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ABSTRACT 

The dynamics of beams equipped with tuned mass dampers is of considerable interest in 

engineering applications. Here, the purpose is to introduce a comprehensive framework to address 

the stochastic response of the system under stationary and non-stationary loads, considering inertia 

effects along the spring of every tuned mass damper applied to the beam. For this, the key step is to 

show that a tuned mass damper with spring inertia effects can be reverted to an equivalent external 

support, whose reaction force on the beam depends only on the deflection of the attachment point. 

On this basis, a generalized function approach provides closed analytical expressions for frequency 

and impulse response functions of the system. The expressions can be used for a straightforward 

calculation of the stochastic response, for any number of tuned mass dampers. Numerical results 

show that spring inertia effects may play an important role in applications, affecting considerably 

the system response. 

   

KEYWORDS: Beam, Tuned Mass Damper, Spring Inertia Effects, Generalized Function, 

Stochastic Response. 

 

 

1. INTRODUCTION 

Vibration mitigation via tuned mass dampers (TMDs) is a well-established approach in structural 

and mechanical engineering, with numerous and successful applications [1-4]. In this context, 
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several studies have sought analytical or numerical solutions for beam-like structures equipped with 

TMDs and subjected to deterministic as well as stochastic loads [5-13].  

A TMD is modelled as a lumped mass attached to the beam by a spring and, in general, a viscous 

dashpot in parallel. Most commonly, the inertia effects along the spring are neglected, i.e. a 

massless spring is considered in the model [1-13]. Yet, several studies have been devoted to include 

spring inertia in the analytical/numerical model of the system and investigate its effects on the 

performance of the TMD [14-23].  

Early investigations on the role of spring inertia effects were conducted by Rayleigh [14]. He 

demonstrated that the fundamental frequency of a mass, attached to ground by a spring, can be 

approximately calculated modelling the spring as massless and adding 1/3 of the spring mass to the 

attached mass. This approximate model, however, is rather limited because applies for a grounded 

system while TMDs are generally coupled with vibrating structures. Other issues are that the 

Rayleigh’s approach calculates the fundamental frequency only and, as such, does not capture the 

other frequencies of the TMD associated with spring inertia. Further, inaccuracy increases as the 

spring mass increases compared to the attached mass, as shown by Yamamoto [15].   

In view of a more accurate and general description of spring inertia effects, various studies have 

been proposed in the last decade. They addressed TMDs as well as mass-spring subsystems [16-23]. 

In general, the beam was modelled using standard Euler-Bernoulli theory, an axially-vibrating rod 

was used to model the spring with distributed mass; also, a dashpot in parallel with the rod was 

included to account for damping [18,23].  

Beams coupled with mass-spring subsystems were studied in ref. [16,17]. Different methods 

were proposed to derive the characteristic equation: the classical method dividing the beams in 

consecutive segments and enforcing matching conditions between the solutions over adjacent 

segments [16], which provides the characteristic equation as determinant of a matrix with increasing 

size as the number of mass-spring subsystems increases; alternatively, the assumed-mode method, 

which makes use of standard free-vibration modes of the continuous beam along with a spatial 

linearly-varying static mode to reduce the size of the eigenvalue matrix [17]. Focusing on a 

cantilever beam carrying a tip mass and an in-span mass-spring subsystem, Gürgöze et al. [18] used 

the Hamilton’s principle to derive the motion equations and obtained the characteristic equation as 

determinant of a 4×4 matrix via the transfer matrix method. The same system was also studied 

under forced vibrations, deriving the frequency response functions in exact form by coupling the 

steady-state equations of beam segments and rod [19]. Then, for a cantilever beam or a simply-

supported beam with a mass-spring subsystem only, Gürgöze [20-21] obtained the characteristic 

equation in analytical form as well as the fundamental frequency via Dunkerley’s procedure. Wu et 
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al. [22] studied two-degree-of-freedom mass-spring subsystems attached to a beam. On 

demonstrating that every subsystem can be reverted to equivalent lumped masses attached to the 

beam, the characteristic equation was obtained by the assumed-mode method using natural 

frequencies and mode shapes of the bare beam. In this context, mass and stiffness matrices of the 

two-degree-of-freedom mass-spring subsystem were also obtained for finite element analysis.  

