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Abstract

We generalize the K−ε model of classical turbulence to superfluid helium. In a classical
viscous fluid the phenomenological eddy viscosity characterizing the effects of turbulence
depends on the turbulent kinetic energy K and the dissipation function ε, which are mainly
related to the fluctuations of the velocity field and of its gradient. In superfluid helium,
instead, we consider the necessary coefficients for describing the effects of classical and
quantum turbulence, involving fluctuations of the velocity, the heat flux, and the vortex
line density of the quantized vortex lines. By splitting the several fields into a time-
average part and a fluctuating part, some expressions involving the second moments of
the turbulent fluctuations appear in the evolution equations for the average quantities. As
in the K − ε model, a practical way of closing such equations is to tentatively express
such fluctuating terms as a function of the average quantities. In this context we propose
how the turbulent coefficients so introduced could depend on the second moments of the
fluctuations of v, q and L (respectively denoted as K, Kq and KL), and on their respective
dissipation functions (related to the second moments of their gradients) ε, εq and εL.

Keywords: K − ε model; superfluid helium; heat transfer; quantum turbulence; energy

cascade; quantized vortices; non-equilibrium thermodynamics.

1 Introduction

The study of turbulence is an appealing topic which has interested many researchers in different

fields, from the smallest scalles to the largest ones, from nanosystems to universe. The methods

and approaches used for dealing with all the phenomena involved into turbulence span from

hydrodynamics to thermodynamics and statistics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Here we are interested in the K−ε model as the zero-th order closure model in the hierarchy

of the moments of the fluctuations of the main fields, usually applied in a viscous classical fluid

[14]. In this paper we aim at generalizing this method to superfluid helium, where an additional

different kind of turbulence occurs: quantum turbulence. Quantum turbulence is typically

thought as a tangle of quantized vortex lines, which are characterized by a quantized circulation

κ = h/m (h and m being the Planck’s constant and the helium atom mass, respectively), a

fixed core of radius of the order of the size of the helium atom, and a vortex length density

per unit volume L.

0E-mail addresses: michele.sciacca@unipa.it (M. Sciacca), david.jou@uab.cat (D. Jou),
m.stella.mongiovi@unipa.it (M. S. Mongiov̀ı).
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There are still many open questions about the existence and interaction of both kinds of

turbulence (classical and quantum) in superfluid helium. Indeed, superfluid helium is usually

thought as composed of two indintinguishable components, the normal component (a viscous

fluid which carries the entropy and the viscosity of superfluid helium) and an inviscid super-

fluid component. According to the two-fluid model, proposed by Tisza and Landau [15, 16],

quantized vortices are caused by a vorticity of the superfluid component. Recently, in [17]

it was argued that the normal component could be also turbulent, and it would explain the

presence of two regimes of turbulence in counterflow experiments. An alternative explanation

could be that an inhomogeneous and locally polarized vortex tangle (regime TI) becomes an

homogeneous state (regime TII) for enhanced applied heat flux, because of the breakdown of

these localized polarizations [18]. The understanding of the phenomena is still open, but it

points to different kinds of turbulence for the normal component with speed vn, the superfluid

component with speed vs, and the vortex tangle itself. The last feature has been studied from

the numerical point of view, and it is seen that at very low temperature (where the normal

component is practically absent), quantized vortices may be gathered into bundles of vortices,

which mimic classical eddies [19, 20, 21, 22].

From the thermodynamical point of view, an alternative model of superfluid helium was

proposed by means of the Extended Thermodynamics [23, 24], which takes the heat flux q as

further independent field than the usual mean velocity v. In this paper we consider v and q

(rather than vn and vs) together with L as the main independent quantities.

By splitting the several fields into a time-average part and a fluctuating part, some ex-

pressions involving the second moments of the turbulent fluctuations in v′, q′ and L′ appear

in the evolution equations for the average quantities v, q and L. In the usual K − ε model

for classical fluids, the way of closing the evolution equation for v is to tentatively express the

second moments of the fluctuating terms of v′ as a function of gradient of v, in such a way that

the final equations have a form analogous to the usual equations for v, but with effective kine-

matic viscosity which is a sum of the molecular contribution and the turbulent contribution

(the so-called eddy viscosity). In its turn, this turbulent contribution is expressed in terms

of some quantities related to turbulent fluctuations, as the kinetic energy of fluctuations, K,

and the dissipation function ε. In the context of the present paper, we analize the equations,

identify the turbulent contributions, propose for them some turbulent transport coefficients,

and try to express them in terms of the second moments v, q and L, namely K, Kq and KL,

as well as of their corresponding dissipation functions ε, εq and εL, related to the second-order

moments of their gradients. Since some of the details may depend on the kind of flow, we do

not pretend that this model will grasp all the complexity of turbulence, but it is logical to

take it into consideration as a macroscopic starting point, in analogy to the K − ε model in

classical turbulence [1, 4, 8, 9, 10, 11, 14].

