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Abstract 

Increasing evidence focuses on the endocannabinoid system as a relevant player in the induction of 

aberrant synaptic plasticity and related addictive phenotype following chronic excessive alcohol 

drinking. Besides, the endocannabinoid system is implicated in the pathogenesis of alcoholic liver 

disease. Interestingly, whereas the involvement of CB1 cannabinoid receptors in alcohol rewarding 

properties is established, the central and peripheral action of CB2 cannabinoid signalling is still to be 

elucidated. This review aims at giving the input to deepen knowledge on the role of the 

endocannabinoid system, highlighting the advancing evidence that suggests that CB1 and CB2 

receptors may play opposite roles in the regulation of both the reinforcing properties of alcohol in 

the brain and the mechanisms responsible for cell injury and inflammation in the hepatic tissue. The 

manipulation of the endocannabinoid system could represent a bi-faceted strategy to counteract 

alcohol-related dysfunction in central transmission and liver structural and functional 

disarrangement.  
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Introduction 

Alcohol use disorder is a chronic relapsing disease characterized by compulsive alcohol seeking and 

taking1, loss of control in limiting alcohol intake despite serious negative consequences, and 

recurring episodes of abstinence and relapse.2 

According to the World Health Organization Report on Alcohol and Health (2011), alcohol abuse is 

responsible for at least 60 major types of systemic diseases,3 such as gut-derived inflammation4, 

increased risk of colorectal cancer5,6 cardiovascular and hearth disease.7,8 However, the liver has 

been for long time considered the major victim of the harmful use of alcohol, since it is the main 

organ responsible for metabolizing alcohol. Several hypotheses have been advanced to explain the 

pathogenic mechanisms of alcohol-related liver disease, as well as of the aberrant functioning of the 

brain of alcoholics.9-11 Accordingly, it would be overambitious, and out of our aim, to elucidate how 

neurotransmitters and modulators are affected by alcohol, contributing, in turn, to its 

consequences. Rather, this review will focus on the endocannabinoid system (ECS), as a common 

critical player in mediating both synaptic neuroadaptation and liver architectural distortion that 

result from excessive alcohol exposure. Indeed, the ECS is implicated in the regulation of a range of 

physiological processes and pathological conditions both at the central level and in periphery,12-14 

including neural development, synaptic plasticity, pain, emotionality, immune function, metabolism 

and energy homeostasis.15-22 Moreover, if endocannabinoid(s) (eCB) involvement in the central 

effects of alcohol has been largely reported,23,24 some evidence has appeared about the role eCB 

play in mediating alcohol activity in the liver. This is a critical issue, because the identification of a 

common target accountable for alcohol-related brain and liver disease could pave the way for new 

therapeutic strategies. 
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Results  

ECS-mediated Alcohol reinforcing effects 

Alcohol produces its effects through actions on multiple brain circuits and involves neuroadaptive 

changes not only in adulthood but especially in critical periods of development.22,25-31 

The past two decades of clinical research, as well as data derived from preclinical models of alcohol 

addiction, point to the glutamatergic and the GABAergic systems as the main target of alcohol 

activity in the mesocorticolimbic system,32-38 where alcohol intake results in increased dopamine 

(DA) release from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). 

Notwithstanding, alcohol’s mechanism of action at the molecular level is fairly unknown. Some 

evidence of a direct effect on the dopaminergic system came from findings on the role played by 

acetaldehyde (ACD), its first oxidative metabolite. Indeed, ACD directly affects dopaminergic 

neurotransmission, increasing neuronal firing in the VTA, and stimulating DA release in the NAc 

shell.21,39-41 Moreover, ACD is able to induce and maintain an addictive-behavior in which seeking 

and relapse are modulated by the eCB12,42 so that ACD is believed to play a primary role in the "first-

hit" of alcohol reinforcement and in the induction of relapse.21,22,39,43-46 Indeed, the ECS21 contributes 

to alcohol’s rewarding effect, and to the occurrence of an addictive phenotype by fine tuning 

synaptic transmission: the eCB in fact, are key activity-dependent messengers that, by short and 

long-term decreases in synaptic transmission, regulate glutamatergic and GABAergic synapses. Long-

term depression (LTD) is the best-characterized and widespread form of eCB mediated long-term 

synaptic plasticity. Because behavioural adaptations rely on changes in synaptic strength, the 

cannabinoid receptor type 1 (CB1 receptor)-activated-LTD17,47 represents a fundamental mechanism 

for making long-term changes to neural circuits and behaviour.  Notably, eCB induce synaptic 

plasticity in the VTA: CB1 receptor-induced LTD of excitatory inputs to VTA GABA interneurons is 

basically mediated by 2-arachidonylglycerol (2-AG), which is formed postsynaptically via glutamate 

metabotropic receptor activation.48,49 Alcohol itself can induce an enhancement of CB1 receptor-
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dependent LTD by increasing eCB levels: as a matter of fact, alcohol is able to activate phospholipase 

