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An R-space approach to the simulation and fitting of a structural model to the

experimental pair distribution function is described, to investigate the structural

disorder (distance distribution and stacking faults) in close-packed metals. This

is carried out by transferring the Debye function analysis into R space and

simulating the low-angle and high-angle truncation for the evaluation of the

relevant Fourier transform. The strengths and weaknesses of the R-space

approach with respect to the usual Q-space approach are discussed.

1. Introduction

The study of structural disorder in metals was the object of

pioneering work in the early decades of the past century

(Wilson, 1942; Warren & Averbach, 1952; Mitra & Hadler,

1964). The classical book of Warren (1969) reviews this

topic.

This paper demonstrates the possibility of simulating the

pair distribution function (PDF) of a metal with stacking fault

disorder. The structural analysis of nanosized metal samples

has been the object of several studies carried out by making

use of the PDF and fitting of models to experimental data

(Page et al., 2004; Rocha et al., 2009; Dmowski et al., 2010;

Poulain et al., 2016; Hong et al., 2016; Li et al., 2018). It goes

without saying that the R and Q approaches should in prin-

ciple be consistent with each other, if the full range of data was

available in both spaces. A nice discussion, in relation to this

concern, is given in the book by Egami & Billinge (2003,

Section 6.3). Among the peculiarities of R-space analysis, the

possibility of its limitation to a given R-space interval could

give useful information about the dependence of structural

features on the distance range considered. Moreover, the

width of the PDF peaks depends essentially on the distance

distribution between pairs of scattering centres, while their

height is determined by the number and also of course, in the

case of polyatomic samples, by the type of neighbours; in

contrast, particle size and structural disorder both contribute

to peak broadening in Q space, and disentangling the two

effects could result in strong correlation between size and

disorder parameters, in particular when dealing with nano-

structured samples. Conversely, the Q approach could be

important for the structural analysis of bulk samples, and in
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particular to correlate peak width to particle shape and size

distribution. Thus, joint Q and R refinements could provide

important and complementary structural insight in material

science (Egami & Billinge, 2003, Section 6.3).

Among the most striking examples of the occurrence of

stacking fault disorder in close-packed metals is the case of

cobalt. Its diffraction pattern is characterized by the ubiqui-

tous presence, irrespective of particle size and synthesis route,

of both the face-centred cubic (f.c.c.) and hexagonal close-

packed (h.c.p.) signatures: these constitute clear evidence of

the occurrence of complex patterns of stacking faults in this

metal, as observed by several authors (more recently, Sokalski

et al., 2011; Longo et al., 2014; Sławiński et al., 2018; Li et al.,

2018). More generally, stacking fault disorder is recognized in

several close-packed metals, even if in a less evident way than

in cobalt (Yu et al., 2016; Bertolotti et al., 2016; Dupraz et al.,

2015; Longo & Martorana, 2008). In the studies concerning

the applications of cobalt as a component of catalytic systems

or as a magnetic material, the structural analysis is often

performed on a qualitative basis by merely recognizing the

contribution of f.c.c. and h.c.p. phases; this approach could be

ineffective, or even misleading, for establishing reliable

structure–property correlations. This issue can be particularly

relevant for the magnetic properties, since it is well recognized

that stacking faults have a strong influence on the magnetic

anisotropy of cobalt and cobalt-based materials (Pousthomis

et al., 2015; Kha et al., 2017), but also the influence of structural

disorder on the catalytic properties of cobalt deserves an in-

depth investigation (Gnanamani et al., 2012). We have recently

proposed a structural model that is able to simulate the main

X-ray diffraction (XRD) features of samples of nano-

structured cobalt, using a Markovian sequence of close-

packed structural layers (Longo et al., 2014). The model allows

for the probability that an atomic layer influences the close-

packed arrangement of the next atomic layers, up to the fourth

neighbour, and it is based on the matrix formalism proposed

by Kakinoki (1967). A complete fitting of the XRD pattern

was achieved by modelling the shape (roughly spherical) and

the size distribution (log-normal) of the coherent diffraction

domains, while the structural analysis was integrated and

substantiated by the short-range information obtained by

X-ray absorption spectroscopy. In this paper, we outline an

approach to the simulation and fitting of a structural model to

the experimental PDF of close-packed metals. Aiming speci-

fically at testing its reliability and limits for the analysis of real

samples, the R-space approach was applied to the PDF data of

a simulated nanosized sample and to the data of a real sample

constituted of large Co crystallites.

