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Abstract. We characterize fibrations and ∗-fibrations in the 2-category of internal
groupoids in terms of the comparison functor from certain pullbacks to the corresponding
strong homotopy pullbacks. As an application, we deduce the internal version of the
Brown exact sequence for ∗-fibrations from the internal version of the Gabriel-Zisman
exact sequence. We also analyse fibrations and ∗-fibrations in the category of arrows
and study when the normalization functor preserves and reflects them. This analysis
allows us to give a characterization of protomodular categories using strong homotopy
kernels and a generalization of the Snake Lemma.
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1. Introduction

It is well-known that a functor F : A → B between groupoids is a fibration if for every
object A in A and every morphism g : B → F (A) in B, there is a morphism f : A′ → A in
A such that F (f) = g. Since we are considering groupoids, this is equivalent to the dual
notion of opfibration. If A is a regular category, we can internalize this concept (see for
instance [6]) in order to get the notion of a fibration F : A→ B between internal groupoids
A and B in A. The first aim of this paper is to characterize such internal fibrations using
strong homotopy pullbacks in the 2-category Grpd(A) of internal groupoids in A. More
specifically, let T be the comparison between the pullback and the strong homotopy
pullback of F along the embedding of B0 (the object of objects of B) into B; we show
that F is a fibration if and only if this T is a weak equivalence.
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The weaker notion of a ∗-fibration F : A → B makes sense when A and B are pointed
groupoids, or more generally, internal groupoids in a pointed regular category A. The
idea is that now only maps g : 0 → F (A) are required to have a lifting. In a similar
way than for fibrations, we characterize ∗-fibrations as functors F for which the compa-
rison map J : Ker(F ) → K(F ) from the kernel to the strong homotopy kernel of F is
a weak equivalence. In particular, if K(F ) is proper, this implies that π0(J) and π1(J)
are isomorphisms, where π0 and π1 are respectively the connected components functor
and the automorphisms functor (see [6]). This fact has an interesting application: given
a functor F : A → B between internal groupoids in a pointed regular category A with
reflexive coequalizers such that K(F ), A and B are proper, the (internal version of the)
Gabriel-Zisman sequence [7, 14] is an exact sequence

π1(K(F ))→ π1(A)→ π1(B)→ π0(K(F ))→ π0(A)→ π0(B)

involving the π0 and π1’s of the strong homotopy kernel, domain and codomain of F . If
moreover F is assumed to be a fibration (or merely a ∗-fibration), the isomorphisms π0(J)
and π1(J) allow us to deduce from it the Brown exact sequence [4, 14]

π1(Ker(F ))→ π1(A)→ π1(B)→ π0(Ker(F ))→ π0(A)→ π0(B)

involving now the kernel of F . The internal version of the Brown sequence was established
from the Gabriel-Zisman sequence in [14] up to the proof that J is a weak equivalence,
which is now done here.
The normalization process, introduced in [2], has been widely studied. For instance, it is
well-known that in a semi-abelian context, it induces an equivalence between Grpd(A)
and the category XMod(A) of internal crossed-modules [11]. It is also known that the
normalized version of Brown and Gabriel-Zisman sequences are, respectively, the snake
and snail sequences, studied in the context of pointed regular protomodular categories
in [2, 18, 12]. For a finitely complete pointed category A, normalization induces a functor

N : Grpd(A)→ Arr(A)

to the category (with null-homotopies) of arrows in A. In the last section of the pa-
per, we study the appropriate notions of fibrations, ∗-fibrations and weak equivalences in
Arr(A). In particular, ∗-fibrations are defined as morphisms (f, f0) for which the com-
parison map J : Ker(f, f0) → K(f, f0) from the kernel to the strong homotopy kernel of
(f, f0) is a weak equivalence. Since the notion of strong homotopy pullbacks in general
is not available in Arr(A), we cannot use a similar definition for fibrations. We rather
define them, in a pointed regular context, as morphisms (f, f0) for which f is a regular
epimorphism, inspired by the corresponding condition in the Snake Lemma. We then
show that, under some conditions on A, the normalization functor N preserves and re-
flects these notions. We also prove that for a pointed regular category A, the expected
implication “fibration ⇒ ∗-fibration” is in fact equivalent to the condition that A is pro-
tomodular (see [1]). Finally, we show that for a regular pointed protomodular category
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A with cokernels, a weak equivalence (f, f0) : a → b in Arr(A) with b proper induces
isomorphisms K(f, f0) : Ker(a) → Ker(b) and C(f, f0) : Coker(a) → Coker(b). From that
fact, we show that to obtain the Snake Lemma from the Snail Lemma [18], one only needs
to consider a ∗-fibration in Arr(A) instead of a fibration as classically stated.

For the reader’s convenience, we recall in full detail all the notions of strong homotopy
pullback, strong homotopy kernel, fibration and ∗-fibration involved in the paper, both
in Grpd(A) and in Arr(A). This is because the terminology is not so well established
in the literature and we want to avoid any possible confusion. Finally, the proof style
deserves a comment. On one hand, some of our results can be proved using embedding
theorems for categories with finite limits or for regular categories; on the other hand, we
are interested in providing direct proofs using the internal approach. As a compromise,
we decided to give a quite complete diagrammatic proof of Proposition 3.2 and to omit
several other proofs.

Notation: the composition of two arrows

f // g //

will be denoted by f · g.

2. Strong pullbacks and strong h-pullbacks

2.1. . Let B be a 2-category with invertible 2-cells, and B its underlying category. We
adopt the following terminology:
1. A 1-cell F : A→ B in B is fully faithful if, for any X in B, the induced functor

− · F : B(X,A)→ B(X,B)

is fully faithful in the usual sense.
2. Consider 1-cells F : A → B and G : C → B in B. A strong homotopy pullback (strong
h-pullback, for short) of F and G is a diagram of the form

P G′ //

F ′

��

A
F
��

C

ϕ
⇒

G
// B

satisfying the following universal property:

(a) For any diagram of the form

X H //

K
��

A
F
��

C

µ
⇒

G
// B
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there exists a unique 1-cell T : X→ P such that T ·G′ = H,T ·F ′ = K and T ·ϕ = µ.

