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SUMMARY

Clinical studies where patients are routinely screened for many genomic features are becoming more
routine. In principle, this holds the promise of being able to find genomic signatures for a particular
disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the
tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment
decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy
and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized
survival models have been proposed to deal with such scenarios. These methods typically induce sparsity
by means of a coincidental match of the geometry of the convex likelihood and a (near) non-convex
regularizer. The disadvantages of such methods are that they are typically non-invariant to scale changes
of the covariates, they struggle with highly correlated covariates, and they have a practical problem
of determining the amount of regularization. In this article, we propose an extension of the differential
geometric least angle regression method for sparse inference in relative risk regression models. A software
implementation of our method is available on github (https://github.com/LuigiAugugliaro/dgcox).
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1. INTRODUCTION

Advances in genomic technologies have meant that many new clinical studies in cancer survival include a
variety of genomic measurements, ranging from gene expression to SNP data. Studying the relationship
between survival and genomic markers can be useful for a variety of reasons. If a genomic signature can
be found, then patients can be given more accurate survival information. Furthermore, treatment and care
may be adjusted to the prospects of an individual patient. Eventually, the genomic signature combined
with information from other studies may be used to identify drug targets. We will focus on four recent
studies of cancer survival for four different tumors. Our aim is to find a reproducible sparse predictor for
cancer survival.

Sparse inference in the past two decades has been dominated by methods that penalize typically
convex likelihoods by functions of the parameters that happen to induce solutions with many zeros.
The Lasso (Tibshirani, 1996), elastic net (Zou and Hastie, 2005), l0 (Rippe and others, 2012), and the
SCAD (Fan and Li, 2001) penalties are examples of such penalties that, depending on some tuning
parameter, conveniently shrink estimates to exact zeros.Also in survival analysis, these methods have been
introduced. Tibshirani (1997) applied the Lasso penalty to the Cox proportional hazards model. Gui and Li
(2005), Sohn and others (2009), and Goeman (2010) suggested important computational improvements
to make the calculation of the Lasso estimator in the Cox proportional hazards model more efficient.
Although the Lasso penalty induces sparsity, it is well known to suffer from possible inconsistent selection
of variables.

Whereas penalized inference is convenient, justification of the penalty is somewhat problematic.
Interpreting the solution as a Bayesian MAP estimator with a particular prior on the parameters seems
to merely reformulate the problem, rather than solving it. Furthermore, the methods suffer from being
not invariant under scale transformations of the explanatory variables. This means that measuring,
e.g., height in centimeters or inches can and probably will result in dramatically different answers.
Therefore, most penalized regression methods start their exposition by assuming that the variables are
appropriately renormalized. This is clearly a merely algorithmic device and simply begs the question
of invariance. Clearly the strongest argument in favor of some of these methods are their asymptotic
properties. Nevertheless, what this means in the small sample settings encountered in practice is also
problematic.

In this article, we will approach sparsity directly from a likelihood point of view. The angle between
the covariates and the tangent residual vector within the likelihood manifold provides a direct and scale-
invariant way to assess the importance of the individual covariates. The idea is similar to the least angle
regression approach proposed by Efron and others (2004). However, rather than using it as a computational
device for obtaining Lasso solutions, we view the method in its own right as in Augugliaro and others
(2013). Moreover, the method extends directly beyond the Cox proportional hazard model. In fact, we
will focus on general relative risk survival models.

The remaining part of this article is structured as follows. In Section 2, we introduce the relative
risk regression model and in Section 3, first we derive the differential geometric structure of a relative
regression model and then we use it to extend the differential geometric least angle regression (dgLARS)
method (Augugliaro and others, 2013). In this section, by appealing to the theory of Z-estimation, we
derive a robust way of selecting a unique point of the path of solutions defined by dgLARS. In Section 4, by
simulation studies, we compare the performance of the proposed method to other sparse survival regression
approaches, especially in the presence of correlated predictors. In Section 5, we return to the motivating
cancer survival studies and employ differential geometric Cox proportional hazards modelling to find a
genetic signature for cancer survival in skin, colon, prostate, and ovarian cancer. Finally, in Section 6 we
draw some conclusions.
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Sparse relative risk regression models e133

2. RELATIVE RISK REGRESSION MODELS

In analyzing survival data, one of the most important tools is the hazard function, which is used to
express the risk or hazard of failure at some time t. Formally, let T be the (absolutely) continuous random
variable associated with the survival time and let f (t) be the corresponding probability density function,
the hazard function is defined as λ(t) = f (t)/{1 − ∫ t

0 f (s)ds} and specifies the instantaneous rate at which
failures occur for subjects that are surviving at time t. Suppose that the hazard function can depend on
a p-dimensional, possibly time-dependent, vector of covariates, denoted by x(t) = (x1(t), . . . , xp(t))�.
Relative risk regression models are based on the assumption that x(t) influences the hazard function
through the following relation

