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12 Abstract

13 The most recent carbon-enriched layer (sapropel S1) deposited at the Eratosthenes Seamount has 

14 unique features, such as an early lithological interruption, fine light silt laminae and an exceptional 

15 vertical extent that is over 25 cm thick. Here we investigate calcareous nannofossil assemblages to 

16 reconstruct very high-resolution palaeoenvironmental and palaeoceanographic variations recorded 

17 before, during and after the perturbation episode that involved the eastern Mediterranean Sea, due to 

18 the massive freshwater discharge via Nile River. Our results show that the deep chlorophyll 

19 maximum development, observed in all micropalaeontological groups from previous studies, is a 

20 gradual process that started well before the base of sapropel S1. A high-frequency variability in the 

21 nutricline depth is evident at millennial- and/or centennial-scale throughout the sapropel deposition 

22 time interval. Also we highlight the poor-preservation of delicate tiny holococcolith crystals while 

23 anoxia was occurring at the seafloor and we suggest that such a phenomenon may be used to mark 

24 the original thickness of sapropel deposition where oxygen re-ventilation fronts were developed. 

25 Finally, calcareous nannofossil reworking peaks shed light on the nature of fine silt laminae within 

26 the sapropel S1 at the Eratosthenes Seamount, which may be ascribed to fine sediment plumes from 

27 the Nile River deposited during exceptional runoff events.
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32 1 – Introduction

33 Eastern Mediterranean organic carbon-enriched layers (sapropels) are associated to precession 

34 minima (Hilgen, 1991; Lourens et al., 1997) that enhanced monsoon freshwater discharge via Nile 
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35 River (Hennekam et al., 2015; Marino et al., 2009; Rohling et al., 2002; Rossignol-Strick et al., 

36 1982; Weldeab et al., 2014). These events led to a huge perturbations in the eastern Mediterranean 

37 circulation and in the whole Mediterranean conveyor belt. The hydrological deficit that drives the 

38 Mediterranean antiestuarine circulation pattern was never balanced, as demonstrated by the 

39 continuos deep water outflow in the Gulf of Cadiz and in the Iberian Margin (Bahr et al., 2015; 

40 Schönfeld and Zahn, 2000; Voelker et al., 2006; Zahn et al., 1987). The massive freshwater 

41 discharge caused a significant buoyancy gain in upper part of the water column, strongly inhibiting 

42 Adriatic and Aegean Sea deep water formation that failed to bring oxygen to the deep seafloor (De 

43 Lange et al., 2008; Rohling et al., 2015). These processes have definitively left a mark on 

44 ecosystems that are identified on fossil micro-organisms. Deep benthic life became extinct, 

45 although some exceptions exist due to local settings and glacial sapropels (Jorissen, 1999; Rohling 

46 et al., 2015; Schmiedl et al., 2003). The nutricline, that today is several hundred of metres depth, 

47 raised well within the lower photic zone. A distinct deep chlorophyll maximum (DCM) has been 

48 identified in all main phytoplankton groups (Castradori, 1993; Kemp et al., 1999; Meier, 2004) and 

49 even in planktonic foraminifera grazers (Rohling and Gieskes, 1989).

50 The most recent sapropel, the so-called sapropel S1, deposited below 1800 m depth in the open 

51 eastern Mediterranean, between 10.8 and 6.1 kiloyears ago (ka) (De Lange et al., 2008; Grant et al., 

52 2016). It is the most studied sapropel layer because of the ease of recovery (just a few tens of 

53 centimetres below the seafloor) and the short time elapsed that allows an excellent chronological 

54 constraint and a realistic comparison with different paleoceanographic and paleoclimatic proxies. A 

55 distinct sapropel interruption, between 8.5 and 7.8 ka, marks a return of significant deep water 

56 oxygenation in the Aegean and Adriatic Seas (Casford et al., 2003; Rohling et al., 2015).

