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Despite the widespread diffusion of nonlinear methods for heart rate variability (HRV) analysis, the presence and the
extent to which nonlinear dynamics contribute to short-term HRV is still controversial. This work aims at testing the
hypothesis that different types of nonlinearity can be observed in HRV depending on the method adopted and on the
physiopathological state. Two entropy-based measures of time series complexity (normalized complexity index, NCI)
and regularity (information storage, IS), and a measure quantifying deviations from linear correlations in a time series
(Gaussian linear contrast, GLC), are applied to short HRV recordings obtained in young (Y) and old (O) healthy subjects
and in myocardial infarction (MI) patients monitored in the resting supine position and in the upright position reached
through head-up tilt. The method of surrogate data is employed to detect the presence and quantify the contribution of
nonlinear dynamics to HRV. We find that the three measures differ both in their variations across groups and conditions
and in the percentage and strength of nonlinear HRV dynamics. NCI and IS displayed opposite variations suggesting
more complex dynamics in O and MI compared to Y, and less complex dynamics during tilt. The strength of nonlinear
dynamics is reduced by tilt using all measures in Y, while only GLC detects a significant strengthening of such dynamics
in MI. A large percentage of detected nonlinear dynamics is revealed only by the IS measure in the Y group at rest, with
a decrease in O and MI and during T, while NCI and GLC detect lower percentages in all groups and conditions. While
these results suggest that distinct dynamic structures may lie beneath short-term HRV in different physiological states
and pathological conditions, the strong dependence on the measure adopted and on their implementation suggests that

physiological interpretations should be provided with cautiousness.
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Historically, the study of heart rate variability (HRV) has
both received clinical attention, e.g. as a tool for risk strat-
ification after myocardial infarction, and has attracted the
interest of physicists who saw it as a particularly lucid ex-
ample of chaos in physiology. Later on, after it was re-
alized that a thorough evaluation of the chaotic nature
of cardiac dynamics is precluded by difficulties inherent
in the noisy nature of biological signals and in the re-
stricted length of the data typically available, the field of
HRYV analysis underwent a shift in paradigm from chaos
to complexity (intended as unpredictability) and detection
of nonlinear dynamics in short-term HRV (up to a few
minutes of recordings) analyzed in different pathophysi-
ological states. The latter issue remains elusive, due to the
difficulty of reliably assessing nonlinearity over short time
series, to the proliferation of diverse nonlinear analysis
methods each with its own strengths and limitations, and
to the changing nature of nonlinear HRV dynamics across
states and conditions. The present study contributes to set-
tle this issue, implementing different of state-of-art non-
linear dynamic measures and comparing them as regards
the detection of the presence and the contribution of non-
linear dynamics to short-term HRYV. The comparison is

performed considering the progression across healthy and
pathological states (i.e., aging and myocardial infarction)
and investigating the effects on the cardiac dynamics of a
specific physiological stressor (i.e., head-up tilt).

. INTRODUCTION

Human heart rate variability (HRV), commonly assessed
measuring the spontaneous beat-to-beat changes in the dura-
tion of the RR interval of the ECG, is the result of the activ-
ity of different physiological control systems which operate
across multiple time scales to let the body functions adapt to
environmental, physical and psychological challenges'’. RR
interval fluctuations have been classically represented as a lin-
ear superposition of rhythms?, leading to remarkable time-
and frequency-domain descriptions of the factors contribut-
ing to the neuroautonomic modulation of the heart thythm in
healthy conditions, as well as of the alteration of these factors
related to a variety of pathological states*®!8223942 " Never-
theless, since the cardiac control is typically accomplished
through the interaction among multiple complex regulatory



mechanisms, including self-sustained oscillators as well as
control loops31, the linear description of the RR interval vari-
ability may be severely limited and disregard significant dy-
namical features.

As a consequence, a variety of nonlinear approaches to time
series analysis have been devised to characterize RR inter-
val fluctuations and extract additional physiological and clin-
ical information from HRV®*%4, A class of these approaches,
focused on long-term analyses spanning scales up to several
hours, is mainly based on using methods able to assess scal-
ing properties, long-range correlations, and multifractality of
the RR time series>>*3%4®, These nonlinear methods were of-
ten employed with the aim of identifying signatures typical of
chaotic dynamics in long-term HRV recordings, leading to an
animated discussion of this topic'®. Besides the presence or
absence of chaos!*2!:28  there is substantial consensus about
the fact that long-term RR interval time series are nonlinear
and multifractal, and that the scaling behavior of HRV is al-
tered with aging or during physical exercise, and under patho-
logical conditions such as myocardial infarction®20-23:23.29

On the other hand, it is also widely accepted that the as-
sessment of HRV over temporal scales ranging from seconds
to a few minutes allows the indirect investigation of the mech-
anisms underlying the short-term cardiovascular control!3#!
and this assessment might require nonlinear methods better
suited for the evaluation of complex aspects of HRV dynam-
ics. In fact, a number of nonlinear measures have been de-
veloped to this end, e.g. based on nonlinear prediction®>7,
entropy or mutual information3%%, time irreversibility 2, or
phase coupling®'?. These and other studies have provided am-
ple evidence that changes in nonlinear descriptors of short-
term HRV such as complexity or regularity indexes, either in-
duced by the modification of the experimental conditions or
determined by spontaneous transitions among physiological
states, can be reliably detected and associated to alterations
of the autonomic control. Notwithstanding this, the presence
and impact of nonlinear dynamics in short-term HRV is still
a controversial issue. Some studies suggested that nonlinear
components of HRV are of limited importance in resting con-
ditions and are evoked by the presence of a dominant respira-
tory sinus arrhythmia®>, or in association with respiratory
inputs to the cardiovascular system!”?®. Conversely, other
studies assessing temporal asymmetries suggested that non-
linearities are relevant at rest and may be present even in con-
ditions of small respiratory sinus arrhythmia>*. The contribu-
tion of the two branches of the autonomic nervous system to
nonlinear HRV dynamics remains elusive and is likely linked
to the time scales of their functioning’?. Moreover, nonlin-
ear dynamics might be sustained by the interaction between
sympathetic and parasympathetic activities®.