The paper is organized as follows: in Section 2 we deal with the basic equations of the one-

fluid extended model of superfluid helium and their time-averaged expressions; in Section 3 we

consider the zero-th order approximation closure and we propose some expressions to close the

equations of the K − ε − L model for v and q; in Section 4 we deal with the equation for L;

Section 5 is devoted to the results and the concluding remarks of the paper.
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2 The one-fluid extended model: basic equations and their
versions for turbulent flows

In this section we consider the basic equations of the one-fluid extended model for superfluid

helium. The interest to deal with this model instead of the two-fluid model is based mainly

on the use of the fields directly measurable in the experiments (heat flux q and mean velocity

v) and on the idea that the extended model can be used also in the ballistic regime (which

occurs at very low temperature or in very thin channels), as shown in Ref. [25].

2.1 Basic equations of the one-fluid extended model

The main fields of the one-fluid extended model are the mass density ρ, the velocity v, the

heat flux q, the energy density u, and the vortex line density per unit volume L. The field

equations of He II in the presence of dissipation, neglecting body forces, are the following

[26, 27, 18]: 

ρ̇+ ρ∇ · v = 0,

ρv̇ +∇p+∇ ·Pv = 0

ρu̇+∇ · q + p∇ · v −Pv : ∇v = 0,

q̇ + ζ∇T + ζ∇ ·Pq = σq = −KfLq,

L̇−DL∇2L = −βκL2 + αqL3/2,

(2.1)

with p the pressure, T the temperature, ζ = λ1/τ1 (λ1 being the heat conductivity of He II

and τ1 the relaxation time of the heat flux), that characterizes the second-sound velocity [18],

Kf = 1
3BHV κ (where BHV is the Hall-Vinen coefficient of the mutual friction strength), α

and β are numerical constants related to the production and destruction of quantum vortices,

respectively, according to the well-known Vinen equation, q in the last equation is the modulus

of the heat flux, and Pv and Pq are non-equilibrium stress tensor of momentum and heat flux,

given by:

Pv = −2η

[
〈∇v〉+

1

ρsT
〈∇q〉

]
, (2.2)

Pq = − 2

ρsT
η

[
〈∇v〉+

1

ρsT
〈∇q〉

]
. (2.3)

where η is the shear viscosity and s is the entropy density. The bulk viscosity has been

neglected. In the equations (2.1) a “dot” over the main fields stands for
∂

∂t
+ v · ∇ and ∇

standing for the gradient operator. The term −DL∇2 in the last equation of the system (2.1)

takes vortex diffusion into account [18, 28, 29, 30, 31].

Let’s assume that the mass density is constant, namely ρ̇ = 0, which yields ∇ · v = 0

and assume an isothermal situation, in which the energy balance equation is not necessary.

Then, substituting Pv and Pq in the equation (2.4b) and (2.4c) and assuming that ρsT in the

expression of Pv and of Pq does not depend on the spatial coordinates, we are left with:
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

∂

∂t
v + v · ∇v +

1

ρ
∇p− ν∇2v − ν

ρsT
∇2q = 0,

∂

∂t
q + v · ∇q + ζ∇T − µ∇2v − µ

ρsT
∇2q = −KfLq,

∂

∂t
L+ v · ∇L−DL∇2L = −βκL2 + αqL3/2,

(2.4)

where ν = η/ρ is the classical kinematic viscosity (length2/time) and µ =
νζ

s
is the “heat”

kinematic viscosity (length4Kg/time3). The two first equations in (2.4) suggest to define two

kinds of thermal viscosity, namely ν1 ≡
ν

ρsT
(time/kg) and µ1 ≡

µ

ρsT
(length2/time), which

will be useful for the further discussions.

The last equation in (2.4) is the equation for the vortex line density L, which was proposed

for the first time by Vinen without the inertial term and then generalized by many authors.

It has been extended to cover the diversity of the phenomenologies, to include the influence

of the walls [18, 32], the anisotropy of the vortex tangle [33], the influence of the transverse

flow [34] and other situations of interest as in Ref. [35, 36, 37]. However, in this paper we have

preferred do not take the most general equation but the simplest form for the source term (the

Vinen equation) with the inertial term on the left side.

2.2 Time-averaged evolution equations of the main fields v, q and L

To discuss turbulence we write v = v̄ +v′, q = q̄+q′, p = p̄+p′, T = T̄ +T ′, and L = L̄+L′,

with v̄, ū, p̄, T̄ and L̄ the time average values and v′, p′, T ′ and L′ the corresponding fluctuating

turbulent contributions. For the sake of simplicity we will assume that the density does not

fluctuate and that it has the constant value ρ.

Because of the linearity of the continuity equation ∇ · v = 0, we find ∇ · v = 0 and

∇ · v′ = 0. (2.5)

Let’s consider now the equation of the velocity v, namely equation (2.4b). By the above

substitutions, it becomes

∂

∂t
v + (v · ∇)v + (v′ · ∇)v′ +

1

ρ
∇p− ν∇2v − ν1∇2q = 0, (2.6)

and by means of the identity (v′ · ∇)v′ = ∇ · (v′ ⊗ v′)− (∇ · v′)v′ and (2.5) we obtain

∂

∂t
v + (v · ∇)v +∇ · v′ ⊗ v′ +

1

ρ
∇p− ν∇2v − ν1∇2q = 0. (2.7)

We follow the same procedure for equation (2.4c) for q and obtain:

∂

∂t
q + (v · ∇)q +∇ · v′ ⊗ q′ + ζ∇T − µ∇2v − µ1∇2q = −KfLq−KfL′q′ (2.8)

where we have used the identity (v′ · ∇)q′ = ∇ · (v′ ⊗ q′)− (∇ · v′)q′ = ∇ · (v′ ⊗ q′) because

of (2.5).
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Note that in equations (2.7) and (2.8) there are three terms dependent on the second

moments of v′, q′ and L′, namely v′⊗v′, v′⊗q′ and L′q′. To close these equations, expressions

for these contributions in terms of v, q and L must be provided.