Regarding specifically the application of TMDs, Wu [23] studied the effect of a TMD with 

spring inertia effects on a reference single-degree-of-freedom (SDOF) system and a beam modelled 

as a multi-degree-of-freedom (MDOF) system, using a standard finite element approach. The study 

proposed a procedure to set the optimal parameters of the TMD for the SDOF system; the same 

procedure was applied to the MDOF model of the beam using the orthogonality conditions for 

undamped modes. Numerical results were presented for the beam subjected to moving loads. 

This paper presents an original approach to stochastic analysis of Euler-Bernoulli beams 

equipped with TMDs, where spring inertia effects are included. The key is to demonstrate that the 

TMD acts an external support with a pertinent equivalent stiffness. This paves the way to obtain 

closed analytical expressions for frequency and impulse response functions of the system, using the 

theory of generalized functions [24-35]. The expressions can be used to construct 

analytical/numerical solutions under stationary and non-stationary loads in a straightforward 

manner, for any number of TMDs. The solutions will provide a valuable insight into how the spring 

inertia effects may affect the efficiency of the TMD and more generally the dynamics of the whole 

system, as shown in the numerical applications.  

The paper is organized as follows. The system under study is described in Section 2. The 

equivalent stiffness of the TMD with spring inertia effects is obtained in Section 3. Analytical 

expressions for frequency and impulse response functions are derived in Section 4, to finally build 

the stochastic response in Section 5. A numerical application is presented in Section 6. Two 

Appendices are included. 

 

 

2. PROBLEM STATEMENT 

Figure 1 shows a uniform Euler-Bernoulli beam coupled with an arbitrary number of TMDs, acted 

upon by distributed dynamic loads.  

As customary, the TMD consists of a lumped mass attached to the beam by a spring and a 

viscous dashpot. The system will be studied under the assumption that inertia effects cannot be 

neglected along the spring of every TMD. That is, the spring is considered as an axially-vibrating 

rod with distributed mass, as indicated in Figure 1. For the beam: L  = length, EI  = flexural 
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stiffness,   = mass per unit length. For the jth TMD, 
jM = attached mass, 

jc = damping coefficient; 

jh  = rod length, jEA = rod axial stiffness; j = rod distributed mass. 

 

 

 

 

Fig. 1 Euler-Bernoulli beam coupled with TMDs where spring inertia effects are considered. Parameters and 

positive sign conventions are shown 

 

 

3. TUNED MASS DAMPER WITH SPRING INERTIA EFFECTS 

Assume that the vibration response of the system in Figure 1 can be represented in the form (i = 

imaginary unit) 

 

   i
, e

t
x t


y Y ;      i

, e
t

j jt


 z Z  (1a,b) 

 

where  
T

v m sy and  
T

V M S Y ,  
T

j j ju nz  and  
T

j j jU NZ collect the 

response variables of the beam and jth TMD (see Figure 1 for symbols and positive sign 

conventions). Eqs.(1) are a general form to represent:  

 

(a) steady-state response under an harmonic load with any frequency  , i.e.  ,x Y Y  and 

 ,j j  Z Z ;  
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(b) free-vibration response, being 
n   an eigenvalue and  n xY Y ,  ,j j n Z Z  the 

corresponding vectors of eigenfunctions; in this case, eigenvalues and eigenfunctions are 

complex since damping in the system is not proportional.  

 

On using Eqs.(1) in the motion equations of beam and rods, one obtains  

 

  
   

4

2

4
1

d
0

d
 



   
N

j j

j

V x
EI R x x V x

x
 (2) 

 

  
 

2

2

2

d
0               1, 2,...

d
j j

U
EA U j N


  


    (3) 

 

where  -dependence is omitted for brevity. In Eq.(2), bar means generalized derivative, symbol 

   jx x  denotes a Dirac’s delta at jx x , jR  is the reaction force exerted on the beam by the jth 

TMD, i.e.  

 

        0 i    
 j j j j j jR N c U h V x  (4) 

 

being  
0

0 d dj jN EA U





  the axial force at 0   in the rod.  

