
1 

> 1 < 

 

Abstract—The paradigm shift towards the Internet-of-Things 

results in an increasing number of wireless applications being 

deployed. Since many of these applications contend for the same 

physical medium (i.e. the unlicensed ISM bands), there is a clear 

need for beyond-state-of-the-art solutions that coordinate medium 

access across heterogeneous wireless networks. Such solutions 

demand fine-grained control of each device and technology, which 

currently requires a substantial amount of effort given that the 

control APIs are different on each hardware platform, technology 

and operating system. 

In this paper an open architecture is proposed that overcomes 

this hurdle by providing unified programming interfaces (UPIs) 

for monitoring and controlling heterogeneous devices and wireless 

networks. The UPIs enable to create and test advanced 

coordination solutions while minimizing the complexity and 

implementation overhead. The availability of such interfaces is 

also crucial for the realization of emerging software-defined 

networking approaches for heterogeneous wireless networks. To 

illustrate the use of UPIs, a showcase is presented that 

simultaneously changes the medium access control (MAC) 

behavior of multiple wireless technologies in order to mitigate 

cross technology interference taking advantage of the enhanced 

monitoring and control functionality. 

An open source implementation of the UPIs is available for 

wireless researchers and developers. It currently supports 

multiple widely used technologies (IEEE-802.11, IEEE-802.15.4, 

LTE), operating systems (Linux, Windows, Contiki) and radio 

platforms (Atheros, Broadcom, CC2520, Xylink Zynq, …), as well 

as advanced reconfigurable radio systems (IRIS, GNURadio, 

WMP, TAISC). 

 
Index Terms— wireless networks, heterogeneous, cross 

technology interference, software architecture, experimentation, 

monitoring, network control, radio control, coexistence, 

cooperation 

 

I. INTRODUCTION 

THE paradigm shift towards the Internet-of-things (IoT) will 

result in an increasing number of interfering devices that 

operate in the unlicensed spectrum, especially given the recent 
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interest of the 5G community to also use the same ISM bands. 

Coexistence will be a huge challenge, as many heterogeneous 

networks have to cooperate to share the same spectrum 

efficiently. To this end, advanced coordination techniques must 

be developed that allow mitigating cross-technology 

interference. 

Currently, multiple custom tools are used to configure and 

monitor wireless networks and each type of device requires a 

different toolset. For this reason, controlling a heterogeneous 

set of wireless devices is cumbersome at least and often 

demands a considerable effort to get acquainted with the 

different hardware platforms and corresponding configuration 

tools. 

The proposed control architecture offers the possibility to 

create and test coordination techniques while minimizing the 

complexity and implementation overhead, thereby fostering 

innovations in a challenging research domain. For this purpose, 

it relies on the following key enablers: 

Unified programming interfaces (UPI) allow reconfiguring 

various features of the network stack and monitoring its state 

without the need to have deep knowledge of the software and 

hardware particularities of each platform. The UPIs enable the 

design of technology-independent control programs (CPs) on 

top of different hardware and software platforms. 

Context aware execution of UPIs enables to define exactly 

where, when and how a UPI call must be executed. This allows 

to change a particular configuration value on a group of nodes 

at a specific time in a synchronized manner. 

Connector modules transform each UPI call into one or more 

platform specific calls thereby hiding the complexity of the 

underlying tools and/or APIs. 

Hierarchical control enables to create multi-level control 

loops spanning multiple and possibly heterogeneous networks. 

Hierarchical control allows CPs to delegate control between 

each-other and to create custom control flows. 

The UPIs and the control architecture are integrated in 

several federated wireless experimentation facilities. They are 
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offered as an open source tool to the research community and 

were already successfully deployed both in- and out-side 

testbed facilities. In this paper, a high level overview (Section 

IV & V) of the architecture is given together with the results of 

several experimental showcases (Section VI). 

The implemented showcases demonstrate that the proposed 

architecture simplifies control of standardized technologies, 

while still offering advanced control of future reconfigurable 

radio systems.  