Regarding the equation (2.4) for the vortex line density L, the right-hand side is the source

term, which is made by two terms, empirically proposed by Vinen and confirmed analytically

by Schwarz [38]. The first term (βκL2) refers to the decay of vortex line density whereas

the second term (αqL3/2) refers to the production of vortex line density. Since ` = L−1/2 is

the inter-vortex space (namely, the average separation between neighboring vortices) and it

is usually the scale where the interaction between vortices becomes stronger, we rewrite the

right-hand side of the equation of L in terms of L = L1/2 = `−1, namely the reciprocal of the

scale at which transfer of energy is of remarkable importance. Thus, the equation becomes:

∂

∂t
L+ v · ∇L−DL∇2L = −βκL4 + αqL3, (2.9)

where the production term can be also seen as αq
L

`
and the destruction term as βκ

L

`2
. This

will be useful for our discussion in Section 4.

Inserting the fluctuations in the equation (2.9) for the evolution equation for L we find:

∂

∂t
L+ v · ∇L+ v′ · ∇L′ −DL∇2L = αq

(
L3 + 3LL′2 + L′3

)
+

−βκ
(
L4 + 6L2 L′2 + 4LL′3 + L′4

)
+ α

(
3L2 q′L′ + 3L q′L′2 + q′L′3

)
(2.10)

where we have considered L = L+ L′, L = L+ L′. The above equation can be also written:

∂

∂t
L+ v · ∇L+∇ · v′L′ −DL∇2L = αq

(
L3 + 3LL′2 + L′3

)
+

−βκ
(
L4 + 6L2 L′2 + 4LL′3 + L′4

)
+ α

(
3L2 q′L′ + 3L q′L′2 + q′L′3

)
(2.11)

because of the identity v′ · ∇L′ = ∇ · (v′L′)− (∇ · v′)L′ = ∇ · (v′L′). In (2.11), terms in the

fluctuations of L′ and q′ appear. As for (2.7) and (2.8), expressions for these contributions in

terms of v and q and L must be provided.

In fact, from a physical point of view, the most complex and controversial part of the

modelization refers to the fluctuations of vortex line density, which goes deeper into open

problems. In Ref. [39], Nemirovskii deals with the fluctuation spectrum of L in the counter-

flowing turbulence (Vinen equation), where vortices are mostly loops uniformly distributed in

the fluid; and in the quasi-classical turbulence, where vortices forms vortex bundles. It turns

out that the fluctuation spectrum depends on the kind of flow. Thus, a completely universal

modelization would not be possible in simple terms. We will comment later on this limitation

in the concluding remarks.

3 Closure relations for v and q: zero-th order approximation

Now, we define with specific symbols the terms involving moments of the fluctuations in the

evolution equations for v (2.7) and q (2.8), namely Rv ≡ v′ ⊗ v′ appearing in (2.7) and

Rq ≡ v′ ⊗ q′ and RqL ≡ Kfq′L′ appearing in (2.8) (in Section 4 we will consider the evolution

equation for L). In order to close the equations, these quantities must be given in terms of the
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average quantities. Alternatively, an evolution equation for them should be found by averaging

the equations for v′⊗v′, v′⊗q′ and q′L′. In such equations, third-order moments of the form

v′⊗v′⊗v′, v′⊗v′⊗q′, v′⊗q′⊗L′ and so on, as well as second-order moments of the spatial

gradients of fluctuations would appear, thus, leading to a hierarchy of higher-order moments,

in which moments of order n+ 1 appear in the evolution equation of moments of order n.

3.1 A short remainder of the K − ε model

In classical turbulence it is assumed that the extra turbulent contribution to the evolution

equation for v, namely the third term of equation (2.7), has a form analogous to that of

the usual viscous term, but with an effective viscosity of turbulent origin. Thus, it is taken

[9, 10, 11, 14]

Rv ≡ v′ ⊗ v′ = −2νt∇sv (3.1)

where the Boussinesq’s eddy viscosity assumption is assumed with νt the so-called eddy-

viscosity, which phenomenologically describes the contribution of the turbulence to the hydro-

dynamic resistance to the flow, and∇sv the strain rate tensor defined as∇sv = (∇v+∇vT )/2.

