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Abstract 

In this paper the nonstationary response of a class of nonlinear systems subject to broad-band 

stochastic excitations is examined. A version of the Path Integral (PI) approach is developed for 

determining the evolution of the response Probability Density Function (PDF). Specifically, the PI 

approach, utilized for evaluating the response PDF in short time steps based on the Chapman-

Kolmogorov equation, is here employed in conjunction with the Laplace’s method of integration. In 

this manner, an approximate analytical solution of the integral involved in this equation is obtained, 

thus circumventing the repetitive integrations generally required in the conventional numerical 

implementation of the procedure. Further, the method is extended to nonlinear oscillators, 

approximately modeling the amplitude of the system response as a one-dimensional Markovian 

process. Various nonlinear systems are considered in the numerical applications, including Duffing 

and Van der Pol oscillators. Appropriate comparisons with Monte Carlo simulation data are 

presented, demonstrating the efficiency and accuracy of the proposed approach. 

1 Introduction 

In the last decades several research efforts have been focused on the development of novel and 

efficient methods for the analysis of randomly excited mechanical and structural systems. A number 

of different approaches have been developed, which in many instances relate to the case of linear 

and nonlinear systems excited by Gaussian white noise. A broad class of structural systems, 

however, is subject to excitations such as ocean waves, winds, and seismic motions, whose realistic 

modeling involves the representation by nonstationary stochastic processes. Undoubtedly, 

approaches based on Monte Carlo simulations are among the most versatile ones to address these 

cases [1], especially when multi-degree-of-freedom (MDOF) systems are considered. Indicatively, 

other methods for the nonstationary response determination may resort to statistical linearization 

schemes [2], complex spectral moments for cross-correlations and cross power spectral densities 



representation [3-4], Galerkin approach coupled with stochastic averaging method [5-8], harmonic 

wavelets based statistical linearization [9], and Wiener Path Integral solution [10, 11]. 

In this context, the so-called Path Integral (PI) approach represents an alternative method which 

proved particularly accurate for determining the response probability density function (PDF) and 

statistics of nonlinear low-dimensional systems subject to stationary or nonstationary random 

excitations. In essence, the PI method could be considered as a discretized version of the Chapman-

Kolmogorov (C-K) equation, valid for Markov processes [12, 13], which is applied within a step-

by-step procedure to propagate the PDF in short time steps. In this regard, the response PDF at a 

certain time instant can be computed simply evaluating an integral whose kernel involves the PDF 

in a previous time instant, and the Conditional PDF (CPDF) of the system. Further, if short time 

steps are used, then Gaussian distribution of the CPDF can be assumed (short time Gaussian 

approximation), even for nonlinear systems. Since its origin [14-16], where the numerical 

implementation of the method has been firstly addressed, the PI approach has been extensively 

applied to a number of different problems [17-21], also involving nonstationary response of systems 

excited by a time-modulated normal white noise [22]. Further, the method has been also extended to 

non-normal excitation cases, such as Poisson white noise [23], combined normal and Poisson white 

noise [24], Parametric Poissonian excitation [25], and Lèvy white noise [26]. Recently the PI 

approach has been used for determining the response PDFs of nonlinear systems under stochastic 

excitations characterized by non-separable evolutionary power spectrum, relying on a combination 

of statistical linearization and of stochastic averaging [27]. Further, other current contributions have 

been focused on different schemes for an efficient implementation of the approach for MDOF 

systems [28-30]. Notably, although several progresses have been made in this field, beneficial 

features of the PI approach, such as accuracy even for low probability levels and applicability to 

practically any form of nonlinearity, warrant further investigations in alternative solution schemes 

based on this method. 

In this regard, in this paper a version of the PI approach is developed based on the so-called 

Laplace’s method of integration [31, 32], a mathematical tool generally used for an approximate 

evaluation of integrals whose kernels comprise exponential functions. Specifically, the 

aforementioned method, recently used for reliability analyses of systems subject to normal and 

Poisson white noise [33, 34], is here exploited to perform fast analytical approximate evaluation of 

the repeated integrations involved in the discretized numerical implementation of the C-K equation. 