Methodologically, it has been suggested that multiple non-
linear components, operating at different scales and possibly
interacting with each other, may concur to the generation of
short-term HRV>2732, Since these different components of
HRV nonlinear dynamics may be captured in a different way
by different metrics, the aim of the present study is to test
the hypothesis that distinct types of nonlinear dynamics un-
derlie HRV during different physiopatological states. To this

end we apply three nonlinear dynamic measures to the RR
interval time series measured in young and old healthy sub-
jects, as well as in post acute myocardial infarction (AMI)
patients, monitored at rest and during sympathetic activation
induced by postural change. The measures were selected,
among those allowing the assessment of nonlinear dynamics
in short-term HRV (~ 300 points), to investigate such dynam-
ics from different perspectives, exploiting different concepts
and implementing different estimators. In particular, two of
the measures quantify the common concepts of complexity
and regularity previously defined in time series analysis with
the indexes of Sample Entropy>® and Information Storage®,
implementing them through refined estimation techniques de-
vised recently®'%. The third measure is defined building upon
several previous works™!!**37 to quantify the deviation from
linearity of the correlation structure of the observed time se-
ries according to a recently proposed Gaussian Linear Con-
trast method (GLC)'?. The application of these approaches in
conjunction with the method of surrogate data>®®! allows us
to quantify the extent to which nonlinear dynamics impact on
short-term HRV in different conditions of autonomic nervous
system imbalance, also investigating the effects of age and
pathology. The database used in the study is made publicly
available to favor reproducibility and encourage the compari-
son with different nonlinear dynamic measures.

Il. NONLINEAR DYNAMIC MEASURES

This section describes the methods used in the present
work to quantify nonlinear dynamics in the temporal statis-
tical structure of a system evolving in time. Our starting point
is an experimental time series {s,},n = 1,2,..., N, which
is considered as a realization of a stochastic process S de-
scribing the evolution over time of an observed dynamical
system S. The process S is considered stationary, so that
the random variables obtained sampling the process at the
time n (i.e. Sp,n = 1,2,..., N), are identically distributed
with marginal probability density function f(-) and cumula-
tive density function F'(-). Moreover, without loss of general-
ity, we assume that each S,, has zero mean and unit standard
deviation.

To assess nonlinear dynamics in the stochastic process S
we look at its temporal correlation structure: while for purely
linear dynamics the dependence between s,, and s,,_¢ is linear
for any lag ¢, in the case of nonlinear dynamics such depen-
dence cannot be studied only in terms of linear correlations.
In the first two methods considered, nonlinear correlations are
investigated within an information-theoretic framework, sep-
arating the present state of the system .S,, from its past states
S, = [S1,...,Sn—2,S,_1] and quantifying their informa-
tion content in terms of entropy measures®®. In fact, when
the system transits from past states to a new state, new in-
formation is produced in addition to the information that is
already carried by the past states. The rate of generation of
new information is inversely related to the strength of nonlin-
ear correlations in the process, while the information shared
between the present and the past variables is directly related



to such correlations®. On this basis, the measures of condi-
tional entropy (Sect. IT A) and information storage (Sect. II B)
assess nonlinear correlations quantifying respectively the new
information contained in S,, but not in .S,,, and the amount of
information carried by S,, that can be explained by S, .

The third method takes its roots on the observation that a
purely linear stochastic process is considered to have only
linear correlations. However, the most feasible models for
generation of pure linear processes give a Gaussian marginal
distribution as output, so that linear processes with marginal
Gaussian distributions are usually considered as reference for
linearity. This can lead to false positive cases by nonlinearity
methods when applied to linear processes with non-Gaussian
marginal distribution. In the GLC (see Sect. II C) we test non-
linearity based only on the nature of correlations, which truly
reflect the dynamics, and discard those effects induced by non
Gaussian marginal distributions.

A. Complexity Index based on Local Sample Entropy

The information-theoretic assessment of nonlinear correla-
tions in a dynamic process is based on applying the concepts
of entropy and conditional entropy to the random variables
representing the present and past states of the process. Given
two generic continuous (possibly vector) random variables X
and Y, the entropy of X and the conditional entropy of X
given Y are defined as

H(X) = ~Ellog f(@)] = - |

(z)log f(z)dx, (1)

H(X|Y) = —Ellog f(z[y)] = H(X,Y) = H(Y), ()

where Dx is the domain of X, f(x) and f(x|y) are the proba-
bility density of X and the conditional probability of X given
Y, and E[] is the expectation operator; the term H(X,Y") in
(2) is the joint entropy of X and Y, obtained generalizing (1)
to the joint probability density f(x,y) = f(x|y)f(y). Par-
ticularizing these definitions to the variables S,, and S, de-
scribing the present and the past states of the process .S, the
conditional entropy becomes

H(Sn|S;):H(S;75n)_H(S;) 3)

The conditional entropy quantifies the amount of information
contained in the present of the process that cannot be ex-
plained by its past history: if the process is fully random, the
system produces information at the maximum rate, yielding
maximum conditional entropy; if, on the contrary, the process
is fully predictable, the system does not produce new infor-
mation and the conditional entropy is zero.

In the present work, practical computation of the condi-
tional entropy is performed adopting kernel estimates of the
probability density functions®®. In particular, we make use of
the well known Sample Entropy index®, improved through
the implementation of a local version of the estimator’!. The
Sample Entropy (SampEn) estimates H(S,|S;, ) in (3) first

truncating S, to S = [Sp—1,Sn—2,...,Sn—m], and then
approximating H (S, S,,) and H(S™) as the negative loga-
rithm of the average joint probability of finding a pattern in
the neighborhood of the reference pattern with a tolerance r
in the (m + 1)dimensional and m—dimensional embedding
space, namely

SampEn(m, r,n) = —1In (p(S7", Sp)) + I (p(S;")) , 4)

where p(S™, S,,) is the probability that the pattern SI"* & S,
assumes the value s @ s,, , p(S™") is the probability that the
pattern S]7* takes the value s and (-) performs the average
over time (i.e., over all values s]* & s,). SampEn is a robust
estimator of irregularity given that the log-of-zero situation is
extremely unlikely because the logarithm is applied to the av-
erage of a quantity that has O as the lowest bound. However,
as a consequence of computing an average over time, SampEn
has the disadvantage to be a global marker of irregularity that
might not represent reliably the local behavior in the neighbor-
hood of a specific pattern and blur nonlinear features®'. A lo-
cal version of SampEn (LSampEn) was proposed in Ref.’! by
directly approximating H (.S,,|S™") instead of its constituents
(i.e., H(S",Sy,) and H(S)) as

LSampEn(m, Ty n) =—In <p(Sn‘Sr7Ln)> ) &)

where p(S,,|S) is the conditional probability that the cur-
rent state S,, assumed the value s,, given that the past state
Sy is s7'. The average operator makes the estimator ro-
bust against the log-of-zero situation and the estimation of
p(Sn|S™) renders LSampEn a local estimator of irregularity
given that the quantity being averaged referred specifically to
the reference pattern S)*. To limit the consequence that, when
solely S7™ is found in the neighborhood of 7", p(S,|S]) is
unreliably high*, we applied the correction proposed by Porta
et al.>!, namely in this unfortunate case p(S,|S™) is set to
(N — m + 1)~ corresponding to the maximum uncertainty
computable over the series. The resulting estimator, applied
to the time series reduced to unit variance, is denoted as Nor-
malized Complexity Index (NCI)*!.