(b) Given 1-cells L,M : X ⇒ P and 2-cells α : L ·F ′ ⇒M ·F ′ and β : L ·G′ ⇒M ·G′, if

L · F ′ ·G α·G +3

L·ϕ
��

M · F ′ ·G
M ·ϕ
��

L ·G′ · F
β·F
+3M ·G′ · F

commutes, then there exists a unique 2-cell µ : L ⇒ M such that µ · F ′ = α and
µ ·G′ = β.

3. We say that a pullback C ×G,F A of F : A → B and G : C → B in the category B is
strong (in B) if

C×G,F A Ĝ //

F̂
��

A
F

��
C

id⇒

G
// B

satisfies condition (b) above.

2.2. . Another way to express the universal property of the strong h-pullback is first to
fix an object X in B and to construct the comma-square of groupoids (which is precisely
the strong h-pullback in the 2-category of groupoids).

(− ·G ↓ − · F ) //

��
∼=

B(X,A)

−·F
��

B(X,C)
−·G

// B(X,B)

Then the universal property of the strong h-pullback means that, for any X, the canonical
comparison functor

B(X,P)→ (− ·G ↓ − · F )

is bijective on objects (condition a) and fully faithful (condition b), that is, it is an iso-
morphism of categories. This makes evident that a strong h-pullback is determined by its
universal property up to isomorphism.
A weaker universal property consists in asking that the canonical comparison functors
B(X,P) → (− · G ↓ − · F ) are equivalences of groupoids. In this way one gets what is
sometimes called a bipullback, which is determined only up to equivalence.
Intermediate situations between strong homotopy pullbacks and bipullbacks are consi-
dered in the literature. For example, in [8] the comparison functors are required to be
bijective on objects but not fully faithful (the name of h-pullback is used in this case),
and in [7] the comparison functors are required to be surjective on objects and full.
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2.3. . Among strong h-pullbacks, the following one, already appearing in [10], plays a
special role.

~B γ //

δ
��

B
Id
��

B

β
⇒

Id
// B

Indeed, if for a category A we denote by Arr(A) the category having arrows of A as

objects and commutative squares as arrows, then the universal property of ~B gives an
isomorphism of categories

B(X, ~B)→ Arr(B(X,B))

so that to give a 1-cell X → ~B is the same as giving a 2-cell X ⇓
&&
88 B . We refer the

reader to Section 5 for a more detailed treatment of the category Arr(A).

2.4. . Pasting together two strong h-pullbacks, in general one does not get a strong h-
pullback. The main interest of the notion of strong pullback relies on the following fact:
given a diagram in B of the form

P′ Ĥ //

F̂ ′
��

P G′ //

F ′

��

A
F
��

D
H
//

id⇒

C

ϕ
⇒

G
// B

if the right-hand part is a strong h-pullback, then the total diagram is a strong h-pullback
if and only if the left-hand part is a strong pullback.
This fact has an interesting consequence on the existence of strong h-pullbacks: Assume
that B has strong pullbacks and that the strong h-pullback

~B γ //

δ
��

B
Id
��

B

β
⇒

Id
// B

exists in B for any object B. Then, for any pair of 1-cells F : A→ B, G : C→ B, a strong
h-pullback of F and G exists and can be obtained by the following limit of solid arrows
in B

P
F ′

ww

φ
��

G′

''C

G ��

~B
δ

��

γ

��

A

F��
B

id ��

β
⇒ B

id��
B
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together with ϕ = φ · β : F ′ ·G = φ · δ ⇒ φ · γ = G′ · F , see [10].

2.5. . Later, we will use the following fact on strong pullbacks and strong h-pullbacks: if
the pullback in B and the strong h-pullback in B of F and G exist,

C×G,F A
T

$$

Ĝ

��

F̂

))

P G′ //

F ′

��

A
F
��

C

ϕ
⇒

G
// B

then the pullback C ×G,F A is strong if and only if the canonical comparison T is fully
faithful.

2.6. . Now we specialize the previous discussion taking as B the 2-category Grpd(A) of
groupoids, functors and natural transformations internal to a category A with pullbacks.
The notation for a groupoid B in A is

B = ( B1 ×c,d B1
m // B1

d //

c
// B0eoo , B1

i // B1 )

where
B1 ×c,d B1

π2 //

π1
��

B1

d
��

B1 c
// B0

is a pullback. The notation for a natural transformation α : F ⇒ G : A ⇒ B is

A1

F1 //

G1

//

d
��
c

��

B1

d
��
c

��
A0

F0 //

G0

//

α

88

B0

2.7. . Following 2.4, to prove that Grpd(A) has strong h-pullbacks we need two ingre-
dients. The first one is easy, the second one is the standard construction of the groupoid
of ‘arrows’, and we recall it from [17] or [15].
1. Since pullbacks in Grpd(A) are constructed level-wise, it is straightforward to check
that they are strong.
2. For every internal groupoid B, the strong h-pullback

~B γ //

δ
��

B
Id
��

B

β
⇒

Id
// B
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exists, and it can be described as follows:

~B = ( ~B1 ×~c,~d ~B1
~m // ~B1

~d //

~c
// B1~eoo , ~B1

~i // ~B1 )

where
~B1

m2 //

m1

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

is a pullback, and ~d, ~c and ~e are defined by

~d : ~B1
m1 // B1 ×c,d B1

π1 // B1 ~c : ~B1
m2 // B1 ×c,d B1

π2 // B1

B1 〈d·e,id〉

&&

~e

$$

〈id,c·e〉

$$

~B1
m2 //

m1

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

The groupoid ~B is equipped with two functors δ : ~B→ B and γ : ~B→ B given by

~B1
δ1=m2·π1 //

~d
��
~c
��

B1

d
��
c

��
B1 δ0=d

// B0

~B1
γ1=m1·π2 //

~d
��
~c
��

B1

d
��
c

��
B1 γ0=c

// B0

Finally, the natural transformation β : δ ⇒ γ is simply β = idB1 : B1 → B1.
To help intuition, let us point out that when A is the category of sets, an element S of
the object ~B1 involved in the above description of the strong h-pullback is a commutative
square

g0 //

b1

��
b2

��
f0
//

S

with m1(S) = 〈b1, f0〉,m2(S) = 〈g0, b2〉, ~d(S) = b1,~c(S) = b2, δ1(S) = g0, γ1(S) = f0.
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2.8. . Putting together 2.4 and 2.7, we can conclude that the 2-category Grpd(A) has
strong h-pullbacks. Moreover, a strong h-pullback

P G′ //

F ′

��

A
F
��

C

ϕ
⇒

G
// B

of F : A → B and G : C → B in Grpd(A) is described by the following diagram in A,
where the top and bottom faces are limit diagrams:

P1

ϕ1

��

G′1

**

d

��

c

��

F ′1

ww
C1

G1

  

d

��

c

��

~B1

m2·π1

ww

m1·π1

��

m2·π2

��

m1·π2

  

A1
F1

~~

d

��

c

��

B1

d

��

c

��

B1

d

��

c

��

P0F ′0

vv
ϕ0   

G′0

**C0

G0   

B1

d
vv

c   

A0

F0~~
B0 B0

2.9. . In Grpd(A), as in any 2-category, the notion of equivalence makes sense. Moreover,
in Grpd(A) we have also available the notion of weak equivalence. From [5, 17], recall
that a functor F : A→ B between groupoids in A is:

1. fully faithful if and only if the following diagram is a limit diagram;

A1

d

vv
F1

��

c

((
A0

F0   

B1

d~~ c   

A0

F0~~
B0 B0

2. an equivalence if and only if it is fully faithful and, moreover, the first row in one
(equivalently, in both) of the following diagrams is a split epimorphism (the squares
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are pullbacks).

A0 ×F0,d B1
βd //

αd

��

B1
c //

d
��

B0

A0 F0

// B0

A0 ×F0,c B1
βc //

αc

��

B1
d //

c

��

B0

A0 F0

// B0

The functors δ and γ defined in 2.7 are examples of equivalences.

If A is a regular category, one can say that a functor F : A→ B between groupoids in A
is:

3. essentially surjective if βd · c (equivalently βc · d) of the above diagrams is a regular
epimorphism;

4. a weak equivalence if it is fully faithful, and essentially surjective.

3. Fibrations and strong h-pullbacks

In this section, we assume that the base category A is regular.

3.1. . Let us recall the terminology for fibrations (= opfibrations) between groupoids
(compare with [6, Definition 5.1] for the notion of E-fibrations between internal categories,
w.r.t. a class E of morphisms of A). Consider a functor F : A→ B between groupoids in
A, and the induced factorizations through the pullbacks as in the following diagrams.

A1
F1 //

τd

%%
d

��

B1

d

��

A0 ×F0,d B1

βd

99

αd

yy
A0 F0

// B0

A1
F1 //

τc

%%
c

��

B1

c

��

A0 ×F0,c B1

βc

99

αc

yy
A0 F0

// B0

1. F is a fibration when τd (equivalently, τc) is a regular epimorphism.

2. F is a split epi fibration when τd (equivalently, τc) is a split epimorphism.

3. F is a discrete fibration when τd (equivalently, τc) is an isomorphism.

In [16], Street defined 0-fibrations in the more general context of a representable 2-
category. As Chevalley criterion [9, 13, 16], he characterized 0-fibrations as those F

for which the canonical functor S : ~A → (F ↓ B) (where (F ↓ B) is the comma object of
F over B, which coincides with the strong h-pullback of F and IdB in Grpd(A)) has a
left adjoint weak right inverse, i.e., the unit of the adjunction is an isomorphism. One can
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show that a functor F : A→ B between groupoids in A is a split epi fibration if and only
if the comparison functor S has a left adjoint right inverse, i.e., the unit of the adjunction
is an identity. Therefore, our notion of split epi fibration is a bit stronger than Street’s
notion of 0-fibrations.
In the next characterization of fibrations and split epi fibrations, we use the canonical
embedding N : [B0]→ B of the discrete groupoid of objects of B into B. Explicitly,

B0

id
��

id
��

N1=e // B1

d
��
c

��
B0 N0=id

// B0

The discrete groupoid 2-functor is denoted as

[ ] : A → Grpd(A).

3.2. Proposition. Consider a functor F : A→ B between groupoids in A, and the com-
parison functor T from the pullback to the strong h-pullback, as in the following diagram.

[B0]×N,F A N̂

%%

T

&&

F̂

%%

V(F ) N ′ //

F ′

��
v(F ) ⇒

A

F

��
[B0] N

// B

1. F is a fibration if and only if T is a weak equivalence.

2. F is a split epi fibration if and only if T is an equivalence.

In fact, we are going to prove a more precise statement: the arrow attesting that T is
essentially surjective is the same arrow τc attesting that F is a fibration.
(To help intuition, it is worth providing a description of the groupoid V(F ) when the base
category A is the category of sets. In this case, one has

V(F ) =
∐
b∈B

(b ↓ F )

i.e., the disjoint union of the comma categories (b ↓ F ).)

Proof. Since pullbacks in Grpd(A) are strong (2.7), we can apply 2.5 and we know that
T is fully faithful. Now we have to compare T ′0 · c with τc.