II. REPRESENTATIVE USE CASE 

The difficulty of efficiently managing coexisting wireless 

networks increases significantly when multiple technologies 

are considered. As a representative use case, this paper will 

consider an example where coexistence between IEEE-802.11 

Wi-Fi and IEE-802.15.4 TSCH (Time Slotted Channel 

Hopping) is managed by separating them in the frequency and 

time domain. As such, different frequencies and timeslots must 

be allocated to networks that are in each-others interference 

range. To realize this, advanced monitoring, coordination and 

configuration techniques are required. Moreover, it must be 

possible to exchange control messages and maintain some level 

of synchronization between the different devices.  

Building such a system is a non-trivial task and requires the 

use of different domain specific expertise: Linux and Wi-Fi 

management tools on one hand, and embedded OS (Contiki / 

openWSN / …) and programming knowledge on the other 

hand. Moreover, to apply the same solutions to different 

technologies (Bluetooth for example) or different operating 

systems (Windows, Unix, TinyOS, ..) would require to re-

implement the same control logic all over again. 

The proposed architecture aims facilitating control in all 

aforementioned scenarios by providing the necessary building 

blocks. First, the unified programming interfaces (UPIs) allow 

to re-use the same control logic in different set-ups. Second, the 

context aware execution of UPIs support building solutions that 

require fine-grained control. Third, the connector modules 

simplify the process of extending the architecture towards new 

technologies and platforms.  

III. RELATED WORK 

A. Control architectures 

The need for fine-grained control of communication 

networks is becoming increasingly apparent. This is well 

demonstrated by the interest of the scientific community in 

solutions that enable software defined networking, (SDN). 

OpenFlow[1], for instance, is a good example of an SDN-

enabler because it allows researchers to control routing, without 

knowing the internals of vendor-specific implementations. 

OpenFlow, however, focuses on controlling the forwarding 

rules between devices (switches, routers and wireless access 

points) connected by means of pre-installed links (usually 

wired). 

Recently, a number of solutions were proposed that enable 

software defined wireless networks (SDWN) such as 5G-

EmPOWER[2], OpenSDWN[3] and Sensor OpenFlow[4]. The 

latter two focus on enabling SDWN in a single technology (i.e. 

IEEE-802.11 and IEEE-802.15.4 respectively). 5G-

EmPOWER is broader in scope and provides programming 

abstractions for managing both Wi-Fi access points and LTE 

eNodeBs. However, not a single architecture exists today that 

can facilitate true cross layer control (from PHY layer up to 

network layer and in some cases up to the presentation layer of 

the OSI model) in a unified way across multiple wireless 

technologies. Our proposed WiSHFUL architecture aims to go 

further by providing abstractions for any device and wireless 

technology. Furthermore, to the best of our knowledge, our 

architecture is the first to include reconfigurability of the MAC 

and PHY layers which strongly affect the link availability and 

capacity. As such, the WiSHFUL architecture addresses this 

gap by offering full-stack cross-layer and cross-network control 

of reconfigurable wireless networks. 

The WiSHFUL architecture was first conceptually presented 

in[5][6]. Now we focus on the novel features such as context 

aware execution and hierarchical control that allowed us to 

implement and evaluate the experimental showcases, 

illustrating how to build cross-technology coordination 

solutions. 

B. Federation of experimentation facilities 

Since most SDN solutions have been evaluated in wireless 

testbed, the federation of (wireless) testbeds [7][8] gained much 

attention over the last years. Federated testbeds aim to 

accelerate experimental research by providing easy reservation 

of experiment time slots as well as the corresponding access to 

resources (radios, spectrum monitoring, mobile robots, etc.) 

residing in different testbeds. Despite the clear progress that has 

been made, executing an experiment still requires manual 

combination and integration of different vendor or technology 

specific tools to reconfigure and monitor the devices under test. 

This imposes a huge burden on the experimenters since they 

need deep knowledge of the tools at hand, even for setting up a 

novice experiment. The proposed WiSHFUL architecture 

builds further on top of testbed federation tools to support easy 

experimentation using heterogeneous systems to a user base 

with a diverse skill-set.  