The motivation of such closure is keeping the form of the Navier-Stokes equation, but with a

phenomenologically modified viscosity, describing the big increase of the dissipation in turbu-

lent flow as composed to the corresponding laminar flows. Such eddy vorticity is assumed

to depend on turbulent features, namely the kinetic energy K per unit mass, K =
1

2
v′ · v′

and ε the dissipation function ε = 2ν∇sv′ : ∇sv′, which naturally appears as in equation

(3.12) (see the reference [9, 10, 11, 14]). The dimensions of K are (length2 × time−2)

and those of ε are (length2 × time−3), thus, the combination of K and ε with the suitable

dimensions of the eddy viscosity (length2 × time−1) is

νt = Cν
K2

ε
, (3.2)

with Cν a dimensionless constant which is of the order of 0.09 [40]. With (3.1) and (3.2), the

evolution equation (2.7) for v in a classical fluid (i.e. with q = 0), becomes closed apart from

the field ε. Evolution equations for K and ε are proposed below in (3.14) and (3.18). The

closure of the hierarchy of higher-order moments is crucial for modeling and understanding

the main features of turbulence, and there are many different strategies of truncating this

hierarchy: use of maximum-entropy methods [11], [41], [4], [8], [42], [43], [44], [45], [46], [47];

or analogies with well-known models and methods of the Kinetic theory of gases [48, 49, 14, 50]

based on some generalized forms of Boltzmann equation or of lattice-Boltzmann equation [51],

[52].

3.2 A generalized K − ε− L model in superfluid helium

3.2.1 Closure of equations for v and q

In this section we will take a lowest-order closure of equations (2.7) and (2.8) by expressing

Rv, Rq, RqL in terms of v, q and L in such a way that they have a form similar to (2.4a)

and (2.4b) but with new coefficients related to turbulence. As in (3.1) this allows that the

equations for v and q have the same form as those for v and q, but with effective turbulent

parameters. Generalizing (3.1) we propose the following expressions:
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Rv ≡ v′ ⊗ v′ = −νt∇v − ν1t∇q (3.3)

Rq ≡ v′ ⊗ q′ = −µt∇v − µ1t∇q (3.4)

RqL ≡ Kfq′L′ = Kft qL (3.5)

In equation (3.3) we consider a modified Boussinesq’s eddy viscosity assumption, namely

∇v and ∇q instead of ∇sv and ∇sq because the incompressible condition holds only for the

velocity field and not for the heat flux. Thus, we might use the identity 2∇·∇sv = ∇v but not

the identity 2∇ · ∇sq = ∇q. Furthermore, the antisymmetric part of ∇v and ∇q could also

play a role, besides that of the symmetric part, but it would be too cumbersome discussing it

for the aim of the paper.

In (3.3)–(3.5), following the usual procedure of the zeroth order description of turbulence,

we have introduced the turbulent parameters νt, ν1t, µt, µ1t, and Kft, which, in analogy to

the K − ε model of classical turbulence, will be phenomenologically expressed in terms of the

second moments of v′, q′, which we write here as

K ≡ 1

2
v′ · v′, Kq ≡

1

2
q′ · q′, (3.6)

and of the corresponding dissipation functions ε and εq (see (3.13) and (3.21) below), related

to the second moments of ∇v′ and ∇q′ appearing in the respective evolution equations of K

and Kq (see (3.17) and (3.27)).

Equations (2.7) and (2.8) can be rewritten using (3.3)–(3.5). Thus, the equation forv

becomes

∂

∂t
v + (v · ∇)v +

1

ρ
∇p− (ν + νt)∇2v − (ν1 + ν1t)∇2q = 0, (3.7)

and the equation for q becomes

∂

∂t
q + (v · ∇)q + ζ∇T − (µ+ µt)∇2v − (µ1 + µ1t)∇2q = −(Kf +Kft)Lq. (3.8)

It is thus seen that the form of (3.3)–(3.5) has been chosen in such a way that the turbulent

coefficients in them modify the molecular coefficients appearing in (2.7) and (2.8).

In analogy with (3.2), the coefficients νt, ν1t, µt, µ1t and Kft will be expressed on dimen-

sional grounds in terms of K, ε, Kq and εq taking into account that the dimensions of K are

(length2 time−2), those of Kq are (length6 kg2 time−6), those of ε are (length2 time−3), those

of εq are (length6 kg2 time−7) and those of µ are (length4 kg time−3), those of νt, µ1t and Kft

(length2 time−1), those of ν1t are (time kg−1) and of µt are (length4 kg time−3). A proposal is

νt = Cν
K2

ε
, ν1t =

Cν1
ρsT

K2

ε
, (3.9)

and

µt =
Cµ
ρsT

K2
q

εq
, µ1t =

Cµ1
(ρsT )2

K2
q

εq
, Kft =

CK
(ρsT )2

K2
q

εq
, (3.10)
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with Cν , Cν1, Cµ, Cµ1 and CK dimensionless constants (to be found from the experiments), as

it happens with the values of Cν in the usual K−ε model. Of course, the turbulent parameters

expressed above strongly depend on our choice, but different proposal would also be possible,

as explained in the Conclusions.

Now, we need the evolution equation for the K, ε, Kq and εq, which will give the evolution

of (3.9) and (3.10). This will be done in Sections (3.2.2) and (3.2.3). An alternative possibility

to (3.9) and (3.10) will be discussed in the concluding remarks.