Next, the objective is express the reaction force jR  in Eq.(4) as a function of  jV x  only, which 

is the beam deflection at the attachment point jx x . For this purpose, it is seen that Eq.(3) is 

readily solvable in the following closed analytical form 

 

      1 2cos sinj j j j jU x A x A x      (5) 

 

where j j jEA  , while 1jA , 2jA  are integration constants to be set depending on the 

following boundary conditions (B.C.) at 0   and jh  , respectively:  

 

    0 j jU V x  (6) 

 

 
         2d

i
d

j

j j j j j j j j j

h

U
N h EA M U h c U h V x



 




    
 

 (7) 
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Specifically, Eq.(7) is derived from the equilibrium of the attached mass jM . Now, Eqs.(6)-(7) 

yield 1jA , 2jA  in the following form 

 

  1j jA V x  (8a) 

 

 

 
     

     2

i i cos sin

cos i sin

j j j j j j j j

j j

j j j j j j j

c M c h h
A V x

h M c h

     

     

  


 
 (8b) 

 

where j j jEA  , and Eqs.(8) can be used in Eq.(5) for  jU x  to obtain jR  in Eq.(4) as: 

 

    j j jR V x    (9) 

 

where 

 

 
 

 

 
   

 

 
i cos sin 1

j j

j j j j j j

j j

f f
c h h

w w

 
      

 

 
    

  

 (10) 

 

with  

 

         cos i cos sinj j j j j j j j j j j jf c c h M h h               
 

 (11) 

 

 

        sin i sin cosj j j j j j j j j jw c h M h h           
 

 (12) 

 

Eq.(9) is the sought form of the reaction force jR  as a function of  jV x  only, i.e. the beam 

deflection at the attachment point jx x .  

For comparison, recognize that Eq.(10) for  j   reverts to existing results for specific 

parameters. For instance,  

 

 

 
 

 

2

20

i
lim

ij

j j j j

j

j j j j

M EA h c

M c EA h

 
 

 




 
 (13) 
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which holds for a TMD where spring inertia effects are neglected, being j j jk EA h  the stiffness 

of the massless spring [9]. On the other hand, for 0jc   Eq.(13) matches Eq.(30) in ref. [36], which 

holds for an undamped mass jM  attached to the beam by a spring of stiffness j j jk EA h . 

 

 

4. ANALYTICAL SOLUTIONS IN FREQUENCY AND TIME 

Eq.(9) is the key point of this study: providing indeed the reaction force as a function of the 

deflection  jV x , Eq.(9) will allow to calculate the response of the whole system using the motion 

equation of the beam only, i.e. without considering the motion equations of the TMDs. The 

calculation will be pursued generalizing the approach recently proposed by some of the authors in 

ref. [9,30,32], in both frequency and time domains. Remarkably, the approach will provide the 

responses along the beam and in every TMD, as explained in the following. 

 

4.1. Exact frequency response 

Be the beam in Figure 1 subjected to harmonic loads of frequency  , so that the steady-state 

response variables take the form (1). Based on ref. [30], it can be written that 

 

        , , ,
f

x x x   Y W d Y  (14) 

 

where  1 2 3 4

T
d d d dd  is a vector of integration constants,  ,x W  is a 44 matrix 

depending on the solution to the homogeneous equation associated with Eq.(2), while 
   ,

f
x Y  is  

a 41 load-dependent vector associated with particular integrals of Eq.(2); specifically, the reaction 

force jR  used in Eq.(2) is given as Eq.(9). Every element in matrix W  and vector 
 f

Y  is available 

in an exact closed analytical form, as summarized in Appendix A. 

The beam B.C. shall be enforced to obtain d , deriving the following set of equations  

 

 1
     


  Bd r d B r  (15) 

 

where B  and r  are a 44 matrix and a 41 vector, built from W  and 
 f

Y  computed at the beam 

ends, 0x   and x L .  
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The inverse matrix 
1

B  is available in a closed analytical form, as shown in ref. [30]. Hence, 

replacing Eq.(15) for d  in Eq.(14) leads to a closed analytical expression for the frequency 

response  ,x Y  of the beam in Figure 1.  