A0 ×T0,d V(F )1

d′

��

T ′0 // V(F )1

d

��

c // V(F )0

A0 T0
// V(F )0

A1

c

yy
τc
��

F1

%%
A0 A0 ×F0,c B1αc
oo

βc
// B1
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The diagram giving the strong h-pullback V(F ) is

V(F )1

v(F )1

%%

V (F )1

++

d

��

c

��

d1

uu
B0

e

  

id

��

id

��

~B1

m2·π1
tt

m1·π1

��

m2·π2

��

m1·π2

  

A1
F1

~~

d

��

c

��

B1

d

��

c

��

B1

d

��

c

��

A0 ×F0,c B1

βc·d

uu
βc %%

αc

++B0

id   

B1

d
tt

c   

A0

F0~~
B0 B0

so that T0 is the factorization through the pullback as in the following diagram.

A0

id

��

T0

%%

F0 // B0
e // B1

c

��

A0 ×F0,c B1

αc
yy

βc

99

A0 F0

// B0

Now we construct an arrow f : A1 → V(F )1 in three steps:

A1

d
��

〈d·F0·e,F1〉

%%

F1

  
A0

F0

��

B1 ×c,d B1

π1
��

π2 // B1

d
��

B0 e
// B1 c

// B0

A1

〈d·F0·e,F1〉

$$

f

$$

〈d·F0·e,F1〉

&&
~B1

m1

��

m2 // B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

V(F )1
d1

|| v(F )1 ""
V (F )1 **

A1
foo

d·F0
tt f��

id

��
B0

e
""

~B1

m2·π1
||

m1·π2
  

A1

F1~~
B1 B1
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Finally, we get the following diagram

A1

d

��

f

//

τc

))
V(F )1

d

��

c
// A0 ×F0,c B1

A0 T0
// A0 ×F0,c B1

and we have to check that it is commutative and that the square is a pullback. Once this
done, the commutativity of the upper region immediately gives both statements of the
proposition. We construct an isomorphism between A1 and the pullback of T0 and d and
we leave to the reader to check the various commutativities. The needed isomorphism is
given by the factorization of the previous square through the pullback

A1

d

��

〈d,f〉

  

f // V(F )1

d

��

P

p1~~

p2

99

A0 T0
// A0 ×F0,c B1

and by the arrow p2 · V (F )1 : P → V(F )1 → A1.

4. ∗-Fibrations and strong h-kernels

In this section, we assume that the base category A is regular and pointed.

4.1. . SinceA is pointed, as a special case of 2.8 we get a description of the strong h-kernel
of a functor F : A→ B between groupoids in A.

K(F )
K(F ) //

0
��

A

F
��

[0]

k(F )
⇒

0
// B

Now we introduce ∗-fibrations and split epi ∗-fibrations. Consider a functor F : A → B
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between groupoids in A, and the induced factorizations τ̂d and τ̂c through the pullbacks

Ker(F1 · c)
F c
1 //

τ̂d

((
kF1·c

��

Ker(c)

kc
��

A1

d
��

A0 ×F0,kc·d Ker(c)

β̂d
66

α̂d

vv

B1

d
��

A0 F0

// B0

Ker(F1 · d)
F d
1 //

τ̂c

((
kF1·d

��

Ker(d)

kd
��

A1

c

��

A0 ×F0,kd·c Ker(d)

β̂c
66

α̂c

uu

B1

c

��
A0 F0

// B0

where F c
1 and F d

1 are determined by the conditions F c
1 ·kc = kF1·c ·F1 and F d

1 ·kd = kF1·d ·F1.

1. F is a ∗-fibration when τ̂d (equivalently, τ̂c) is a regular epimorphism.

2. F is a split epi ∗-fibration when τ̂d (equivalently, τ̂c) is a split epimorphism.

4.2. . Since in the diagram

Ker(F1 · c)
τ̂d //

kF1·c
��

A0 ×F0,kc·d Ker(c)
β̂d //

id×kc
��

Ker(c) 0 //

kc
��

0

0

��
A1

(1)

τd
// A0 ×F0,d B1

(2)

βd
// B1

(3)

c
// B0

part (2) and part (3) are pullbacks and the whole is a pullback (because τd · βd = F1), it
follows that part (1) also is a pullback. This proves that any fibration is a ∗-fibration and
any split epi fibration is a split epi ∗-fibration.

4.3. Proposition. Consider a functor F : A → B between groupoids in A, and the
comparison J from its kernel to its strong h-kernel as in the following diagram.

Ker(F ) KF

%%

J

$$

0

%%

K(F )
K(F ) //

0
��

k(F ) ⇒

A

F

��
[0]

0
// B
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1. F is a ∗-fibration if and only if J is a weak equivalence.

2. F is a split epi ∗-fibration if and only if J is an equivalence.

Similarly to what we did in Proposition 3.2, one can prove a more precise statement: the
arrow attesting that J is essentially surjective is the same arrow τ̂c attesting that F is a
∗-fibration.

Proof. The proof is similar to that of Proposition 3.2 and we omit it.

From 4.2 and Proposition 4.3, we get the following result, announced in Proposition 4.4
of [14]:

4.4. Corollary. Let F : A → B be a fibration between internal groupoids. The cano-
nical comparison J : Ker(F ) → K(F ) from the kernel to the strong h-kernel is a weak
equivalence. If F is a split epi fibration, then J is an equivalence.

4.5. . Thanks to Proposition 4.3, we can slightly improve Proposition 4.6 in [14]: assume
that A is a pointed regular category with reflexive coequalizers and consider a ∗-fibration
F : A → B in Grpd(A), with A,B and K(F ) proper (in Proposition 4.6 of [14], F is
assumed to be a fibration and not just a ∗-fibration). There exists an exact sequence
(called the Brown sequence)

π1(Ker(F ))→ π1(A)→ π1(B)→ π0(Ker(F ))→ π0(A)→ π0(B)

where π1(A) is the internal group given by the joint kernel of domain and codomain maps
of A and π0(A) is the object of connected components of A, i.e. the coequalizer of the
above maps. (Here, the exactness at B of

A
f // B

g // C

means that f factors as a regular epimorphism followed by the kernel of g). Indeed, since
J : Ker(F ) → K(F ) is a weak equivalence, the arrows π0(J) : π0(Ker(F )) → π0(K(F ))
and π1(J) : π1(Ker(F )) → π1(K(F )) are isomorphisms (Lemma 4.5 in [14]). Therefore,
the above exact sequence immediately follows from the Gabriel-Zisman exact sequence

π1(K(F ))→ π1(A)→ π1(B)→ π0(K(F ))→ π0(A)→ π0(B)

established in Section 3 of [14].