λ(t; x) = λ0(t)ψ{x(t); β}, (2.1)

where β ∈ B ⊆ Rp is a p-dimensional vector of unknown fixed parameters and λ0(t) is the base line
hazard function at time t, which is left unspecified. Finally,ψ : Rp ×Rp → R is a differentiable function,
called the relative risk function, and the parameter space B is such that ψ{x(t); β} > 0 for each β ∈ B.
We also assume that the relative risk function is normalized, i.e., ψ(0; β) = 1. Model (2.1), originally
proposed in Thomas (1981), clearly extends the usual Cox regression model (Cox, 1972) which is obtained
when ψ{x(t); β} = exp{β�x(t)}, and allows us to work with applications in which the exponential form
of the relative risk function is not the best choice. This issue was observed in Oakes (1981) and further
underlined in Cox (1981). As a motivating example for the generalization (2.1), several authors have noted
that the linear relative risk function ψ{x(t); β} = 1 + β�x(t) provides a natural framework within which
to assess departures from an additive relative risk model when two or more risk factors are studied in
relation to the incidence of a disease (see e.g., Thomas 1981; Prentice and others 1983; Prentice and
Mason 1996, among the other). Other possible choices for the relative risk functions are the logit relative
risk function ψ{x(t); β} = log[1 + exp{β�x(t)}], proposed by Efron (1977), or the the excess relative
risk model ψ{x(t); β} = ∏p

m=1{1 + xm(t)βm}.
Suppose that n observations are available and let ti be the ith observed failure time. Assume that we

have k uncensored and untied failure times and let D be the set of indices for which the corresponding
failure time is observed; the remaining failure times are right censored. As explained in Cox and Oakes
(1984), if we denote by R(t) the risk set, i.e., the set of indices corresponding to the subjects who have not
failed and are still under observation just prior to time t, under the assumption of independent censoring,
inference about the β can be carried out by the partial likelihood function

Lp(β) =
∏
i∈D

ψ{xi(ti); β}∑
j∈R(ti)

ψ{xj(ti); β} . (2.2)

When the exponential relative risk function is used in model (2.1) and we work with fixed covariates, (2.2)
is clearly equal to the original partial likelihood introduced in Cox (1972) and discussed in great detail in
Cox (1975).

3. SPARSE RELATIVE RISK REGRESSION

In this section, we extend the dgLARS method (Augugliaro and others, 2013) to the relative risk regression
models. The basic idea underlying the dgLARS method is to use the differential geometrical structure of a
Generalized Linear Model (GLM) (McCullagh and Nelder, 1989) to generalize the LARS method (Efron
and others, 2004). This means that, our first step is relate the partial likelihood (2.2) with the likelihood
function of a specific GLM. As originally observed in Thomas (1977), and studied in greater detail in

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/e131/5149694 by guest on 30 M

arch 2020



e134 E. C. WIT AND OTHERS

Prentice and Breslow (1978), to solve this problem we shall use the identity existing between the partial
likelihood and the likelihood function of a logistic regression model for matched case–control studies.
The idea to use this identity to study the differential geometrical structure of a relative risk regression
model is not new and was originally used in Moolgavkar and Venzon (1987) to construct approximated
confidence regions for the proportional hazards model.

3.1. Differential geometrical structure of the relative risk regression model

The partial likelihood (2.2) can be seen as arising from a multinomial sample scheme. Consider an
index i ∈ D and let Yi = (Yih)h∈R(ti) be a multinomial random variable with sample size equal
to 1 and cell probabilities π i = (πih)h∈R(ti) ∈ �i, i.e., p(y; π i) = ∏

h∈R(ti)
π

yih
ih . Assuming that the

random vectors Yi are independent, the joint probability density function is an element of the set

S =
{∏

i∈D
∏

h∈R(ti)
π

yih
ih : (π i)i∈D ∈ ⊗

i∈D �i

}
, called the ambient space. We would like to underline

that our differential geometric constructions are invariant to the chosen parameterization, which means
that S can be equivalently defined by the canonical parameter vector and this will not change the results.
In this article, we prefer to use the mean value parameter vector to specify our differential geometrical
description because this will make the relationship with the partial likelihood (2.2) clearer. If we model
the expected value of Yih as follows:

Eβ(Yih) = πih(β) = ψ{xh(ti); β}∑
j∈R(ti)

ψ{xj(ti); β} , (3.1)

it is easy to see that the partial likelihood (2.2) is formally equivalent to the likelihood function associated

with the model space M =
{∏

i∈D
∏

h∈R(ti)
{πih(β)}yih : β ∈ B

}
assuming that for each i ∈ D, the

observed yih is equal to one if h is equal to i and zero otherwise. Let �(β) = ∑
i∈D

∑
h∈R(ti)

Yih logπih(β)

be the log-likelihood function associated to the model space M and let ∂m�(β) = ∂�(β)/∂βm. The
tangent space TβM of M at the model point

∏
i∈D

∏
h∈R(ti)

{πih(β)}yih is defined as the linear vector
space spanned by the p elements of the score vector, formally, TβM = span{∂1�(β), . . . , ∂p�(β)}. Under
standard regularity conditions, it is easy to see that TβM is the linear vector space of the random variables
vβ = ∑p

m=1 vm∂m�(β) with zero expectation and finite variance. Applying the chain rule, for any tangent
vector belonging to TβM we have that

vβ =
p∑

m=1

vm∂m�(β) =
∑
i∈D

∑
h∈R(ti)

{
p∑

m=1

vm
∂πih(β)