B. Regularity Index based on Information Storage

Information measures can be exploited also for evaluating
in a direct way the strength of nonlinear correlations in the dy-
namical structure of a stochastic process, so that to assess its
degree of regularity. To this end, a relevant entropy measure is
the so-called information storage, which quantifies the amount
of information shared between the present and the past obser-
vations of the considered process. The information storage of
the process S is defined as:

I(S,; 8, ) = H(Sn) + H(S,) — H(S,, Sn), (6)

where I(-;-) denotes mutual information. The information
storage reflects the degree to which information is preserved
in a time-evolving system®. As such, it measures how much
of the uncertainty about the present can be resolved by know-
ing the past: if the process is fully random, the past gives no



knowledge about the present, so that the information storage
is zero; if, on the contrary, the process is fully predictable,
the present can be fully predicted from the past, which re-
sults in maximum information storage. Note that informa-
tion storage and conditional entropy of a dynamic process
are inversely related to each other, and depend on the en-
tropy of the present state of the process through the equation
I(Sn; Sy) + H(Sn|Sy) = H(Sn).

In practical analysis, the information storage can be esti-
mated from a time series of finite length following the same
principles of conditional entropy estimation. These include
the use of a finite number of samples in the past to approx-
imate the history of the observed process (i.e., S, is trun-
cated to S7" = [Sp—1,5n-2,--.,5n—m]), and the adoption
of non-parametric estimators of the probability density func-
tions involved in the computation of I(.S,;S)"). However,
since computation of the measure defined in (6) requires to
estimate three entropy terms involving variables of different
dimensions, and since the bias of entropy estimates depends
strongly on the dimension, implementation of standard his-
togram or kernel-based methods typically results in inaccu-
rate estimates of the information storage'>%°. Here, while
the kernel-based estimation of information storage is imple-
mented for comparative purposes in the Supplementary mate-
rial, to overcome this limitation we resort to nearest neigh-
bor entropy estimation®” and implement a strategy for bias
compensation specific of mutual information estimates>. The
nearest neighbor entropy estimate of a generic d-dimensional
random variable X can be obtained from a set of realizations
{x1,79,..., 2N} of the variable as*

where 1) is the digamma function, €, is twice the distance be-
tween the outcome x,, and its k*" nearest neighbor computed
according to the maximum norm (i.e., taking the maximum
distance of the scalar components), and (-) stands for aver-
age over N outcomes. Then, the information storage could be
computed applying (7) to the three terms in (6). However, do-
ing so would result in different distance lengths when approx-
imating the probability density in different dimensions, and
this would introduce different estimation biases that cannot
be compensated by taking the entropy differences. To keep
the same distance length in all explored spaces, we perform
a neighbor search only in the highest-dimensional space (the
one spanned by the realizations of 5]*, S,,) and then project
the distances found in this space to the lower-dimensional
spaces (those spanned by the realizations of S and S,,),
keeping these distances as the range within which neighbors
are counted. Specifically, the knn estimate of H(S!",S,) is
computed through a neighbor search, i.e. fixing the number of
neighbors k and computing the distance to the k" neighbor,
as:

H (S0, 55") = ¢(N) = ¢(k) + (m + 1)(Inen),  (8)

where ¢, is twice the distance from (S,,, S™) to its k' near-
est neighbor, and then, given the distances ¢,,, the entropies in
the lower-dimensional spaces are estimated through a range

search, i.e. fixing the distance ¢,, and counting for the neigh-
bors falling within this distance, as:

H(S5)) = (N) = (Ngp) + milnen), )
H(Sy) =¢(N) = ¢(Ns,) + (Inen), (10)

where N, and Ngn are the number of points whose distance
from S,, and S}, réspectively, is smaller than &,,/2. Finally,
our estimate of the information storage is obtained subtracting
Eq. (8) from the sum of Egs. (9) and (10)>:

IS = ¢(N) + (k) = (0(Nsp)) — ((Ng, ). (11)

C. Nonlinearity Index based on Gaussian Linear
Contrast

As we stated above, GLC assesses nonlinearities related
only to the nature of the correlations and not to the non-
Gaussianity of the data. Let us consider an experimental time
series {s,} (n = 1,2,..., N), with non-Gaussian marginal
distribution. The observed autocorrelation funtion of {s,,} is
given by

Cobs(é) = <5n5n+€> (12)

Using Cops(€), GLC tries to determine if {s,,} is originated
from a Gaussian time series {2z} (n = 1,2,..., N) with
only linear correlations, which have been transformed to have
the observed marginal distribution using an invertible trans-
formation of the experimental time series. If this is the case,
then GLC assumes that {s,, } is linear, and is non-linear oth-
erwise.

The theoretical background of the GLC method is the fol-
lowing. Let us consider a pair of correlated Gaussian variables
z¢ and yg, both of A(0, 1) type, so that their corresponding
probability density and cumulative distribution are the stan-
dard Gaussian ¢(z¢) and ®(x ). We assume that z¢ and yo
are only linearly correlated, with a correlation value Cg, i.e.