In this manner, the evolution of the response PDF of one-dimensional systems can be easily 

obtained, even for nonstationary excitations. Further, the approach is also extended to nonlinear 

oscillators under broad-band nonstationary stochastic excitation with separable evolutionary power 



spectrum, relying on the Markovian approximation of the response amplitude process. Several 

numerical examples are considered, and juxtaposition of the proposed approach-based results with 

pertinent MCS data demonstrates the accuracy of the method. 

2 Preliminary remarks on Laplace’s method of integration 

Consider an integral of the form 

( ) ( )
b

g y

a

I e h y dy
−

=   (1) 

Assuming that the parameter 0   is large, ( )g y  and ( )h y  are both smooth real-valued 

functions, and ( )g y  has a local minimum at y
 in the interval [ , ]a b , it can be argued that the main 

contribution to the integral I  in Eq. (1) is essentially entirely originating from the neighborhood 

around y
. In this regard, let the functions ( )g y  and ( )h y  be expanded in Taylor series around 

y
 up to the second order, as 

( ) ( ) ( )( ) ( )
( )

2
*

* * * *

2

I II
y y

g y g y g y y y g y
−

 + − +  (2) 

and 

( ) ( ) ( )( ) ( )
( )

2
*

* * * *

2

I II
y y

h y h y h y y y h y
−

 + − +  (3) 

where the apexes in roman letters in Eq. (2) and (3) stand for the order of the derivatives with 

respect to the integration variable in Eq. (1). 

Since y
 is a local minimum, then ( )* 0Ig y = . Thus, substituting in Eq. (1) yields [31] 
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Recalling that the integrals at the right-hand side of Eq. (4) are Gaussian integrals, Eq. (4) can be 

approximately evaluated as  

( )

( )
( )

( )
( )

*
* *

* *

2 1

2

g y II

II II
I e h y h y

g y g y

 

 

−
  

 + 
  

 (5) 



Alternatively, incorporating ( )h y  in ( )g y  as 

( ) ( ) ( )
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lng y g y h y


= −     (6) 

the following second order approximation can be obtained 
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where 
*y  now maximizes ( )g y . 

The aforementioned formulation is generally referred to as Laplace’s method of integration [31, 

32], and it is valid also for infinite and semi-infinite intervals of integration in Eq. (1). Note that Eq. 

(5) is a rather well-known results, for instance exploited for the approximate evaluation of the 

Gamma function through the so-called Stirling’s formula. 

Clearly, accuracy of the approximation can be improved by further expansion in Eq. (2) and (3). For 

instance, if a fourth order expansion of ( )g y  is considered, then Eq. (5) becomes [31] 
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3 Path Integral based on Laplace’s method 

Consider a nonlinear system whose motion is governed by the differential equation 

( ) ( ) ( )

( ) 0

,

0

X t f X t V t

X X

 = +


=

 (9) 

where a dot over a variable denotes differentiation with respect to time t, ( ),f X t  is a nonlinear 

function of the response process ( )X t , and 0X  is the initial condition which may be either 

deterministic or a random variable with assigned PDF. Further, ( )V t  denotes a zero-mean 

modulated white noise, that is 

( ) ( ) ( )V t t W t=  (10) 

where ( )t  is a deterministic modulating function and ( )W t  is a zero mean stationary Gaussian 

white noise process with constant (two-sided) power spectral density equal to 0S , so that the time 

dependent spectral density of ( )V t  is ( ) ( )2

0VS t t S= . 



Based on Eq. (9), ( )X t  is a one-dimensional Markov process, which satisfies the Chapman-

Kolmogorov (CK) equation 

( ) ( ) ( ), , | , ,X X Xp x t p x t x t p x t d x 


−

+ = +  (11) 

where ( ), | ,Xp x t x t+  is the so-called Conditional PDF (CPDF) of the response process ( )X t . 

Note that hereinafter stochastic processes will be denoted with capital letters, and pertinent domains 

with the corresponding lower-case letters. 