The paper is organized as follows: the next section (Section

2) outlines the main equations of the model; Section 3

describes some details of the fitting runs, in order to illustrate

the limits and peculiarities of the approach, also in relation to

a reciprocal-space approach; Section 4 deals with the consis-

tency of the Q- and R-space analyses; in the last section

(Section 5) the conclusions and a summary of the pros and

cons of the R-space approach compared with the usual

reciprocal-space approach are reported.

2. Theory

2.1. Model G(r) of a monoatomic isotropic sample

The powder intensity of an isotropic assembly of identical

monoatomic crystallites is given by

IðQÞ ¼ f 2 N þ
XN

n;m
n 6¼m

sinðQdnmÞ

Qdnm

2
64

3
75 ð1Þ

where f is the scattering cross section, N is the number of

atoms of each crystallite, dnm is the distance between the nth

and the mth atoms, and Q = 4� sin (�)/�.

Taking into account the fact that several interatomic

distances can be coincident, the double sum of equation (1)

can be rearranged as

IðQÞ ¼ f 2 N þ
X
dn 6¼0

�dn

sinðQdnÞ

Qdn

" #
ð2Þ

where �dn
represents the multiplicity of the nth distance dn

between atom pairs; the sum is extended to all the different

distances.

The cross terms normalized per atom are then given by

iðQÞ ¼
IðQÞ

Nf 2 � 1

� �
¼

1

N

X
dn 6¼0

�dn

dn

sinðQdnÞ

Q
ð3Þ

and the sine Fourier transform (FT) of Qi(Q) yields the

related reduced PDF (Cervellino et al., 2006):

GðrÞ ¼
2

�

Z1
0

QiðQÞ sinðQrÞ dQ

¼
1

N

X
dn 6¼0

�dn

dn

�ðr� dnÞ � �ðrþ dnÞ
� �

: ð4Þ

Equation (4) is an array of delta functions, involving infinitely

narrow distributions of the distance between pairs of scat-

terers. In the real cases, a finite-width distribution of distances

is originated by thermal motion and/or by static disorder. In

the simplest case of uncorrelated distance distribution, equa-

tion (4) is modified as

GðrÞ ¼ �ðrÞ �
1

N

X
dn 6¼0

�dn

dn

�ðr� dnÞ � �ðrþ dnÞ
� �

ð5Þ

where � is a finite-width distribution, typically a Gaussian:

�ðrÞ ¼ FT exp �
�2

2
Q2

� �� �
ð6Þ

and ‘*’ stands for convolution.

More generally, distances can be spread as a function of the

magnitude or even of the direction of interatomic vectors

(Jeong et al., 1999; Longo & Martorana, 2008), a typical

outcome of the presence of microstrains in various materials:

GðrÞ ¼
1

N

X
dn 6¼0

�dn

dn

�dn
ðrÞ � �ðr� dnÞ � �ðrþ dnÞ

� �
: ð7Þ

research papers

Acta Cryst. (2020). A76, 84–91 Alessandro Longo et al. � Analysis of stacking faults in close-packed metals 85



Simulation of data truncation beyond a given Qmax can be

achieved by multiplication of Qi(Q) by a suitable window

function (Proffen & Billinge, 1999), which is taken into

account by

GðrÞ ¼
1

N

X
dn 6¼0

�dn

dn

�
b0
dn
ðrÞ � �ðr� dnÞ � �ðrþ dnÞ

� �
ð8Þ

where

�
b0
dn
ðrÞ ¼ FT Sb0 ��dn

ðQÞ
� �

: ð9Þ

In equation (9) �dn
ðQÞ stands for the Fourier transform of

�dn
ðrÞ and Sb0 for the step function in Q space:

Sb0 ¼
1 if jQj � b0

0 otherwise

�
ð10Þ

where b0 = Qmax represents the highest Q-range limit for the

sine FT calculation of equation (3).

The small-angle scattering, usually not acquired in PDF

measurements, is otherwise present in the simulated patterns

and, for fitting to experimental data, it should be removed. A

good approximation is obtained by the equation proposed by

Farrow & Billinge (2009):

GðrÞ ¼ 4�r �ðrÞ � �0	0ðrÞ
� �

ð11Þ

where �(r) is the R-space pair density, 	0ðrÞ is the angle-

averaged characteristic function and �0 is the average number

density. An example of a calculated pattern is reported in

Fig. 1, where the small-angle contribution to the G(r) due to a

log-normal distribution of spherical scattering domains is

shown.