Cc = (zaya) (13)

This is equivalent to affirm that the joint distribution of zg
and y¢ is the bivariate Gaussian distribution p2(2¢, ya, Ca)-
Then, we transform x ¢ and y¢ to the variables x and y, which
follow the marginal distribution of the experimental time se-
ries. This can be done with the usual method:

v=F®(xc)], y=F""[®(yc)] (14)

with F~1(+) the inverse cumulative distribution of the exper-
imental time series. Since F~! is fixed by {s;}, the linear
correlation C between x and y, i.e. C = (xy) depend solely
on the C¢ value. Indeed, since z and y depend formally on
z¢ and yg (Eq. (14)) with joint distribution 2 (2, ya, Ca),
C can be calculated as (see Refs.?11:34-37);



c(Co) =) = [~ [ P @ne) @0 2 (v0.v6: Ca) dua dra (s)

Solving numerically the previous integral for a dense set of
C¢ values in the interval (—1, 1) we characterize the C(Cg)
function, which contains the information on how the Gaus-
sian correlations are transformed when the distribution of the
variables is transformed from Gaussian to the experimental
distribution.

These results can be extrapolated straightforwardly to time
series. Let us consider a Gaussian time series {zg.n},
with autocorrelation function Cg(¢) given by Cq(¢) =
(2G,n%Gn+e). Note that zg ,, and zg,,+¢ are equivalent to
zg and yg in Eq. (13). Then, let us transform {z¢ ,} into
a time series {z, } with the same marginal distribution of the
experimental time series using Eq. (14) for each zg ,, value.
The autocorrelation function C'(¢) of {z,} can be then calcu-
lated using Eq. (15) simply by replacing ¢, yg and Cg by
2G.n, 2G,nt+e and Cg(£) respectively. In other words, once
the C(C¢) function is known by using Eq. (15) (which only
requires the marginal distribution of the experimental time se-
ries), then C'(¢) = C(C¢(¢)). This last equality holds if the
non-Gaussian time series {z, } really comes via the transfor-
mation (14) from the Gaussian and linearly correlated series
{#zan} since this is the condition used in Eq. (15) to de-
termine C'(C¢). This property is the key point in the GLC
method.

With this theoretical background, the steps to apply the
GLC method on an experimental time series {s,, } are the fol-
lowing:

(i) Determine the observed autocorrelation function
Cobs(£) of the experimental time series {sy, }.

(ii) Transform {s, } to have Gaussian distribution using the
inverse of the transformation in Eq.(14), and calculate
its autocorrelation function C¢v(¢). Note that if {s,}
has been obtained from a Gaussian time series using
the transformation (14), simply by inverting the trans-
formation the hypothetical original Gaussian time series
is recovered, as long as the transformation from Gaus-
sian to {sy} is invertible. The knowledge of Cops(¢)
and Cg () for each ¢ allows to obtain the function
Cobs (CG’ ) .

(iii) Obtain the real C'(C¢) function using Eq.(15) by giving
to C¢ a great number of values in the interval (—1,1).
In practice, and specially for short experimental time
series, the numerical solution of the integral might be a
harsh task: due to finite size effects it can be difficult to
correctly estimate F'~!. Then, to calculate C'(Cg) we
adopt a different strategy: we use autoregressive time
series of order 1 (AR1) with the same size as {s,}).
An ARI process is defined as: zg,n, = Yzagn—1 + Mn
where {n,} is a Gaussian N(0,1) white noise and
¢ € (—1,1) is a constant. AR1 processes are Gaussian
with purely linear correlations, with generic autocorre-
lation C(¢) = ¥, so that changing the ¢ value we

(

can obtain any value of Gaussian correlation in the in-
terval (-1,1). Thus, when generating a large set of AR1
time series for different ¢ values, and calculate the au-
tocorrelation function of all of them we would obtain
a huge amount of data points densely populating the
(—1,1) Gaussian correlation interval. Nevertheless, in
order to save computation time, in practice, after pre-
liminar analysis of Cops(Cgr) we restrict the ¢ values
to those which will generate Gaussian correlation val-
ues in our region of interest. Then, we transform all
ARI1 time series using Eq.(14) to have the marginal dis-
tribution of {s,, }, and also calculate the autocorrelation
function C(¢) for all series. Note that each C'(¢) value
is the image of a Gaussian autocorrelation value. Fi-
nally, we bin the Gaussian correlation interval (—1,1)
into 0.01 length bins, and put in each one the images of
all the Gaussian correlation values contained in the bin.
The average of all the images in the respective bin gives
the C' value corresponding to the Gaussian correlation
at the center of the bin, so that finally we have a numeric
determination of the C(C¢) function.

(iv) If the experimental time series {s,,} is really obtained
by transforming a Gaussian time series, then the Gaus-
sian series is the one determined in step (ii), with auto-
correlation function C¢- (), and the observed autocor-
relation are given by Cops(€) = Cobs(Cer (¢)). How-
ever, the expected correlations in {s, } if the Gaussian
series is purely linear, Cyin(£), should be given by the
C(C¢) function determined in step (iii) evaluated at the
Ceq (£) values, i.e. Ciin(f) = C(Cgqr(¢)). The series
{sn} is linear when Cops(£) = Chin(€) and is not linear
otherwise. In this way, to quantify the nonlinearity of
{sn} we can define the GLC non-linearity index as

[
GLC = Z |Cobs (£) — Chin ()] (16)

=1

Actually, this GLC value measures the deviation of the ob-
served dependence from that of a Gaussian process. Note that
if the Gaussian process is transformed to a different marginal
distribution (the one of the observed time series) using an in-
vertible transformation, the dependence of the values is not
modified since the transformation preserves the ordering of
the values in the time series. In this case, GLC will be very
close to zero and then large GLC values will indicate non-
linearity. However, if the observed time series comes from a
non-invertible transformation of a Gaussian process, GLC will
be larger than zero despite the linear underlying dynamics, so
that this situation could be considered as a false positive. Nev-
ertheless, for non-invertible transformations the dependence
of the time series will be different from that of a Gaussian
process, since the transformation will change the ordering of



the values. In this sense, we could say that the observed time
series presents a higher complexity than a Gaussian process,
and will be reflected also in the GLC value.

In summary, GLC measures any deviation from the depen-
dence in a Gaussian process, the paradigm of the simplest
correlated process. According to this, GLC could be consid-
ered as a complexity measure, although strictly speaking GLC
measures nonlinearity only when the signal is originated with
an invertible transformation. This approach is similar to that
used in the copula theory*? when the dependence is studied
avoiding the effects of the particular marginal distribution.