57 The sapropel S1 layer recovered during the Ocean Drilling Program (ODP) Leg 160, at the 

58 Eratosthenes Seamount setting (Site 968) has characteristics which are completely unique. The site 

59 is under direct influence of the Nile Delta Cone, at a depth which is close to permanent anoxia (~ 

60 1900 m). Sapropel S1 consists of one of the largest thicknesses so far recovered and thus has the 

61 potentiality for high-resolution investigation. It is characterized by millimetre laminated mud 

62 interbeds and distinctive colour changes and an is interrupted by a thin clay layer near the base 

63 (Emeis et al., 1996). Here we present the study of coccoliths carried out every 1-cm of sediment, 

64 below, across and above sapropel S1. The aim of the study is to assess the palaeoenvironmental 

65 reconstruction of the photic zone during this crucial interval and to verify whether the unique 

66 lithological features of sapropel S1 at Site 968 match with environmental and preservation 

67 variations in calcareous phytoplankton assemblages.

68
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69 2 - Material and Methods

70 2.1 - Sediment cores

71 ODP Hole 968C (34°19.976’N, 32°45.211’E, 1964.1 m water depth) is located at the base of the 

72 northern slope of the Eratosthenes Seamount, a structure that emerges from the Nile Delta Cone 

73 (Fig. 1). Lithology is dominated by calcareous gray and brown nannofossil clay and clayey 

74 nannofossil ooze (Emeis et al., 1996). No ash layers occur within the studied interval (Emeis et al., 

75 1996). Sapropel S1 is about 25 cm thick (Fig. 2) and has an organic carbon content of 2% (Emeis et 

76 al., 1996). It is interrupted by a 0.5-cm thick clay near the base and is overlain by a distinctive Mn-

77 rich zone. Many millimetre- and sub-millimetre-scale laminae, that consist of clay and pyrite, 

78 punctuate the sapropel layer.

79

80 2.2 - Coccolith data

81 Coccolith analysis at ODP Site 968 was carried out at 1 cm resolution, between 33 and 112 cm 

82 composite depth (cmcd), for a total of 79 samples. The coccolith analysis was carried out by 

83 observation with a polarized microscope at about 1000 X magnification. Rippled smear slides were 

84 prepared following the standard procedure (Bown and Young, 1998). A mean of 500 specimens 

85 within the entire assemblage was identified following the taxonomic concepts on living 

86 coccolithophores of Young et al. (2003) and Jordan et al. (2004). Taxa were grouped in ‘placoliths’, 

87 ‘miscellaneous group’, ‘upper photic zone (UPZ) group’, ‘lower photic zone (LPZ) group’ and 

88 ‘holococcoliths’(Di Stefano and Incarbona, 2004; Incarbona et al., 2010b). Placoliths include small 

89 placoliths, small Gephyrocapsa, Gephyrocapsa muellerae and Gephyrocapsa oceanica. 

90 Miscellaneous group includes Helicosphaera spp., Coccolithus pelagicus, Syracosphaera histrica, 

91 Pontosphaera spp., Calcidiscus leptoporus, Pleurochrysis spp., Braarudosphaera spp., Oolithotus 

92 fragilis, Calciosolenia spp. and specimens of all the other species. UPZ group includes 

93 Syracosphaera pulchra, Umbellosphaera spp., Discosphaera tubifera, Rhabdosphaera spp., 

94 Umbilicosphaera spp. and Ceratolithus spp. LPZ group includes F. profunda and a negligible 

95 number of Gladiolithus flabellatus specimens. Holococcoliths include all the coccoliths produced 

96 during the holococcolithophore life stage.

97 The CEX dissolution Index was performed following Dittert et al. (1999): Number of specimens of 

98 (E. huxleyi ) / Number of specimens of (E. huxleyi + C. leptoporus). Values close to 1 suggest little 

99 or no dissolution effects on coccolith assemblages. N ratio follows Flores et al. (2000) and is 

100 expressed by: (small Noelaerhabdaceae) / (small Noelaerhabdaceae + F. profunda). Values close 

101 to 1 and close to 0 respectively indicate a shallow and a deep nutricline within the photic zone.

