
1

> 1 <

Abstract—The paradigm shift towards the Internet-of-Things

results in an increasing number of wireless applications being

deployed. Since many of these applications contend for the same

physical medium (i.e. the unlicensed ISM bands), there is a clear

need for beyond-state-of-the-art solutions that coordinate medium

access across heterogeneous wireless networks. Such solutions

demand fine-grained control of each device and technology, which

currently requires a substantial amount of effort given that the

control APIs are different on each hardware platform, technology

and operating system.

In this paper an open architecture is proposed that overcomes

this hurdle by providing unified programming interfaces (UPIs)

for monitoring and controlling heterogeneous devices and wireless

networks. The UPIs enable to create and test advanced

coordination solutions while minimizing the complexity and

implementation overhead. The availability of such interfaces is

also crucial for the realization of emerging software-defined

networking approaches for heterogeneous wireless networks. To

illustrate the use of UPIs, a showcase is presented that

simultaneously changes the medium access control (MAC)

behavior of multiple wireless technologies in order to mitigate

cross technology interference taking advantage of the enhanced

monitoring and control functionality.

An open source implementation of the UPIs is available for

wireless researchers and developers. It currently supports

multiple widely used technologies (IEEE-802.11, IEEE-802.15.4,

LTE), operating systems (Linux, Windows, Contiki) and radio

platforms (Atheros, Broadcom, CC2520, Xylink Zynq, …), as well

as advanced reconfigurable radio systems (IRIS, GNURadio,

WMP, TAISC).

Index Terms— wireless networks, heterogeneous, cross

technology interference, software architecture, experimentation,

monitoring, network control, radio control, coexistence,

cooperation

I. INTRODUCTION

THE paradigm shift towards the Internet-of-things (IoT) will

result in an increasing number of interfering devices that

operate in the unlicensed spectrum, especially given the recent

The revised paper was submitted for final review on 16/06/2017. “This work

was supported by the European Commission Horizon 2020 Programme under
grant agreement n645274 (WiSHFUL) and the FWO SBO “SAMURAI:

Software Architecture and Modules for Unified RAdIo control'” project.”.

Peter Ruckebusch, Spilios Giannoulis, Eli De Poorter and Ingrid Moerman
are with the Department of Information Technology - IDLAB - Ghent

University – IMEC, Ghent, Belgium (e-mail: first.last@ugent.be).

interest of the 5G community to also use the same ISM bands.

Coexistence will be a huge challenge, as many heterogeneous

networks have to cooperate to share the same spectrum

efficiently. To this end, advanced coordination techniques must

be developed that allow mitigating cross-technology

interference.

Currently, multiple custom tools are used to configure and

monitor wireless networks and each type of device requires a

different toolset. For this reason, controlling a heterogeneous

set of wireless devices is cumbersome at least and often

demands a considerable effort to get acquainted with the

different hardware platforms and corresponding configuration

tools.

The proposed control architecture offers the possibility to

create and test coordination techniques while minimizing the

complexity and implementation overhead, thereby fostering

innovations in a challenging research domain. For this purpose,

it relies on the following key enablers:

Unified programming interfaces (UPI) allow reconfiguring

various features of the network stack and monitoring its state

without the need to have deep knowledge of the software and

hardware particularities of each platform. The UPIs enable the

design of technology-independent control programs (CPs) on

top of different hardware and software platforms.

Context aware execution of UPIs enables to define exactly

where, when and how a UPI call must be executed. This allows

to change a particular configuration value on a group of nodes

at a specific time in a synchronized manner.

Connector modules transform each UPI call into one or more

platform specific calls thereby hiding the complexity of the

underlying tools and/or APIs.

Hierarchical control enables to create multi-level control

loops spanning multiple and possibly heterogeneous networks.

Hierarchical control allows CPs to delegate control between

each-other and to create custom control flows.

The UPIs and the control architecture are integrated in

several federated wireless experimentation facilities. They are

Domenico Garlisi, Pierluigi Gallo and Ilenia Tinnirello are with the

Department of Energy, Information Engineering and Mathematical Models
CNIT - University of Palermo, Italy (e-mail: first.last@dieet.unipa.it).

Piotr Gawłowicz, Anatolij Zubow and Mikołaj Chwalisz are with the

Department of Telecommunication Systems - TKN - Technische Universität
Berlin, Germany (e-mail: {gawłowicz,zubow,chwalisz}@tkn.tu-berlin.de)

Luis DaSilva is with the Department of Telecommunications, Electronic &

Elect. Engineering - CONNECT – Trinity College Dublin, Ireland
(dasilval@tcd.ie)

Peter Ruckebusch, Spilios Giannoulis, Domenico Garlisi, Pierluigi Gallo, Piotr Gawłowicz, Anatolij

Zubow, Mikołaj Chwalisz, Eli De Poorter, Ingrid Moerman, Ilenia Tinnirello, and Luiz DaSilva

WiSHFUL: enabling coordination solutions for

managing heterogeneous wireless networks.



mailto:first.last@ugent.be
mailto:first.last@dieet.unipa.it
mailto:dasilval@tcd.ie

2

> 1 <

offered as an open source tool to the research community and

were already successfully deployed both in- and out-side

testbed facilities. In this paper, a high level overview (Section

IV & V) of the architecture is given together with the results of

several experimental showcases (Section VI).