. DETECTION AND QUANTIFICATION OF
NONLINEARITY

A. Detection of Nonlinear Dynamics

For each individual analyzed HRV time series, we first as-
sess the presence of nonlinear dynamics exploiting the method
of surrogate data®'. This approach is based on: (i) a null hy-
pothesis to be rejected; (ii) a surrogate data set constructed
in accordance with the null hypothesis; (iii) a discriminating
statistic that has to be calculated on original and surrogate se-
ries; and (iv) a statistical test allowing to reject or confirm the
null hypothesis.

The null hypothesis set in our case is that the investigated
time series is a realization of a Gaussian stochastic process
(fully described by linear temporal autocorrelations), eventu-
ally measured through a static and possibly nonlinear trans-
formation distorting the Gaussian distribution.

The surrogate time series were generated in order to
preserve the linear autocorrelation structure as well as the
marginal distribution of the original time series. This was
achieved through the iteratively refined amplitude adjusted
Fourier Transform (TAAFT) method®. The method is an im-
provement of the Fourier transform (FT) method®!, which
generates surrogate time series by computing the FT of the
original series, substituting the Fourier phases with random
numbers uniformly distributed between 0 and 27, and finally
performing the inverse FT. Since the FT method distorts the
amplitude distribution of the original process when such a dis-
tribution is not Gaussian, the IAAFT method is followed im-
plementing an iterative procedure that alternatively constrains
the surrogate series to have the same power spectrum (by re-
placing the squared Fourier amplitudes of the candidate sur-
rogate series with those of the original series) and to have the
same amplitude distribution (by a rank ordering procedure) of
the original series.

As discriminating statistic we employ each of the three non-
linear indexes presented in Sect. (II), i.e., the normalized com-
plexity index (NCI) based on local Sample Entropy, the regu-
larity index based on information storage (IS), and the nonlin-
ear index based on Gaussian Linear Contrast (GLC).

As statistical test, we perform a nonparametric test based on
percentiles. The test compares the selected nonlinear index,
here denoted generically as NI, when calculated on the orig-
inal time series (INI,) and when calculated on n, surrogate

time series (ns = 100 in this work) generated under the null
hypothesis. Specifically, NI, was compared with a threshold
for significance N I, extracted from the empirical distribution
of NI over the surrogates setting a prescribed confidence level
a (a = 0.05 in this work). In the case of the NCI index mea-
suring the complexity of a time series, the index is expected
to decrease in the presence of nonlinear dynamics compared
to linear time series; therefore, NI, was set at the 100 - -
percentile of the distribution of NI over the surrogates and
the null hypothesis was rejected if NI, < NI,. In the case
of the IS and GLC indexes measuring the regularity of a time
series or the amount of nonlinear correlations, the indexes are
expected to increase in the presence of nonlinear dynamics
compared to linear time series; therefore, N1, was set at the
100 - (1 — «)-percentile of the distribution of NI over the sur-
rogates and the null hypothesis was rejected if NI, > NI,.
In either case, rejection of the null hypothesis allows to deter-
mine, individually for each subject, if the original value of the
considered measure stands outside the 95% confidence inter-
val of the surrogate distribution, thus detecting the presence
of nonlinear dynamics.

B. Quantification of Nonlinear Dynamics

Surrogate time series were also exploited to quantify the
‘extent’ of nonlinearity in each investigated HRV recoding,
intended as the extent to which the original value of a measure
deviates from its average value obtained from linear time se-
ries sharing the autocorrelation and amplitude distribution of
the original series. This was performed comparing the index
N1, computed on the original, possibly nonlinear time series,
with the median NI, of its values computed on the set of
surrogate time series. The difference with the median, defined
as ANI = NI,, — NI, in the case of the complexity index
(i.e., when NI = NC1I), and defined as ANI = NI,— N1,
in the case of the two other indexes (i.e., when NI = IS or
when NI = GLC), was taken as a measure of the amount
of nonlinearity in the observed time series. Moreover an al-
ternative measure accounting for the spread of the distribution
of the nonlinearity measure was defined by normalizing the
difference with the median to the standard deviation of the
distribution of the measure over the surrogates (i.e., comput-
ing the ratio ANI/SD(NT)). Results for this standardized
difference are reported in the Suppl. material.

IV. PATIENTS, EXPERIMENTAL PROTOCOL AND DATA
ANALYSIS

The time series analyzed in this study belong to an his-
torical database collected to analyze the effects of aging and
myocardial infarction on cardiovascular interactions*. The
database consists on heart rate variability measured in a group
of 35 post-acute myocardial infarction (AMI, 4 female, 58.5 &
10.2 years old) patients examined about 10 days after AMI,
and in two control groups formed by 12 old healthy subjects
(0ld, 9 female, 63.1 & 8.3 years) and by 19 young healthy



subjects (Young, 9 female, 25.0 &= 2.6 years). The Old sub-
jects were matched in age with the post-AMI patients, and
both groups were significantly older than the young subjects,
(two sample t-test on age distributions: p = 0.17 Old vs. AMI,
p < 0.00001 Old vs. Young, AMI vs. Young). Eight out of
35 post-AMI patients were initially under beta-locker therapy,
but they discontinued the treatment two half-lives before the
recording session. Control subjects were normotensive and
free from any known disease based on anamnesis and physi-
cal examination at the time of the study.

After a period of 15 min for subject stabilization, the elec-
trocardiogram (Siemens Mingograph, hardware bandpass fil-
ter 0.3-1000 Hz, lead II ECG) was recorded for 10 min in
the supine rest position, followed by 10 min of passive head-
up tilt at 60 degrees. All ECG signals were digitized with
a 12 bit resolution and 1-KHz sampling rate. After detect-
ing the QRS complex on the ECG and locating the R apex
through template matching, heart period variability was mea-
sured on a beat-to-beat basis calculating the sequence of the
time intervals occurring between pairs of consecutive R peaks
(RR intervals). The series were then cleaned up from arti-
facts, windowed to N = 300 points for each condition (rest,
tilt), and detrended by a high-pass filter to fulfill stationarity
criteria**%®, Normalized time series were eventually obtained
by subtracting the mean values and dividing by the standard
deviation.