A2 (PLA2), promote the synthesis of cannabinoid ligands arachidonylethanolamine (AEA) and 2-AG in 

neuronal cells, hinder fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) 

activity.50,51 This potentiation of CB1 receptor-dependent LTD can consequently promote an 

enhancement in VTA dopaminergic signalling and result in increased alcohol rewarding effects. 

Interestingly, cue-induced alcohol craving can also result in a marked elevation of circulating levels 

of AEA,52 suggesting that AEA mobilization in peripheral tissues may be a marker of activation of the 

ECS in the brain. 

The involvement of CB1 receptors in alcohol rewarding effect is further confirmed by studies showing 

that the administration of CB1 receptor agonists increases alcohol consumption in animal models of 

addiction.53,54 In particular, the administration of WIN 55,212-2, a synthetic non-selective CB1 

receptor agonist, causes a long-lasting increase in alcohol consumption during the re-exposure to 

alcohol in an animal model of relapse-like drinking55 and is able to modulate binge-like alcohol intake 

in male mice.56 Moreover, CB1 receptor agonist CP-55,940 increases alcohol preference in a two-

bottle choice paradigm57 and alcohol-maintained responses in a progressive ratio paradigm.58 On the 

other hand, the systemic administration of CB1 receptor antagonists, such as SR141716A 

(rimonabant) and AM251, is able to decrease voluntary alcohol intake in naïve-59,60 and in alcohol-

preferring rats and mice.61,62 CB1 receptor antagonists can also reduce alcohol-seeking behaviour in a 

rat model of relapse63 and decrease binge alcohol and sucrose consumption in adolescent and adult 

mice.54 Overall, the role of CB1 receptors on alcohol reinforcing properties has been mainly unveiled 

by research on CB1 receptor knockout mice, whose receptor deletion significantly reduces alcohol 

preference64 and decreases its intake and conditioned place preference.65,66,67 Interestingly, 

Hungund et al. showed that mice lacking CB1 receptors consume less alcohol than their wild-type 

counterparts and do not display alcohol-induced increase in DA release in the NAc.65 
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In contrast, Linsenbardt and Bohem56 showed a decrease in alcohol intake in male mice induced by 

high doses of WIN 55,212-2 in the first 30 minutes of Drinking In the Dark; accordingly, Cippitelli et 

al.68 reported a decline in alcohol self-administration in Wistar rats, as a consequence of CB1 

receptors stimulation. However, it cannot be ruled out that the reduction in fluid consumption may 

be due to the motor inhibition component of the CB1 receptor agonism. Moreover, inconsistent 

results came from studies employing cannabinoid receptor deletion: indeed, CB1 receptor-deficient 

mice initially show a higher alcohol preference and alcohol intake than wild type animals, while, 

after the first week, CB1 receptor deficient mice display a similar drinking pattern as wild type, 

suggesting that cannabinoid modulation of the rewarding stimuli plays a fundamental role in alcohol 

approach.69  

Besides the involvement of classical neurotransmitters, the eCB’s modulation of the response to 

alcohol involves the recruitment of reward/stress-related neuropeptides - such as CRH and 

Neuropeptide Y (NPY) – which play a critical role in the development of addiction.70,71 Indeed, recent 

findings show that rat exposure to high concentration of ACD induces an increase in eCB 

transmission and this results in a downregulation of NPY expression and the occurrence of 

withdrawal symptoms following ACD suspension.21,22 Moreover, the study showed that CB1 receptor 

blockade by the antagonist/inverse agonist AM281 is able to increase NPY expression, decrease ACD 

seeking-behaviour and boost homeostatic functional recovery.21,22 This is in accordance with AEA 

and 2-AG effect on CB1 receptors on glutamate terminals, and the resulting decrease in glutamate 

release and downregulation in NPY mRNA levels72,73. Overall CB1 receptor signalling in the 

mesocorticolimbic system is a fundamental prerequisite for the expression of motivation to seek 

rewarding stimuli (Figure 1a).  
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CB2 receptors: A Novel Target for Addiction 

When cannabinoid receptors type 2 (CB2 receptor) were first cloned, they were tagged as peripheral 

receptors.74 However, recent studies suggest that CB2 receptors are expressed in the nervous system 