102
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103 2.3 – Species and groups ecological preference

104 Placoliths are r-strategist taxa that bloom after nutrient fertilization (Flores et al., 2000; Incarbona et 

105 al., 2010b; Young, 1994). Among them, E. huxleyi is a cosmopolitan and opportunistic taxon that 

106 dominates today’s ocean assemblages (Young, 1994). In the Mediterranean Sea, this taxon blooms 

107 preferentially during winter and spring, after vertical convection that fuels nutrients into the photic 

108 zone (Di Stefano et al., 2011; Knappertsbusch, 1993). LPZ taxa and the species F. profunda peak in 

109 response to nutricline deepening within the photic zone (Beaufort et al., 1997; McIntyre and 

110 Molfino, 1996; Molfino and McIntyre, 1990a, 1990b). UPZ and Miscellaneous taxa are K-strategist 

111 and weakly K-strategist organisms, respectively (Incarbona et al., 2010b; Young, 1994). 
112 Holococcoliths are produced by coccolithophores during their haploid life phase. Although 

113 belonging to different species, they behave as a homogeneous group (Oviedo et al., 2015), 

114 preferring warm and oligotrophic surface waters (Kleijne, 1991; Knappertsbusch, 1993; Oviedo et 

115 al., 2015).

116 2.4 – Chronology

117 The chronology follows Konijnendijk et al. (2014) who carried out a precise correlation between 

118 the Ti/Al record at ODP 967/968 Site and the radiometrically-dated 18O record of speleothems 

119 from Hulu and Sanbao caves (Wang et al., 2008). This choice relies upon the fact that the Ti/Al 

120 ratio reflects Nile River suspended matter and windblown dust (Lourens et al., 2001; Wehausen and 

121 Brumsack, 2000). Titanium is a heavy element, preferentially deposited close to the river mouth. 

122 River-derived sediments are essentially Titanium depleted and this element is predominantly 

123 brought by aeolian inputs during poor precipitation and vegetation cover in North Africa. The 

124 average sedimentation rate for the whole studied interval is 7.8 cm/kyr, significantly higher than 

125 most of eastern Mediterranean records, and the sampling resolution is 128 years. Within the 

126 sapropel layer, the average sedimentation rate is 5.2 cm/kyr and the sampling resolution is 192 

127 years.

128

129 3 – Study area 

130 Modified Atlantic Water (MAW) enters the eastern Mediterranean Sea by the Mid-Mediterranean 

131 Jet that flows in the central Levantine Basin up to Cyprus and the Eratosthenes Seamount. A quasi-

132 permanent anticyclonic summer circulation, called Shikmona Gyre, is located in the Eratosthenes 

133 Seamount area (Malanotte-Rizzoli et al., 2014; Pinardi and Masetti, 2000; POEM group, 1992). 

134 Intermediate water forms in winter as a process of surface cooling and evaporation of salty-enriched 

135 water masses. The formation area of intermediate waters is close to the Eratosthenes Seamount 

136 (POEM group, 1992). Eastern Mediterranean dense water forms in the Adriatic and Aegean Sea 
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137 (Fig. 1) and fills the Ionian and Levantine Sea bottom. Deep water formation in the Adriatic and 

138 Aegean Sea is promoted by winter heat flux loss, when Bora and Vardar intensely blow. The heat 

139 loss in these two regions is significantly influenced by variations in East Atlantic and East 

140 Atlantic/Western Russian atmospheric patterns (Josey et al., 2011). 

141 The eastern Mediterranean Sea is severely oligotrophic. Primary productivity reflects the nutrient 

142 depletion (Krom et al., 2010, 1991) and is higher in winter, and severely lower in summer, due to 

143 the deepening of thermocline and nutricline (Allen et al., 2002; D’Ortenzio and Ribera d’Alcalà, 

144 2009; Klein and Coste, 1984). 