∂βm

}
∂ih�(β) =

∑
i∈D

∑
h∈R(ti)

wih∂ih�(β),

where ∂ih�(β) = ∂�(β)/∂πih; the previous expression shows that TβM is a linear sub vector space of the
tangent space TβS spanned by the random variables ∂ih�(β). To define the notion of angle between two
given tangent vectors belonging to TβM, say vβ = ∑p

m=1 vm∂m�(β) and wβ = ∑p
n=1 wn∂n�(β), we shall

use the information metric (Rao, 1949), i.e.,

〈vβ ; wβ〉β = Eβ(vβwβ) =
p∑

m,n=1

Eβ{∂m�(β)∂n�(β)}vmwn = v�I (β)w, (3.2)

where v = (v1, . . . , vp)
�, w = (w1, . . . , wp)

� and I (β) is the Fisher information matrix evaluated at β. As
observed in Moolgavkar and Venzon (1987), the matrix I (β) used in (3.2) is not exactly equal to the Fisher
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Sparse relative risk regression models e135

information matrix of the relative risk regression model, however it has the same asymptotic properties
for inference. Finally, to complete our differential geometric framework we need to introduce the tangent
residual vector rβ = ∑

i∈D
∑

h∈R(ti)
rih(β)∂ih�(β), where rih(β) = yih − πih(β), which is an element of

TβS and which measures the difference between a model in M and the observed data.
Even if our differential geometric framework is based on the assumption that we have k untied

failure times, it can be extended to cases where tied events occur, such as the approach proposed in
Kalbfleisch and Prentice (2002), in Cox (1972), in Breslow (1975) or in Efron (1977) for the Cox regres-
sion model. Here we will use the correction for tied events proposed in Cox (1972). Suppose we have
di subjects failing at time ti. By i = {i1 . . . , idi } we denote the set of indices of the subjects falling at ti

and by R(ti; di) the set of all possible subsets of di indices chosen from R(ti) without replacement. With
a little abuse of notation, the new multinomial random variable is denoted as Yi = (Yih)h∈R(ti ;di) and by
π i = (πih)h∈R(ti ;di) the corresponding cell probabilities; under this setting the new ambient space is the

set S =
{∏

i∈D
∏

h∈R(ti ;di)
π

yih
ih : (π i)i∈D ∈ ⊗

i∈D �i

}
. Finally, to complete our adjustment it is sufficient

to change model (3.1) with a new model entailing the required adjusted partial likelihood. To this end, by
setting

Eβ(Yih) = πih(β) = exp{β�sh(ti)}∑
j∈R(ti ;di)

exp{β�sj(ti)}
,

where sj(ti) = ∑
l∈j xl(ti), it is easy to see that the likelihood function associated with M is equal to

the partial likelihood of the Cox regression model with the correction proposed in Cox (1972) when we
assume that yih is equal to one if the set h is equal to i and zero otherwise. The same approach can also be
used to handle the other corrections proposed in literature.

3.2. dgLARS method for relative risk regression models

dgLARS is a sequential method developed for constructing a sparse path of solutions indexed by a positive
parameter γ and theoretically founded on the following characterization of the mth signed Rao score test
statistic, i.e.:

ru
m(β) = I−1/2

mm (β)∂m�(β) = cos{ρm(β)}‖rβ‖β , (3.3)

where ‖rβ‖2
β = ∑

i∈D
∑

h,k∈R(ti)
Eβ{∂ih�(β)∂ik�(β)}rih(β)rik(β) and Imm(β) is the Fisher information for

βm. The quantity ρm(β) is a generalization of the Euclidean notion of angle between the mth column of the
design matrix and the residual vector r(β) = (rih(β))i∈D,h∈R(ti). Characterization (3.3) gives us a natural
way to generalize the equiangularity condition of Efron and others (2004): two given predictors, say the
mth and nth, satisfy the generalized equiangularity condition at the point β when |ru

m(β)| = |ru
n(β)|. Inside

the dgLARS theory, the generalized equiangularity condition is used to identify the predictors that are
included in the model.

The nonzero estimates are formally defined as follows. For any data set there is a finite sequence of
transition points, say γ (1) ≥ · · · ≥ γ (K) ≥ 0, such that for any fixed γ between γ (k+1) and γ (k) the
sub vector of the nonzero dgLARS estimates, denoted as β̂Â(γ ) = (β̂m(γ ))m∈Â, satisfies the following
conditions:

ru
m{β̂Â(γ )} = smγ , m ∈ Â (3.4)

|ru
n{β̂Â(γ )}| < γ , n /∈ Â (3.5)
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e136 E. C. WIT AND OTHERS

where sm = sign{β̂m(γ )} and Â = {m : β̂m(γ ) �= 0}, called active set, is the set of the indices of the
predictors that are included in the current model, called active predictors. In any transition point, say for
example γ (k), one of the following two conditions occur:

1. there is a non-active predictor, say the nth, satisfying the generalized equiangularity condition with
any active predictor, i.e.,

|ru
n{β̂Â(γ

(k))}| = |ru
m{β̂Â(γ

(k))}| = γ (k), (3.6)

for any m in Â, then it is included in the active set;
2. there is an active predictor, say the mth, such that

sign[ru
m{β̂Â(γ

(k))}] �= sign{β̂m(γ
(k))}, (3.7)

then it is removed from the active set.