C. Reconfigurable radio systems 

The proposed architecture supports commonly used 

operating systems (Linux, Contiki) for standard wireless 

technologies (IEEE-802.11, IEEE-802.15.4). In addition, the 

architecture also supports emerging state-of-the-art standards 

(such as ETSI-RRS[9]) and novel reconfigurable radio systems 

that allow more fine-grained control over the radio than is 

possible with typical off-the-shelf radio chips. Currently, four 

advanced open reconfigurable radio systems are supported: 

Wireless MAC Processor (WMP) for IEEE-802.11 radios[10], 

Time-Annotated Instruction Set Computer (TAISC) for IEEE-

802.15.4 radios[11], GNU radio and the Implementing Radio in 

Software (IRIS) for software defined radios (SDR)Error! 

Reference source not found..  

These novel architectures allow the design of state-of-the-art 
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techniques[13] for managing coexistence between devices. For 

instance, they enable to separate medium access in the time 

domain, effectively allowing to enforce a cross technology 

TDMA scheme. However, although they are very flexible, 

several of these frameworks lack proper documentation and 

require learning yet another programming language and 

programming framework, thereby imposing a steep learning 

curve on wireless researchers and developers before they can be 

used. The availability of simple, cross-technology WiSHFUL 

UPIs remedies these shortcomings and allows integration of 

these advances platforms with traditional radio platforms. 

IV. WISHFUL ARCHITECTURE AND CONCEPTS 

To lower the threshold for building coexistence solutions, a 

novel control architecture was designed and created within the 

WiSHFUL project. The left side of Figure 1 illustrates the main 

architectural blocks discussed in this section. The simplified 

code snippets on the right side exemplify a remote control 

program (upper), UPI definition (middle) and a connector 

module (lower). 

A. Control Programs 

The control programs (CP, top of the figure) execute the user-

defined control logic. They build up a view on the network state 

by collecting monitoring information which can be used to 

drive decisions leading to configuration actions. For this 

purpose they use a set of Unified Programming Interfaces 

(UPIs) in a particular execution context.  

The control programs can be used locally, on the node, and/or 

remotely, within a subnet of nodes or across different networks. 

Control programs can be simple rule-based scripts, but can also 

comprise more intelligent components, allowing to build a fully 

self-organizing network. 

By allowing interactions between control programs (dotted 

arrows) it is possible to implement a hierarchical control logic 

where local CPs execute time-sensitive control loops, while 

remote CPs gather information from- and take decisions on a 

group of nodes. 

The upper code snippet demonstrates how a remote control 

program uses the UPIs to configure the Wi-Fi network on a 

particular IEEE-802.11 channel and blacklist the overlapping 

IEEE-802.15.4 channels in the TSCH network. The example 

also illustrates how an execution context can be attached to a 

UPI function. 

Remote Control Program

Decision

ActionState

Local Control Program

Decision

ActionState

Local Monitoring & Configuration Engine

Remote Monitoring & 

Configuration Engine

Local Control Program

Decision

ActionState

UPIs + Local Context

UPIs + Remote Context

Remote Control Program

Decision

ActionState

Contiki Connector Module

IEEE 

802.15.4 

6lowPan 

Connector

IEEE 

802.15.4 

TAISC 

Connector

Linux Connector Module

IEEE 

802.11 

WMP 

Connector

IEEE 

802.11 

Atheros 

Connector

# create remote engine

control_engine = create_control_engine()

# discover Wi-Fi and TSCH nodes

wifi_nodes = control_engine.discover_nodes("wifi")

tsch_nodes = control_engine.discover_nodes("tsch")

# change channel on Wi-Fi nodes in 5 sec

control_engine.create_context(wifi_nodes, now + 5)

control_engine.set_channel(6)

# blackist overlapping channels on TSCH nodes

control_engine.create_context(tsch_nodes, now + 5)

control_engine.blacklist_channels([16,17,18,19])

# binding of local function to UPI functions

@bind_function(upis.phy.set_channel)

@bind_function(upis.phy.IEEE80211.set_channel)

def linux_connector_set_channel(self, channel):

 # Linux specific implementation using iw

 cmd = "iw phy" + self.phy + "set channel"

 cmd += channel

 return self.execute_command(cmd)

UPIs UPIs

#generic UPI functions

class phy(upi):

  # generic set channel function

  def set_channel(channel)

# IEEE80211 specific UPI functions

class IEEE80211(phy):

  # IEEE80211 set channel

  def set_channel(channel)

Remote Control Program

UPI definition

Linux IEEE-802.11 Connector Module

Figure 1 A high level overview of the WiSHFUL architecture (left side) and example code snippets (right side). The architecture 

features both local and remote control, as well as context aware execution. For each platform and technology, connector modules adapt 

generic UPI calls to platform specific calls. The upper code snippet demonstrate the use of UPIs in a remote control program. The 

lower code snippet illustrates how generic UPI calls are mapped to platform specific calls. 