For each subject and condition, analysis of nonlinearity was
performed using the three methods described in Sect. II and
performing the tests described in Sect. III. NCI and IS indexes
were computed using standard values for the free parameters
of entropy estimators applied to short time series*3®, namely
using m = 2 values to approximate the past history of the
process, setting a tolerance » = 0.20 to define similarity
in Sample Entropy analysis (where o is the standard devi-
ation of the series equal to 1 after normalization), and em-
ploying £ = 10 neighbors in the distance-based entropy es-
timations. Distances between patterns were obtained using
the Eucilidean norm in the kernel estimator used to compute
NCT?!, and the maximum norm in the nearest-neighbor esti-
mator used in IS®®. Moreover, to investigate the dependence
on the type of entropy estimator and on the embedding dimen-
sion, the IS measure was computed also using the kernel esti-
mator and varying the dimension in the range m = (2, 3,4).
In the computation of the GLC index, taking into account the
short size of the time series (N = 300) and to align with the
other measures, we choose /i, = m = 2 to limit spurious
results induced by the fact that the autocorrelation function
tends to reach quickly the noise level.

For each assigned index (NCI, IS, GLC), the statistical sig-
nificance of its changes across groups (Young, Old, AMI) and
conditions (rest, tilt) was assessed by the two-way ANOVA,
introducing the gender of the subjects as a categorical con-
founder variable in the test design. The assumption of Gaus-
sianity was checked using the Jarque-Bera normality test, sug-
gesting Gaussianity in the large majority of the distributions
tested (15 out of 18 tests). Post-hoc tests were performed us-
ing the two sample t-test with unequal variances to detect pair-
wise differences between groups (limited to the comparisons

Young vs. Old and Old vs. AMI, with Bonferroni correction
for this double comparison), and using the paired Student t-
test to detect pairwise differences between the two conditions
(rest vs. tilt). We computed also the percentage of subjects
belonging to each group for which the null hypothesis of lin-
ear Gaussian dynamics was rejected in the two conditions;
then, statistically significant variations between two groups in
a given condition were assessed using the chi-square test for
proportions, while significant variations between conditions
for a given group were assessed using the McNemar test for
paired proportions.

V. RESULTS

Figure 1 reports an illustrative example of the application of
the three considered nonlinear dynamic measures to individ-
ual HRV time series measured from one Young subject, one
Old subject, and one AMI patient in the two analyzed experi-
mental conditions (rest, tilt). In each panel and for each of the
two conditions, the individual value of the considered measure
is plotted with a symbol and the distribution of values obtained
from the same measure over 100 surrogate time series is rep-
resented with an error bar (median and 5" — 95" percentiles);
significant nonlinear dynamics are detected when the original
value lies outside the surrogate distribution, while the extent
of the deviation from can be inferred comparing the original
value and the surrogate median. Considering the two entropy
measures, opposite response to the change in condition are
observed consistently for the three cases, with lower values of
NCI and higher values of IS measured during tilt compared
to rest. On the contrary, moving from rest to tilt the nonlin-
ear dynamic measure based on GLC decreases slightly for the
Young subject (circles), decreased more consistently for the
Old subject (squares), and increases for the AMI patient (tri-
angles). Moreover, the comparison between the original value
of a measure and its distribution on the surrogate time series
reveals the different ability to detect nonlinear dynamics of
the different measures. In particular, in both the experimental
conditions nonlinear dynamics are detected only by the Infor-
mation storage in the Young subject (Fig. 1a) and only by the
Gaussian Linear Contrast method in the AMI patient (Fig. 1c),
while all measures detect the presence of nonlinear dynamics
in the Old subject (Fig. 1b, NCI and IS in both conditions and
GLC only at rest).

Most of the trends observed for the representative subjects
described above are reflected at the population level, as re-
ported in Figure 2 showing the distributions across subjects
and conditions of the three nonlinear dynamic measures. The
indexes based on conditional entropy and mutual information
display opposite trends in response to the change of posture:
the transition from rest to tilt is associated with a statistically
significant decrease of the complexity index (NCI, Fig. 2a)
in both Young (p < 0.0005) and AMI (p = 0.025) and a sta-
tistically significant increase of the information storage (IS,
Fig. 2b; p < 0.0005) in both Young (p < 0.0005) and AMI
(p < 0.0005), while no significant changes are detected for
both measures in the Old group. Moreover, during tilt NCI
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FIG. 1: Computation of nonlinear dynamic measures on heart period time series measured for a representative young subject
(a, blue), old subject (b, red) and post AMI patient (c,green). For each subject, the time series of the RR interval measured in
the two experimental conditions are reported on the left (above: rest; below: tilt), and the values of the nonlinear dynamic
measures obtained with the three considered methods (NCI: Normalized Complexity Index; IS: Information Storage; GLC:
Gaussian Linear Contrast) are reported on the right (markers: original values; error bars: 5", 50", 95! percentiles of the
distribution over 100 surrogates).

is significantly higher (Fig. 2a; p < 0.0001), and IS is sig-
nificantly lower (Fig. 2b; p < 0.0001), in Old compared to
Young. As to the GLC measure, it changes with the exper-
imental condition in different ways for the different groups
(Fig 2c): moving from rest to tilt the measure decreases sig-
nificantly in the Young subjects (p = 0.041), does not change
significantly in the Old subjects, and increases significantly in
the AMI patients (p = 0.023).

Fig. 3 depicts the results of the analysis performed consid-

ering the deviation of each nonlinear dynamic measure from
its median level assessed on linear Gaussian surrogates. We
find that all three measures decrease significantly, in Young
healthy subjects, with the transition from rest to tilt (ANCI :
p = 0.025; AIS : p = 0.024; AIS : p = 0.01)), while
no significant changes are observed for Old subjects and AMI
patients (Fig. 3a,b). It should be remarked that the assessment
of the statistical significances reported for these cases may be
influenced by deviations from normality, as the Jarque-Bera



test did not reject the null hypothesis of joint Gaussianity for
the rest and tilt distributions of the A7.S and AGLC' indexes
evaluated in the Young subjects.
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FIG. 2: Distribution of the three nonlinear dynamics
measures (a, Normalized Complexity Index; b, Information
Storage; c, Gaussian Linear Contrast) over the HRV time
series of Young subjects (blue circles), Old subjects (red
squares) and post AMI patients (green triangles) in the rest
and tilt conditions, depicted as individual values (markers)
and 5", 50", 95! percentiles of the distributions across
subjects (error bars). Symbols denote statistically significant
changes between conditions (#, rest vs. tilt) or groups
(Y, Old vs. Y oung); see text for details.