Given the previous definition, the path of solutions can be constructed in the following way. Since we
are working with a class of regression models without intercept term, the starting point of the dgLARS
curve is the zero vector this means that, at the starting point, the p predictors are ranked using |ru

m(0)|.
Suppose that a1 = arg maxm |ru

m(0)|, then Â = {a1}, γ (1) is set equal to |ru
a1
(0)| and the first segment of

the dgLARS curve is implicitly defined by the nonlinear equation ru
a1

{β̂a1(γ )} − sa1γ = 0. The proposed
method traces the first segment of the dgLARS curve reducing γ until we find the transition point γ (2)

corresponding to the inclusion of a new index in the active set, in other words, there exists a predictor, say
the a2th, satisfying condition (3.6), then a2 is included in Â and the new segment of the dgLARS curve is
implicitly defined by the system with nonlinear equations:

ru
ai
{β̂Â(γ )} − saiγ = 0, ai ∈ Â,

where β̂Â(γ ) = (β̂a1(γ ), β̂a2(γ ))
�. The second segment is computed reducing γ and solving the previous

system until we find the transition point γ (3). At this point, if condition (3.6) occurs a new index is included
in Â otherwise condition (3.7) occurs and an index is removed from Â. In the first case, the previous system
is updated adding a new nonlinear equation while, in the second case, a nonlinear equation is removed.
The curve is traced as previously described until parameter γ is equal to some fixed value that can be
zero, if the sample size is large enough, or some positive value if we are working in a high-dimensional
setting, i.e., the number of predictors is larger than the sample size. Table 1 reports the pseudocode of the
developed algorithm to compute the dgLARS curve for a relative regression model. From a computational
point of view, the entire dgLARS curve can be computed using the predictor–corrector algorithm proposed
in Augugliaro and others (2013); for more details about this algorithm the interested reader is referred
to Augugliaro and others (2014, 2016) or Pazira and others (2018). The latter extend the dgLARS method
to GLM based on the exponential dispersion family proposing an improved predictor–corrector algorithm.

3.3. Tuning parameter selection: derivation of the Generalized Information Criterion

In the previous sections, we have seen how to extend the dgLARS method to relative regression models
and how to construct the corresponding path of solutions. In this section, we address the problem of how
to select the optimal point of such curve; in other words, the problem of finding the optimal γ -value. The
behavior of any penalized estimator, such as Lasso or SCAD, is closely related to the way of selecting
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Sparse relative risk regression models e137

Table 1. Pseudocode of the dgLARS algorithm for a relative risk regression model

Step Description

0. Let ru
m(β) be the Rao score statistic associated with the partial likelihood.

1. Let γ (1) = maxm |ru
m(0)| and initialize the active set Â = arg maxm |ru

m(0)|
2. Repeat the following steps
3. Trace the segment of the dgLARS curve reducing γ and solving the system

ru
m{β̂Â(γ )} − smγ = 0, m ∈ Â

4. until γ is equal to the next transition point
5. If condition (3.6) is met then include the new index in Â
6. Else (condition (3.7) is met) remove the index from Â
7. Until γ reaches some small positive value

the value of the tuning parameter because it controls the trade-off between bias and variance. Usually, the
tuning parameter is selected using a suitable information criterion which can be written as:

model fit + Cn × model complexity, (3.8)

where Cn is some positive sequence that depends only on the sample size. While minus two times the
log-likelihood is commonly used as a measure of model fitting, there are many ways to measure model
complexity. For example, this problem is studied for the Lasso estimator in Zou and others (2007).

In this article, we propose to select the optimal γ -value of the dgLARS method by using the Generalized
Information Criterion (GIC) proposed in Konishi and Kitagawa (1996). For any fixed value of the parameter
γ , dgLARS estimator can be seen as the Z-estimator implicitly defined by the system of estimating
equations

∂m�p{β̂Â(γ )} − smγ I 1/2
mm {β̂Â(γ )} =

∑
i∈D

[
∂m�i,p{β̂Â(γ )} − γ

smI 1/2
mm {β̂Â(γ )}

|D|

]

=
∑
i∈D

φi,m{β̂Â(γ )}

= 0, m ∈ Â,

where �p(β) = ∑
i∈D �i,p(β) is the log-partial likelihood function. To the best of our knowledge, the

approach developed in Konishi and Kitagawa (1996) is the only one providing a rigorous definition of
model complexity for Z-estimators. Using definition (3.8), the GIC measure for the dgLARS estimator
applied to the relative risk regression model is defined as

GIC(Cn) = −2�p{β̂(γ )} + Cntr
[
R−1{β̂(γ )}Q{β̂(γ )}

]
, (3.9)

where R{β̂(γ )} and Q{β̂(γ )} are |Â| × |Â| matrices with generic elements

Rmn{β̂(γ )} = − 1

|D|
∑
i∈D

∂φi,m{β̂(γ )}
∂βn

and Qmn{β̂(γ )} = 1

|D|
∑
i∈D

φi,m{β̂(γ )}∂n�i,p{β̂(γ )},
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e138 E. C. WIT AND OTHERS

respectively.
For the case of the Cox regression model, i.e., ψ{x(t); β} = exp{β�x(t)}, the log-partial likelihood

function is equal to

�p(β) =
∑
i∈D

⎡
⎣β�xi(ti)− log

∑
j∈R(ti)

exp{β�xj(ti)}
⎤
⎦. (3.10)

As shown in Cox (1972), we know that

∂m�p(β) =
∑
i∈D

{xim(ti)− Ai,m(β)}, (3.11)

where Ai,m(β) = ∑
j∈R(ti)

exp{β�xj(ti)}xim(ti)/
∑

j∈R(ti)
exp{β�xj(ti)}, and the mth element of the Fisher

information matrix is equal to

Imn(β) = −∂
2�p(β)