145 The transition between the subtropical high-pressure belt over North Africa and westerlies over 

146 central and western Europe controls seasonal variations in the Mediterranean/Europe region. The 

147 northward shift of this transition in summer causes drought over most of the Mediterranean. In 

148 winter, the southward displacement of the transition allows the penetration of westerlies and 

149 Atlantic depressions (Rohling et al., 2015). In winter and spring, polar air masses are channelled 

150 through valleys and flows in the Adriatic and Aegean Seas, where they produce intense surface 

151 cooling and evaporation and contribute to deep water formation (Poulos et al., 1997; Rohling et al., 

152 2015). 

153

154 4 – Results

155 The dominant taxa in the investigated record are E. huxleyi (16.6-75.0 %, 49.5 % on average) and 

156 F. profunda (8.9-78.2 %, 37.8 % on average) (Fig. 3). Florisphaera profunda is the dominant 

157 species during sapropel S1, but differently from many previous reports (Castradori, 1993; Incarbona 

158 et al., 2011; Negri et al., 1999) it increases gradually since the last deglaciation. Holococcoliths are 

159 abundant below and above sapropel S1 (0.0-11.7 %, 4.6 % on average) (Fig. 3) and are mainly 

160 belonging to S. pulchra HOL oblonga (Calyptrosphaera oblonga), as already observed in late 

161 Quaternary Mediterranean sediments (Crudeli et al., 2006; A. Di Stefano et al., 2015). All the other 

162 taxa belonging to placolith (small Gephyrocapsa), UPZ (S. pulchra, Umbellosphaera spp., D. 

163 tubifera and U. sibogae) and Miscellaneous groups (S. histrica) occur with percentage values lower 

164 than 5 % (figs 3 and 4). Gephyrocapsa muellerae and G. oceanica that are abundant in the central 

165 and western Mediterranean record, respectively in the deglaciation and in the early Holocene (Ausín 

166 et al., 2015; Bazzicalupo et al., 2018; Buccheri et al., 2002; Cacho et al., 2001; Colmenero-Hidalgo 

167 et al., 2004; Agata Di Stefano et al., 2015; Di Stefano and Incarbona, 2004; Flores et al., 1997; 

168 Incarbona et al., 2009), are substantially absent (not shown in figures). Reworked specimens, 

169 pertinent to extinct Mesozoic and Cenozoic taxa, ranges between 0.0 and 7.8% (1.6 % on average), 

170 with values that are generally well below 2.0 % and a few distinctive peaks (Fig. 3). Placolith (16.7-
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171 78.7 %, 51.1 % on average) and LPZ (8.9-78.6 %, 38.0 % on average) groups exactly mirror the 

172 abundance patterns of respectively E. huxleyi and F. profunda (Fig. 5). UPZ (2.0-9.9 %, 5.0 % on 

173 average) and Miscellaneous (0.0-4.1 %, 1.4 % on average) do not show any distinctive abundance 

174 peak throughout the sequence (Fig. 5).

175

176 5 – Discussion

177 5.1 – Palaeoenvironmental reconstruction

178 The most significant palaeoenvironmental signal recorded within sapropel S1 at the Eratosthenes 

179 Seamount location is the establishment of a deep nutricline in the lower photic zone and the 

180 development of a DCM. This phenomenon, indicated by the abundance increase of F. profunda 

181 (Figs. 3 and 5), has exhaustively been discussed in different papers (Castradori, 1993; Grelaud et 

182 al., 2012; Incarbona et al., 2011; Negri et al., 1999; Triantaphyllou et al., 2009b, 2010; 

183 Triantaphyllou, 2014) and is also visible in planktonic foraminifera, diatom and dinoflagellate 

184 palaeoenvironmental reconstructions (Kemp et al., 1999; Meier, 2004; Rohling and Gieskes, 1989). 