4.6. . Corollary 4.4 can be obtained also from Proposition 3.2 without using the notion of
∗-fibration (4.2 and 4.3). Indeed, it is possible to get J : Ker(F )→ K(F ) as the pullback
of T : [B0] ×N,F A → V(F ) along a discrete fibration and then use the following general
fact, easy to be proved by using Barr embedding theorem for regular categories.
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4.7. Lemma. Consider a pullback in Grpd(A)

X
Ĝ
��

F̂ // C
G
��

A
F
// B

and assume that G is a discrete fibration.

1. If F is a weak equivalence, then F̂ is a weak equivalence.

2. If F is an equivalence, then F̂ is an equivalence.

(It is a general fact on strong pullbacks that, if F is fully faithful, then F̂ is fully faithful.)

5. Normalized fibrations and normalized ∗-fibrations

5.1. . From [8], recall that a category with null-homotopies B is given by

• a category B,

• for each morphism f : A→ B in B, a set H(f) (the set of null-homotopies on f),

• for each triple of composable morphisms f : A→ B, g : B → C, h : C → D, a map

f ◦ − ◦ h : H(g)→ H(f · g · h), µ 7→ f ◦ µ ◦ h.

(If f = idB or h = idC , we write µ ◦ h or f ◦ µ instead of f ◦ µ ◦ h.)
These data have to satisfy

1. the identity condition: given a morphism f : A → B, one has idA ◦ µ ◦ idB = µ for
all µ ∈ H(f),

2. the associativity condition: given morphisms

A′
f ′ // A

f // B
g // C h // D h′ // D′

one has (f ′ · f) ◦ µ ◦ (h · h′) = f ′ ◦ (f ◦ µ ◦ h) ◦ h′ for any µ ∈ H(g).

5.2. . For what concerns the present work, a relevant example of category with null-
homotopies is the category Grpd(A) of internal groupoids in a pointed category A, with
the natural transformations 0⇒ F playing the role of null-homotopies.
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5.3. . The structure of category with null-homotopies is not rich enough to express the
notion of strong h-pullback, but still, following [8, 18], we can express the notion of strong
homotopy kernel. Let B be a category with null-homotopies and let f : A → B be a
morphism in B. A triple

(Ker(f), K(f) : Ker(f)→ A, k(f) ∈ H(K(f) · f))

1. is a homotopy kernel (h-kernel, for short) of f if for any triple

(D, g : D → A, µ ∈ H(g · f)),

there exists a unique morphism g′ : D → Ker(f) in B such that g′ · K(f) = g and
g′ ◦ k(f) = µ,

2. is a strong homotopy kernel (strong h-kernel, for short) of f if it is a h-kernel of f
and, moreover, for any triple (D, h : D → Ker(f), µ ∈ H(h ·K(f))) such that µ◦f =
h ◦ k(f), there exists a unique λ ∈ H(h) such that λ ◦K(f) = µ.

Notice that in [8], the identity condition in the definition of a category with null-homo-
topies has been omitted. We think it should not, since it allows to prove that h-kernels
and strong h-kernels are determined up to isomorphism by their universal properties.
Finally, let us remark that the definition of strong h-kernels given in 4.1 is consistent
with the one given here, applied to category with null-homotopies Grpd(A) for a finitely
pointed complete category A.

5.4. . For a category A, we consider the arrow category Arr(A) : the objects are the
arrows a : A → A0 in A and the morphisms (f, f0) : a → b are commutative squares of
the form

A
f //

a
��

B

b
��

A0 f0
// B0

From [18], recall that Arr(A) is a category with null-homotopies: a null-homotopy for an
arrow (f, f0) is a diagonal, that is an arrow d : A0 → B such that a · d = f and d · b = f0.
If A has finite limits and a zero object, then Arr(A) has kernels and strong h-kernels.
The kernel of (f, f0) is just the level-wise kernel.

Ker(f)
kf //

K(a)
��

A
f //

a

��

B

b

��
Ker(f0) kf0

// A0 f0
// B0
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To construct the strong h-kernel of (f, f0), consider the factorization through the pullback

A
f //

a

��

∂(f,f0)0

%%

B

b

��

A0 ×f0,b B

b′yy

f ′0

99

A0 f0
// B0

The strong h-kernel is then given by the triple

(∂(f, f0)0 , (id, b′) , f ′0)

conveniently described by the following diagram.

A id //

∂(f,f0)0

��

A
f //

a

��

B

b

��
A0 ×f0,b B b′

//

f ′0

99

A0 f0
// B0

5.5. . For a finitely complete pointed category A, the examples presented in 5.2 and in 5.4
are related by a functor, introduced in [2] and called the normalization functor

N : Grpd(A)→ Arr(A)

which sends an internal functor F : A→ B to the commutative diagram

Ker(d)
Kd(F )//

kd
��

Ker(d)

kd
��

A1

c

��

B1

c

��
A0 F0

// B0

where Kd(F ) is defined by Kd(F ) · kd = kd · F1. Moreover, if α : 0 ⇒ F is a null-
homotopy in Grpd(A), it gives rise to a null-homotopy N (α) of N (F ). Indeed, the
natural transformation α is represented by an arrow α : A0 → B1. Since in particular
α · d = 0, it factorizes as α = N (α) · kd and gives rise to the following commutative
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diagram

Ker(d)

kd
��

Kd(F )// Ker(d)

kd
��

A1

c

��

B1

c

��
A0 F0

//

N (α)

BB

α
99

B0

5.6. . In order to define fully faithful morphisms in Arr(A), let us look more carefully
to the situation in Grpd(A). For a category A with pullbacks and a functor F : A→ B
in Grpd(A), consider the following strong h-pullbacks

~A γ //

δ
��

A
Id
��

A

α⇒

Id
// A

R(F )
γ(F ) //

δ(F )
��

A
F
��

A

α(F )
⇒

F
// B

and the unique functor ∂(F ) : ~A→ R(F ) such that ∂(F ) · δ(F ) = δ, ∂(F ) · γ(F ) = γ and
∂(F ) ·α(F ) = α ·F . The 0-level of the functor ∂(F ) is precisely the unique arrow making
commutative the following diagram.