The implemented showcases demonstrate that the proposed

architecture simplifies control of standardized technologies,

while still offering advanced control of future reconfigurable

radio systems.

II. REPRESENTATIVE USE CASE

The difficulty of efficiently managing coexisting wireless

networks increases significantly when multiple technologies

are considered. As a representative use case, this paper will

consider an example where coexistence between IEEE-802.11

Wi-Fi and IEE-802.15.4 TSCH (Time Slotted Channel

Hopping) is managed by separating them in the frequency and

time domain. As such, different frequencies and timeslots must

be allocated to networks that are in each-others interference

range. To realize this, advanced monitoring, coordination and

configuration techniques are required. Moreover, it must be

possible to exchange control messages and maintain some level

of synchronization between the different devices.

Building such a system is a non-trivial task and requires the

use of different domain specific expertise: Linux and Wi-Fi

management tools on one hand, and embedded OS (Contiki /

openWSN / …) and programming knowledge on the other

hand. Moreover, to apply the same solutions to different

technologies (Bluetooth for example) or different operating

systems (Windows, Unix, TinyOS, ..) would require to re-

implement the same control logic all over again.

The proposed architecture aims facilitating control in all

aforementioned scenarios by providing the necessary building

blocks. First, the unified programming interfaces (UPIs) allow

to re-use the same control logic in different set-ups. Second, the

context aware execution of UPIs support building solutions that

require fine-grained control. Third, the connector modules

simplify the process of extending the architecture towards new

technologies and platforms.

III. RELATED WORK

A. Control architectures

The need for fine-grained control of communication

networks is becoming increasingly apparent. This is well

demonstrated by the interest of the scientific community in

solutions that enable software defined networking, (SDN).

OpenFlow[1], for instance, is a good example of an SDN-

enabler because it allows researchers to control routing, without

knowing the internals of vendor-specific implementations.

OpenFlow, however, focuses on controlling the forwarding

rules between devices (switches, routers and wireless access

points) connected by means of pre-installed links (usually

wired).

Recently, a number of solutions were proposed that enable

software defined wireless networks (SDWN) such as 5G-

EmPOWER[2], OpenSDWN[3] and Sensor OpenFlow[4]. The

latter two focus on enabling SDWN in a single technology (i.e.

IEEE-802.11 and IEEE-802.15.4 respectively). 5G-

EmPOWER is broader in scope and provides programming

abstractions for managing both Wi-Fi access points and LTE

eNodeBs. However, not a single architecture exists today that

can facilitate true cross layer control (from PHY layer up to

network layer and in some cases up to the presentation layer of

the OSI model) in a unified way across multiple wireless

technologies. Our proposed WiSHFUL architecture aims to go

further by providing abstractions for any device and wireless

technology. Furthermore, to the best of our knowledge, our

architecture is the first to include reconfigurability of the MAC

and PHY layers which strongly affect the link availability and

capacity. As such, the WiSHFUL architecture addresses this

gap by offering full-stack cross-layer and cross-network control

of reconfigurable wireless networks.

The WiSHFUL architecture was first conceptually presented

in[5][6]. Now we focus on the novel features such as context

aware execution and hierarchical control that allowed us to

implement and evaluate the experimental showcases,

illustrating how to build cross-technology coordination

solutions.

B. Federation of experimentation facilities

Since most SDN solutions have been evaluated in wireless

testbed, the federation of (wireless) testbeds [7][8] gained much

attention over the last years. Federated testbeds aim to

accelerate experimental research by providing easy reservation

of experiment time slots as well as the corresponding access to

resources (radios, spectrum monitoring, mobile robots, etc.)

residing in different testbeds. Despite the clear progress that has

been made, executing an experiment still requires manual

combination and integration of different vendor or technology

specific tools to reconfigure and monitor the devices under test.

This imposes a huge burden on the experimenters since they

need deep knowledge of the tools at hand, even for setting up a

novice experiment. The proposed WiSHFUL architecture

builds further on top of testbed federation tools to support easy

experimentation using heterogeneous systems to a user base

with a diverse skill-set.