Equation (11) represents the basis of the PI approach. In this regard, based on Eq. (11), to evaluate 

the PDF ( ),Xp x t +  of the response process ( )X t  at the time instant ( )t + , it suffices to 

determine the CPDF in ( )t +  for an assigned (deterministic) initial condition x  in ( )t , once the 

PDF of ( )X t  in a previous time instant ( )t  is already known. Notably, this equation is valid for 

any value of  , and the aforementioned CPDF can be obtained evaluating the unconditional PDF 

( ),
X

p x   in   of the following system [23, 24] 
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taking into account that 

( ) ( ), | , ,X X
p x t x t p x + =  (13) 

However, if   is sufficiently small, it can be approximately assumed that the CPDF follows a 

Gaussian distribution of the form 
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which constitutes the so-called short time Gaussian approximation [19]. 

Further, considering the time interval 0, ft   , where ft  is the final time instant, discretized so that 

the generic time instant is kt k t=   with 0, ,k N=  and ft t N =  is a short time step, then Eq. 

(11) can be rewritten as 

( ) ( ) ( ), , | , ,X k X k k X kp x t t p x t t x t p x t d x



−

+  = +   (15) 

assuming t =  . It can be readily seen from this equation that a step-by-step application of Eq. 

(15) yields the entire evolution of the response PDF. Clearly, as shown in Eq. (15), the PI method 



requires a repetitive numerical integration in the x  domain for each time step, which often 

constitutes the highest contribution to the computational cost of the method itself, especially for 

higher dimensional systems. Fast approximate evaluation of the integral could however be obtained 

using the previously introduced Laplace’s method of integration. Specifically, since short time step 

t  are commonly used (often chosen smaller than 210 s− ), and generally both the functions 

( ), | ,X k kp x t t x t+   and ( ),X kp x t  are smooth, an approximate solution of the discretized version 

of the CK equation Eq. (15) can be obtained based on Eq. (7). In this regard, taking into account Eq. 

(14), Eq. (15) can be rewritten as 
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which is now given in a form similar to Eq. (1), with  
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and ( )1 2 t =  . Note that, since t  is small, then 0 . 

Let *

kx  be the point such that 
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Then, taking into account Eqs. (5) and (16), the approximate solution of the CK equation Eq. (15) 

can be given as 
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where ( )*,X k kp x t  and ( )*,II

X k kp x t  are, respectively, the value of the response PDF and the value of 

the second order derivative (with respect to x ) of the response PDF evaluated in *

kx  at the time 

instant kt . 

The significance of Eq. (19) relates to the fact that the response PDF of the nonlinear system in Eq. 

(9) can be readily computed via a step-by-step application of this approximate analytical expression. 



Note that, in this manner the potentially computationally demanding repetitive numerical 

integration involved in Eq. (15) are avoided. Further, it is noted that ( )*,II

k kg x x  and ( )*,II

k kg x x , 

defined in Eq. (18), are deterministic functions which do not depend on the PDF of the response 

process. Thus, they can be evaluated once beforehand, since they do not change during the step-by-

step application of Eq. (19), hence further reducing the computational effort. 

Finally, it is worth mentioning that Eq. (19) is based on a second order Taylor series expansion, 

which could generally lead to sufficiently accurate results. However, if a more accurate 

approximation is required (for instance in case of nonlinear systems with high degree on 

nonlinearity), a fourth order expansion as in Eq. (8) can be adopted, leading to 
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3.1 Analysis for the response amplitude process 

Equation (9) and the following approximate PI approach in Eqs. (19) and (20) refer to a generic 

first-order nonlinear system. Notably, analogous procedure can be derived focusing on the response 

amplitude process of a nonlinear single-degree-of-freedom system. To this aim, let the equation of 

motion of the system be given as 

( ) ( )0 , ,X X z t X X V t+ + =  (21) 

where ( ), ,z t X X  is an arbitrarily chosen restoring force, 0  is a linear damping coefficient, and 

( )V t  is a Gaussian zero-mean nonstationary stochastic process possessing a power spectrum 

( ),
V

S t . In the ensuing analysis, it is assumed that ( )V t  is a separable random process, thus it can 

be recast in the form 

( ) ( ) ( )V t t W t=  (22) 

and the corresponding evolutionary power spectrum is 

( ) ( ) ( )
2

,
V W

S t t S  =  (23) 

where ( )W t  is a stationary random process whose power spectrum is ( )
W

S  . 