∂βm∂βn
=

∑
i∈D

∂Ai,m(β)

∂βn
=

∑
i∈D

{Ci,mn(β)− Ai,m(β)Ai,n(β)}, (3.12)

where Ci,mn(β) = ∑
j∈R(ti)

exp{β�xj(ti)}xim(ti)xin(ti)/
∑

j∈R(ti)
exp{β�xj(ti)}. Using (3.11) and (3.12),

after straightforward algebra we have that

Rmn(β) = 1

|D|
{

Imn(β)+ smγ

2I 1/2
mm (β)

∂Imm(β)

∂βn

}
, (3.13)

where

∂Imm(β)

∂βn
=

∑
i∈D

[
Ci,mmn(β)− Ci,mm(β)Ai,n(β)− 2Ai,m(β)

∂Ai,m(β)

∂βn

]
,

and Ci,mmn(β) = ∑
j∈R(ti)

exp{β�xj(ti)}x2
im(ti)xin(ti)/

∑
j∈R(ti)

exp{β�xj(ti)}. Finally,

Qmn(β) = 1

|D|

{∑
i∈D

∂m�i,p(β)∂n�i,p(β)− smγ I 1/2
mm (β)∂n�p(β)

|D|

}
. (3.14)

The information criterion (3.9) is obtained evaluating the expressions (3.10), (3.13), and (3.14) at the point
β̂Â(γ ).

4. SIMULATION STUDY

In this section, we compare the method introduced in Section 3.2 with three popular algorithms: the coor-
dinate descent method developed by Simon and others (2011), named CoxNet, the predictor–corrector
developed by Park and Hastie (2007), named CoxPath, and the gradient ascent algorithm proposed by Goe-
man (2010), named CoxPen. These algorithms are implemented in the R packages glmnet, glmpath,
and penalized, respectively. Given the fact that these methods have only been implemented only for
Cox regression model, our comparison will focus on this kind of relative risk regression model. In the
following of this section, dgLARS method applied to the Cox regression model is referred to as the dgCox
model.
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Sparse relative risk regression models e139

4.1. Comparison with other methods: the scale invariance

Let �p(β) be the partial log-likelihood function, then the Lasso estimator is defined as solution of the
problem

max
β
�p(β)− γ

p∑
m=1

|βm|, (4.1)

where γ is a non-negative tuning parameter used to control the amount of sparsity in the resulting estimates;
when γ is large some elements of the resulting Lasso estimates will be exactly equal to zero whereas when
γ goes to zero the sparsity is reduced since more predictors will be included in the estimated model.

To better understand how the scale of the predictors influences the behavior of the Lasso estimator
let xim = cmzim, with

∑n
i=1 zim = 0 and

∑n
i=1 z2

im = 1, then problem (4.1) is equivalent to the following
reparameterized Lasso problem

max
ζ
�p(ζ )−

p∑
m=1

γm|ζm|, (4.2)

where ζm = cmβm and γm = γ /cm is a tuning parameter specific for the mth regression coefficient.
Problem (4.2) reveals that the scale factor of each predictor, i.e., the quantity cm, influences the behavior
of the Lasso estimator by changing the scale of the tuning parameter. For example, an increase of the
factor cm implies a reduction of the parameter γm consequently, with high probability, the mth predictor
will included in the estimated model even if it does not influence the true relative risk function. The
previous example shows that the ability of the Lasso estimator to select a set of predictors is not invariant
under scale transformation of the predictors. dgLARS implicitly overcomes this theoretical limitation by
using the Rao score test statistic and characterization (3.3) for variable selection. As consequence of the
elementary properties of the Rao score test statistic, the variable selection property of the dgLARS method
is scale invariant. For more details the reader is referred to Augugliaro and others (2016).

To study the practical effect, we perform a simulation study involving a Cox regression model where
the survival time ti is drawn from an exponential distribution with parameter λi = exp(β�xi) and xi is
sampled from a p-variate normal distribution N(0, I ), where I denotes the identity matrix. The censorship
is randomly assigned to the survival times with probability π = 0.5. In our study, the sample size n is
fixed to 100, p is fixed to 10 and βm is equal to 0.5, for m = 1, 2, 3; the remaining 7 regression coefficients
are 0.

To evaluate how the variable selection behavior is related to the scale of the predictors, we rescale
in each simulation run the predictors with no effect to have Euclidean norm equal to k . In our study
k varies from 1 to 4. Then we compute the path associated to dgCox, CoxNet, CoxPath, and CoxPen
methods, respectively. For each point of a given path, denoted as β̂(γ ), we compute the False Positive
Rate [FPR(γ )], i.e., the ratio between the number of false predictors selected by β̂(γ ) and the total
number of false predictors, and the True Positive Rate [TPR(γ )], i.e., the ratio between the number of
true predictors selected by β̂(γ ) and the total number of true predictors. These quantities are used to
compute the Receiver Operating Characteristic (ROC) curve and the corresponding Area Under the Curve
(AUC). Finally, the four average AUCs are computed and studied as function of the Euclidean norm of
the predictors with regression coefficient equal to zero. Figure 1 clearly confirms what we previously
discussed, i.e., the variable selection behavior of the dgLARS method is scale invariant while the ability
of the Lasso estimator to select the true model decreases as the k is increasing.
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Fig. 1. Average area under the ROC curves seen as function of the Euclidean norm of the predictors with regression
coefficient equal to zero.