C. Reconfigurable radio systems

The proposed architecture supports commonly used

operating systems (Linux, Contiki) for standard wireless

technologies (IEEE-802.11, IEEE-802.15.4). In addition, the

architecture also supports emerging state-of-the-art standards

(such as ETSI-RRS[9]) and novel reconfigurable radio systems

that allow more fine-grained control over the radio than is

possible with typical off-the-shelf radio chips. Currently, four

advanced open reconfigurable radio systems are supported:

Wireless MAC Processor (WMP) for IEEE-802.11 radios[10],

Time-Annotated Instruction Set Computer (TAISC) for IEEE-

802.15.4 radios[11], GNU radio and the Implementing Radio in

Software (IRIS) for software defined radios (SDR)Error!

Reference source not found..

These novel architectures allow the design of state-of-the-art

3

> 1 <

techniques[13] for managing coexistence between devices. For

instance, they enable to separate medium access in the time

domain, effectively allowing to enforce a cross technology

TDMA scheme. However, although they are very flexible,

several of these frameworks lack proper documentation and

require learning yet another programming language and

programming framework, thereby imposing a steep learning

curve on wireless researchers and developers before they can be

used. The availability of simple, cross-technology WiSHFUL

UPIs remedies these shortcomings and allows integration of

these advances platforms with traditional radio platforms.

IV. WISHFUL ARCHITECTURE AND CONCEPTS

To lower the threshold for building coexistence solutions, a

novel control architecture was designed and created within the

WiSHFUL project. The left side of Figure 1 illustrates the main

architectural blocks discussed in this section. The simplified

code snippets on the right side exemplify a remote control

program (upper), UPI definition (middle) and a connector

module (lower).

A. Control Programs

The control programs (CP, top of the figure) execute the user-

defined control logic. They build up a view on the network state

by collecting monitoring information which can be used to

drive decisions leading to configuration actions. For this

purpose they use a set of Unified Programming Interfaces

(UPIs) in a particular execution context.

The control programs can be used locally, on the node, and/or

remotely, within a subnet of nodes or across different networks.

Control programs can be simple rule-based scripts, but can also

comprise more intelligent components, allowing to build a fully

self-organizing network.

By allowing interactions between control programs (dotted

arrows) it is possible to implement a hierarchical control logic

where local CPs execute time-sensitive control loops, while

remote CPs gather information from- and take decisions on a

group of nodes.

The upper code snippet demonstrates how a remote control

program uses the UPIs to configure the Wi-Fi network on a

particular IEEE-802.11 channel and blacklist the overlapping

IEEE-802.15.4 channels in the TSCH network. The example

also illustrates how an execution context can be attached to a

UPI function.

Remote Control Program

Decision

ActionState

Local Control Program

Decision

ActionState

Local Monitoring & Configuration Engine

Remote Monitoring &

Configuration Engine

Local Control Program

Decision

ActionState

UPIs + Local Context

UPIs + Remote Context

Remote Control Program

Decision

ActionState

Contiki Connector Module

IEEE

802.15.4

6lowPan

Connector

IEEE

802.15.4

TAISC

Connector

Linux Connector Module

IEEE

802.11

WMP

Connector

IEEE

802.11

Atheros

Connector

create remote engine

control_engine = create_control_engine()

discover Wi-Fi and TSCH nodes

wifi_nodes = control_engine.discover_nodes("wifi")

tsch_nodes = control_engine.discover_nodes("tsch")

change channel on Wi-Fi nodes in 5 sec

control_engine.create_context(wifi_nodes, now + 5)

control_engine.set_channel(6)

blackist overlapping channels on TSCH nodes

control_engine.create_context(tsch_nodes, now + 5)

control_engine.blacklist_channels([16,17,18,19])

binding of local function to UPI functions

@bind_function(upis.phy.set_channel)

@bind_function(upis.phy.IEEE80211.set_channel)

def linux_connector_set_channel(self, channel):

 # Linux specific implementation using iw

 cmd = "iw phy" + self.phy + "set channel"

 cmd += channel

 return self.execute_command(cmd)

UPIs UPIs

#generic UPI functions

class phy(upi):

 # generic set channel function

 def set_channel(channel)

IEEE80211 specific UPI functions

class IEEE80211(phy):

 # IEEE80211 set channel

 def set_channel(channel)

Remote Control Program

UPI definition

Linux IEEE-802.11 Connector Module

Figure 1 A high level overview of the WiSHFUL architecture (left side) and example code snippets (right side). The architecture

features both local and remote control, as well as context aware execution. For each platform and technology, connector modules adapt

generic UPI calls to platform specific calls. The upper code snippet demonstrate the use of UPIs in a remote control program. The

lower code snippet illustrates how generic UPI calls are mapped to platform specific calls.

4

> 1 <

B. Unified Programming Interfaces

The UPIs (green blocks) provide generic hooks that enables

controlling the behavior of the network stack on a

heterogeneous set of nodes by exposing common functions to

monitor and configure networked devices in any layer of the

protocol stack (i.e. from PHY to APP). Both request (pull) and

event-based (push) UPIs, are provided for monitoring the state

and performance of the network.