If the system is lightly damped, the response process ( )X t  exhibits a pseudo-harmonic behavior, 

which can be described by 



( ) ( ) ( ) ( )cosX t A t A t = +    (24) 

and 

( ) ( ) ( ) ( ) ( )sinX t A t A A t  = − +    (25) 

where the amplitude ( )A t  and phase ( )t  processes are slowly varying functions of time, and 

( )A  denotes an amplitude-dependent angular frequency of the system. Further, based on Eqs. 

(24) and (25), the amplitude can be expressed as 
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In this manner, following [27, 35], a linearized version of Eq. (21) can be cast as 
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where the equivalent damping ( )ec A , and ( )A  are, respectively, given as 
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and 
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A
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Note that in Eqs. (28) and (29) the variables 
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have been introduced. 

Next, differentiating Eq. (26) with respect to time, taking into account Eqs. (21-25), and proceeding 

with standard procedure of stochastic averaging [27], yields 

( ) ( ) ( )1 2, ,A K A t K A t t= +  (32) 

where ( )1 ,K A t  and ( )2 ,K A t  are the so-called drift and diffusion coefficients, respectively given as 
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Further, ( )t  is a unitary intensity zero-mean delta correlated Gaussian process, i.e. 

( ) ( ) ( )E t t    + =   , with ( )   being the Dirac delta function and  E   the mathematical 

expectation operator. 

Note that, Eq. (32) approximately governs the evolution in time of the amplitude process ( )A t , 

decoupled from the phase, and modelled as a one-dimensional Markov process. Therefore, the CK 

equation in the form 

( ) ( ) ( )
0

, , | , ,A k A k k A kp a t t p a t t a t p a t da
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is satisfied, where ( ), | ,A k kp a t t a t+   represents the CPDF of ( )A t . In this regard, relying once 

more on the short time Gaussian approximation, the CPDF can be given as [27] 
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Substituting Eq. (36) into Eq. (35) and manipulating, yields 
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where 
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In this manner, Eq. (37) is rewritten as in Eq. (1), and the Laplace’s method of integration can be 

exploited, since ( )1 2 t =   and 0  for small values of t . To this aim, denote as *

ka  the point 

such that 
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Then, taking into account Eqs. (5) and (37), the approximate solution of the CK equation Eq. (37) 

can be given as 
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where ( )*,A k ka t  and ( )*,II

A k ka t  are, respectively, the value of ( ),A ka t  in Eq. (39) and the value 

of its second order derivative evaluated in 
*

ka  at the time instant kt . Again, if a more accurate 

approximate solution of the CK equation is required, a fourth-order expansion of ( ),kg a a  can be 

used, and Eq. (41) reverts to 
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(42) 

As far as the implementation of Eqs. (41) or (42) are concerned, note that the function ( )*,A k ka t  

and its derivatives must be evaluated in each time step, since they depend on the PDF ( ),A kp a t  of 

the response amplitude. On the other hand, ( )*,k kg a a  and its derivatives are deterministic functions, 

since they only depend on the drift and diffusion coefficients as shown in Eq. (38). Thus, they could 

be computed separately once beforehand for higher computational efficiency. 

4 Numerical applications 

In this section, the proposed approach is applied to three different nonlinear systems. Specifically, a 

nonlinear first order system, as in Eq. (9), whose stationary response PDF is known, is considered 

to show the accuracy of the proposed approach. Further, the evolution of the amplitude PDFs of two 



nonlinear oscillators is examined. Analyses are conducted taking into account also nonstationary 

excitations. Specifically, in these numerical applications a modulating function of the exponential 

type 

( ) 4 exp exp
4 2

t t
t

    
= − − −    

    
 (43) 

is considered. Further, the well-known Kanai-Tajimi power spectrum [36-38] 
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is employed for non-white excitations, where g  and g  are the soil natural frequency and 

damping ratio, respectively. In these cases, comparison with pertinent Monte Carlo simulations 

(MCS) data is used to establish the accuracy of the procedure. 