4 

> 1 < 

 

B. Unified Programming Interfaces 

The UPIs (green blocks) provide generic hooks that enables 

controlling the behavior of the network stack on a 

heterogeneous set of nodes by exposing common functions to 

monitor and configure networked devices in any layer of the 

protocol stack (i.e. from PHY to APP). Both request (pull) and 

event-based (push) UPIs, are provided for monitoring the state 

and performance of the network. 

There is a 2-tier unification for protocol control interfaces: 

1. A unification across different platforms and 

implementations (e.g. the same IEEE-802.11 parameters 

provided in an identical way for Windows and Linux 

platforms). 

2. A unification across technologies and protocols with 

similar behavior (e.g. CSMA parameters for both IEEE-

802.11 and IEEE-802.15.4). 

The UPIs also include meta-information that allows to reason 

on logical connections between different implementations (e.g. 

set_channel on IEEE-802.11 and IEEE-802.15.4). The example 

snippet in the middle illustrates the 2-tier unification of UPIs 

for the set_channel function. 

The UPIs focus on common control functions, which are 

found in most typical radio platforms and networking standards. 

For control features that are not yet supported across multiple 

technologies, we offer the possibility to support them as 

technology/platform specific APIs in an intuitive manner. 

C. Monitoring and configuration engine 

The monitoring and configuration engines (MCE, dark 

yellow blocks) implement the core WiSHFUL services required 

for controlling one or more wireless nodes. Since the nodes 

have diverse capabilities and can reside in different networks, 

providing such services is a non-trivial task. The MCEs provide 

the following core WiSHFUL services: 

 Remote execution: UPIs can be executed both locally and 

remotely on one or more nodes using remote procedure calls. 

 Context-aware execution: it is possible to specify exactly 

how (blocking or non-blocking), where (one or more nodes 

in the same or different networks) and when (exact time or 

relative delay) UPI functions are executed. 

 User-defined control flows: the architecture allows 

establishing a dedicated control channel between CPs 

thereby enabling custom interactions. In addition, control 

logic can be injected on-the-fly, allowing delegation of 

control between CPs. 

 Support services such as node discovery and time 

synchronization that work across different networks and on 

platforms with different capabilities. 

More details concerning the discussed services can be found in 

[14]. 

D. Connector modules 

The connector modules (light yellow blocks) transform the 

generic UPI calls to platform specific calls. They are 

implemented on each platform and for each technology. In most 

cases they are a simple wrapper around existing configuration 

tools such as netlink and iw suffices. In other cases custom 

extensions are required to enable the functionality of UPIs. 

The connector modules are dynamically loaded by the 

Monitoring and Configuration Engine based on the platforms 

and technologies used in the set-up. This implies that the set of 

active UPIs changes over time and can be tailored towards the 

specific needs of a solution. 

The example in the lower code snippet illustrates how the 

Linux iw command is wrapped in the platform specific 

set_channel function. This function is then bound to both the 

generic and IEEE-802.11 UPI function set_channel. 

V. UPI ENABLED CONTROL PLANE IN WIRELESS 

EXPERIMENTATION FACILITIES 

The control plane extensions offered via the UPIs allow 

optimizing the QoS in all networks under control, not only by 

considering node-local and in-network optimizations but also 

by taking into account the cross-technology interaction (e.g. 

interference) between the different networks. 

Figure 2 demonstrates how a hierarchical control plane can 

be built using the WiSHFUL architecture. The control programs 

(blue shapes) can be executed on different logical levels, 

allowing to place delay-sensitive operations close to the 

hardware while maintaining a broader, network-wide or cross-

network view on a higher level. The figure depicts three logical 

levels of control: node-local, in-network and cross-network. 