There is a 2-tier unification for protocol control interfaces:

1. A unification across different platforms and

implementations (e.g. the same IEEE-802.11 parameters

provided in an identical way for Windows and Linux

platforms).

2. A unification across technologies and protocols with

similar behavior (e.g. CSMA parameters for both IEEE-

802.11 and IEEE-802.15.4).

The UPIs also include meta-information that allows to reason

on logical connections between different implementations (e.g.

set_channel on IEEE-802.11 and IEEE-802.15.4). The example

snippet in the middle illustrates the 2-tier unification of UPIs

for the set_channel function.

The UPIs focus on common control functions, which are

found in most typical radio platforms and networking standards.

For control features that are not yet supported across multiple

technologies, we offer the possibility to support them as

technology/platform specific APIs in an intuitive manner.

C. Monitoring and configuration engine

The monitoring and configuration engines (MCE, dark

yellow blocks) implement the core WiSHFUL services required

for controlling one or more wireless nodes. Since the nodes

have diverse capabilities and can reside in different networks,

providing such services is a non-trivial task. The MCEs provide

the following core WiSHFUL services:

 Remote execution: UPIs can be executed both locally and

remotely on one or more nodes using remote procedure calls.

 Context-aware execution: it is possible to specify exactly

how (blocking or non-blocking), where (one or more nodes

in the same or different networks) and when (exact time or

relative delay) UPI functions are executed.

 User-defined control flows: the architecture allows

establishing a dedicated control channel between CPs

thereby enabling custom interactions. In addition, control

logic can be injected on-the-fly, allowing delegation of

control between CPs.

 Support services such as node discovery and time

synchronization that work across different networks and on

platforms with different capabilities.

More details concerning the discussed services can be found in

[14].

D. Connector modules

The connector modules (light yellow blocks) transform the

generic UPI calls to platform specific calls. They are

implemented on each platform and for each technology. In most

cases they are a simple wrapper around existing configuration

tools such as netlink and iw suffices. In other cases custom

extensions are required to enable the functionality of UPIs.

The connector modules are dynamically loaded by the

Monitoring and Configuration Engine based on the platforms

and technologies used in the set-up. This implies that the set of

active UPIs changes over time and can be tailored towards the

specific needs of a solution.

The example in the lower code snippet illustrates how the

Linux iw command is wrapped in the platform specific

set_channel function. This function is then bound to both the

generic and IEEE-802.11 UPI function set_channel.

V. UPI ENABLED CONTROL PLANE IN WIRELESS

EXPERIMENTATION FACILITIES

The control plane extensions offered via the UPIs allow

optimizing the QoS in all networks under control, not only by

considering node-local and in-network optimizations but also

by taking into account the cross-technology interaction (e.g.

interference) between the different networks.

Figure 2 demonstrates how a hierarchical control plane can

be built using the WiSHFUL architecture. The control programs

(blue shapes) can be executed on different logical levels,

allowing to place delay-sensitive operations close to the

hardware while maintaining a broader, network-wide or cross-

network view on a higher level. The figure depicts three logical

levels of control: node-local, in-network and cross-network.

Each level can directly use the UPIs (dashed arrows) or delegate

control to another level (dotted arrows). For instance, a cross-

network control program can directly monitor single devices or

delegate monitoring processes to the local level and work on

aggregated values to reduce the amount of data to be transferred

over the network.

A. UPI control channels

Two types of control channels can be employed to enable

monitoring and configuring nodes across different networks.

Beside the default UPI control channel, i.e. between a (local or

remote) control program invoking UPIs, and the node through

the MCEs, it is also possible to set-up communication channels

between control programs of different levels (node-local, in-

network and cross-network). These communication channels

can be used to share information and delegate control

functionality between different control programs.

This enhances the flexibility in creating the control programs

because researchers can, for instance, choose to aggregate

monitoring information on the node-local level and only

forward information in a custom format. It is also possible to

execute certain configuration tasks node-locally on the fly

triggered by a central control program.

B. UPI multi-level control loops

The ultimate goal of the UPIs is to enable the creation of

multi-level control loops that can span between different

networks. In each level, a control program uses UPIs to monitor

the network performance and state. Based on this information,

the CPs can decide to change the network behavior by executing

configuration commands, employing UPIs. The types of control

loops made possible by the proposed architecture are presented

5

> 1 <

below:

1) Node-local control loop

The first level provides the possibility to create a node-local

control loop where local decisions are made based on

information observed locally via the UPIs or received from

other control programs via a user-defined control channel. The

node-local reconfiguration always uses the UPIs directly. This

local approach is efficient to implement quick reactions to the

rapidly changing context. The delay of a local UPI call is

usually in the order of microseconds, depending on the

complexity and the CPU speed.

2) In-network control loop

The second level enables to control all nodes in a logical

network (i.e. the nodes are in the same “subnet” and use the

same technology). Now, network-wide monitoring drives

decisions and configuration settings are changed on a single or

on a group of nodes in the network. The information can be

retrieved using UPIs remotely or from the node-local CPs.