Fig. 4 reports the the relevance of nonlinear dynamics in
each group and experimental condition, measured as the per-
centage of subjects for which the value of the considered non-
linear dynamic measure computed for the original RR series
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FIG. 3: Distribution of the difference with the median over
surrogates of the three nonlinear dynamics measures (a,
Normalized Complexity Index; b, Information Storage; c,
Gaussian Linear Contrast) over the HRV time series of Young
subjects (blue circles), Old subjects (red squares) and post
AMI patients (green triangles) in the rest and tilt conditions,
depicted as individual values (markers) and 5, 50t", 95"
percentiles of the distributions across subjects (error bars).
The symbol # denotes statistically significant changes
between conditions (rest vs. tilt); see text for details.

is deemed (with 5 % significance) as not drawn from the dis-
tribution of the index derived from the surrogate RR series.
The conditional entropy measure is associated with nonlinear
dynamics in less than half of the subjects in each group, as
the NCI index is found below the 5" percentile of its sur-
rogate distribution in ~ 35% of Young subjects, ~ 45% of
Old subjects, and ~ 25% of AMI patients (with no substantial



differences between conditions, Fig. 4a). The mutual infor-
mation measure detects a considerably higher percentage of
nonlinear dynamics, as the IS index is found above the 95"
percentile of its surrogate distribution in more than half of the
subjects in all groups and conditions (Fig. 3b). In the Young
group, the IS index is larger than the significance threshold in
95% of the subjects at rest and in ~ 70% of the subjects dur-
ing tilt; in the Old and AMI groups the index is significantly
lower during both conditions (Fig. 4b). The different detec-
tion rate of nonlinear dynamics exhibited by the NCI and IS
measures is further investigated in the Supplementary material
of this article implementing a kernel-based estimation of IS.
The Gaussian Linear contrast approach detects nonlinear dy-
namics in ~ 30 —60% of subjects in all groups and conditions
(Fig. 4c). Moving from rest to tilt, the number of subjects with
nonlinear dynamics detected by the GLC measure decreases
in Young, while it increases in Old and AMI.

VI. DISCUSSION

The purpose of this study was to perform a compara-
tive investigation of the aptitude of three recently proposed
nonlinear dynamic measures (i.e., Normalized Complexity
Index (NCI) recently defined as a refinement of the well
known Sample Entropy measure’!, Information Storage (IS)
implemented through nearest neighbor estimation with bias
compensation'”, and Gaussian Linear Contrast (GLC)'?) to
quantify the presence and the extent of nonlinear dynam-
ics in short-term recordings of HRV obtained under differ-
ent physio-pathological states. In a time series observed as
a realization of a stochastic process, nonlinear dynamics are
typically described as nonlinear correlations between time-
lagged variables taken from the process®'. In our analysis,
these correlations are detected directly in terms of mutual in-
formation between the present and the past samples of the pro-
cess by the IS index, inversely in terms of conditional entropy
of the present sample given the past by the NCI index, or in
terms of deviation of the estimated correlation from the value
that would be expected in case of linear correlations by the
GLC index. Our results document that differences in the de-
tection and quantification of nonlinearity emerge among the
three measures, suggesting that a given nonlinear dynamic
measure may be more or less sensitive to the detection of spe-
cific types of nonlinear dynamics depending on the properties
of the measure and on the estimator adopted. Therefore, while
some of the results are robust and suggest that distinct nonlin-
ear dynamic structures may underlie the generation of HRV
depending on the physio-pathological condition under analy-
sis, physiological interpretations should be provided with cau-
tiousness.

A first result is the opposite variation exhibited by the in-
dexes of conditional entropy and information storage when
moving from rest to tilt or while comparing two groups (Fig.
2a,b). This result, which is found consistently also varying
some analysis parameters such as the type of entropy estima-
tor and the embedding dimension (see Suppl. material), can
be explained considering that NCI and IS are related to each
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FIG. 4: Percentage of significant nonlinear dynamics
obtained counting the subjects for which each nonlinear
dynamic measure was significantly different for the original
heart period than for the surrogate time series. Results are
shown for each of the three proposed methods (a,
Normalized Complexity Index; b, Information Storage; c,
Gaussian Linear Contrast) applied to Young subjects (blue),
Old subjects (red) and post AMI patients (green) in the rest
and tilt conditions. The symbol Y denotes statistically
significant changes between groups (Y oung vs. Old); see
text for details.

other as they reflect respectively the unpredictability and the
predictability of the dynamics®®. The lower NCI and higher
IS measured in response to tilt indicate higher predictability
of HRYV, likely associated to the activation of the sympathetic
nervous system induced by the postural challenge'®*. Such
an activation seems less important in the old and post-AMI



groups compared with the young subjects, as documented by
the smaller variation of the indexes (though still statistically
significant in AMI) and by the higher NCI/lower IS seen dur-
ing tilt in Old and AMI compared to Young. Confirming pre-
vious studies***, these results suggest that aging and myocar-
dial infarction are associated with higher sympathetic tone and
reduced capability to cope with the postural challenge with
further sympathetic activation.

On the other hand, the trends displayed by the GLC mea-
sure (Fig. 2c) are in agreement with those of the conditional
entropy in the young subjects (both GLC and NCI decrease
with tilt), and with those of the information storage in the
AMI patients (both GLC and IS increase with tilt). The differ-
ent behavior of the GLC index can be explained by consider-
ing that this index reflects the extent to which the correlations
of the time series deviate from those expected in the linear
Gaussian case!?, and thus it is not dependent on the extent of
linear correlations within the observed time series. As such,
GLC should be interpreted as a direct measure of nonlinear-
ity rather than as a regularity index. This is confirmed by the
consistent changes between conditions displayed by the abso-
lute values of GLC and by the difference between the index
and the median value of its surrogate counterparts (Fig. 2c vs.
Fig. 3c). On the contrary, IS is a regularity measure which
accounts for both linear and nonlinear correlations, and its in-
crease with tilt is mainly driven by the enhancement of linear
HRYV correlations. In fact, when the effects of linear corre-
lations are removed by subtracting the median on the surro-
gates the behavior of IS becomes more similar to that of GLC
(Fig. 3b,c). This similar behavior is observed consistently for
all three measures when nonlinear HRV dynamics were as-
sessed computing the deviation of each measure from the me-
dian level of its surrogate distribution (Fig. 3a,b,c). The dif-
ference with the surrogate median reveals indeed that, in the
young healthy subjects, the transition from rest to tilt is asso-
ciated with a decreased degree of nonlinearity, and this result
is in agreement with the observation that nonlinear dynam-
ics are reduced in the presence of an increased sympathetic
activity>>>7. Another peculiar result is the increased contri-
bution of nonlinear dynamics to HRV measured during tilt in
the post-AMI patients (Fig. 2c). This finding is novel and
unexpected, and may reveal that a distinct type of nonlinear-
ity takes place when the orthostatic stress is delivered in the
presence of higher sympathetic tone.