– certainly in activated microglia and in some neuron subsets.75 

Indeed, CB2 receptors have been recently involved in synaptic plasticity,76,77 and latest studies 

investigated the role of CB2 receptors in models of alcohol, nicotine and cocaine addiction78-80 

suggesting a role, not well defined yet, for CB2 receptors in the modulation of drug reward-related 

behaviours.81  

A recent study by Liu and colleagues provided a powerful new genetic tool for elucidating the 

functional role of CB2 receptors in the CNS, by their selective deletion in dopaminergic neurons.82 

They demonstrated that CB2 receptors put a “brake” on the classical locomotor activation that 

follows dopaminergic stimulation, since their conditional deletion in DAT positive midbrain 

dopaminergic neurons in DAT-Cnr2 cKO mice enhances psychomotor behavior. Traditionally CB1 

receptor agonism was associated with the tetrad effects in mice, producing the characteristic profile 

of suppression of locomotion, antinociception, hypothermia and catalepsy. This notion had been 

supported using data from radioligand binding and in-vivo behavioral assays that lacked sensitivity 

and cell-type specific deletion of the CCB2 receptors. The dopaminergic neuron-specific deletion of 

the CB2 receptors allowed providing evidence of the contribution of both CB1 receptors and CB2 

receptors in the cannabinoid tetrad task. This is consistent with preclinical studies showing that 

selective CB2 receptor agonists exert an attenuation of neuropathic pain pathways in rodent pain 

models83,84 and suggest that CB2 receptors may contribute to the physical effect resulting from ECS 

direct (or alcohol-evoked) activation. 
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Both CB1 receptor and CB2 receptor pathways show great diversity and complexity with distinct pre- 

or post-synaptic distribution patterns where they may work cooperatively or in opposition to 

modulate the effects of cannabinoid and eCB in diverse brain areas. Thus, activation of postsynaptic 

CB2 receptors in relevant brain areas85,86,87 supports the inhibition of VTA DA neuronal firing by CB2 

receptors. This may be associated with the resistance of the DAT-Cnr2 cKO to the induction of 

conditioned place preference caused by alcohol. Presynaptic CB1 receptors indeed are not expressed 

in VTA DA neurons and the major endocannabinoid function in DA neuron in the VTA is mediated by 

postsynaptic CB2 receptors that play an inhibitory role with respect to alcohol’s rewarding effect. 

However, the DAT-Cnr2 cKO mice showed an increased sensitivity to the rewarding effects of 

cocaine and this contributes to the existing evidence regarding the role of CB2 receptors in the 

addicted properties of this drug. Notably, the activation of brain CB2 receptors inhibits cocaine self-

administration, and increases in locomotion, DA neuronal firing and extracellular DA release in the 

NAc in mice.88 This inhibitory effect is reversed by pharmacological blockade of CB2 receptors by 

AM630 or is absent in CB2 receptor knockout mice, suggesting specificity in CB2 receptor-mediated 

effect. This apparent discrepancy, together with the modulating effect of alcohol reinforcing 

properties, illustrates the complexity of CB2 receptors involvement in addiction.  

Interestingly, CB2 receptors are expressed not only on VTA dopaminergic neurons,88,89 but also in the 

hippocampus and substantia nigra where they occupy a postsynaptic position90. These localizations 

might be associated with psychomotor and cognitive specific functions in balance with the activation 

of presynaptic CB1 receptors. 

Given that dysfunction in DA signalling is a major abnormality in psychiatric and neurological 

disorders,91 these studies provide a basis for further analysis of the role of CB2 receptors in the 

etiology of central disorders associated with DA dysregulation and for the development of drugs that 

selectively target eCB receptors (Figure 1a). 
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ECS-mediated effects in Alcoholic Liver Disease  

The ECS and its receptors have emerged as major regulators of several pathophysiological 

mechanisms responsible for cell injury and inflammatory response that are associated with chronic 

liver disease progression.92-94 Indeed, under physiological conditions, both hepatocytes and non-

parenchymal cells (i.e. Kupffer) are able to produce eCB, but the basal expression of CB1 receptors 

and CB2 receptors in the adult healthy liver is low or even absent.95,96 Notably, eCB synthesis and the 

hepatic expression of both cannabinoid receptors are upregulated during chronic liver damage.92  