Similarly, network reconfiguration commands can be done

remotely, using the UPIs, or via control delegation. The delay

of a UPI call inside a network is typically in the order of

milliseconds, depending on the network latency and bandwidth.

3) Cross-network control loop

In many cases, control is required across network and

technologies (e.g. interference avoidance between different

technologies in in the ISM band). For this purpose, the

architecture allows creating a cross-network control loop that

regulates the medium access between different networks. The

interactions are similar to the in-network control loop except

that they can now span multiple networks. The typical delay of

a UPI call across different networks is in the order of 100’

milliseconds and is mainly influenced by the latency of the

backbone network.

C. Supported experimentation facilities

The WiSHFUL architecture is currently fully supported in

Node
local

Control

In-
network
Control

Local MCE

UPI

Remote MCE

UPI

Node
local

Control

Local MCE

UPI

Cross
Network
Control

Remote MCE

UPI

Node
local

Control

In-
network
Control

Local MCE

UPI

Remote MCE

UPI

Node
local

Control

Local MCE

UPI

Hierarchical
Control Plane

Cross
Technology
Interference

Figure 2 illustrates the possibility to build a hierarchical control plane using the WiSHFUL architecture. Two types of control flows are

enabled: 1) UPI based, between control programs and UPIs; or 2) User defined, between control programs.

6

> 1 <

the imec iLab.t1, TU Berlin TWIST2, Rutgers University

ORBIT lab3 and TCD Iris4 wireless experimentation facilities.

Table 1 lists the communication technologies, operating

systems (OS), hardware platforms and drivers controlled using

the UPIs. With minimal effort, UPI support can be given to

experiment facilities that use (a subset of) the technologies

listed below. Support for other technologies such as Bluetooth,

LoRa and SigFox is planned in the near future.

Technology Operating

System

Hardware

platform

Hardware

driver

IEEE-802.11 Linux,

Windows

Atheros,

Broadcom

Ath9k,

NDIS driver,

WMP

IEEE-

802.15.4

Contiki,

TinyOS

MSP430,

ARM-

Cortex-M

Contiki

TinyOS,

TAISC

LTE Linux Linux Server

Femtocell

SIRRAN

EPC

LTE 245F

SDR Linux,

Windows

USRP,

Xilinx

ZedBoard

Iris,

LabView,

GNU radio

Table 1 Main overview of supported technologies, operating systems,

hardware platforms and drivers.

In terms of memory overhead, the full WiSHFUL framework

requires only 0.75% of the 512 kB ROM and 3% of the 32 kB

RAM on the employed embedded Zolertia Remote Cortex-M3

devices, making it feasible to support WiSHFUL even on

constrained devices.

D. In-band versus out-of-band control channels

To support solutions beyond experimentation, the control

channels can be set-up both out-of-band and in-band. The in-

band control channel shares the (wireless) communication

channels of the devices with the data flows while the out-of-

band control channel uses the backbone network provided by

the experimental facilities for transferring control flows. Using

the latter approach, it is possible to separate the control flows

physically from the data flows, thereby allowing evaluating

control strategies without impacting the applications.

In real-life deployments (when no testbed backbone is

available), however, only in-band control channels can be

employed, introducing overhead and impacting the

performance of the network. The WiSHFUL architecture

supports in-band control channels and allows evaluating the

impact of the control flow overhead.

VI. EXPERIMENTAL SHOWCASES

In this section, the strengths of the WiSHFUL architecture

are demonstrated by listing results that were obtained when

conducting several advanced wireless experiments. Without the

presented architecture, a deep knowledge of the particular

details of each platform and related tools would have been

1 http://ilabt.iminds.be/ [accessed on 12/06/2017]
2 http://www.twist.tu-berlin.de/ [accessed on 12/06/2017]

required. Thanks to the WiSHFUL architecture, each showcase

only required creating a generic control program which could

then be used repeatedly during experimental validation and

evaluation.

The showcases are grouped and discussed by topic. The

results shown in this section were obtained on the imec w.iLab.t

testbed using 32 RM-090 (MSP430 CPU based) sensors

equipped with a CC2520 IEEE-802.15.4 radio, running

Contiki/TAISC; and 8 embedded Linux devices equipped with

a Broadcom IEEE-802.11b/g card running WMP.

A. Load and topology aware MAC adaptations

This showcase illustrates how the UPIs can be used to apply

the same MAC adaptations on two different platforms and

technologies, investigating their applicability in a

heterogeneous set-up and evaluating the differences between

technologies. It is important to note that in both cases, the same

control programs were used.