4.2. Global comparison with other path-estimation methods

We simulated 100 datasets from a Cox regression model where the survival times ti (i = 1, . . . , n) follow
an exponential distributions with parameter λi = exp(β�xi), and xi is sampled from a p-variate normal
distribution N(0,); the entries of are fixed to corr(Xm, Xn) = ρ |m−n| with ρ ∈ {0.3, 0.9}. The censorship
is randomly assigned to the survival times with probability π ∈ {0.2, 0.4}. The number of predictors is
equal to 100 and the sample size is equal to 50 and 150. The first value is used to evaluate the behavior of
the methods is a high-dimensional setting. Finally, we set βm = 0.2 for m = 1, . . . , s, where s ∈ {5, 10};
the remaining parameters are set equal to zero.

To remove the effects coming from the information measure used to select the optimal point of each
path of solutions, we evaluated the global behavior of the paths by considering the ROC curves, which
were computed as described in Section 4.1. For the sake of brevity, in Fig. 2 we show only the results
for the simulation study with sample size equal to 50; the complete list of figures is reported in the
supplementary material available at Biostatistics online. In this figure, we compare the ROC curves of our
method with the three implementations of the lasso regularized Cox proportional hazards regression across
six scenarios. In scenarios where ρ = 0.3, CoxNet, CoxPath, and CoxPen exhibit a similar performance,
having overlapping curves for both levels of censoring, whereas dgCox method appears to be consistently
better with the largest AUC. A similar performance of the methods has been also observed for the other
combinations of the ρ and π values. In scenarios where the correlation among neighboring predictors is
high, i.e., ρ = 0.9, the dgCox method is clearly the superior approach for all levels of censoring. As shown
in the figures reported in the supplementary material available at Biostatistics online, a similar result is
obtained when we increase the sample size.

4.3. Tuning parameter selection comparisons

As seen in Section 3.3, the behavior of any penalized method is closely related to the information criterion
used to select the optimal point of the path of solutions. The simulation study reported in this section is
intended to examine the finite sample performance of a number of model information criteria applied to the
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Fig. 2. Results from the simulation study with s = 5 and sample size equal to 50; for each scenario, we show the
averaged ROC curve for dgCox, CoxNet, CoxPath, and CoxPen algorithm. The average AUC is also reported. The
45◦ diagonal is also included in the plots.

dgCox model. The measures that we considered in our study are the Akaike Information Criterion (AIC),
the Bayesian Information Criterion (BIC), the GIC proposed in Fan and Tang (2013) (FAN13), which uses
Cn = log(log |D|) log p and complexity term |Â(γ )|, and two possible versions of the GIC measure (3.9),
with Cn = 2, as originally proposed, and Cn = log |D|, imitating the BIC. All the considered criteria are
based on using the partial log-likelihood as measure of model fit.

The simulation study in this section follows a similar data generation mechanism as discussed in Section
4.2; we fix the censoring probability π = 0.2, the sample sizes n ∈ {50, 200} and p ∈ {50, 100, 1000}.
This scenario also covers the high-dimensional setting. The level of sparsity in the true model varies: for
the first d = {2, 8, 32} predictors we fix the coefficients to 0.5, whereas the remaining coefficients are set
to zero. The same correlation structure as in Section 4.2 is considered with ρ = 0.9. For each scenario,
we simulate 500 data sets and let the dgCox method computes the entire path of solutions. Then, we use
the considered information criteria to select the optimal γ -value.

For the sake of brevity, in Table 2 we report only the results of the simulation study with sample size
equal to n = 50; the remaining results are reported in the supplementary material available at Biostatistics
online. To evaluate the behavior of the considered criteria we use the median number of variables included
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Table 2. Results from the simulation studies when n = 50; for each scenario we report the median
number of variables included in the final model (Size), the mean of the false positive rate (FPR),
the false discovery rate (FDR), the false negative rate (FNR), and F1-score (F1). Standard errors
are in parentheses. Bold values identify the best information criterion for each scenario

p d Criterion Size FPR FDR FNR F1

50 2 AIC 4 (0.331) 0.071 (0.007) 0.539 (0.030) 0.220 (0.027) 0.523 (0.024)
BIC 2 (0.159) 0.023 (0.003) 0.310 (0.029) 0.295 (0.029) 0.635 (0.023)
FAN13 2 (0.105) 0.011 (0.002) 0.216 (0.028) 0.365 (0.030) 0.648 (0.025)
GIC(2) 4 (0.302) 0.061 (0.006) 0.507 (0.030) 0.230 (0.027) 0.541 (0.023)
GIC(log |D|) 2 (0.166) 0.061 (0.006) 0.507 (0.030) 0.230 (0.027) 0.541 (0.023)

8 AIC 9 (0.288) 0.080 (0.006) 0.313 (0.017) 0.236 (0.013) 0.708 (0.011)
BIC 7 (0.185) 0.032 (0.003) 0.166 (0.014) 0.289 (0.014) 0.756 (0.011)
FAN13 6 (0.162) 0.019 (0.002) 0.108 (0.012) 0.319 (0.015) 0.760 (0.011)
GIC(2) 9 (0.284) 0.081 (0.006) 0.321 (0.016) 0.236 (0.013) 0.705 (0.012)
GIC(log |D|) 7 (0.175) 0.081 (0.006) 0.321 (0.016) 0.236 (0.013) 0.705 (0.012)

