic grid-search (15× 15) 8.61

grid-search (30× 30) 33.1

pspline+hfs iterative 0.33

To gain a rough assessment of the computational load, Table 1 reports the execution
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time of the aforementioned approaches when fitting additive regression quantiles with

1 or 2 smooth terms at τ = 0.5 for n = 1000 observations. For the ‘grid-search’ rows,

the numbers in parentheses refer to the number of lambda values to be evaluated to

seek the optimum: we consider 15 or 30 values, with the former leading, as it would

be expected, to lower excution times but higher mean square errrors.

While for single smooth terms, all times are within reasonable ranges, differences

get notable with 2 smooth terms: grid-searches show quite large times in general,

but sspline+sic exhibits larger running times, probably due to the higher number

of parameters to be estimated. The proposed pspline+hfs presents times far lower

than the competitors, since it is based on iterative procedure and typically less than

20 iterations are requested to get convergence. It is worth stressing that such large

differences are expected to rise as the number of smoothing parameters increases,

making our proposal quite attractive with multiple additive terms.

For the sake of completeness, we mention the chosen criterion could be minimized

via numerical procedures rather than grid-searches: for instance by means of the

Nelder-Mead algorithm with does not require gradient evaluation, or quasi-Newton

methods which compute the gradient numerically. However we have experienced a

somewhat strong influence of the supplied starting values on the final results, making

the numerical procedures substantially unreliable. One could try to run the algorithm

using different starting values or probably to rely on different algorithms such as the

simulated annealing, but at the cost of increasing the computational burden.

5 Application: modelling standing long jump in chil-

dren

We apply the proposed algorithm to analyse data concerning the sport performance

in children. Physical fitness is a powerful marker of the health condition in childhood

and adolescence; for instance, fitness is negatively associated with cardiovascular

risk factors for chronic disease, high blood pressure, and total fatness (Kraemer and

Häkkinen, 2008).

As an alternative to laboratory methods, physical fitness can be measured via the on-

site fitness tests which are easy to be administered, especially when the population

study involves schoolchildren. Among the different sport performance outcomes, the



Additive regression quantiles 17

standing long jump (SLJ) test represents a widespread yet practical, time efficient

and cheap method for assessing the muscular fitness in children and adolescents. The

schoolchild stands at a line marked on the ground with the feet slightly apart and

jumps: the SLJ performance is the horizontal distance jumped. SLJ, sometimes also

known as standing broad jump, is commonly used to assess explosive leg power, but

it is also understood to be a proxy of muscular strength tests of the lower body. SLJ

depends mainly on leg length, but it influenced also by neuromuscular maturation, as

SLJ requires more coordination of movements and technique, for instance the so-called

takeoff angle (Saint-Maurice et al., 2015).

Data analyzed here refer to wide survey carried out in years 2011 to 2013 to assess

sport abilities and fitness in school children in Sicily. Data have been kindly provided

by the Department of ‘Scienze Psicologiche, Pedagogiche e della Formazione’, Univer-

sity of Palermo. Measurements were gained by previously trained experts, and include

measurements on performance on several physical tests along with some anthropo-

metric measurements collected in the major Sicilian cities in the three-year period.

Here we present results relevant to n = 488 school children in Palermo collected in

2011; further results relevant to whole Sicily will be presented elsewhere.

Beside the response SLJ, the main covariate is the child weight. The substantive

research question is how the weight could affect the SLJ performance, namely in

statistical terms the relationship SLJ - weight which is expected to be nonlinear.

However the weight is strongly correlated with age and height, which are understood

to affect the response as well, possibly in a nonlinear manner. Thus an additive QR

accounting simultaneously for the three covariates flexibly appears to be the most

appropriate model, namely,

Qslj(τ) = β0 + β1gender + s1τ (age) + s2τ (weight) + s3τ (height),

at fixed τ . Multiple quantile curves could be useful to obtain the so-called growth

charts, sometimes refereed as ‘normative reference values’ in sport medicine (Saint-

Maurice et al., 2015; Sandercock et al., 2016). However focussing only on upper

quantiles, would be useful for talent selection in school age. Thus we set τ = 0.95 in

the above regression equation.

We fit the additive QR model using the aforementioned algorithm; the smooth func-

tions are expressed as identifiable cubic B-spline bases and the number of basis func-

tions was set using the empirical rule of min{40, n/4} (Ruppert et al., 2003). A

third-order difference penalty was used in the penalty term.
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Figure 5 portrays the fitted curves (centred due to identifiability constraints) along

partial residuals, i.e. the fitted quantile values plus the residuals from the full model.