2.2. Stacking faults in close-packed metals

In a disordered structure the interatomic distances in

equation (8) are weighted by the respective probability of

occurrence, as given by a suitable structural model. Here we

report the R-space application of the model previously used

(Longo et al., 2014) for the Q-space analysis of nanostructured

cobalt samples, and based on the matrix formalism of

Kakinoki (1967).

The faulted structure is a stack of (001) atomic layers

labelled, as usual for close-packed structures, with A, B, C,

according to the three allowed positions in the (a, b) hexa-

gonal cell.

The sequence of atomic layers along c is modelled as a

Markov chain of events. In the simplest case, each layer

influences the occurrence of the next one, with the constraint

that a sequence of equal layers (AA, say) is forbidden. A

longer correlation range is allowed by assuming that the

occurrence of an atomic layer depends, as a probabilistic

event, on the block of preceding s layers. The parameter s is

the so-called ‘Reichweite’ (Jagodzinski, 1949), defining how

many previous layers influence the statistical occurrence of the

next one in the stacking sequence. The number of distinct

blocks is S = 3�2s�1; for s = 2, for instance, there are six blocks

of two layers (AB, AC, BC, BA, CA, CB), each block deter-

mining the probability of the next atomic layer: by symmetry,

the s = 2 model depends on one parameter, let us call it 
, for

h.c.p. sequences (ABA-type), and on 1� 
 for ABC-type c.c.p.

(cubic close-packed) sequences.

In the formalism of Kakinoki the probabilistic events are

the S blocks of s atomic layers and the sequence probabilities

are the elements of an S � S P matrix, having the S blocks at

the head of the rows and columns. For s = 4 the S = 24 blocks

are detailed in the supporting information. The p�� element

(�,�= 1, . . . , S) of the P matrix is different from zero if the �th

and �th blocks are concatenated. This means that, for instance,

CBCA (row heading) and BCAB (column heading) are

concatenated if the last three layers of CBCA are the same as

the first three of BCAB. The corresponding element p�� of P

gives the probability that B (the last layer of BCAB) follows A

(the last layer of CBCA). So, the occurrence of B after A is

statistically influenced by the s = 4 CBCA foregoing layers.

This scheme gives the probabilities of sequences relative to the

first neighbouring layers: the probabilities for m-neighbouring

sequences are the elements p
ðmÞ
�� of Pm, the mth power of P. The

blocks can be classified according to the hexagonal (h) or

cubic (c) close packing. So, CBCA is an hc sequence, BCAB a

cc, and so on. Then, by symmetry, the model depends on four

independent probability parameters:


, probability of a cc_c concatenation, like ABCA_B

�, probability of an hc_c concatenation, like ABAC_B

	, probability of an hh_c concatenation, like ABAB_C

�, probability of a ch_c concatenation, like ABCB_A.

The frequencies of occurrence of the blocks are

f cc ¼
�	

�
; f hc ¼ f ch ¼

1� 
ð Þ	

�
; f hh ¼

1� 
ð Þ 1� �ð Þ

�

� ¼ 6 ð1� 
Þð1� �Þ þ 2ð1� 
Þ	 þ �	½ �; ð12Þ

obtained by solving the linear and homogeneous set of

equations

f � ¼
PS
�¼1

f�p��: ð13Þ
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Figure 1
A calculated G(r) of polydispersed spherical cobalt particles. The small-
angle contribution is drawn in blue.



According to the ‘parent stack’ approach (Longo &

Martorana, 2008), the positions of the atomic layers in a stack

can be horizontally shifted with respect to a fixed reference

frame by the vectors:

tA ¼ �
1
3 a� 1

3 b; tB ¼
1
3 a; tC ¼

1
3 b ð14Þ

and the relative position of two m-neighbouring atomic layers

is

tm
�� ¼ mcþ ðt� � t�Þ; m ¼ 1; 2; . . . : ð15Þ

In equations (14), (15) a, b, c are the axes of the reference

hexagonal cell. � and � run over all the S = 3�2s�1 elementary

sequences; t�ðt�Þ is the shift vector (of type tA, tB or tC) of the

last atomic layer of the �th (�th) sequence. Two atoms

belonging, respectively, to two m-neighbouring layers are then

joined by the distance vector:

tklm
�� ¼ kaþ lbþ tm

�� ð16Þ

where k; l;m are integers. The contribution of tklm
�� to the PDF,

equation (8), is denoted as Gklm
�� and weighted by �tklm, the

multiplicity of tklm = ka + lb + mc, which is the number of times

this distance is repeated in the parent stack (Longo &

Martorana, 2008):