Each level can directly use the UPIs (dashed arrows) or delegate 

control to another level (dotted arrows). For instance, a cross-

network control program can directly monitor single devices or 

delegate monitoring processes to the local level and work on 

aggregated values to reduce the amount of data to be transferred 

over the network. 

A. UPI control channels 

Two types of control channels can be employed to enable 

monitoring and configuring nodes across different networks. 

Beside the default UPI control channel, i.e. between a (local or 

remote) control program invoking UPIs, and the node through 

the MCEs, it is also possible to set-up communication channels 

between control programs of different levels (node-local, in-

network and cross-network). These communication channels 

can be used to share information and delegate control 

functionality between different control programs.  

This enhances the flexibility in creating the control programs 

because researchers can, for instance, choose to aggregate 

monitoring information on the node-local level and only 

forward information in a custom format. It is also possible to 

execute certain configuration tasks node-locally on the fly 

triggered by a central control program. 

B. UPI multi-level control loops 

The ultimate goal of the UPIs is to enable the creation of 

multi-level control loops that can span between different 

networks. In each level, a control program uses UPIs to monitor 

the network performance and state. Based on this information, 

the CPs can decide to change the network behavior by executing 

configuration commands, employing UPIs. The types of control 

loops made possible by the proposed architecture are presented 
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below: 

1) Node-local control loop 

The first level provides the possibility to create a node-local 

control loop where local decisions are made based on 

information observed locally via the UPIs or received from 

other control programs via a user-defined control channel. The 

node-local reconfiguration always uses the UPIs directly. This 

local approach is efficient to implement quick reactions to the 

rapidly changing context. The delay of a local UPI call is 

usually in the order of microseconds, depending on the 

complexity and the CPU speed. 

2) In-network control loop 

The second level enables to control all nodes in a logical 

network (i.e. the nodes are in the same “subnet” and use the 

same technology). Now, network-wide monitoring drives 

decisions and configuration settings are changed on a single or 

on a group of nodes in the network. The information can be 

retrieved using UPIs remotely or from the node-local CPs. 

Similarly, network reconfiguration commands can be done 

remotely, using the UPIs, or via control delegation. The delay 

of a UPI call inside a network is typically in the order of 

milliseconds, depending on the network latency and bandwidth. 

3) Cross-network control loop 

In many cases, control is required across network and 

technologies (e.g. interference avoidance between different 

technologies in in the ISM band). For this purpose, the 

architecture allows creating a cross-network control loop that 

regulates the medium access between different networks. The 

interactions are similar to the in-network control loop except 

that they can now span multiple networks. The typical delay of 

a UPI call across different networks is in the order of 100’ 

milliseconds and is mainly influenced by the latency of the 

backbone network. 

C. Supported experimentation facilities 

The WiSHFUL architecture is currently fully supported in 

Node
local

Control

In-
network
Control

Local MCE

UPI

Remote MCE

UPI

Node
local

Control

Local MCE

UPI

Cross
Network
Control

Remote MCE

UPI

Node
local

Control

In-
network
Control

Local MCE

UPI

Remote MCE

UPI

Node
local

Control

Local MCE

UPI

Hierarchical
Control Plane 

Cross 
Technology
Interference

Figure 2 illustrates the possibility to build a hierarchical control plane using the WiSHFUL architecture. Two types of control flows are 

enabled: 1) UPI based, between control programs and UPIs; or 2) User defined, between control programs. 
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the imec iLab.t1, TU Berlin TWIST2, Rutgers University 

ORBIT lab3 and TCD Iris4 wireless experimentation facilities. 

Table 1 lists the communication technologies, operating 

systems (OS), hardware platforms and drivers controlled using 

the UPIs. With minimal effort, UPI support can be given to 

experiment facilities that use (a subset of) the technologies 

listed below. Support for other technologies such as Bluetooth, 

LoRa and SigFox is planned in the near future. 