Figure 3 compares the overall network throughput (blue line

is RX throughput, green line is TX attempts, dashed black line

is number of senders) for both technologies in two phases,

initially a CSMA/CA protocol with a contention window

optimization algorithm is applied and, in a second phase, a

TDMA protocol is activated. In this experiment, the active

traffic flows were increased gradually by activating the senders

one-by-one until a pre-defined maximum, after which TDMA

is activated.

Figure 3 The graphs show the number of received frames (blue)

vs. the number transmitted frames (green) for an increasing

number of senders (dashed black). This experiment was conducted

both on IEEE-802.11 nodes (upper chart) and IEEE-802.15.4

nodes (lower chart).

3 http://www.orbit-lab.org/ [accessed on 12/06/2017]
4 http://iris-testbed.connectcentre.ie/ [accessed on 12/06/2017]

http://ilabt.iminds.be/
http://www.twist.tu-berlin.de/
http://www.orbit-lab.org/
http://iris-testbed.connectcentre.ie/

7

> 1 <

The applied algorithm adapts the CSMA/CA contention

window based on the number of active traffic flows in the

network. It can be expected that after a while, applying this

technique does not yield a higher RX throughput and packet

loss starts to increase due to collisions. At this point, it is more

efficient to switch to a TDMA protocol. The exact tipping point

depends on many factors such as number of senders and the

application data rate. Figure 3 shows a snapshot of such a

tipping point during an experiment.

B. Co-existence of heterogeneous technologies

This showcase demonstrates that the WiSHFUL architecture

can be used to implement advanced strategies to solve the use

case presented in Section II, i.e. coexistence between IEEE-

802.11 Wi-Fi and IEEE-802.15.4 TSCH. This showcase

exploits the hierarchical control features as well as the built-in

synchronization support. Moreover, it also illustrates how the

architecture supports both standardized platforms and

technologies, as well as state-of-the-art frameworks.

Two different approaches were evaluated. The first solution

uses the standard channel blacklisting feature in IEEE-

802.15.4e TSCH, to avoid channels used by the IEEE-802.11

Wi-Fi network. The second solution uses a state-of-the-art

implementation where a time-slotted MAC (TDMA) is applied

in both networks based on a shared synchronization beacon and

TDMA schedule.

The upper part of Figure 4 shows the overall network

throughput in the blacklisting scenario (blue line is RX

throughput, green line is TX attempts, red line is TX request

fails). The results clearly show that the throughput of the IEEE-

802.15.4 nodes drop in case of IEEE-802.11 interference. This

is mainly due to synchronization loss caused by interfered

beacons. After the blacklisting of interfered IEEE-802.15.4

channels, the throughput stabilizes again to the level before

adding IEEE-802.11 interference.

Figure 4 shows results from two experiments that evaluate

coexistence strategies. In the first experiment (upper part), the

channel blacklisting features of the TSCH (Time Slotted Channel

Hopping) MAC is used to avoid channels with high IEEE-802.11

interference. The second experiment (lower part) illustrates a

solution where a TDMA schedule and synchronisation are shared

across heterogeneous technologies.

The lower part of Figure 4 shows an energy plot obtained by

a USRP device operating in energy detection mode, while

testing the second solution. The results clearly demonstrate that

an IEEE-802.15.4 network can be synchronized using a cross-

technology beacon sent by a TDMA MAC implementation of

an IEEE-802.11 network. The IEEE-802.15.4 nodes use energy

detection to search for a particular beacon pattern transmitted

by the IEEE-802.11 access point. The WiSHFUL architecture

allows distributing both the beacon pattern and cross-

technology TDMA scheme amongst both IEEE-802.11 and

IEEE-802.15.4 nodes, enabling separation of both networks in

the time-domain. A more detailed discussion of this particular

experiment can be found in [13].

VII. CONCLUSIONS

In the context of 5G, coexistence is a huge challenge, as

many heterogeneous networks will have to cooperate to share

the same spectrum efficiently. To this end, solutions are

required that allow detailed networks insights, fine-grained

network control and management, etc. The WiSHFUL

framework offers the possibility to create and test such

solutions while minimizing the complexity and implementation

overhead, thereby fostering innovations in a challenging

research domain.

Foremost, the WiSHFUL architecture offers a unified set of

programming interfaces (UPIs) on top of a heterogeneous set of

technologies, platforms and protocol stacks, thereby drastically

8

> 1 <

reducing the time and complexity typically required to build

innovative solutions.

Furthermore, the architecture offers the possibility to execute

control logic on different hierarchical levels (i.e. node-local, in-

network or cross-network) in a context-aware manner. This

enables defining exactly where, when and how the UPIs are

used. The presented cross-technology TDMA scheme fully

exploits these features in order to synchronize and coordinate

medium access between IEEE-802.11 and IEEE-802.15.4

nodes while retaining the ability to reschedule the slot

allocation within the TDMA superframe at runtime.