A1
∂(F )0 //

d

��

F1

��
c

**

A0 ×F0,d B1 ×c,F0 A0

δ(F )0uu
α(F )0||

γ(F )0

""
A0

F0   

B1

d~~ c
((

A0

F0
vv

B0 B0

Therefore, we can say that the functor F : A→ B is:

1. faithful if ∂(F )0 is a monomorphism;

2. full if ∂(F )0 is a regular epimorphism and in the context where A is a regular
category;

3. fully faithful if ∂(F )0 is an isomorphism (accordingly to 2.9).

5.7. . Now we imitate the previous argument using strong h-kernels in Arr(A). For a
morphism (f, f0) : a→ b in Arr(A), consider the following strong h-kernels, together with
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the induced comparison arrow ∂(f, f0) :

K(Id) //

∂(f,f0)

��

a
Id //

Id

��

a

(f,f0)

��
K(f, f0) // a

(f,f0)
// b

The 0-level of ∂(f, f0) is precisely the factorization ∂(f, f0)0 : A→ A0×f0,bB through the
pullback, as in 5.4 (while the ‘domain level’ of ∂(f, f0) is just the identity arrow on A).
This suggests part of the following terminology.

5.8. . For a finitely complete pointed category A, consider an arrow (f, f0) : a → b in
Arr(A) together with the induced factorization ∂(f, f0)0 : A → A0 ×f0,b B through the
pullback, as in the description of the strong h-kernel in 5.4. The arrow (f, f0) is:

1. faithful if ∂(f, f0)0 is a monomorphism;

2. fully faithful if ∂(f, f0)0 is an isomorphism;

3. full if ∂(f, f0)0 is a regular epimorphism and in the context where A is a regular
category;

4. essentially surjective if f0 and b are jointly strongly epimorphic;

5. a weak equivalence if it is fully faithful and essentially surjective;

6. a fibration if f is a regular epimorphism and in the context where A is a regular
category.

In order to compare the above terminology with the terminology for internal functors
(2.9, 3.1 and 5.6), we need some intermediate steps, collected in the next lemma, easy to
be proved by using an appropriate embedding theorem. Indeed, what is really needed to
prove Proposition 5.10 is the points 3 and 5 of the lemma, but the conscientious reader
will realise that point 1 can be used to prove point 2, point 2 can be used to prove point 3
and point 4 is needed to prove point 5. (Point 4 is the version for strong h-pullbacks of the
elementary fact that two parallel arrows in a pullback diagram have isomorphic kernels.)

5.9. Lemma. Consider a finitely complete pointed category A and let F : A → B be a
functor between internal groupoids in A.

1. If F is fully faithful, then its normalization N (F ) is a pullback in A.

2. The strong h-kernel K(F ) : K(F )→ A is a discrete fibration.

3. The normalization functor N : Grpd(A) → Arr(A) preserves kernels and strong
h-kernels.
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4. Consider the following diagram in Grpd(A), with the bottom square being a strong
h-pullback, the right region being a strong h-kernel and the functor 〈0, K(F ), k(F )〉
determined by the universal property of the strong h-pullback with respect to the
triple (0, K(F ), k(F )).

K(F ) Id //

〈0,K(F ),k(F )〉
��

K(F )

K(F )
��

0

vv

P
F ′

��

G′ // A
F
��

k(F )
⇐

C
G

//

ϕ
⇒

B

Then the left column is a kernel.

5. Consider the following diagram (notation as in 5.6).

K(Id)
〈0,K(Id),k(Id)〉 //

〈0,K(Id),k(Id)·F 〉
��

~A δ //

∂(F )

��

A

Id

��
K(F )

〈0,K(F ),k(F )〉
// R(F )

δ(F )
// A

Then the rows are kernels and the left-hand square is a pullback.

We are ready to compare the terminology in Grpd(A) and in Arr(A). (Recall from [1],
that a finitely complete pointed category is protomodular when the Split Short Five
Lemma holds. When also regular, such a category is called homological. Compare also
with [6] for points 9 and 10 of the following result.)

5.10. Proposition. Let A be a finitely complete pointed category and F : A → B be a
functor between groupoids in A.

1. If F is faithful, then N (F ) is faithful.

2. If F is fully faithful, then N (F ) is fully faithful.

3. If A is regular and F is full, then N (F ) is full.

4. If A is protomodular and N (F ) is faithful, then F is faithful.

5. If A is protomodular and N (F ) is fully faithful, then F is fully faithful.

6. If A is regular and protomodular and N (F ) is full, then F is full.

7. If A is regular and protomodular and F is essentially surjective, then N (F ) is
essentially surjective.
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8. If A is regular and N (F ) is essentially surjective, then F is essentially surjective.

9. If A is regular and F is a fibration, then N (F ) is a fibration.

10. If A is regular and protomodular and N (F ) is a fibration, then F is a fibration.

Proof. From 1 to 6. By point 3 of Lemma 5.9, the functor 〈0, K(Id), k(Id) ·F 〉 : K(Id)→
K(F ) of point 5 of that lemma is sent by N to

∂(N (F )) : N (K(Id)) = K(IdN (A))→ K(N (F )) = N (K(F )).