 

Technology Operating 

System 

Hardware 

platform 

Hardware 

driver 

IEEE-802.11 Linux, 

Windows 

Atheros, 

Broadcom 

Ath9k, 

NDIS driver, 

WMP 

IEEE-

802.15.4 

Contiki, 

TinyOS 

MSP430, 

ARM-

Cortex-M 

Contiki 

TinyOS, 

TAISC  

LTE Linux Linux Server 

 

Femtocell 

SIRRAN 

EPC 

LTE 245F 

SDR Linux, 

Windows 

USRP, 

Xilinx 

ZedBoard 

Iris, 

LabView, 

GNU radio 

Table 1 Main overview of supported technologies, operating systems, 

hardware platforms and drivers. 

In terms of memory overhead, the full WiSHFUL framework 

requires only 0.75% of the 512 kB ROM and 3% of the 32 kB 

RAM on the employed embedded Zolertia Remote Cortex-M3 

devices, making it feasible to support WiSHFUL even on 

constrained devices. 

D. In-band versus out-of-band control channels 

To support solutions beyond experimentation, the control 

channels can be set-up both out-of-band and in-band. The in-

band control channel shares the (wireless) communication 

channels of the devices with the data flows while the out-of-

band control channel uses the backbone network provided by 

the experimental facilities for transferring control flows. Using 

the latter approach, it is possible to separate the control flows 

physically from the data flows, thereby allowing evaluating 

control strategies without impacting the applications. 

In real-life deployments (when no testbed backbone is 

available), however, only in-band control channels can be 

employed, introducing overhead and impacting the 

performance of the network. The WiSHFUL architecture 

supports in-band control channels and allows evaluating the 

impact of the control flow overhead. 

VI. EXPERIMENTAL SHOWCASES 

In this section, the strengths of the WiSHFUL architecture 

are demonstrated by listing results that were obtained when 

conducting several advanced wireless experiments. Without the 

presented architecture, a deep knowledge of the particular 

details of each platform and related tools would have been 

 
1 http://ilabt.iminds.be/ [accessed on 12/06/2017] 
2 http://www.twist.tu-berlin.de/ [accessed on 12/06/2017] 

required. Thanks to the WiSHFUL architecture, each showcase 

only required creating a generic control program which could 

then be used repeatedly during experimental validation and 

evaluation. 

The showcases are grouped and discussed by topic. The 

results shown in this section were obtained on the imec w.iLab.t 

testbed using 32 RM-090 (MSP430 CPU based) sensors 

equipped with a CC2520 IEEE-802.15.4 radio, running 

Contiki/TAISC; and 8 embedded Linux devices equipped with 

a Broadcom IEEE-802.11b/g card running WMP. 

A. Load and topology aware MAC adaptations 

This showcase illustrates how the UPIs can be used to apply 

the same MAC adaptations on two different platforms and 

technologies, investigating their applicability in a 

heterogeneous set-up and evaluating the differences between 

technologies. It is important to note that in both cases, the same 

control programs were used.  

Figure 3 compares the overall network throughput (blue line 

is RX throughput, green line is TX attempts, dashed black line 

is number of senders) for both technologies in two phases, 

initially a CSMA/CA protocol with a contention window 

optimization algorithm is applied and, in a second phase, a 

TDMA protocol is activated. In this experiment, the active 

traffic flows were increased gradually by activating the senders 

one-by-one until a pre-defined maximum, after which TDMA 

is activated. 

 
Figure 3 The graphs show the number of received frames (blue) 

vs. the number transmitted frames (green) for an increasing 

number of senders (dashed black). This experiment was conducted 

both on IEEE-802.11 nodes (upper chart) and IEEE-802.15.4 

nodes (lower chart). 

3 http://www.orbit-lab.org/ [accessed on 12/06/2017] 
4 http://iris-testbed.connectcentre.ie/ [accessed on 12/06/2017] 

http://ilabt.iminds.be/
http://www.twist.tu-berlin.de/
http://www.orbit-lab.org/
http://iris-testbed.connectcentre.ie/
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The applied algorithm adapts the CSMA/CA contention 

window based on the number of active traffic flows in the 

network. It can be expected that after a while, applying this 

technique does not yield a higher RX throughput and packet 

loss starts to increase due to collisions. At this point, it is more 

efficient to switch to a TDMA protocol. The exact tipping point 

depends on many factors such as number of senders and the 

application data rate. Figure 3 shows a snapshot of such a 

tipping point during an experiment. 