�tklm ¼
1

v

Z
V

dr’ rþ tklm
	 


’ðrÞ: ð17Þ

In equation (17) v is the volume per atom, ’ is the shape

function, equal to 1 inside the particle and 0 outside; the

integral is calculated over the volume, V, common to the

particle and to its ghost shifted by tklm. Then, the contribution

to the PDF of all the pairs belonging to m-neighbouring layers

joined by the tm
�� vectors defined in equation (15) is

Gm
��ðrÞ ¼

X0
kl

Gklm
�� ðrÞ

¼
1

N

X0
kl

�tklm

jtklm
�� j

�
b0

tklm
��
ðrÞ � �ðr� jtklm

�� jÞ � �ðrþ jt
klm
�� jÞ

� �
ð18Þ

where the prime (0) indicates exclusion of self terms.

According to the cited matrix formalism (Kakinoki, 1967),

the average over all the m-neighbouring (�,�) layers is then

given by

GmðrÞ ¼ tr AðmÞ � PðmÞ
� �

ð19Þ

where ½AðmÞ��� ¼ Gm
��f � and P(m) = (P)m is the mth power of

the probability matrix P. The overall PDF is finally given by

the sum over all the m-neighbours.

3. Simulations and fitting

3.1. Simulated PDF data and fitting in R space

Aiming at testing the robustness and reliability of the

R-space approach, we simulated the Q-space pattern of a

nanostructured sample using:

(a) a log-normal size distribution of spherical particles

drawn in Fig. 2 as a function of particle diameter;

(b) a Reichweite s = 4 stacking fault model with probability

values 
 = 0.9677, � = 0.0711, 	 = 0.1800, � = 0.0400, ensuring

the presence of both the h.c.p. and c.c.p. distances;

(c) a �dn
ðQÞ, equation (9), defined as follows:

�dn
ðQÞ ¼ exp �Q2 1

2
ð
þ �dnÞ

� �
: ð20Þ

In equation (20) the parameter 
 (input value 0.015 Å2),

accounting for thermal vibrations and uncorrelated static

disorder, is related to the atomic temperature factor B

(Giacovazzo, 1992) by B ¼ 
�2. It produces, as is well known,

a damping of peak intensities for increasing Q, but does not

affect peak width (Egami & Billinge, 2003, Section 2.1.3); the

corresponding Fourier transform involves in R space a finite

PDF peak width independent of distance, according to equa-

tion (5). On the other hand, � (= 0.00019 Å) governs the

width of the Gaussian distribution of distances between

n-neighbouring pairs as a function of their distance and can be

related, in metals and other inorganic materials, to micro-

strains. The linear relation assumed in equation (20) involves

an increasing uncertainty in the relative position of atom pairs

as a function of dn (Hosemann & Bagchi, 1962; Ruland, 1965;

Longo et al., 2014). The effect of microstrains [equation (20)]

in direct and reciprocal space is shown in Fig. S1 in the

supporting information. A different dependence was

proposed by Jeong et al. (1999), and will be discussed in the

next section.

The Q data were simulated with the Debye function

approach (Longo et al., 2014) and an ‘experimental’ error was

added, whose bandwidth is of the order of a typical synchro-

tron XRD experiment; the corresponding PDF was fitted by

equations (7), (8) and (18) in the intervals 1 < R < Rsup Å, with

Rsup ¼ n� 10, n = 1, 2, . . . , 9. The starting point for the fitting

parameters was put far away from the known values. Fig. 2

shows the best fitting in the 1–60 Å interval, while Fig. 3 shows
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Figure 2
Best fitting (red) to the G(R) data (see text). In the inset panel, the
diameter distribution log-normal function is reported. The G(R) data are
omitted for the sake of clarity. The residual is plotted in blue.



the values of the optimized stacking fault parameters as a

function of Rsup.