The 0-level of the diagram in this same point 5 gives thus the following diagram in A :

Ker(d)
kd //

∂(N (F ))0
��

A1
d //

∂(F )0
��

A0

id

��
A0 ×F0,kd·c Ker(d)

〈0,K(F ),k(f)〉0
// A0 ×F0,d B1 ×c,F0 A0

δ(F )0

// A0

Thanks to Lemma 5.9.5, the rows are kernels and the left-hand square is a pullback.
Therefore:
1. If ∂(F )0 is a monomorphism, then ∂(N (F ))0 is also a monomorphism.
2. If ∂(F )0 is an isomorphism, then ∂(N (F ))0 is also an isomorphism.
3. If ∂(F )0 is a regular epimorphism, then ∂(N (F ))0 is also a regular epimorphism because
the category A is regular.
4. If ∂(N (F ))0 is a monomorphism, then ∂(F )0 is also a monomorphism because in a
protomodular category, pullbacks reflect monomorphisms (see Lemma 3.13 in [3]).
5. If ∂(N (F ))0 is an isomorphism, then ∂(F )0 is also an isomorphism because in a
protomodular category, the Split Short Five Lemma holds (see Lemma 3.10 in [3]).
6. If ∂(N (F ))0 is a regular epimorphism, then ∂(F )0 is also a regular epimorphism by
Proposition 8 in [2] (see also Proposition 2.4 in [18]), which can be applied here because
A is regular and protomodular and d : A1 → A0 is a split and then regular epimorphism.
7 and 8. Consider the following commutative diagram.

A0
〈id,F0·e〉 //

F0
((

A0 ×F0,d B1

βd·c
��

Ker(d)
〈0,kd〉oo

kd·cuu
B0

7. If βd · c is a regular epimorphism, it is a strong one. Therefore, it suffices to prove
that 〈id, F0 · e〉 and 〈0, kd〉 are jointly strongly epimorphic. This is the case since A is
protomodular and 〈0, kd〉 and 〈id, F0 · e〉 are respectively a kernel and a section of αd
(see [2, 3]).

Ker(d)
〈0,kd〉 //

��

A0 ×F0,d B1

αd

��
0 // A0

〈id,F0·e〉

TT
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8. If F0 and kd · c are jointly strongly epimorphic, βd · c is a strong epimorphism and so a
regular epimorphism since A is regular.
9 and 10. Consider the commutative diagram

Ker(d)
kd //

Kd(F )

��

A1

τd

��

d // A0

id

��
Ker(d)

〈0,kd〉
// A0 ×F0,d B1 αd

// A0

Since id : A0 → A0 is a monomorphism, the left-hand square is a pullback. Therefore:
9. If τd is a regular epimorphism, then Kd(F ) is also a regular epimorphism because the
category A is regular.
10. If Kd(F ) is a regular epimorphism, then τd is also a regular epimorphism by Proposi-
tion 8 in [2].

We have not yet discussed ∗-fibrations in Arr(A). For this, we need a last preparatory
step. Given a morphism (f, f0) : a→ b in Arr(A), the triple

(Ker(f, f0), k(f,f0), 0: Ker(f0)→ B)

induces a canonical comparison J : Ker(f, f0) → K(f, f0) through the strong h-kernel
of (f, f0).

5.11. Lemma. In the category with null-homotopies Arr(A) for a finitely complete poin-
ted category A, kernels are strong, i.e., for any morphism (f, f0) : a → b, the canonical
comparison J : Ker(f, f0)→ K(f, f0) is fully faithful (see 2.5).

Proof. Using the descriptions of the kernel and of the strong h-kernel given in 5.4, the
comparison J turns out to be the left-hand square in the following diagram.

Ker(f)
kf //

K(a)

��

A

∂(f,f0)0
��

f // B

id

��
Ker(f0) 〈kf0 ,0〉

// A0 ×f0,b B f ′0

// B

Since both rows are kernels and id: B → B is a monomorphism, the left-hand square is
a pullback, which means that J is fully faithful.

5.12. . Having in mind Proposition 4.3, we could now define a ∗-fibration in Arr(A) as
a morphism (f, f0) : a → b such that the canonical comparison J : Ker(f, f0) → K(f, f0)
is essentially surjective (and then, by Lemma 5.11, a weak equivalence). We can now
complete Proposition 5.10, with two more points:

11. If A is regular and protomodular and the functor F is a ∗-fibration in Grpd(A),
then the morphism N (F ) is a ∗-fibration in Arr(A).



ON FIBRATIONS BETWEEN INTERNAL GROUPOIDS AND THEIR NORMALIZATIONS 23

12. If A is regular and N (F ) is a ∗-fibration, then F is a ∗-fibration.

Now that we have the notions of fibration and ∗-fibration available in Arr(A), we can ask
if every fibration is a ∗-fibration (this is the case in Grpd(A), as observed in 4.2). The
surprise is that not only the answer is negative, but the expected implication “fibration
⇒ ∗-fibration” is in fact equivalent, in the pointed regular context, to the condition of
protomodularity.

5.13. Proposition. The following conditions on a pointed regular category A are equi-
valent:

1. A is protomodular (and then homological).

2. For every fibration (f, f0) : a→ b in Arr(A), the canonical comparison

J : Ker(f, f0)→ K(f, f0)

is a weak equivalence.

Proof. 1 ⇒ 2. Suppose A is homological and (f, f0) is a fibration in Arr(A). Thanks
to Lemma 5.11, we already know that J is full and faithful. Consider now the following
diagram where id× f is a regular epimorphism since so is f .