The design of the architecture also incorporates the

possibility for extensions towards new platforms and

technologies. This requires only the creation of connector

modules implementing and/or extending the UPIs for the

particular platforms or technologies. For instance, adding

support for controlling LTE networks was not a huge effort,

allowing to investigate future 5G challenges such as

coexistence between LTE and other technologies in the ISM

band.

Finally, all solutions are publicly available as open-source

implementations on https://github.com/wishful-project5 .

ACKNOWLEDGEMENT

This work was supported by the European Commission

Horizon 2020 Programme under grant agreement n645274

(WiSHFUL) and the FWO SBO “SAMURAI: Software

Architecture and Modules for Unified RAdIo control'” project.

REFERENCES

[1] N. McKeown et al., “OpenFlow: enabling innovation in campus

networks,” SIGCOMM Computer Communication, vol. 38, no. 2, March
2008, pp. 69-74.

[2] R. Riggio et al., "Programming Abstractions for Software-Defined

Wireless Networks," IEEE Transactions on Network and Service
Management, vol. 12, no. 2, June 2015, pp. 146-162.

[3] J. Schulz-Zander et al., “OpenSDWN: programmatic control over home

and enterprise WiFi,” in Proc. 1st ACM SIGCOMM SOSR, Santa Clara,
CA, USA, June 17 - 18, 2015.

[4] T. Luo, H. P. Tan and T. Q. S. Quek, "Sensor OpenFlow: Enabling

Software-Defined Wireless Sensor Networks," IEEE Communications
Letters, vol. 16, no. 11, Nov. 2012, pp. 1896-1899.

[5] C. Fortuna et al., “Wireless Software and Hardware platforms for Flexible

and Unified radio and network controL,” in Proc. 2nd EuCNC, Paris,
France, June 29 – July 2, 2015, pp. 712-717.

[6] N. Kaminski, et al., “Unified Radio and Network Control Across

Heterogeneous Hardware Platforms,” in Proc. ETSI Workshop on Future
Radio Technologies: Air Interfaces, Sophia Antipolis, France, Jan 27-28,

2016, pp. 1–10.

[7] M. Berman et al., “GENI: A federated testbed for innovative network
experiments,” Computer Networks, vol. 61, 2014, pp. 5-23.

[8] W. Vandenberghe et al., “Architecture for the heterogeneous federation

of future internet experimentation facilities,” in Proc. Future Network &
Mobile Summit, Lisbon, Portugal, Jul. 2013, pp. 1-11.

[9] Y. Jin et al., "ETSI reconfigurable radio system: Standard architecture and

radio application," in Proc. 7th ICTC, Jeju Island, Korea, Oct 19-21, 2016,
pp. 1094-1097.

[10] I. Tinnirello et al., “Wireless MAC Processors: Programming MAC

Protocols on Commodity Hardware,” in Proc. 31st IEEE INFOCOM,
Orlando, FL, USA, March 25-30, 2012, pp. 1269-1277.

[11] B. Jooris et al., “TAISC: a cross-platform MAC protocol compiler and

execution engine,” Computer Networks, vol. 107, 2016, pp. 315-326.

5 https://github.com/wishful-project [accessed on 12/06/2017]

[12] P. D. Sutton et al., "Iris: an architecture for cognitive radio networking

testbeds," IEEE Communications Magazine, vol. 48, no. 9, Sept. 2010,

pp. 114-122.

[13] P. Ruckebusch et al., "Cross-technology wireless experimentation:

Improving 802.11 and 802.15. 4e coexistence," in Proc. 17th IEEE

WoWMoM, Coimbra, Portugal, June 21-24, 2016, pp. 1-3.
[14] P. Gawłowicz et al., “UniFlex: A Framework for Simplifying Wireless

Network Control,” to appear in Proc. IEEE ICC, Paris, France, May 21-

25, 2017.

Peter Ruckebusch (peter.ruckebusch@ugent.be)

received his M.Sc. in Computer Science from
Hogeschool Ghent Faculty Engineering, Belgium.

Since 2011 he has been a Ph.D. student at University

Ghent, IMEC, IDLab, in the Department of Information
Technology (INTEC). He has been/is collaborating in

several national and European projects. His research

topics are situated in the low-end of the IoT mainly
focusing on re-configurability and re-programmability

aspects of protocol stacks for constrained devices in

IoT networks.

Spilios Giannoulis [M] (spilios.giannoulis@ugent.be)

received his M.Sc in Electrical and Computer
Engineering (2001) and Ph.D. (2010) from the University

of Patras. Since 2015 he is a postdoc researcher at

University Ghent, IMEC, IDLab, in the Department of
Information Technology (INTEC). He is involved in

several EU projects. His main research interests are

mobile ad-hoc networks, wireless sensor networks,
especially flexible and adaptive MAC and routing

protocols, QoS provisioning, cross-layer and power-

aware architecture design.