In spite of the similar trends observed for the absolute val-
ues and for the deviation from the surrogate median value of
NCI and IS (Fig. 3a,b), the two information measures ex-
hibit different percentage of significant nonlinearity in the var-
ious conditions (Fig. 4a,b). In agreement with previous stud-
ies assessing complexity through prediction measures®>’, the
amount of nonlinear dynamics detected by the complexity
measure based on local sample entropy was small in the young
healthy subject at rest, and did not change significantly with
the sympathetic activation induced by tilt or related to age and
pathology (Fig. 4a). On the contrary, using a regularity mea-
sure based on information storage nonlinear dynamics were
found consistently in the young subjects at rest, and their in-
cidence decreased significantly with postural stress and in the
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old and post-AMI groups (Fig. 4b). This finding may reflect
the fact that the spontaneous cardiovascular regulation occurs
through a variety of nonlinear mechanisms (e.g., saturation of
receptors, effects of the respiratory centers at the brain stem
level, interaction between sympathetic and parasympathetic
nervous systems, etc.) in resting conditions?!, and the rise of a
specific oscillatory component (i.e., the low frequency one re-
lated to sympathetic activation) tends to simplify the dynamics
reducing nonlinear components. The reduction of nonlinear
dynamics with the tilt-induced sympathetic activation is con-
firmed (though to a lower extent) by the test using the GLC
measure (Fig. 4c). The same test however indicates a ten-
dency to increase the rate of detection of nonlinear dynamics
with tilt in the old subjects and AMI patients. This could sug-
gest that mechanisms more complex than a pure sympathetic
activation are triggered by the orthostatic stress delivered in
the elderly and pathological states*C.

However, more methodological factors might be responsi-
ble for the disparity of the conclusions drawn by the exploited
markers. In a previous study®?, different conclusions about
HRYV nonlinear dynamics were drawn using different nonlin-
earity measures (based on nonlinear prediction and time irre-
versibility) in fetal HRV recordings as well as in adults dur-
ing graded head-up tilt. In particular, the different responses
to tilt documented by Porta et. al®? using nonlinear predic-
tion and time irreversibility are comparable to those observed
here using the IS and GLC indexes. The different rates of
detection of nonlinearity were explained by Porta et al.’? in
terms of the different time scales spanned by the measures
employed. However, this interpretation should not hold in
our case since all measures work in the same low dimensional
embedding space (m = 2 in this study). The choice m = 2,
which corresponds to a reconstructed state space defining vec-
tors (S, Sp—1), reflects a typical setting in short-term HRV
analysis!®>1:9666 " While this choice prevents the detection of
higher dimensional dynamics which may occur in HRV, in
short-term analysis it is recommended to keep reliability of
the estimated entropy measures in the presence of short data
sequences*’. Here, we observed that the adopted entropy mea-
sures bring to results which are robust against changes of this
parameter in the range m = (2, 3,4) (see Suppl. material).

A difference between the information approach and the
Gaussian Linear contrast method is that NCI and IS are ob-
tained aggregating all time lags in the computation of the mea-
sure, while GLC results from analyses performed individu-
ally for each lag and then aggregated in the final measure. In
addition, the performance of GLC might be affected by the
comparison with surrogates that might have amplified even-
tual residual departures from gaussianity present in the surro-
gate data due to finite size effects. Moreover, the dependence
of the cell size on the parameters set for the analysis (i.e., re-
spectively, tolerance and number of nearest neighbors) might
also have played a role. In order to better elucidate the na-
ture of the observed differences and the capability of the vari-
ous measures to detect different types of nonlinear dynamics,
future studies should consider extension of these measures
where longer temporal scales can be explored (e.g., analyz-
ing longer stationary recordings and/or employing methods



for dimensionality reduction'®), and deviations of the estima-
tor specific parameters from their nominal typical value are
investigated (e.g., for the information measures, the param-
eter setting the size of the cell used in the multidimensional
space to estimate probabilities!>>%).

As to the differences observed between NCI and IS, our
additional analysis comparing kernel and nearest neighbor es-
timates of the IS index (see Suppl. material) suggests that the
type of estimator can be crucial in the detection of nonlinear
dynamics. Indeed, when IS is computed via kernel estimates
rather than via nearest neighbors, the percentage of significant
nonlinear dynamics decreases, becoming comparable to that
detected by the NCI index which is also grounded on kernel-
based entropy estimation. This suggests that different coarse
graining approaches using, respectively, equal versus differ-
ent cell size’, may result in a different sensitivity as regards
the detection of nonlinear dynamics. In particular, the nearest
neighbor estimator turns out to be a better estimator for the in-
formation measures, as it shows higher sensitivity to the detec-
tion of nonlinear dynamics. Another methodological aspect
that can explain the difference is the fact that nearest neighbor
estimation is accompanied by a distance-projection approach
such that the cell size actually varies only while estimating
entropies in the highest dimension, while it is kept constant
(while allowing the number of neighbors to vary) in the lower
dimensional spaces®}. Thus, we suggest that the bias of en-
tropies computed in spaces of different dimension plays a role
in the detection of nonlinear dynamics. This aspect should be
investigated in more methodological studies involving simu-
lations of linear and nonlinear dynamic systems.

Finally, we mention as possible limitations of the present
study some characteristics of the analyzed database®. The
three analyzed groups are not homogeneous in the gender dis-
tribution (males are prevalent in AMI, females are prevalent in
Old , and the gender is balanced in Young) and this may have
an impact on the results as it is known that gender has a sub-
stantial effect on heart rate variability®>®”. Moreover, resid-
ual effects of the treatment with betablockers may be present
in the AMI patients and have an effect on the dynamics ana-
lyzed. The results reported in this study should be confirmed
on other databases with balanced gender distribution and ab-
sent of fully discontinued treatment after myocardial infarc-
tion.

SUPPLEMENTARY MATERIAL

See supplementary material for additional analysis illustrat-
ing the dependence of the measure of Information Storage on
the embedding dimension and on the type of estimator used to
compute entropies.
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