It is noteworthy that Eq.(14) for  ,x Y  is an exact closed analytical expression, which holds 

for any number of TMDs along the beam. The frequency response  ,j  Z  in every TMD can be 

obtained from the deflection  ,jV x   of the attachment point, using Eq.(5) with 1jA , 2jA  given by 

Eqs.(8).  Obviously,  ,j jU h   provides the displacement of the mass jM . Pertinent expressions 

are Eqs.(A.9) in Appendix A. 

Eq.(15) holds for homogeneous B.C.; non-homogeneous B.C. can still be considered as 

homogeneous, with an end TMD modelled as internal damper located at 0x


  and x L


 .  

  

4.2. Modal response functions 

Next, be the beam in Figure 1 subjected to an impulsive loading       ,p x t p x t , where 

 t  denotes a Dirac’s delta in time and  p x  is a space-dependent function. Following the 

approach in ref. [9,32], the vector of impulse response functions  
T

v m sh h h hh  of the beam 

can be represented by modal superposition as 

 

 
       

1 1

, ,k k k

k k

x t x t g t x

 

 

  h h Y  (16) 

 

where, for the impulsive nature of the loading,  kg t  is given the form [37,38]  

 

   i
e kt

k kg t g


  (17) 

 

being kg  a complex coefficient, while k  and  k xY  are eigenvalue and vector of eigenfunctions 

associated with the kth mode. Namely, k  and  k xY  are complex, being damping not proportional. 

The eigenvalue problem is   B d 0 , i.e. Eq.(15) with r 0 . 

The approach in ref. [9,32] can be applied to obtain the following closed analytical expression of 

the coefficient kg ,  
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=

i

k
k

k k

g


 
 (18) 

  

where k  is the projection of the space-dependent loading function  p x  on the eigenfunction 

 kV x  

 
   

0

d
L

k kp x V x x    (19) 

 

and  

 

  

 
   

4

, 2 2

0
=1 =1

= 2

N L

j l k

k k j k

j k
j l

r
V x V x dx

s





    (20) 

 

where  ,j l kr   are functions given in Appendix B, for brevity. For the derivation of Eq.(18), the 

key is the analytical expression (10) derived for the eigenvalue-dependent stiffness  j   as 

explained, again, in Appendix B.  

Now, for damping levels generally encountered in vibration engineering applications, it is known 

that modes contributing to the beam response occur in complex conjugate pairs, i.e.  kg t  in 

Eq.(16) is   i
e kt

k kg t g


  as well as   i*
e kt

k kg t g


 , with 
*

kg  complex conjugate of kg . The result 

is the following real form of the modal impulse response function for the kh mode in Eq.(16): 

 

          ,k k k k k kx t x z t x z t h φ ψ  (21) 

 

where 

 

      2
1k k k k kx x x   φ ψ λ  (22) 

 

        2Re ;            2 Imk k k k k kx g x x g x       ψ Y λ Y  (23a,b) 

 

 
    21

sin                  1k k t

k Dk Dk k k

Dk

z t e t
 

   



    (24a,b) 
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Finally, based on ref. [9,32] the following expression may be derived for the modal frequency 

response function  , , , ,

T

k v k k m k s kH H H HH  

 

           , ik k k k k kx x H x H     H φ ψ  (25) 

 

where 

 
  2 2

1

i2
k

k k k

H 
    


 

 (26) 

 

Eq.(25) complements the exact frequency response (14) as provides an insight into the contribution 

of individual modes, i.e.  

 

 
   

1

, ,
n

k

k

x x 


Y H  (27) 

 

where n is the number of modes retained in the modal representation of the response.  

Expressions for the impulse and frequency response functions in every TMD readily follows 

from Eq.(16) and Eq.(27) provided that  k xY  is replaced with  ,j k xZ , i.e. the vector of 

eigenfunctions associated with the kth mode for axial displacement and axial force in the jth TMD. 

Specifically,  ,j k xZ  is calculated from the deflection  jV x  of the attachment point, using 

Eqs.(A.9) in Appendix A.  

It is noteworthy that Eq.(16) and Eq.(27) for the impulse and frequency response functions hold 

for any number of TMDs along the beam. Every modal contribution (21) and (25) is exact and 

readily obtainable in closed analytical form, once the eigenvalues are calculated.  