B. Co-existence of heterogeneous technologies 

This showcase demonstrates that the WiSHFUL architecture 

can be used to implement advanced strategies to solve the use 

case presented in Section II, i.e. coexistence between IEEE-

802.11 Wi-Fi and IEEE-802.15.4 TSCH. This showcase 

exploits the hierarchical control features as well as the built-in 

synchronization support. Moreover, it also illustrates how the 

architecture supports both standardized platforms and 

technologies, as well as state-of-the-art frameworks. 

Two different approaches were evaluated. The first solution 

uses the standard channel blacklisting feature in IEEE-

802.15.4e TSCH, to avoid channels used by the IEEE-802.11 

Wi-Fi network. The second solution uses a state-of-the-art 

implementation where a time-slotted MAC (TDMA) is applied 

in both networks based on a shared synchronization beacon and 

TDMA schedule. 

The upper part of Figure 4 shows the overall network 

throughput in the blacklisting scenario (blue line is RX 

throughput, green line is TX attempts, red line is TX request 

fails). The results clearly show that the throughput of the IEEE-

802.15.4 nodes drop in case of IEEE-802.11 interference. This 

is mainly due to synchronization loss caused by interfered 

beacons. After the blacklisting of interfered IEEE-802.15.4 

channels, the throughput stabilizes again to the level before 

adding IEEE-802.11 interference. 

 

 
Figure 4 shows results from two experiments that evaluate 

coexistence strategies. In the first experiment (upper part), the 

channel blacklisting features of the TSCH (Time Slotted Channel 

Hopping) MAC is used to avoid channels with high IEEE-802.11 

interference. The second experiment (lower part) illustrates a 

solution where a TDMA schedule and synchronisation are shared 

across heterogeneous technologies. 

The lower part of Figure 4 shows an energy plot obtained by 

a USRP device operating in energy detection mode, while 

testing the second solution. The results clearly demonstrate that 

an IEEE-802.15.4 network can be synchronized using a cross-

technology beacon sent by a TDMA MAC implementation of 

an IEEE-802.11 network. The IEEE-802.15.4 nodes use energy 

detection to search for a particular beacon pattern transmitted 

by the IEEE-802.11 access point. The WiSHFUL architecture 

allows distributing both the beacon pattern and cross-

technology TDMA scheme amongst both IEEE-802.11 and 

IEEE-802.15.4 nodes, enabling separation of both networks in 

the time-domain. A more detailed discussion of this particular 

experiment can be found in [13]. 

VII.  CONCLUSIONS 

In the context of 5G, coexistence is a huge challenge, as 

many heterogeneous networks will have to cooperate to share 

the same spectrum efficiently. To this end, solutions are 

required that allow detailed networks insights, fine-grained 

network control and management, etc. The WiSHFUL 

framework offers the possibility to create and test such 

solutions while minimizing the complexity and implementation 

overhead, thereby fostering innovations in a challenging 

research domain. 

Foremost, the WiSHFUL architecture offers a unified set of 

programming interfaces (UPIs) on top of a heterogeneous set of 

technologies, platforms and protocol stacks, thereby drastically 



8 

> 1 < 

 

reducing the time and complexity typically required to build 

innovative solutions. 

Furthermore, the architecture offers the possibility to execute 

control logic on different hierarchical levels (i.e. node-local, in-

network or cross-network) in a context-aware manner. This 

enables defining exactly where, when and how the UPIs are 

used. The presented cross-technology TDMA scheme fully 

exploits these features in order to synchronize and coordinate 

medium access between IEEE-802.11 and IEEE-802.15.4 

nodes while retaining the ability to reschedule the slot 

allocation within the TDMA superframe at runtime. 

The design of the architecture also incorporates the 

possibility for extensions towards new platforms and 

technologies. This requires only the creation of connector 

modules implementing and/or extending the UPIs for the 

particular platforms or technologies. For instance, adding 

support for controlling LTE networks was not a huge effort, 

allowing to investigate future 5G challenges such as 

coexistence between LTE and other technologies in the ISM 

band. 

Finally, all solutions are publicly available as open-source 

implementations on https://github.com/wishful-project5 . 
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