To quantify uncertainty, pointwise confidence intervals have been computed by means

of the estimates covariance matrix based on bootstrap cases resampling.
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Figure 5: The smooth effect of age, weight and height on the quantile curve τ =

0.95 of standing long jump. In each panel, shaded areas portray the 95% pointwise

confidence intervals based on bootstrap resampling and dots represent the partial

residuals.

For the age term, the smoothing parameter estimate is quite large, and thus the

relevant relationship with the response corresponds to a polynomial of degree 2; on

the other hand, the estimated lambdas for the weight and height terms are moderate,

resulting in flexible relationships with 3.01 and 6.98 degrees of freedom, respectively.

Controlling for age and height, the weight effect on the SLJ is worth discussing: till

35-40 Kg there is almost no influence on the performance, but afterwards there is an

important negative effect till about 75 Kg when the relationship stabilizes. Finally

the height effect shows different phases, with steeper slopes at very low (< 110cm)

and at middle (130− 150 cm) heights.

We have discussed estimation at single specified τ . However if the aim is to estimate

multiple quantile curves at different τ values, the proposed algorithm could be applied

several times at different τ values with the noncrossing constraints as discussed in

Muggeo et al. (2013).
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6 Conclusions

We have proposed an iterative algorithm for selecting multiple smoothing parameters

in additive QR models with L1 penalties. The idea exploits the link between smooth-

ing and mixed modelling, a connection which is well consolidated in mean regression,

but it appears not fully exploited in quantile regression. The iterative nature of the

proposed algorithm makes it very attractive in presence of several lambdas where the

multidimensional grid search or the derivative-free numerical optimization demand

extensive computations. While the algorithm relies on assuming proper Laplace dis-

tributions for the responses and the random effects with constant scale parameters,

simulations have shown that our approach performs well even when the constant-scale

assumption is violated and observations exhibit heteroscedasticity. This is quite re-

markable from a practical perspective, since quantile regression turns out to be very

useful especially in heteroscedastic scenarios.

In addition to far better computational efficiency, simulation experiments have shown

that most of the times our proposal exhibits good statistical performance as compared

to the canonical approach of smoothing splines and tuning parameter selected by the

Schwartz Information Criterion. The proposed approach returned slightly higher

mean squared errors only in few scenarios at the lowest quantile (τ = 0.1). Along

with the algorithm itself, we have also discussed a strategy to quantify the equivalent

degrees of freedom of the fitted model and also of each smooth term. In additive QR,

quantification of the equivalent degrees of freedom for each smooth term, does not

appears to have been discussed previously.

We have focused on additive models, that is multiple ‘univariate’ smooth terms,

but generalization to bivariate smooths represent straightforward extensions where

our proposal could apply. Modelling multiple quantile curves to produce growth

charts for reference values can be carried out by applying the proposed algorithm at

different probability values, namely with τ - specific smoothing parameter values. As

an alternative option, a unique smoothing parameter could be used for each quantile

curve: selecting and using a unique smoothing parameter for each τ value represents

a noteworthy issue to be investigated.

Also, the presented algorithm could be employed in random effects QR for longitudinal

data, where a few proposals have been discussed (Koenker, 2004; Geraci and Bottai,

2007; Lamarche, 2010): comparisons with Geraci and Bottai (2007) which use explicit

marginal Laplace log likelihood and Gibbs sampler, appear particularly noteworthy.
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Yet another possible extension of the proposed algorithm is about modelling quantiles

from discrete distributions, for instance to study the student performance at university

via the number of credits gained after the first academic year (Grilli et al., 2016): here

QR is applied several times at the randomly jittered response and, if the smoothing

parameter has to be estimated at each perturbated dataset, the proposed approach

appears quite useful due to computational efficiency.

R code to implement the methods presented in this paper, is currently available from

the corresponding author and will be also shipped in due time with the R package

quantregGrowth. Detailed comparisons among the R packages to fit additive regression

quantiles represent a noteworthy point to be investigated in a separate paper.

Supplementary materials

Supplementary materials for this paper, including comparisons with other approaches

along with further simulation results, R code and data discussed in section 5, are

available from http://www.statmod.org/smij/archive.html
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