32 AIC 16 (0.224) 0.040 (0.004) 0.044 (0.004) 0.522 (0.006) 0.635 (0.006)
BIC 14 (0.224) 0.033 (0.003) 0.040 (0.004) 0.554 (0.007) 0.606 (0.007)
FAN13 13 (0.322) 0.026 (0.003) 0.036 (0.005) 0.610 (0.010) 0.548 (0.011)
GIC(2) 16 (0.222) 0.041 (0.004) 0.045 (0.004) 0.519 (0.006) 0.637 (0.006)
GIC(log |D|) 15 (0.237) 0.041 (0.004) 0.045 (0.004) 0.519 (0.006) 0.637 (0.006)

1000 2 AIC 8 (0.519) 0.007 (0.001) 0.723 (0.026) 0.310 (0.026) 0.344 (0.023)
BIC 2 (0.211) 0.001 (0.000) 0.359 (0.035) 0.405 (0.026) 0.551 (0.026)
FAN13 1 (0.081) 0.000 (0.000) 0.152 (0.029) 0.640 (0.031) 0.426 (0.034)
GIC(2) 7 (0.516) 0.007 (0.001) 0.702 (0.027) 0.310 (0.026) 0.362 (0.024)
GIC(log |D|) 2 (0.215) 0.007 (0.001) 0.702 (0.027) 0.310 (0.026) 0.362 (0.024)

8 AIC 9 (0.377) 0.004 (0.000) 0.388 (0.023) 0.380 (0.014) 0.584 (0.011)
BIC 5 (0.229) 0.001 (0.000) 0.151 (0.018) 0.429 (0.013) 0.662 (0.011)
FAN13 4 (0.124) 0.000 (0.000) 0.002 (0.002) 0.545 (0.015) 0.608 (0.016)
GIC(2) 10 (0.395) 0.005 (0.000) 0.401 (0.024) 0.381 (0.014) 0.576 (0.012)
GIC(log |D|) 6 (0.258) 0.005 (0.000) 0.401 (0.024) 0.381 (0.014) 0.576 (0.012)

32 AIC 14 (0.212) 0.001 (0.000) 0.056 (0.007) 0.572 (0.006) 0.586 (0.006)
BIC 14 (0.229) 0.001 (0.000) 0.047 (0.006) 0.593 (0.007) 0.567 (0.007)
FAN13 1 (0.399) 0.000 (0.000) 0.007 (0.003) 0.898 (0.012) 0.163 (0.019)
GIC(2) 15 (0.219) 0.001 (0.000) 0.061 (0.007) 0.570 (0.006) 0.587 (0.006)
GIC(log |D|) 14 (0.231) 0.001 (0.000) 0.061 (0.007) 0.570 (0.006) 0.587 (0.006)

in the final model (Size), the average false positive rate (FPR), the false discovery rate (FDR), the false
negative rate (FNR), and F1-score (F1) to investigate the performance of the model selection criteria in
identifying the true model. The results in Table 2 show that there is a clear trade-off between FNR and FPR.
Therefore, it can be more informative to compare a summary measure, such as the F1-score. Summarizing,
we found that in very sparse contexts, i.e., the true number of effects is small (d  p), FAN13 performs
well in terms of F1-score. The two GIC measures perform well when d increases, slightly beating FAN13.
The traditional AIC and BIC criteria do not perform as well: the reason could be that the penalized partial
likelihood setting violate the usual assumptions for these methods in that model fit should be measured
as a maximum likelihood, not as a penalized partial likelihood.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/e131/5149694 by guest on 30 M

arch 2020



Sparse relative risk regression models e143

5. FINDING GENETIC SIGNATURES IN CANCER SURVIVAL

In this section, we test the predictive power of proposed method in four recent studies. In particular,
we focus on the identification of genes involved in the regulation of colon cancer (Loboda and others,
2011), prostate cancer (Ross and others, 2012), ovarian cancer (Gillet and others, 2012), and skin cancer
(Jönsson and others, 2010). The set-up of the four studies was similar. In the patient a cancer was detected
and treated. When treatment was complete a follow-up started. In all cases, the expression of several
genes were measured in the affected tissue together with the survival times of the patients, which may be
censored if the patients were alive when they left the study. Although other socio-economical variables,
such us age, sex, etc. are available, our analysis only focuses on the impact of the gene expression levels
on the patients’ survival.

A table containing a brief description of the four datasets used in this section is reported in the
supplementary materials available at Biostatistics online. In the four scenarios, the number of predic-
tors p is larger than the number of patients n. The dimensionality is especially high in the cases of the
colon and skin cancer where the expression of several thousands of genes were measured. In the prostate
and ovarian cancers the number of genes is 162 and 306, which will also help us to study the performance
of the dgLARS method when the number of variables is just a few orders of magnitude larger than the
number of observations.

In genomics, it is common to assume that just a moderate number of genes affect the phenotype of
interest. To identify such genes in this survival context, we estimate a Cox regression model using the
dgLARS method described in Section 3. To this end, we randomly select a training sample that contains the
60% of the patients, and we save the remaining data to test the models. We calculate the paths of solutions
in the four scenarios and we select the optimal number of components by means of the GIC(log |D|)
criterion derived in Section 3.3. For the colon, prostate, ovarian, and skin cancer studies we find gene
profiles consisting of, respectively, 38, 24, 43, and 23 genes.