185 In Figure 6 we highlight the DCM development by the N ratio, independent from the closed-sum 

186 effect and previously applied to different oceanic settings (Bazzicalupo et al., 2018; Flores et al., 

187 2000; Leonhardt et al., 2015; López-Otálvaro et al., 2009), that testifies to the nutricline position 

188 deepening. The N ratio pattern shows gradual variations that closely mirror the precession Index 

189 (Rossignol-Strick, 1985; Rossignol-Strick et al., 1982) calculated as the difference between the 

190 Tropic of Cancer and the Equator insolation. This behaviour is different from previous studies that 

191 report an abrupt nutricline shift just in coincidence of the sapropel base (Castradori, 1993; 

192 Incarbona et al., 2011; Negri et al., 1999; Triantaphyllou et al., 2009a). The only similar record in 

193 literature is possibly from core BC06 recovered in the Ionian Sea (Negri and Giunta, 2001), even 

194 though a chronology for this core is lacking and thus we cannot precisely correlate the F. profunda 

195 abundance increase that at 968 Site starts since the Younger Dryas. 

196 The sequence of East African monsoon activity and the subsequent Nile River discharge is well-

197 summarized by Ba/Ca data collected in the delta sediments, that define monsoon intensification 

198 since the Holocene base and a distinctive maximum flooding at 10.0 ka (Fig. 6C) (Hennekam et al., 

199 2015; Rohling et al., 2015; Weldeab et al., 2014). The maximum Nile River discharge at 10.0 ka is 

200 a distinctive mark impressed by the East Africa monsoon on eastern Mediterranean sediments, with 

201 respect to Asian monsoon activity that seems to be more regularly punctuated by Dansgaard-

202 Oeschger oscillations (Fig. 6D) (Cheng et al., 2016). This means that the gradual nutricline 

203 deepening at the Eratosthenes Seamount site may be due to climatic forcing different from, or not 

204 only due to, freshwater discharge into the eastern Mediterranean Sea. Variations in insolation (Fig. 
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205 6B) are a primary factor for nutricline shift within the photic zone in many ocean settings (Beaufort, 

206 1997; Beaufort et al., 2001; Molfino and McIntyre, 1990a) and in the eastern Mediterranean may 

207 have fostered the deepening of a seasonal thermocline since the deglaciation. In fact, deep-water 

208 ventilation data and an ocean-biogeochemical model have suggested that sapropel S1 deep-water 

209 anoxia would have required deep-water stagnation since the latest glacial period, possibly due to the 

210 long-term insolation-driven African runoff, warming and sea-level rise (Grimm et al., 2015). 

211 Further high-resolution studies are needed to understand nutricline depth dynamics across the 

212 eastern Mediterranean Sea during sapropel S1 that may contain relevant information on climatic 

213 and oceanographic forcings.

214 Finally, the N ratio curve sheds light on high-frequency variability in the Eratosthenes Seamount 

215 upper water column, above about 10.0 ka (black arrows in Fig. 6). One of these episodes, 

216 characterized by nutricline shallowing, is clearly associated with the 8.2 ka event, that led to 

217 sapropel interruption in the Adriatic and Aegean Seas (Casford et al., 2003; Mercone et al., 2001; 

218 Rohling et al., 2015, 1997). The high-frequency variability is even more evident in the distribution 

219 patterns of placolith (or E. huxleyi) and LPZ (or F. profunda) groups (black arrows in Figs. 3 and 

220 6), where it apparently covers the whole sapropel S1 extent. These oscillations are compatible with 

221 millennial-scale Bond cycles (Bond et al., 2001, 1997), that are well-known in the Holocene record 

222 of central and western Mediterranean sites (Frigola et al., 2007; Incarbona et al., 2008b). However, 

223 some of the cycles may have occurred with a shorter periodicity, perhaps similar to centennial-scale 

224 ventilation variability noted by (Jilbert et al., 2010). A more resolved age model, for instance based 

225 on radiocarbon datings, should be needed to carry out a careful spectral analysis. In any case our 

226 study highlights the occurrence of millennial- and/or centennial-scale environmental variability 

227 during the deposition of sapropel S1.