Fig. 3 shows some oscillation in the optimized parameters,

depending on the range of the fitting interval and on the

artificial error band introduced in the Q pattern, with a

tendency to converge to the ‘true’ values at large Rsup. On the

other hand, it is worth noticing that the overall frequencies of

hexagonal, fh = 6(fhh + fch), and cubic, fc = 6(fcc + fhc),

sequences are very stable, capturing the ‘true’ values

(respectively, 0.664 and 0.336) with a discrepancy of 	1 on the

third digit for all the Rsup values, but for the outlier Rsup = 20 Å

(yielding, anyway, not very different fh = 0.667 and fc = 0.333).

The other parameters of the model, and in particular those

governing the size distribution and the (
, �) pair of para-

meters giving the broadening of the G(r) peaks, converge to

the input values already at Rsup = 30 Å, that is at a distance

corresponding to the average radius of the ‘virtual sample’.

Then, it looks like the R-space approach could allow a reliable

determination of the overall stacking fault frequencies even

over a limited distance range; this opportunity could be useful

in view of the assessment of structure–property relationships

in real samples. It should also be mentioned that the ‘experi-

mental’ data used for testing the R approach do not provide a

length scale dependence of structural features; then, the

behaviour reported in Fig. 3 depends only on the different

amount of data provided to the fitting algorithm. However, it

can be envisaged that in real samples the R approach could

give interesting information on the actual length scale

dependence of all the structural features and, in particular, of

the stacking fault parameters.

The issue of discriminating between different models is a

tricky one, that can be treated by statistical approaches like

the Hamilton’s test (Hamilton, 1965). Taking advantage of the

fact that the ‘experimental’ data are known in detail, the

typical situation of an overparameterization of the structural

model was reproduced, using a s = 4 model to fit data corre-

sponding to s = 3. The simulated G(r) relative to a Reichweite

s = 3 model depends on two probability parameters: 
III,

giving the probability of a c_c sequence (like ABC_A), and

�III, for sequences h_c (ABA_C-type). The input values for

the simulation of the ‘experimental’ data were 
III = 0.4 and

�III = 0.3. However, the corresponding G(r) pattern was

analysed with a s = 4 model, to check to what extent the R

approach is sensitive to the collapse of the s = 4 model onto

the s = 3 case, that is, when 
 = � = 
III and 	 = � = �III. Starting

from a point with a definite s = 4 character, the fitting run gave

the optimized values 
 = 0.35 (8), � = 0.43 (5), 	 = 0.29 (7) and

� = 0.31 (8), suggesting a fair capacity for discriminating

between the s = 3 and s = 4 models. A deeper insight into this

issue is provided by Figs. 4(a)–4(b), showing two scans of the

�2 in the space of the parameters: Fig. 4(a) shows the scan of

�2 as a function of the pair of parameters (
, �) around the

ideal (0.4,0.4) values, all the other parameters of the model s = 4

being fixed at the minimum achieved in the above-described

optimization run; Fig. 4(b) shows the corresponding space

parameter scan involving the pair (	, �). While the variation of

the latter pair of parameters shows a reasonably well defined

minimum of �2, the dependence of �2 on the (
, �) pair shows

a long shallow valley that is indicative, in this specific case, of

the drawback of overparameterization.

3.2. Analysis of a real bulk sample

The model described in Section 2 was applied to the analysis

of the X-ray diffraction data recorded on two different

samples: (i) B1, bulk cobalt powder (Aldrich); (ii) G2,
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Figure 3
Fitted probability parameters as a function of the maximum R value. For
the sake of clarity, the value of 
 was offset by subtracting 0.7.

Figure 4
Behaviour of �2 as a function of the pair of parameters (
, �) (a) and of
the pair (	, �) (b) in the neighbourhood of the respective optimized
values. The other parameters of the model are kept fixed at the converged
values of the fitting run.



obtained by hand-grinding B1 for a few minutes in an agate

mortar. The powder patterns were acquired in the Q interval

1–21 Å�1 at the ID22 beamline of the European Synchrotron

Radiation Facility (Grenoble, France) in Debye–Scherrer

geometry using � = 0.4 Å and a nine-channel Si 111 multi-

analyser stage (Hodeau et al., 1998).

The diffracted intensities reported in Fig. 5 show that the

definitely mild grinding treatment produces a strong decrease

in the cubic sequences which, as observed in the literature,

could be due to the collapse of a metastable cubic phase

formed during crystal growth (Meng et al., 2013). Besides the

very large crystallite size, shown by the sharpness of the

diffraction lines, traces of oxide phases are also present (see

Fig. S1), e.g. CoO (main peaks at 
9.3� and 
10.78� 2�, the

latter strongly overlapped with the metal) and Co3O4 (at


9.4�, 
14.75� and 
16.07� 2�). The G(r) pattern was

extracted by the pdfgetx3 package (Juhás et al., 2013) and two

distance ranges, 1 � d � dmax = 30 Å and 1 � d � dmax = 60 Å,

were selected for fitting. The model G(r) was calculated for

spherical crystallites, whose average diameter was determined

by fitting the model to the data.