 

Finally, notice that Eq.(16) and Eq.(27) hold also for TMDs where spring inertia effects are 

neglected. Indeed, the limit of Eq.(20) for vanishing rod mass 0j    provides the following term: 

 

  

 
   

2 3

2 2

20 2
0

=1

2 i i
lim = 2

ij

N L
j j j k j k j j

k k j k

j j j k j j k

M EA h c M c
V x V x dx

EA h c M


 


 


  
  

 
  
 

   (28) 

 

which was already derived for standard TMDs without spring inertia effects in ref. [9]. 
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5. STOCHASTIC RESPONSE 

Now, the stochastic response of the beam in Figure 1 can be computed taking advantage of the 

equations derived in Sections 3-4. 

The power spectral density (PSD) matrix of the stationary response to an arbitrary load 

   p x f t , being  f t  a process with PSD denoted by  ffS  , can readily be obtained as 

 

 
        *

, , ,
T

ffx x x S   YYS Y Y  (29) 

 

where the frequency response vector  ,x Y  can be obtained by two approaches: (a) the exact 

approach in Section 4.1, see Eq.(14); (b) the approximate modal approach in Section 4.2, see 

Eq.(27). Both are analytical thanks to the closed form expressions derived in Section 4.  

 

The response to non-stationary loads can be obtained by an efficient Monte Carlo simulation 

which relies on the closed analytical expressions for the impulse response functions (16). That is, 

every sample of the response process can be built by the Duhamel convolution integral: 

 

 
     

0

, ,
t

x t x t f d   y h  (30) 

 

Namely, numerical or analytical solutions are obtainable from Eq.(30); analytical solutions are 

typical of exponentially-modulated harmonic loads, as shown in ref. [9]. 

Eq.(29) and Eq.(30) provide the response variables along the beam. The same equations can be 

used to calculate the response in every TMD, using the pertinent frequency response functions as 

well as the eigenfunctions in the TMD. Indeed, the latter can be derived from the deflection of the 

attachment point using Eqs.(A.9) in Appendix A. 

It is noteworthy that the analytical solutions built by Eq.(29), as well as the analytical/numerical 

solutions built by Eq.(30), involve remarkable advantages compared to a standard FE approach. 

Indeed, the latter provides only numerical solutions with accuracy depending on mesh refinement 

and requires updating/refining the mesh whenever TMDs and loads change position along the beam. 

 

 

6. NUMERICAL APPLICATION 

Consider the cantilever beam in Figure 2, equipped with a TMD at the tip. Beam parameters are: 

6 mL  , 
8 2

45 10   NmEI   , r =156.25 kgm
-1

. For the TMD: the lumped mass is approximately 
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1% of the beam mass, i.e. 
1 9.375 kgM  ; the rod distributed mass g

1
 is taken such that 

1 1h  10% 

of the lumped mass 
1M ; various values for the damping coefficient 

1c  will be selected for 

comparison. Axial stiffness 
1EA  and length 1h  of the rod are calibrated so that the TMD is tuned to 

a desired natural frequency of the undamped beam. Specifically, here two tuning frequencies are 

considered, 3.88 Hz and 133.69 Hz, which correspond to 1st and 4th natural frequency of the 

undamped beam. For 3.88 Hz: 
3

1 4.8 10  NEA    and 
1h   0.86 m; while for 133.69 Hz, 

6

1 5.25 10  NEA    and 
1h   0.79 m. The proposed method is implemented in Mathematica [39].  

 

 

 

 

Fig. 2 Cantilever beam with a tip TMD where spring inertia effects are considered 

 

The first step is to compare the exact frequency response (14) with the corresponding 

approximate one (27), obtained by complex modal superposition. For the tuning frequency = 4th 

natural frequency and damping coefficient 
1

1 1000  Nm sc


 , Figure 3 shows the frequency 

response amplitude for the beam deflection at the tip under a concentrated harmonic load 

    i

0 0( , ) ( ) e
t

f x t x x P t x x


      applied at midspan ( 0 0.5x L ), as obtained  by Eq.(14) and 

Eq.(27) with n = 15 modes. The two solutions are in perfect agreement. The individual contribution 

of every mode to the total frequency response function is evident in Figure 3, providing valuable 

insight into the dynamics of the system.   