As far as the numerical implementation of the proposed approach for the response amplitude 

process is concerned, Eq. (42) is used since it generally leads to higher level of accuracy. This is 

due to the fact that, for this process, the drift coefficient in Eq. (33) exhibits a singularity at the 

origin [22, 27], thus potentially leading to an additional source of numerical errors. 

In the following examples, the values 8g rad s =  and 0.8g =  are used in Eq. (44), while the 

chosen time step t  is 
310 s−

, and 15000 samples have been used for the MCS data. 

4.1 Nonlinear first order system 

Consider a nonlinear system, whose equation of motion is given in Eq. (9) with 

( ) ( ) ( )3,f X t bX t X t= − − , with the nonlinear parameter 0  . 

Assuming a white noise excitation, that is ( ) 0VS t S=  and ( ) 1t = , Eq. (17) yields 
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Next, using Eqs. (18.a) and (18.b) the point *

kx  can be analytically found as 
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where 
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 (47) 



In this manner the proposed approach can be directly applied using Eq. (20). In this regard, Figs. 1 

and 2 show the evolution of the response PDF, corresponding to the parameter values 0.1b =  and 

0 1 2S = , for two different values of the nonlinear parameter  , considering as initial condition 

( ),0Xp x  a normal distribution with standard deviation equal to 0.1. 

 

 

Fig. 1 Probability density function for various time instants. Proposed approach (lines) vis-à-vis stationary analytical 

solution (dots) for ( )0.5 = . 

 

 

Fig. 2 Probability density function for various time instants. Proposed approach (lines) vis-à-vis stationary analytical 

solution (dots) for ( )1.5 = . 

 

As it can be seen, proposed approach-based stationary PDFs are in a very good agreement with the 

pertinent analytical stationary PDFs, given as 

( )
2 4
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1
exp

2 4
X

x x
p x K b

S




  
= +  

  
 (48) 

where K is a constant, obtained imposing the normalization condition to Eq. (48). 



Consider next the case where the excitation is a modulated white noise as in Eq. (10), with 

modulating function given in Eq. (43). Taking into account Eq. (17) yields 
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while the point *

kx  which fulfils Eqs. (18.a) and (18.b) is again given as in Eq. (46); thus, it is 

independent on the modulating function. In this manner, taking into account Eq. (20), the evolution 

of the response PDF can be determined. In this regard, in Figs. 3 and 4 the response PDF is plotted 

for various time instants. Comparisons with MCS reveal a satisfactory level of accuracy. 

 

 

Fig. 3 Probability density function for various time instants. Proposed approach (lines) vis-à-vis MCS data (symbols) 

for ( )0.5 = . 

 

 

Fig. 4 Probability density function for various time instants. Proposed approach (lines) vis-à-vis MCS data (symbols) 

for ( )1.5 = . 

 



4.2 Duffing Oscillator 

Next, consider a Duffing nonlinear oscillator subject to a white noise excitation, whose equation of 

motion is 

( )2 2 3

0 0 0X X X X W t   + + + =  (50) 

where 
0  is the natural frequency, 0   is the nonlinear parameter of the system, and ( )W t  is a 

Gaussian white noise with power spectrum ( ) 0,
V

S t S = . 

For this system Eqs. (28) and (29) lead to [27] 

( ) 0ec A =  (51) 

and 

( )2 2 2

0

3
1

4
A A  

 
= + 

 
 (52) 

In this manner, Eq. (38) yields 
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 (53) 

and the points *

ka  can be found, either analytically or numerically, taking into account Eqs. (40.a) 

and (40.b). 