The model G(r) for cobalt depends on: (i) the hexagonal

lattice parameter |a| = |b| and the distance |c| between neigh-

bouring basal atomic layers; (ii) the four probability para-

meters 
, �, 	, �; (iii) an overall scale factor; (iv) the

broadening of the G(r) peaks. For the latter quantity, an

inverse dependence on the distance, similar to that proposed

by Jeong et al. (1999), was assumed:

�2
dn
¼ �2

0 �
�2

12

ðdnÞ
1=2
: ð21Þ

In equation (21) dn is the numerical value of the nth distance

between pairs of atoms. This dependence is clearly different

from the linear one assumed in equation (20). According to

the latter, the uncertainty in the relative position of pairs

increases linearly with distance, while the former reaches

asymptotically a constant value. As the fitting runs on B1 and

G2 were carried out on a small interval of distances compared

with the actual particle size, the functional dependence

proposed by Jeong et al. (1999), quickly reaching the asymp-

totic behaviour, was preferred to the linear one of equation

(20). Various fitting attempts showed that a not so swift

attainment of the asymptotic value, as involved in Jeong’s

formula, was suitable and then, as an empirical trade-off,

the dependence of equation (21) was adopted. The trend of

equation (21) as a function of the optimized �2
0 and �2

12

parameters is shown in Fig. S3.

The fitting results in the 1–30 Å distance interval are

reported in Table 1 and Fig. 6.

The oxide phase was also taken into account in the

formulation of the R-space model. However, its contribution is

actually a minor one. Then, a possible model of a metal-oxide

core–shell structure cannot be validated on the basis of

experimental evidence. So, the CoO and Co3O4 structure was

modelled at a low level, taking into account the crystal-

lographic distances relevant to the two oxides, and only an

average Gaussian broadening.
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Table 1
Fitting results in R space.

B1 G2

a (Å) 2.510 (4) 2.509 (3)
c (Å) 2.039 (2) 2.038 (5)

 0.957 (2) 0.97 (1)
� 0.17 (1) 0.071 (2)
	 0.087 (6) 0.08 (2)
� 0.03 (3) 0.02 (1)
fcc 0.24 0.14
fhc 0.06 0.06
fhh 0.64 0.74
fch 0.06 0.06
�0

2 (Å2) 0.016 (1) 0.018 (1)
�12

2 (Å2) 0.014 (4) 0.015 (1)
Rwp 0.065 0.063

Figure 5
XRD pattern of bulk cobalt (red) and hand-milled cobalt (black) in the
10–13.2� region showing the presence of both h.c.p. and c.c.p. features.
The h.c.p. and c.c.p. signatures are indicated as h and c, respectively.

Figure 6
Best fitting (red) to the G(R) data of sample G2 according to the model
described in the text. The experimental data are omitted for the sake of
clarity. The residual is plotted in blue.



4. Q-space feedback

Simulation of the XRD pattern on the basis of the refined

parameters reported in the previous section shows possible

shortcomings that should be carefully evaluated when

considering the R approach.

Inspection of Fig. 7 shows that, although the model repro-

duces simultaneously all the peaks typical of both the f.c.c. and

h.c.p. sequences, and the reflection-dependent broadening

originated by stacking faults, the comparison between the

calculated pattern and experimental data shows several

sources of disagreement:

(i) Underestimation of particle size. This effect is particu-

larly evident in the angular range 10–13.5� 2�. In fact, the radii

of the spherical crystallites obtained by fitting in the 1–30 Å

range (96 and 83 Å, for B1 and G2, respectively) are much

smaller than what is seen from the peak broadening in the

XRD data. Then, it is straightforward to conclude that the R

interval is too narrow to appreciate the decrease in PDF peak

intensities originating from the finite size of the diffracting

domains.

(ii) Peak broadening as a function of the diffraction angle.