228

229 5.2 – Holococcolith preservation during S1

230 The holococcolith distribution pattern at Hole 968C is surprisingly similar to color lightness 

231 variations (Figs. 6E-F). Holococcoliths near disappear throughout the sapropel S1 layer, while 

232 sediment colour is dark. Poor preservation of holococcoliths in sapropel S1 was previously noted by 

233 Crudeli et al. (2006) and was explained by the fact that when dense water renewal on the sea bottom 

234 fails, tiny holococcolith crystals are dissolved during early diagenesis, possibly by aggressive pore 

235 water (Thomson et al., 2004). This process is compatible with maximum wetness in the wet/dry 

236 index (Fig. 6G) based on elemental proxies at the Eratosthenes Seamount (ODP Site 967) by Grant 

237 et al. (2017).
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238 It is worth noting that holococcolith preservation seems to be very sensitive to seafloor redox 

239 conditions and record a short interval of enhanced preservation together with colour lightening, 

240 centred at about 8.2 ka, that may be correlated to monsoon activity weakening and the sapropel 

241 interruption in the Adriatic and Aegean Seas (Mercone et al., 2001; Rohling et al., 1997). We 

242 suggest that the potentiality of holococcolith preservation may identify the original extent of 

243 sapropel deposition even for post-depositional oxigenation, like actually done by Ba/Al excess 

244 curves (De Lange et al., 2008; Mercone et al., 2001; Rutten et al., 2000). Future attempts should be 

245 aimed at the reconstruction of holococcolith abundances in sapropels that have registered 

246 downward-moving oxidation fronts.

247 An in-depth examination of holococcolith and colour lightness signals reveals that holococcolith 

248 and colour lightness curves are slightly misaligned. The 2-3 cm bias cannot be explained by 

249 sampling inaccuracy. Also we have checked possible mistakes in the original dataset of colour 

250 lightness at Hole 968C, comparing it with data from Hole 968A and we can confirm its correctness. 

251 Since the holococcolith shifts precede those in the colour curve, we may hypothesize that 

252 holococcolith dissolution and preservation occur in a diagenetic environment, a few centimetres 

253 below the seafloor. Further research is needed to assess this point and verify the possible distortion 

254 of the holococcolith signal with respect to the rest of the nannofossil assemblage.

255 Holococcolith is a clear preservation signal impressed in the sedimentary record of the eastern 

256 Mediterranean Sea. The CEX index is usually employed to verify coccolith preservation, but it does 

257 not show any significant deviation from values very close to 1 (Fig. 6H). This suggests that the 

258 index is not suitable to ascertain coccolith preservation in the eastern Mediterranean Sea and/or that 

259 dissolution did not severely affect the rest of calcareous nannofossil assemblages.

260

261 5.3 – Coccolith reworking and Nile River sediment plumes

262 Coccolith reworking is a useful tool in palaeoenvironmental reconstruction to understand processes 

263 and interactions with land. Sea-level variations and the vertical shift of the erosion base, changes in 

264 the vegetation cover, river runoff and primary productivity dilution are common explanation for 

265 reworked variations (Incarbona et al., 2010a, 2009, 2008a). The coccolith reworking pattern shows 

266 several distinctive peaks (Fig. 6I) and most of them can be correlated with minima in the Ti/Al 

267 record (Fig. 6J) of the same ODP Site 968 (Konijnendijk et al., 2014). This suggests that an 

268 increased number of reworked specimens deposited in coincidence of intense episodes of Nile 

269 runoff (Lourens et al., 2001; Wehausen and Brumsack, 2000). This consideration is compatible with 

270 abundant Mesozoic taxa that outcrops along the Nile River catchment.
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271 The occurrence of coccolith reworked specimens in the 968 record during the investigated record 

272 strongly supports the hypothesis that fine silt laminae within sapropel S1 is material deposited from 

273 Nile River plumes (Cita et al., 1984; Emeis et al., 1996). In fact, although beyond the aim of this 

274 paper, the observation of foraminifera assemblages does not reveal the occurrence of significant 

275 amount of dysoxic benthic specimens that mark re-ventilation episodes and may provide an 

276 alternative explanation for the lighter colour of these laminae.