3.2.2 Evolution equation and dissipation function for the second moment of v′

The equation for the turbulent kinetic energy K ≡ 1

2
v′ · v′ can be found writing the equation

for v′ subtracting it from the equation (2.4b), namely

∂

∂t
v′ + v′ · ∇v + v · ∇v′ + v′ · ∇v′ +

1

ρ
∇p′ −

(
ν∇2v′ + ν1∇2q′

)
= 0 (3.11)

Multiplying this equation by v′ and averaging over the time we find the equation for K:

∂

∂t
K + (v · ∇)K + Rv : ∇v +∇ ·

[
1

2
v′2v′ +

1

ρ
p′v′ − νv′ · ∇v′ − ν1v′ · ∇q′

]
= −ε, (3.12)

with ε, the dissipation function, given by

ε =
[
ν∇v′ : ∇v′ + ν1∇v′ : ∇q′

]
. (3.13)

The first term in (3.13) describes the usual viscous dissipation, but due to the fluctuating

part of the turbulent viscosity field, and the second term describes the additional dissipation

of kinetic energy related to the last term in equation (2.4a) namely to the interaction between

velocity fluctuations and heat flux fluctuations.

Taking into account (3.3), we find

∂

∂t
K+(v·∇)K+∇·

[
1

2
v′2v′ +

1

ρ
p′v′ − νv′ · ∇v′ − ν1v′ · ∇q′

]
= −ε+νt∇v : ∇v+ν1t∇v : ∇q,

(3.14)

In analogy with what is usually made in classical turbulence, where the term in ∇K comes

from the trace of v′ · ∇v′. We propose the following further relation:

−νv′ · ∇v′ − ν1v′ · ∇q′ = −ν (1 + α1)∇K, (3.15)

with α1 a dimensionless constant, and

1

2
v′2v′ +

1

ρ
p′v′ = − ν

∗
t

σK
∇K, (3.16)

where ν∗t = νt

(
1 + α1t

Cν1
Cν

)
with α1t and σK numerical constants of the model. Thus,

equation (3.14) becomes

∂

∂t
K + (v · ∇)K −∇ ·

[(
ν + να1 +

ν∗t
σK

)
∇K

]
= −ε+

νt
ν
εK , (3.17)
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where εK = ν∇v : ∇v + ν1∇v : ∇q. Note that there is a relevant conceptual difference

between ε defined in (3.13) and εK : the former one depends on the gradients of the fluctuating

quantities v′ and q′, whereas the latter one depends on the gradients of the average values v

and q.

The ratio
K

ε
has the dimension of time and it is usually considered as a characteristic time

for the decay of ε. In analogy with what is done in the K− ε model [14], an evolution equation

for ε can be heuristically obtained by keeping the same structure of the equation of K and by

dividing the right-hand side of equation (3.17) by the time
K

ε
yielding:

∂

∂t
ε+ (v · ∇)ε−∇ ·

[(
ν + να1 +

ν∗t
σε

)
∇ε
]

=
ε

K

[νt
ν
Cε1εK − Cε2ε

]
, (3.18)

with Cε1 and Cε2 numerical coefficients. In the k−εmodel for viscous fluid (α1 = 0), Cε1 = 1.44,

Cε2 = 1.92, σK = 1 and σε = 1.4 [14]. We tentatively take this equation for our proposal of the

model. In fact, the form as that used in (3.18) has been justified in [14] on ground of analogy

with kinetic theory using thermodynamics arguments.

3.2.3 Evolution equation and dissipation function for the second moment of q′

Following for q the same procedure we have followed in subsection 3.2.2 to find the evolution

equation for the second moments of v′, we write an equation for q′:

∂

∂t
q′+v′·∇q+v·∇q′+v′·∇q′+ζ∇T ′−µ∇2v′−µ1∇2q′+Kf (Lq′+L′q+L′q′−L′q′)−v′ · ∇q′ = 0.

(3.19)

We multiply (3.19) times q′ and after averaging over the time we find the equation for the

second moments of q′, expressed as Kq =
1

2
q′ · q′:

∂

∂t
Kq + (v · ∇)Kq + q′ · (v′ · ∇)q− ζT ′∇ · q′ +∇ ·

[
ζT ′q′ − µ∇v′ · q′ − µ1q′ · ∇q′

]
=

= −εq − q′ · (v′ · ∇q′)−Kf (2LKq + L′q · q′ + L′q′ · q′), (3.20)

where we have used the identity q′ · ∇2v′ = q′ · (∇ · ∇v′) = ∇ · (∇v′ · q′) − ∇v′ : ∇q′, and

q′ · ∇2q′ = q′ · (∇ · ∇q′) = ∇ · (∇q′ · q′) − ∇q′ : ∇q′ and we have defined the dissipation

function εq for Kq as

εq =
[
µ∇v′ : ∇q′ + µ1∇q′ : ∇q′

]
, (3.21)

Equation (3.20) can be also written

∂

∂t
Kq + (v · ∇)Kq +∇ ·

[
v′
q′2

2
+ ζT ′q′ − µ∇v′ · q′ − µ1q′ · ∇q′

]
=

= −εq −Rq : ∇q + ζT ′∇ · q′ −Kf (2LKq + L′q · q′), (3.22)

where we have used q′ ·
(
v′ · ∇q′

)
= ∇·

(
v′
q′2

2

)
and neglected the third-order moment L′q′ · q′.