Eli De Poorter (eli.depoorter@ugent.be) received his

M.Sc (2006) in Computer Science Engineering and
Ph.D. (2011) from Ghent University. He is now

professor at the Department of Information Technology

at Ghent University. He is currently also coordinating

several national and international projects. His main

research interests include wireless network protocols,

network architectures, wireless sensor and ad hoc
networks, future internet, self-learning networks and

next-generation network architectures.

Ingrid Moerman (ingrid.moeman@ugent.be)

received her M.Sc. in Electrical Engineering (1987)

and Ph.D. (1992) from Ghent University, where she
became a part-time professor in 2000. She is also a

staff member at IDLab-UGent-IMEC, where she
coordinates research activities on mobile and wireless

networking. Her research interests include IoT,

LPWAN, cooperative networks, cognitive radio
networks and flexible hardware/software architectures

for radio/network control and management. She has a

longstanding experience in coordinating national and
EU research funded projects.

Domenico Garlisi (domenico.garlisi@dieet.unipa.it)
received his M.Sc. in Telecommunication Engineering

(2010) and Ph.D. (2014) from the University of Palermo.

From May 2015, he is working as researcher for CNIT
(Consorzio Nazionale Interuniversitario per le

Telecomunicazioni). He is also working as collaborator

researcher and software developer for TTI-Lab (DEIM)
at University of Palermo, on smart grid and smart

mobility. His current research interests include

performance evaluation and medium access control in Wireless LANs, included
mesh network.

https://github.com/wishful-project
https://github.com/wishful-project
mailto:peter.ruckebusch@ugent.be
mailto:spilios.giannoulis@ugent.be
mailto:eli.depoorter@ugent.be
mailto:ingrid.moeman@ugent.be
mailto:domenico.garlisi@dieet.unipa.it

9

> 1 <

Pierluigi Gallo (pierluigi.gallo@dieet.unipa.it) received

his M.Sc. with distinction in Electronic Engineering

(2002) and Ph.D (2006) from the University of Palermo,

where he is an Assistant Professor since 2010. His works

and interest focus on Wireless Networks, particularly on

MAC layer and its localization applications. He has
contributed to several national and European research

projects including ITEA POLLENS, IST ANEMONE, IST PANLAB II, ICT

FLAVIA, H2020 CREW and WiSHFUL.

Ilenia Tinnirello (ilenia.tinnirello@dieet.unipa.it)

received her M.Sc. degree in telecommunications
engineering (2000) and Ph.D. (2004) from the University

of Palermo, where she is currently an Associate Professor.

Her research activities have been focused on wireless
networks, and in particular on the design and prototyping

of protocols and architectures for emerging reconfigurable

wireless networks. She has been involved in several
European research projects, among them FP7 FLAVIA,

H2020 WiSHFUL, Flex5gWare and Symbiote.

Piotr Gawłowicz (gawłowicz@tkn.tu-berlin.de)

received his M.Sc in Electronics and

Telecommunications from AGH University of Science
and Technology, Krakow, Poland in 2014. Currently, he

is working as researcher at TKN Group at TU Berlin,

Germany. He is the author or co-author of several
technical papers. He has been involved in national and

European research projects. His research interests include software defined

networking, wireless networks and simulation tools.

Anatolij Zubow (zubow@tkn.tu-berlin.de) received his

M.Sc. in Computer Science (2004) and Ph.D.(2009) from
Humboldt University Berlin. He is a senior researcher at

Telecommunication Networks Group at the Technische

Universität Berlin since March 2013, where he is
coordinating the research activities in the areas of

Cognitive Radio, Wireless Access Networks and

Software-Defined Networking. In the past he did research

in the area of wireless ad-hoc mesh and self-organized

networks.

Mikolaj Chwalisz (chwalisz@tkn.tu-berlin.de) received

his M.Sc. in Electrical and Computer Engineering from

the Warsaw University of Technology and in Computer
Engineering from the Technische Universitat Berlin in

2011, where he has been a PhD student since. His

research focus is on coexistence and cooperation of
heterogeneous wireless networks. He is actively involved

in European and German founded projects working on experimentally-driven
solutions and testbed orchestration.

Luiz A. DaSilva [FM] (dasilval@tcd.ie) received his
M.Sc. in Electrical Engineering (1988) and Ph.D. (1998)

from the University of Kansas. Since 2014, he is

Professor at Trinity College Dublin. His research focuses
on distributed and adaptive resource management in

wireless networks, and in particular radio resource

sharing and the application of game theory to wireless
networks. He is leading research projects funded by the

National Science Foundation, the Science Foundation

Ireland, and the European Commission.

mailto:pierluigi.gallo@dieet.unipa.it
mailto:ilenia.tinnirello@dieet.unipa.it
mailto:gawłowicz@tkn.tu-berlin.de
mailto:zubow@tkn.tu-berlin.de
mailto:chwalisz@tkn.tu-berlin.de
mailto:dasilval@tcd.ie