Next, consider the beam acted upon by a concentrated load    0( , )f x t x x P t   applied at 

midspan ( 0 0.5x L ), being  P t  a white-noise stationary process of one-sided PSD 
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  7 2
10   N sffS   . The exact PSD of the beam response can be computed in closed analytical form 

by Eq.(29), with Eq.(14) for the frequency response. Also, since the interest is to assess whether 

spring inertia effects play a significant role, Eq.(14) is applied using for the equivalent stiffness 

 j   in Eq.(9): (a) Eq.(10) to consider spring inertia effects; (b) Eq.(13) to neglect spring inertia 

effects.  

Figures 4-5, Figures 6-7 and Figures 8-9 report, for the two tuning frequencies of the TMD 

respectively, the one-sided PSD (29) of the beam deflection at the tip for three different values of 

the damping coefficient 1c : 
1

1 10 Nm sc


  (Figures 4-5), 
1

1 100  Nm sc


  (Figures 6-7), 

1

1 1000  Nm sc


  (Figures 8-9). It is apparent that, while no differences can be appreciated when 

the tuning frequency = 1st natural frequency of the undamped beam, discrepancies become 

considerable whereas the tuning frequency = 4th natural frequency of the undamped beam; it is 

noteworthy that this happens regardless of the amount of damping. On the other hand, for the case 

tuning frequency = 1st natural frequency, several additional peaks do appear in the PSD of the beam 

deflection, which are associated with the dynamics of the TMD with spring inertia effects. This 

means that spring inertia effects may not play a significant role in the frequency range close to the 

1st natural frequency but, still, affect the beam response at higher frequencies.  

For a further insight, Figures 10-11, Figures 12-13 and Figures 14-15 show the one-sided PSD 

(29) for the displacement of the lumped mass 1M  of the TMD, computed with and without spring 

inertia effects from Eqs.(A.9). From Figures 11-13-15 it is well apparent that, when the tuning 

frequency = 4th natural frequency of the undamped beam, the dynamics of the mass 
1M  around the 

tuning frequency is affected by spring inertia effects. On the other hand, Figures 10-12-14 show 

that, when the tuning frequency = 1st natural frequency, the dynamics of the mass 
1M  is not 

affected by spring inertia effects around the tuning frequency, but additional peaks appear at higher 

frequencies. As expected, these peaks match those in the PSD for the beam deflection at the tip, 

shown in Figures 4-6-8.  

Finally, for tuning frequency = 4th natural frequency and damping coefficient 
1

1 10  Nm sc


 , it 

is of interest to investigate the variance of the beam response to the load    0( , )f x t x x P t   

applied at midspan ( 0 0.5x L ), when  P t  is a coloured stationary process with one-sided PSD 

  7 2
10   N sffS    defined within the following ranges: (i) 120 <n <135, (ii) 145 <n <160. 

Specifically, the ranges are centred on peaks of the response in Figure 5 around the tuning 

frequency = 4th natural frequency. The time-dependent variance of the response is calculated with 
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5000 samples, with each sample built from Eq.(30). The process  P t  is simulated by harmonic 

superposition as in ref.[40] and, in this case, closed analytical solutions may readily be found for 

every sample given by Eq.(30). For comparison at stationarity, the variance of the response is 

calculated integrating the exact PSD (29), with Eq.(14) for the frequency response. Once again, the 

purpose is to investigate the role of spring inertia effects. For this, Eq.(30) and Eq.(29) are used 

considering either Eq.(10) or Eq.(13) for the equivalent stiffness  j   in Eq.(9), either Eq.(20) or 

Eq.(28) for the coefficient k  in Eq.(18).  

Figures 16-17 show the variance of the beam deflection at the tip obtained for the case (i) and (ii) 

respectively, considering or neglecting spring inertia effects. The first observation is that, once 

stationarity is attained, the variance obtained from the Monte Carlo simulations matches very well 

that computed via integration of the exact PSD (29). On the other hand, the most relevant comment 

is that ignoring spring inertia effects may cause errors in the estimation of the variance up to about 

40%, which may be either conservative or non-conservative depending on the input frequency 

range. This is an important conclusion for design purposes, especially for mechanical applications 

where high-frequency TMDs are frequently used [41].  