To show the accuracy of the proposed approach, in Figs. 5 and 6 the corresponding response 

amplitude PDFs are compared with the stationary response amplitude PDF possessing the following 

analytical expression [39, 40] 

( )
3 2 4

2 2

1
exp

2 4
A

a a a a
p a




 

  +
= − +  

  
 (54) 

where 
2 2

0 0 0S   = , assuming as parameters values ( )2

0 0 010, 0.1, 0.05S = = = , and for two 

different values of the nonlinear parameter, specifically ( )0.5 =  and ( )1 = . Further, proposed 

approach-based response amplitude PDFs are also plotted for different time instants, and 

comparison with pertinent MCS data is provided, assuming the system initially at rest. As it can be 

seen, reasonable agreement is achieved with both MCS data and stationary analytical solution. 

 



 
Fig. 5 Response amplitude probability density function for various time instants. Proposed approach (lines) vis-à-vis 

MCS data (symbols) and stationary analytical solution (dots) for ( )0.5 = . 

 

 
Fig. 6 Response amplitude probability density function for various time instants. Proposed approach (lines) vis-à-vis 

MCS data (symbols) and stationary analytical solution (dots) for ( )1 = . 

4.3 Van der Pol Oscillator 

As a last application, consider a randomly excited Van der Pol oscillator, whose equation of motion 

can be given as 

( ) ( )2 2

0 01X X X X V t  + − + + =  (55) 

where 
0  is the natural frequency, 0   is a nonlinear parameter of the system, and ( )V t  is a 

separable random process defined in Eqs. (22) and (23), with modulating function and power 

spectrum expressed in Eqs. (43) and (44). 

Considering Eqs. (28) and (29), the equivalent damping and natural frequency of the system are 

[27] 

( )
2

0 1
4

e

A
c A



 

= − + 
 

 (56) 

and 



( )2 2

0A =  (57) 

In this manner, Eq. (38) yields 
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 (58) 

and the points *

ka  can be found numerically based on Eqs. (40.a) and (40.b). 

The proposed PI approach is applied to the oscillator in Eq. (55) considering 

( )2

0 0 010, 0.1, 0.05S = = = . Further, two different values of the nonlinear parameter   are used, 

specifically ( )0.5 =  and ( )1 = . In this regard, in Figs. 7 and 8, the proposed approach-based 

response amplitude PDFs are compared with pertinent MCS results, for different time instants. As it 

can be seen, a good agreement is achieved for both values of the parameter  , for each time instant. 

 

Fig. 7 Response amplitude probability density function for various time instants. Proposed approach (lines) vis-à-vis 

MCS data (symbols) for ( )0.5 = . 

 

 

Fig. 8 Response amplitude probability density function for various time instants. Proposed approach (lines) vis-à-vis 

MCS data (symbols) for ( )1 = . 



Concluding Remarks 

The nonstationary response of nonlinear systems subject to broad-band random excitations has been 

studied. Specifically, a version of the Path Integral approach, which is based on a discretization of 

the Chapman-Kolmogorov equation in short time steps, has been proposed to determine the 

evolution of the response probability density function (PDF) of these systems. An approximate 

analytical solution of this equation has been derived resorting to the Laplace’s method of 

integration, often employed to evaluate approximately integrals whose kernels comprise 

exponential functions. In this manner, the repetitive integrations, required by the classical numerical 

implementation of the Path Integral approach for each time step, can be circumvented and the 

evolution of the response PDF can be sought in short time steps by a direct application of the 

obtained approximate analytical expression. The proposed approach has been developed for one-

dimensional nonlinear systems under modulated white noise. Further, extension to nonlinear 

oscillators subject to separable evolutionary broad-band processes has been provided, relying on the 

approximate model of the system response amplitude as a one-dimensional Markov process. 

Applications to three different nonlinear systems have been considered. Specifically, results 

pertinent to a first-order nonlinear system, a Duffing oscillator, and a Van der Pol oscillator have 

been presented. Analyses have been carried out for several broad-band excitations and degree of 

nonlinearities. The perusal of the response PDFs determined by the Path Integral approach based on 

Laplace’s method of integration vis-à-vis pertinent Monte Carlo simulations data has demonstrated 

the accuracy of the proposed procedure. Notably, considering the non-negligible computational cost 

required by the classical application of the Path Integral method, especially for higher-dimensional 

systems, the proposed approach could offer some advantages for an efficient analytical, albeit 

approximate, evaluation of the involved integrals. 
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