In analogy with (3.15), we propose the constitutive relations:
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−µ∇v′ · q′ − µ1q′ · ∇q′ = −µ (1 + α2)∇Kq (3.23)

with α2 a dimensionless constant and in analogy with (3.16)

1

2
v′q′2 + ζT ′q′ = −µ

∗
t

σq
∇Kq, (3.24)

where µ∗t = µt

(
1 + α2t

Cµ1
Cµ

)
with α2t and σq numerical constants of the model, analogous to

α1t and σK in (3.16).

Equation (3.14) becomes

∂

∂t
Kq+(v·∇)Kq−∇·

[(
µ+ µα2 +

µ∗t
σKq

)
∇Kq

]
= −εq+

µt
µ
εKq+ζT ′∇ · q′−2KfLKq−Kftq

2L,

(3.25)

where εKq = µ∇v : ∇q + µ1∇q : ∇q. Note that as well as εK , the quantity εKq depends on

the gradients of the average values v and q in contrast to εq in (3.21), which depends on the

fluctuating part of v and q.

For the terms ζT ′∇ · q′ and 2Kf2LKq +Kftq
2L in (3.25) we propose

ζT ′∇ · q′ − 2KfLKq −Kftq
2L ≡ −2K∗fLKq (3.26)

in such a form that K∗f would contribute to modify the mutual friction coefficient Kf of

equation (3.25). Inserting the costitutive relation (3.26) in (3.25), we find:

∂

∂t
Kq + (v ·∇)Kq−∇·

[(
µ+ µα2 +

µ∗t
σKq

)
∇Kq

]
= −εq +

µt
µ
εKq− 2

(
Kf +K∗f

)
LKq, (3.27)

We can also find an evolution equation for εq following the same procedure used in (3.18),

namely by keeping the same structure of Eq. (3.27) for the left-hand side and multiplying the

right hand side of Eq. (3.27) with the reciprocal of the characteristic time
εq
Kq

:

∂

∂t
εq+(v·∇)εq−∇·

[(
µ+ µα2 +

µ∗t
σεq

)
∇εq

]
=

εq
Kq

[
−Cε2qεq + Cε1qεKq − 2Cε3q

(
Kf +K∗f

)
LKq

]
.

(3.28)

with Cε2q, Cε1q and Cε3q numerical constants. This equation plays an analogous role than the

evolution equations for ε derived in (3.18). We take as an explicit illustration of our proposal,

but the method could be open to more general evolution equations for εq.

4 Evolution equation and dissipation function for L

After having considered a closure of equations (2.7) and (2.8) for v and q, we consider the

fluctuations in the evolution equation for L (2.11), namely RvL ≡ v′L′, RqL ≡ q′L′, RLL ≡
L′L′, RLLL ≡ L′L′L′, RLLLL ≡ L′L′L′L′, RqLL ≡ q′L′L′ and RqLLL ≡ q′L′L′L′. To keep the

form of equation (2.9) we propose the following expressions to close equation (2.11):

RvL ≡ v′L′ = −DLt∇L (4.29)
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RqL ≡ q′L′ = αtqL (4.30)

RLL ≡ L′L′ = βtL
2

(4.31)

Closure in equation (4.29) follows the same strategy used in the paper, namely equation

for L has the same form as that for L, but with effective diffusion parameter.

For the third and fourth moments we assume that the fluctuations in L′ are Gaussian,

namely RLLL ≡ L′
3

= 0, RLLLL ≡ L′
4

= 3R2
LL, and that RqLL ≡ q′L′2 = 0 and RqLLL ≡

q′L′3 = 0.

With the assumptions (4.29)–(4.31) and introducing them into (2.11), it is seen that RvL

modifies the effective diffusion coefficient DL of the quantized vortices with the turbulent

contribution DLt, while RqL contributes to the production of quantized vortices and RLL

contributes both to the production terms and the destruction term.

In (4.29)–(4.31), we have introduced the phenomenological turbulent parameters DLt, αt
and βt, which will be expressed in terms of the second moments of L, namely

KL ≡
1

2
L′ · L′ (4.32)

and on the corresponding dissipation function εL (see (4.37) below) in the equation of KL (see

(4.42)) the turbulent diffusion coefficient will be

DLt = CLκ
2`2

K2
L

εL
(4.33)

with CL a dimensionless constant, and the quantities αt and βt in (4.30) and (4.31) are

dimensionless constants.

The equation (2.11) of the time-averaged vortex line density becomes

∂

∂t
L+ v · ∇L− (DL +DLt)∇2L = α̃qL3 − β̃κL4 (4.34)

with α̃ = α(1 + 3βt + 3αt) and β̃ = β(1 + 9βt), which can be also written in terms of L as

∂

∂t
L+ v · ∇L− (DL +DLt)∇2L = α̃qL

3/2 − β̃κL2
(4.35)

Now, we follow the same procedure of the two former subsections for the equation of the

vortex line density (2.4c). Thus, let’s find the equation for L′:

∂

∂t
L′ + v · ∇L′ + v′ · ∇L+ v′ · ∇L′ − v′ · ∇L′ −DL∇2L′ =

+αq
(

3L2 L′ + 3LL′2 + L′3
)
− βκ

(
4L3 L′ + 6L2 L′2 + 4LL′3 + L′4

)
+

αq′
(
L3 + 3L2 L′ + 3LL′2 + L′3

)
− 3αqLL′2 + βκ

(
6L2 L′2 + L′4

)
− α

(
3L2 q′L′ + 3L q′L′2

)
(4.36)

Let’s multiply equation (4.36) by L′ yielding the equation for KL =
1

2
L′L′:

∂

∂t
KL + v · ∇KL +∇ ·

[
v′
L′2

2
−DL∇KL

]
= −εL −RvL · ∇L+
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+αq
(

3L2 L′L′ + 3LL′L′2 + L′L′3
)
− βκ

(
4L3 L′L′ + 6L2 L′L′2 + 4LL′L′3 + L′L′4

)
+

+α
(
L3 q′L′ + 3L2 q′L′L′ + 3L q′L′L′2 + q′L′L′3

)
(4.37)

where we have used L′v · ∇L′ = v · ∇KL, and RvL = v′L′ = −DLt∇L, as defined in (4.29).

In (4.37) the dissipation function εL is given by

εL ≡ DL∇L′ · ∇L′. (4.38)

This plays an analogous role to ε (3.13) and εq (3.21) in the equation for K and for Kq,

respectively.

In the equation (4.37) we assume that

v′
L′2

2
' −DLt

σKL
∇KL (4.39)

with DLt given in (4.33). Furthermore, we assume for the perturbations on the right-hand

side of equation (4.37) that

αq
(

3L2 L′L′ + 3LL′L′2 + L′L′3
)

+ α
(
L3 q′L′ + 3L2 q′L′L′ + 3L q′L′L′2 + q′L′L′3

)
'

' 3αqL2 L′L′ + αL3 q′L′ ' 3αβtqL
3
L+ ααtqL

3
L = (3αβt + ααt)LqL

3
= (3αβt + ααt)q L

5/2

(4.40)

and that

βκ
(

4L3 L′L′ + 6L2 L′L′2 + 4LL′L′3 + L′L′4
)
' 4βκL3 L′L′ ' 4ββtκLL

4
= 4ββtκL

3
(4.41)

because of L1/2 = L.

Equation (4.37) thus becomes:

∂

∂t
KL+v ·∇KL−∇·

[(
DL +

DLt

σKL

)
∇KL

]
= −εL+

DLt

DL
εKL+ (3αβt+ααt)q L

5/2−4ββtκL
3

(4.42)

where εKL = DL∇L · ∇L, which depends on the gradients of the average value L.

As in (3.18) and in (3.28) an evolution equation for εL is found keeping for the left-hand

side a structure analogous to that of (4.42), and the right-hand side if found by multiplying

the right-hand side of equation (4.42) by the characteristic time
εL
KL

:

∂

∂t
εL + v · ∇εL −∇ ·

[(
DL +

DLt

σεL

)
∇εL

]
=

=
εL
KL

(
−CL1εL + CL2

DLt

DL
εKL + CL3(3αβt + ααt)q L

5/2 − 4CL4ββtκL
3
)

(4.43)

with CLi dimensionless constants.

A simple illustration would be counterflow transport with turbulent fluctuations of the

heat flux q. Equation (2.4b) has been considered in detail in the laminar regime (L = 0) and

in quantum turbulent regime (L 6= 0). In such analyses, the turbulent effects were focused
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on L, and it was assumed that q itself was not fluctuating. In this case, the average of the

right-hand term in (2.4b), namely KfLq, was simply Kf L̄q̄, because q could be identified

with its average value q̄. Thus, the fluctuations of L itself disappeared from this term.

However, when q itself becomes a fluctuating quantity, the term KfLq will be Kf (L̄ +

L′)(q̄ + q′), and its average will be Kf (L̄q̄ + L′q′). In this case, the proposal (3.5) would be

writing KfL′q′ as KftLq, with Kft turbulent contribution to an effective friction coefficient.

Thus, for v = 0 (for the sake of simplicity), equation (2.4b) for the heat flux would lead to

(see (2.8))
∂

∂t
q + ζ∇T − µ1∇2q = −(Kf +Kft)Lq (4.44)

with Kft being a fluctuation of Kq, εq, and KL and εL defined in (3.21), (4.32) and (4.38). The

coefficient Kft would thus show the effects of the fluctuations of L (which is a very relevant

physical quantity, because L may be strongly fluctuating, on the dynamics of q̄). In fact, it

could be that Kft depended itself on the quantum Reynolds number Req = q̄d/(STκ). If

it depended as Kft ' (Rq − Rqc)α, with Rqc a critical Reynolds number for the fluctuations

of q itself, one would have on the right-hand side a contribution of the form q3+a (for Req
sufficiently higher than Reqc). Indeed, some authors have reported that in some occasions,

instead, the Gorter-Mellinck law ∇T ∼ q3, coming from L ∼ q2 in the steady-state, and Kf

not dependent on q, one observes ∇T ∼ q3.4. This interpretation for the origin of q3.4 is

speculative, but we mention it as a concrete possibility of the coupled effects of fluctuations

in L and q. If v is also fluctuating around v = 0, the terms in ¯v′q′ will also play a role (see

equation (2.8)).