 

 

Fig. 3 Frequency response amplitude for the beam deflection at the tip, for 
1

1 1000  Nm sc


 and a unit 

harmonic concentrated load at midspan, as obtained by Eq.(14) (thick black continuous line) and Eq.(27) 

with n=15 modes (black dotted line); single modal contributions (25) (thin black continuous line) 
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Fig. 4 Tuning frequency = 1st natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 10  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects; without TMD (gray continuous line)   

 

 

Fig. 5 Tuning frequency = 4th natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 10  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects, without TMD (gray continuous line) 
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Fig. 6 Tuning frequency = 1st natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 100  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects, without TMD (gray continuous line)   

 

 

Fig. 7 Tuning frequency = 4th natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 100  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects, without TMD (gray continuous line)    
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Fig. 8 Tuning frequency = 1st natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 1000  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects, without TMD (gray continuous line)  

 

 

Fig. 9 Tuning frequency = 4th natural frequency, PSD (29) of the beam deflection at the tip for 
1

1 1000  Nm sc


  and a white-noise concentrated load at midspan: with TMD considering (black continuous 

line) and neglecting (black dashed line) spring inertia effects, without TMD (gray continuous line)  
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Fig. 10 Tuning frequency = 1st natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 10  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects  

 

 

Fig. 11 Tuning frequency = 4th natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 10  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects 
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Fig. 12 Tuning frequency = 1st natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 100  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects   

 

 

Fig. 13 Tuning frequency = 4th natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 100  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects   
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Fig. 14 Tuning frequency = 1st natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 1000  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects   

 

 

Fig. 15 Tuning frequency = 4th natural frequency, PSD (29) of the displacement of the lumped mass 
1M  for 

1

1 1000  Nm sc


  and a white-noise concentrated load at midspan, considering (black continuous line) and 

neglecting (black dashed line) spring inertia effects   
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Fig. 16 Tuning frequency = 4th natural frequency, variance of the beam deflection at the tip for a coloured-

noise concentrated load at midspan, with PSD defined in the range 120 135  : considering spring inertia 

effects, using 5000 Monte Carlo samples (30) (black dot-dashed line) and integrating the PSD (29) (black 

continuous line); neglecting spring inertia effects, integrating the PSD (29) (gray dashed line) 

 

 

 

 

Fig 17 Tuning frequency = 4th natural frequency, variance of the beam deflection at the tip for a coloured-

noise concentrated load at midspan, with PSD defined in the range 145 160  : considering spring inertia 

effects, using 5000 Monte Carlo samples (30) (black dot-dashed line) and integrating the PSD (29) (black 

continuous line); neglecting spring inertia effects, integrating the PSD (29) (gray dashed line) 
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7. CONCLUSIONS 

A comprehensive framework has been presented to calculate the stochastic response of a beam 

equipped with TMDs where spring inertia effects are considered. The key of the proposed approach 

is treating the TMD with spring inertia effects as an external support with a pertinent equivalent 

stiffness. On this basis, the response to stationary and non-stationary loads is built by closed 

analytical response functions in both frequency and time domains, using the theory of generalized 

functions. Solutions hold for any number of TMDs along the beam. 

For a case study of engineering interest, numerical results have shown that spring inertia effects 

may play a considerable role in the dynamics of the system and affect the response of the beam to a 

great extent. This is particularly true at high-tuning frequency, as may be the case in many 

mechanical applications where high-frequency TMDs are frequently involved [41].  

A most suitable generalization of the present work on mass effects in vibration absorbers may 

concern tuned inerter dampers (TID) [42]. A TID is a device applying a force that linearly depends 

on the relative acceleration between the device terminals and its inertance, which can be 

appropriately tuned offering the potential for much higher mass ratios than those obtainable by 

standard TMDs. Applications of TIDs to structures are gaining increasing attention [43-45]. The 

stochastic response of beams equipped with multiple TIDs and the effects of inertance will be 

addressed in a future work, based on the generalized function approach presented in this paper. 