Studies applying genetic or pharmacological inactivation of cannabinoid receptors showed that CB1 

receptors and CB2 receptors exert opposite effects on fibrogenesis: CB1 receptors have profibrogenic 

effects,95 while CB2 receptors can inhibit or reverse hepatic fibrogenesis and exert anti-inflammatory 

effects,97 thus protecting from liver damage progression (Figure 1b).14,98 Notably, alcohol intake 

increases the hepatic expression of CB1 receptors and, in activated stellate cells, it upregulates 2-AG, 

which, in turn, stimulates the deposition of fat in neighbouring hepatocytes by binding overly 

expressed CB1 receptors.99 On the other hand, CB1 receptor knockout mice are resistant to the 

steatogenic and fibrogenic effects of alcohol, while CB2 receptor knockout mice display increased 

collagen deposition, liver fat, and enhanced inflammatory scores.95-100 

Accordingly, selective antagonists and agonists of respectively CB1 receptors and CB2 receptors, may 

attenuate the development of alcoholic liver disease.99,101,102 In particular, CB1 receptor blockade by 

rimonabant and AM6545 induces partial regression of fibrosis and steatosis, restoring liver 

architecture.103 Rimonabant administration to wild-type mice, as well as the genetic inactivation of 

CB1 receptors are both associated with a significant reduction in fibrosis progression95, reduced 

hepatic expression of the profibrogenic cytokines and decreased number of fibrogenic cells. 

Antifibrogenic properties of the CB1 receptor-selective antagonist were ascribed to the 

antiproliferative and apoptotic properties of the compound in hepatic myofibroblasts.104 

Notwithstanding the beneficial effects of rimonabant in ameliorating hepatic fibrosis, the compound 
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was withdrawn from the market because of its psychotropic side effects, such as mood disorders 

that, in susceptible individuals, could also lead to major depression with high suicidal risk.105 

However novel compounds are currently under investigation in preclinical settings,able to modulate 

the eCB signalling while sparing the brain from toxicity.  

Indeed,  ena s and colleagues recently demonstrated that CB2 receptors agonism can protect from 

alcoholic liver disease by inhibiting hepatic inflammation and steatosis in Kupffer cell through an 

autophagy-dependent pathway.102 Moreover, CB2 receptor agonism can facilitate hepatic 

regeneration, as well as normalization of serum liver enzymes, triglycerides, free fatty acids, and 

cholesterol.103 In alcohol-exposed mice, endogenous or exogenous activation of CB2 receptors 

prevents Kupffer cells from switching into a pro-inflammatory phenotype and hepatocytes from 

accumulating triglycerides.97 In vitro activation of CB2 receptors regulates macrophage polarization 

by preventing pro-inflammatory responses and inducing polarization towards an anti-inflammatory 

phenotype.97 Because CB2 receptors are not expressed in hepatocytes,106 the antisteatogenic signal 

could originate from Kupffer cells. 

Overall these data pinpoint on the CB1 receptor signalling pathway as a novel paradigm to explain 

the molecular mechanisms underlying alcohol-induced liver damage. Moreover, hepatic CB2 

receptors emerge as protective targets not only for their antifibrogenic properties but also for 

promoting hepatocyte survival and regeneration.  

The rising availability and use of legal cannabis by individuals who also consume alcohol, make the 

assessment of cannabis impact on alcohol-related pathologies mandatory. Daily cannabis smoking 

has been pointed as an additive factor in the evolution of ALD.5 However, the synergistic effects of 

cannabis and alcohol on liver disease progression remains unclear and further research in this field is 

highly needed. 
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Discussion 

The rapidly advancing evidence on the neurobiology of the ECS suggests that CB1 receptors and CB2 

receptors may work independently and/or cooperatively to regulate diverse physiological functions 

and pathogenetic processes. Based on the present findings, we support the hypothesis of CB1 

receptors and CB2 receptors playing opposite roles in the regulation of the reinforcing properties of 

alcohol that, in turn, is related to stimulation of eCB transmission at central and peripheral levels. 

The ECS regulates both pro- and antifibrogenic responses in the liver with CB1 receptors exerting 

profibrogenic effects and CB2 receptors inhibiting hepatic fibrogenesis and exerting anti-

inflammatory effects. Overall ECS manipulation could represent a common strategy to reduce the 

incentive reinforcing properties of alcohol and to recover liver architecture and functional 

disarrangement. Further elucidation on the eCB-alcohol-crosstalk, will help finding specific agents 

able to respond to complex therapeutic demand.  

 

Methods 

The literature search targeted evidence-based guidelines, evidence-based summaries, systematic 

reviews and recent experimental research on alcohol and endocannabinoid central, peripheral and 

behavioural effects.  
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