5 Discussion and concluding remarks

In this paper we propose a generalized K − ε model applied to superfluid helium. Because of

the fields involved in it, we have named this model K − ε − L model, where L is the vortex

length per unit volume. The starting points are the dynamical equations of the one-fluid

extended model (2.4) for v, q and L [18]. Thus, it is natural that second moments of the

fluctuations and second moments of the gradient of the fluctuations of v, q and L appear in

this model, namely K, Kq, KL, ε, εq and εL.

The complete K − ε− L model is thus given by

• the evolution equations for the averaged fields, namely (3.7) for v, (3.8) for q and (4.34)

for L, together with ∇ · v = 0;

• the evolution equations for the second moments of the fluctuations and of their gradients,

namely (3.17) for K, (3.18) for ε, (3.27) for Kq, (3.28) for εq, (4.42) for KL and (4.43)

for εL;

• the expressions for the phenomenological turbulent coefficients used in the closure, namely

(3.9) for νt, ν1t, (3.10) for µt, µ1t and Kft and (4.33) for DLt in terms of K, ε, Kq, εq,

KL, and εL.

• The numerical constants appearing in the evolution equation (3.17) and (3.18) for K and

ε, (3.27) and (3.28) for Kq and εq, and (4.42) and (4.43) for KL and εL. Those involving

K and ε are known from the usual viscous fluids [14].
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(3.9), (3.10) and (4.33) as well as σK in (3.16), Cν and Cν1 in (3.9), and σq in (3.24), Cν
and Cν1 in (3.10), σKL in (4.39), and CL in (4.33).

This model is an open proposal rather than a definite one. Expressions (3.9), (3.10) and

(4.33) for the turbulent coefficients in terms of K, Kq, and KL, and ε, εq and εL could be

further discussed as well as the equations (3.18), (3.27) and (4.43) for the evolution of ε, εq
and εL. For instance, concerning expressions (3.9) and (3.10) one could argue that since the

terms in νt, ν1t, µt, µ1t in (3.3) and in (3.4) couple v and q, an alternative proposal for ν1t in

(3.9) and for µt in (3.10) in terms if K, ε, Kq and εq could be

ν1t =
Cν1√
ρsT

KKq√
εεq

, µt =
C ′µ√
ρsT

KKq√
εεq

. (5.45)

Of course, these equations strongly depend on the approximations made in the above

sections, but they have been suggested by the structure of the equations themselves and

keeping in mind the main procedure used for the classical turbulence. Indeed, some higher

moments contribute to change the effective viscosity of the equation, or the diffusion coefficient

or the production/destruction coefficients in their correspective equations.

Furthermore, the fluctuations of L are especially complex and they depend on the kind

of flow. The studies performed by Nemirovskii in Ref. [39] have shown that different kinds of

turbulence (uniformly distributed or bundles of quantized vortices) lead to different expression

for the spectrum of L. Thus, a simple proposal as the one made in this paper is not expected

to cover all the complexities of the problem, but may provide a useful starting point for a

phenomenological modelization. For these reasons, we have chosen the Vinen equation for L

with an inertial term, as the simplest model for describing turbulence in a uniformly distributed

turbulence. In future analyses, more complex situations should be analyzed. Incidentally,

Eq. (4.44) could provide a strategy for measuring different contributions of the fluctuations of

L if one makes q to fluctuate in a sinusoidal way with frequencies comparable to the range of

frequencies of fluctuations of L, instead of letting q fluctuating in a turbulent way.

Two important issues in this paper are: a) the appearance of further kinds of “viscosity”

(thermal and classical), which do not have analogous in other systems, as well as the appearance

of their respective “turbulent” contributions, which open new viewpoints on viscosity and

turbulence; b) the extension of the K − ε model of usual viscous systems to physical systems

with higher freedom degrees.

In this paper we have proposed the K − ε− L model using the one-fluid extended model,

based on the Extended Thermodynamics. The so-called two-fluid model proposed by Tisza

and Landau [15, 16], sees superfluid helium as composed by two undistinguishable components:

the normal component (viscous fluid which carries all the entropy and heat of helium) and the

superfluid component (unviscid fluid). This is the model mostly used for studying superfluid

helium, which has allowed to explain some properties of Helium II observed in the experiments

(see Ref. [12, 53, 54] for more details), as for instance the propagation of the second sound. A

comparison between the two existing models can be seen in [18, 55]. In that model, equation

(2.4) of our model would be replaced by evolution equations for vn and vs, the respective

velocities of the normal and superfluid component, namely, the HVBK equations [12, 18]. The

relations between vn and vs, and v and q are v = ρnvn + ρsvs, q = ρsTs(vn − vs), with ρn
and ρs the mass density of the normal and superfluid components. A procedure analogous to

that used here, namely, writing vn = vn + v′n and vs = vs + v′s could be used.
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Terms in v′n ⊗ v′n, v′s ⊗ v′s and v′n ⊗ v′s will appear in the time-average equations for vn
and vs. To close the equations, such second moments should be expressed in terms of ∇vn
and ∇vs, as in (3.3) and (3.4) — and also for coupling v′n, v′s and L′. — Thus, the ideas

presented in this paper could also be explored in the context of the two-fluid model.
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