 

 

8. APPENDIX A 

Following ref. [30], matrix  ,x W  in Eq.(14) is given as (-dependence is omitted for brevity): 
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  
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Ω

J J J J

W Ω J Φ

J Φ Φ Φ Φ

 (A.1) 

 

where  is the set including 

all possible q-ples of indexes  such that ...j m n r s     , being 2 q j  .  

In Eq.(A.1),  , jx xJ  is the 41 vector 
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J  (A.2) 

 

while symbol  ,j kx xJΦ  denotes the following scalar function:  

 

       
1

, ,j k j j kx x x x  Φ J  (A.3) 

 

where notation  
l

  indicates the lth row of the matrix within parenthesis. All terms of  , jx xJ  can 

readily be derived from the beam equations  
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x EI


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 
 

d

d

V x
x

x
   (A.5a,b) 

 

starting from the following particular integrals for deflection associated with a unit force at arbitrary 

0x x :  

  

           , 0 0 0 0, sinh sinV PJ x x x x x x H x x        (A.6)  

 

where    
1 41 3 4 3 2

2 EI    
  

   and    
1 4 1 4 1 2

EI    


  .  

Further, in Eq.(A.1)  xΩ  depends on the solutions to the homogeneous differential equation 

associated with Eq.(2), i.e.  
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Ω  (A.7) 

 

while  jxΩΦ  in Eq.(A.1) is the following 14 vector:   

 

        
1

j j jx x  ΩΦ Ω  (A.8) 

 

Terms in matrices  jxΩΦ  are derived from the well-known solution to the homogeneous 

differential equation associated with Eq.(2), using Eqs.(A.4)-(A.5) without Dirac’s deltas. 

Eq.(A.1) is the basis to derive the analytical expression (14) for the frequency response of the 

beam, upon using Eq.(15) to calculate the vector of integration constants d as 
1

d B r , which is 

available in a closed form. 

Interestingly, from Eq.(14) and specifically the deflection  V x , the exact frequency response 

can be obtained also in every TMD. For this purpose, notice that using Eqs.(8) for the integration 

constants 1jA  and 2jA , axial displacement and force along the rod of every TMD can be expressed 

as functions of the deflection  jV x  of the attachment point, in the following form:   
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       (A.9b) 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



25 

 

Eqs.(A.9) provide analytical expressions for vector    ,
T

j j j jU N   Z Z , i.e. the response 

in every TMD. 

 

 

9. APPENDIX B 

This Appendix summarizes the key steps that lead to derive the closed analytical expression (16) of 

the impulse response function.  

The starting point are the following orthogonality conditions for the deflection modes ,k nV V , 

derived following the approach in ref. [9,32] 
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where  ,k nQ    is given as 
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and 
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where  ,k nP    is given as 
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Under an impulsive loading      ,p x t p x t , be the impulse response function of the beam 

given as Eq.(16) of main text, with  as in Eq.(17). Using the procedure in ref. [9,32], 

the following equation can be obtained in : 
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where    2

n n ng t g t   being   i
e nt

n ng t g


 . 

Next, consider the expression within parenthesis in Eq.(B.5), which multiplies 
2

n ng   for 

n=1,…. In view of the orthogonality condition (B.1), the expression is equal to zero for n k  . 

On the other hand, for n k   the second term within parenthesis in Eq.(B.5) is equal to 

2

0

2 d
L

k k nV V x  , while the following limit provides the first term:  
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where  
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In Eq.(B.7), 
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 (B.8b) 

 

        ,3 = 2 i 2 i3 cos 2j k k j j j k j j j j k j j j kr c M c M EA M c h         
 

 (B.8c) 

 

      ,4 =i4 i sinj k j j j k j j j j kr h c c h       (B.8d) 

 

      2 2 2

,5 = 2 i4 sin 2j k j j j j k j j j k j j kr EA c c M M h          (B.8e) 
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while  j ks   is 

 

 
       
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=2 cos i i sinj k k j j j k j j k j j ks h c M h         
 

 (B.9) 

  

 

Now, integrating Eq.(B.5) finally provides 
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k
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g

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 (B.8) 

 

with k  given as Eq.(20) of the main text. Considering that    0 i 0 ik k kg g g 
 
  , the 

expression (18) for the complex coefficient kg  is finally derived.  
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