In the wide-angle range, the broadening of the calculated

peaks becomes comparable, or even narrower, than the

experimental ones, which are definitely very sharp at smaller

2�. It is well known that the finite width of the distance

distribution is a source of peak broadening that increases as a

function of the diffraction angle (Ruland, 1965): this effect and

the size broadening should fit the data over the whole Q range.

It looks likely that the distance distribution given by equation

(21), or by similar formulas, holds only on a limited R interval.

(iii) Peak shape. The peaks in the XRD data have a

Lorentzian-like shape, pointing to a wide size distribution

(Allegra, 1982). However, the calculated lines are Gaussian-

like and, moreover, show the satellite ripples typical of a

strictly sharp size distribution, pointing to the necessity, for a

thorough structural characterization, of allowing for a suitable

size distribution.

(iv) The (001) line at 11.25� 2� is split into two components,

denoting different periodicities for the distance between basal

planes. It is also evident that the simulated peak at 12.95� 2�,

characteristic of the c.c.p. arrangement, is shifted towards

higher 2� values with respect to the experimental data.

The conclusion of this analysis is that the long-range details

of the structure are not captured correctly because the

R-space model is tuned over a distance range that is much

smaller than the actual particle size. In fact, the enlargement

of the simulation interval to 60 Å, keeping the same para-

meters as determined by fitting in the 1–30 Å interval, shows

that the difference plot is roughly twice as large beyond 30 Å

(see Fig. S4 in the supporting information).

5. Concluding remarks

This paper reports a real-space approach to the analysis of

structural disorder in close-packed metals. The formalism

detailed in Section 2 translates into R space the Debye

function analysis used to simulate powder diffraction patterns

in Q space. The R and Q approaches are in principle equiva-

lent; the fundamental difference is that in R space one can

filter a given range of distances and then get local information

about the sought-after structural features, while in Q space all

the distances contribute to the Fourier components of the

diffraction lines.

A further relevant difference between the R and Q

approaches is that the PDF signal broadening depends on the
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Figure 7
Experimental data of B1 cobalt sample (red) and simulated XRD pattern
(black) according to the modelled parameters obtained from the PDF
fitting. The intensities reported in the three frames are rescaled to show
the wide-angle details of the XRD pattern.



static and correlated disorder between pairs of atoms, while in

Q space the finite particle size also contributes to the broad-

ening of the diffraction lines. Then, peak overlap and merging

with the background in nanostructured samples could hamper

the structural analysis in Q space. On the other hand, the size

effect in R space can be observed by the decrease of the PDF

intensity with increasing distance, so that the two sources of

broadening (size and disorder) can be neatly discriminated in

the R-space approach. In principle, the simulation of the

small-angle contribution could also allow for a fine determi-

nation of the shape and size distribution of scattering domains

(see the discussion related to Fig. 1), but this point requires

further investigation. The PDF analysis carried out on simu-

lated XRD data demonstrates that the R approach can give

reliable results on nanosized samples: in such cases the opti-

mized stacking fault parameters can be determined also on a

limited R range. An indicative example of the issues involved

in the case of overparameterization of the stacking faults

model is given in Section 3.1, presenting the case of a Reich-

weite s = 4 used for the analysis of an s = 3 virtual sample. The

optimized values of the stacking fault parameters indicate a

fair capacity for convergence towards the ‘true’ structure, but

a scan of parameter space shows the drawback of over-

parameterization.

We carried out a structural analysis on cobalt samples

composed of large metallic particles, showing finer details of

the diffraction lines and a PDF pattern extending over a wide

range of distances. The R-space approach was integrated by a

Q-space feedback. In the 1–30 Å interval the assessment of

stacking faults yielded a very good fitting with a Reichweite s = 4

model that, translated into Q space, was able to simulate all

the diffraction peaks corresponding to both the f.c.c. and h.c.p.

packing. The Q feedback, in contrast, demonstrated that the

R-space approach failed at capturing the details of the size

distribution of the crystallites, clearly due to the fact that the

investigated R range is much smaller than the average particle

size, and that two phases are most likely present in the

samples.

In conclusion, it is apparent that the R-space analysis can

give a complete structural characterization of a disordered

sample, if a suitable range of distances is taken into account.

Then, the R-space approach could be particularly effective

with nanostructured samples, where the distance range is

limited by the actual sample size. On the other hand, the

opportunity of filtering the range of investigated distances

could be a new approach to the length-scale evaluation of

structural disorder.

6. Related literature

Related literature cited in the supporting information:

Gautschi (1970), Kölbig (1970).
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