In order to illustrate the prediction performance of the dgLARS method, we classify the test patients
into a low-risk group and a high-risk groups by splitting the test sample into two subsets of equal size
according to the estimated individual predicted excess risk. The first two plots in Fig. 3 show the Kaplan–
Maier survival curves estimates for the low- and high-risk groups together with the original training
survival curve for the Colon and Ovarian studies, respectively. To test the groups separation we use the non-
parametric Peto & Peto modification of the Gehan–Wilcoxon test (Peto and Peto, 1972). For all four studies,
the differences between the low- and high-risk groups are significant at the traditional 0.05 significance
level.

Alternatively, survival ROC curves (Heagerty and others, 2000) can be used to describe how well
the selected model is predicting the order of survival of the patients in each of the studies. It can be
interpreted as a traditional ROC curve with respect to predicting the survival of the patients. The final
two plots in Fig. 3 show the survival ROC curves for the relatively small ovarian cancer study and the
large colon cancer study. The results show that dgCox combined with GIC is better than other sparse
survival methods in predicting the survival order. The results for the other two datasets are even more
in favor of the dgCox method and are reported in the supplementary materials available at Biostatis-
tics online. Both results suggest that the reported gene profiles are predictive for determining survival
and it demonstrates the power of dgLARS as a tool in medical analysis for massive gene screening
studies.

To gain some biological understanding of the process of cancer regulation we performed an enrichment
analysis of the 21 genes that have been found to be relevant in the regulation of the skin cancer. For the
sake of brevity the enrichment analysis is reported in the supplementary material available at Biostatistics
online.
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Fig. 3. Top plots: the Kaplan–Meier survival curves for colon and ovarian studies on training data together with the
curves associated to the low- and high-risk groups in the test sample, showing dgCox’s ability being able to detect low-
and high-risk individuals. Bottom plots: survival ROC curves for the same two studies, demonstrating how dgCox
combined with GIC has a better predictive performance than other sparse survival methods.

6. CONCLUSIONS

In this article, we have extended the dgLARS method to relative risk regression model using the relationship
exiting between the partial likelihood function and a specific GLM. The advantage of this approach is that
the estimates are invariant to arbitrary changes in the measurement scales of the predictors. Unlike SCAD
or �1 sparse regression methods, no prior rescaling of the predictors is therefore needed. The proposed
method can be used for a large class of survival models, the so called relative risk models. We have
implementations for the Cox proportional hazards model and the excess relative risk model.

In this article, we have also proposed a new information criterion to select the optimal point in the
path of solutions defined by applying dgLARS method to a relative risk regression model. As our method
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involves shrinkage of the parameters, the issue of the underlying degrees of freedom of the sparse models
is a complex one. For this reason, we used the approach developed in Konishi and Kitagawa (1996),
which provides a rigorous definition of model complexity for Z-estimators. We showed that the proposed
measure works well in a simulation study and is only beaten the method from Fan and Tang (2013) when
the true underlying model is extremely sparse.

A software implementation of our method is available on github (https://github.com/LuigiAugugliaro/
dgcox) and can deal with the classical n > p setting, but also with the high-dimensional setting, such as,
for example, a skin cancer study with p = 30 807 predictors and n = 54 observations. We have considered
four recent cancer survival studies, where we look for a genetic “survival signature.” Due to the large
number of predictors, the studies are unsuitable for traditional survival regression methods. Instead, the
results we find go beyond univariate importance and by means of an enrichment study can be linked to
potentially relevant biological explanations.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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RIPPE, R. C. A., MEULMAN, J. J. AND EILERS, P. H. C. (2012). Visualization of genomic changes by segmented
smoothing using an L0 penalty. PLoS One 7, e38230.

ROSS, R. W., GALSKY, M. D., SCHER, H. I., MAGIDSON, J., WASSMANN, K., LEE, G. S. M., KATZ, L., SUBUDHI, S. K.,
ANAND, A., FLEISHER, M., KANTOFF, P. W. and others. (2012). A whole-blood RNA transcript-based prognostic
model in men with castration-resistant prostate cancer: a prospective study. The Lancet Oncology 13, 1105–1113.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/e131/5149694 by guest on 30 M

arch 2020



Sparse relative risk regression models e147

SIMON, N., FRIEDMAN, J. H., HASTIE, T. AND TIBSHIRANI, R. (2011). Regularization paths for Cox’s proportional
hazards model via coordinate descent. Journal of Statistical Software 39, 1–13.

SOHN, I., KIM, J., JUNG, S. H. AND Park, C. (2009). Gradient lasso for Cox proportional hazards model.
Bioinformatics 25, 1775–1781.

THOMAS, D. C. (1977). Addendum to the paper by Liddell, McDonald, Thomas and Cunliffe. Journal of the Royal
Statistical Society Series A 140, 483–485.

THOMAS, D. C. (1981). General relative-risk models for survival time and matched case-control analysis.
Biometrics 37, 673–686.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series
B 58, 267–288.

TIBSHIRANI, R. (1997). The lasso method for variable selection in the Cox model. Statistics in medicine 16, 385–395.

ZOU, H. AND HASTIE, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society Series B, 301–320.

ZOU, H., HASTIE, T.AND TIBSHIRANI, R. (2007). On the “degrees of freedom” of the LASSO.TheAnnals of Statistics 35,
2173–2192.

[Received May 13, 2017; revised September 20, 2018; accepted for publication September 24, 2018]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/e131/5149694 by guest on 30 M

arch 2020