Ker(f0)
〈kf0 ,0〉 //

〈kf0 ,0〉 ))

A0 ×f0,a·f0 A

id×f
����

A
〈a,id〉oo

∂(f,f0)0vv
A0 ×f0,b B

Thus, in order to prove that J is essentially surjective, it suffices to notice that the
protomodularity of A implies that 〈kf0 , 0〉 and 〈a, id〉 are jointly strongly epimorphic since
they are respectively the kernel and a section of the second projection A0 ×f0,a·f0 A→ A.
2⇒ 1. Firstly, let us prove that if the kernel of a morphism f0 : A0 → B0 is the zero object,
then f0 is a monomorphism. In order to do so, consider the fibration (id, f0) : id → f0
in Arr(A).

A0
id //

id
��

A0

f0
��

A0 f0
// B0

0 //

��

A0

〈id,id〉
��

0 // A0 ×f0,f0 A0

The diagram on the right represents the canonical comparison J : Ker(id, f0)→ K(id, f0).
By the assumption, we know that 0 → A0 ×f0,f0 A0 and 〈id, id〉 are jointly strongly
epimorphic. This is equivalent to the fact that 〈id, id〉 is a regular epimorphism. Since it is
also a split monomorphism, it is an isomorphism, which means that f0 is a monomorphism.
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Let us now prove that the Short Five Lemma holds in A. Consider the following diagram
where both rows are kernel of regular epimorphisms and K(a) and b are isomorphisms.

Ker(f)
kf //

K(a)
��

A
f // //

a

��

B

b

��
Ker(f0) kf0

// A0 f0
// // B0

Since K(a) is a monomorphism, its kernel is the zero object. Since b is a monomorphism,
the left-hand square is a pullback, hence also the kernel of a is zero. But, by the first
part of the proof, this means that a is a monomorphism. So, it remains to prove that it
is a regular epimorphism. The morphism (f, f0) : a → b is a fibration in Arr(A). Thus,
the comparison morphism J : Ker(f, f0) → K(f, f0) is a weak equivalence. Since b is an
isomorphism, this implies that kf0 and a are jointly strongly epimorphic. But since K(a)
is an isomorphism, kf0 factors through a, so that a is a regular epimorphism.

Following [2], we call a morphism in a homological category proper when it can be facto-
rized as a regular epimorphism followed by a kernel.

5.14. Proposition. Let A be a homological category and (f, f0) : a→ b a morphism in
Arr(A) such that a and b have a cokernel. We denote by K(f, f0) (respectively C(f, f0))
the induced morphism between the kernels (respectively the cokernels) of a and b as in the
following commutative diagram.

Ker(a)
K(f,f0) //

��

Ker(b)

��
A

f //

a

��

B

b
��

A0 f0
//

����

B0

����
Coker(a)

C(f,f0)
// Coker(b)

Then the following implications hold.

1. (f, f0) is faithful if and only if K(f, f0) is a monomorphism.

2. If (f, f0) is full, then K(f, f0) is a regular epimorphism.

3. If (f, f0) is full and b proper, then C(f, f0) is a monomorphism.

4. If (f, f0) is essentially surjective, then C(f, f0) is a regular epimorphism.

In particular, if (f, f0) is a weak equivalence and b a proper morphism, then K(f, f0) and
C(f, f0) are both isomorphisms.
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Proof. Let us consider the factorization through the pullback together with the kernels
of a, b′ and b.

Ker(a)

��

K(∂(f,f0)0) //

K(f,f0)

((

Ker(b′)

��

K(f ′0) // Ker(b)

��
A

f //

a

��

∂(f,f0)0

((

B

b

��

A0 ×f0,b B

b′
ww

f ′0

77

A0 f0
// B0

Using Lemma 4.2.4 in [1], we know that K(f ′0) is an isomorphism and the top left trapezium
is a pullback. We then deduce points 1 and 2 from the fact that pullbacks preserves and
reflects monomorphisms and preserves regular epimorphisms in a homological category.
For 3, we know that b factorizes as a regular epimorphism followed by the kernel kqb of
its cokernel. We consider the pullback of kqb along f0.

A
f //

a

��

(( ((

B

b

��

&& &&
A0 ×f0,kqb Ker(qb) //

k′

vv

Ker(qb)

kqbxx
A0 f0

//

qa
����

B0

qb
����

Coker(a)
C(f,f0)

// Coker(b)

Since (f, f0) is full, a factorizes as a regular epimorphism followed by k′, hence k′ · qa = 0.
Using the universal properties of Ker(qb) and A0 ×f0,kqb Ker(qb), it is then not hard to
show that k′ is the kernel of qa. According to Lemma 4.2.5 in [1], C(f, f0) is then a
monomorphism.
For point 4, we consider p · i the (regular epi,mono)-factorization of C(f, f0). Since the
diagram below is commutative and f0 and b are jointly strongly epimorphic, qb factorizes
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through i.

A
f //

a

��

B

b

��

0

��

A0 f0
//

qa

����

B0

qb

����

zz
I

i

##
Coker(a)

p
;; ;;

C(f,f0)
// Coker(b)

Therefore i is a regular epimorphism and so is C(f, f0).

5.15. . In a similar way than we deduced the Brown exact sequence from the Gabriel-
Zisman sequence in 4.5, we can deduce and generalize the Snake Lemma from the Snail
Lemma. Let A be a homological category with cokernels and (f, f0) : a→ b a morphism
in Arr(A). If a, b and K(f, f0) = ∂(f, f0)0 are proper, the Snail Lemma [18] states that
the following sequence is exact.

Ker(K(f, f0))→ Ker(a)→ Ker(b)→ Coker(K(f, f0))→ Coker(a)→ Coker(b)

If we assume moreover that (f, f0) is a ∗-fibration, then by definition, the canonical com-
parison J : Ker(f, f0) → K(f, f0) is a weak equivalence. Thus, by the above proposition,
K(J) and C(J) are isomorphisms and we obtain the snake sequence from the snail se-
quence:

Ker(Ker(f, f0))→ Ker(a)→ Ker(b)→ Coker(Ker(f, f0))→ Coker(a)→ Coker(b)

Note that classically, the stronger assumption that (f, f0) is a fibration is assumed.
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