277

278 6 – Conclusions

279 A total of 79 calcareous nannofossil samples from ODP Hole 968C, at the Eratosthenes Seamount 

280 setting, was investigated across sapropel S1, with an average sampling resolution of 128 years. The 

281 species E. huxleyi and F. profunda are overwhelmingly dominant and provide valuable evidence of 

282 nutricline depth variations. No significant variations are observed in taxa that thrive without a 

283 distinct depth preference (Miscellaneous group) or in K-strategist taxa (UPZ group).

284 As previously noted in different reports, a DCM marks the sapropel deposition time interval. 

285 However, at the Eratosthenes Seamount location it is evident that the DCM development is a 

286 gradual phenomenon started since the last deglaciation. The comparison with proxy data for Nile 

287 River runoff suggests that the freshwater discharge is possibly not the unique forcing of this process 

288 that may have been also driven by increasing insolation values.

289 Nutricline depth variations have been inferred on the basis of the N ratio (Flores et al., 2000), that 

290 exploits the abundance of dominant species and is irrespective of closed-sum effect. The 

291 distribution pattern of this ratio shows that nutricline depth changed with a high-frequency pace that 

292 may be due to millennial-scale Bond cycles (Bond et al., 1997, 2001) and/or to centennial-scale 

293 variability, previously noted in eastern Mediterranean seafloor ventilation (Jilbert et al., 2010).

294 The holococcolith distribution pattern follows sediment colour lightness variations. This 

295 relationship is interpreted as the result of holococcolith poor-preservation during sapropel S1 

296 deposition. This phenomenon was previously noted by Crudeli et al. (2006) and we further stress 

297 that such a signal may be used as a sapropel original thickness marker after carbon matter burn-

298 down. Future research should assess whether coccolith analysis is able to distinguish the original 

299 extent of oxidized sapropel layers and whether holococcolith dissolution and preservation occur in a 

300 diagenetic environment, a few centimetres below the seafloor.

301 Distinctive peaks of coccolith reworked specimens are correlated to minima in the Ti/Al record of 

302 Konijnendijk et al. (2014), suggesting that they are deposited in coincidence of intense Nile runoff 

303 episodes. This observation strongly supports the hypothesis that fine silt laminae within sapropel S1 

304 is material deposited from Nile River plumes (Cita et al., 1984; Emeis et al., 1996).
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593 Captions

594 Figure 1: Bathymetric map of the eastern Mediterranean Sea and core location. The black arrow 

595 indicates the path of MAW. EMDW: Eastern Mediterranean Deep Water. Grey arrows indicate the 

596 EMDW outflow into the deep eastern Mediterranean Sea. The dashed grey arrow shows the 

597 location of Shikmona and Mers a-Matruh gyres system. The blue and red circles respectively 

598 indicate the location of ODP Site 968 and 967 (present study; Emeis et al., 1996; Konijnendijk et 

599 al., 2014; Grant et al.,  2017). The green circle indicates the location of core SL112 (Weldeab et al., 

600 2014).
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602 Figure 2: High-resolution photograph of sapropel S1 and colour lightness at ODP Hole 968C 

603 (Emeis et al., 1996).

604

605 Figure 3: Downcore variations of selected calcareous nannofossil species at ODP Hole 968C, 

606 plotted versus depth (centimetres composite depth - cmcd). From the left, it is shown the relative 

607 abundance of E. huxleyi, F. profunda, holococcoliths and small Gephyrocapsa. Black arrows in the 

608 E. huxleyi distribution pattern show the high-frequency variability within sapropel S1. The relative 

609 abundance of calcareous nannofossil reworked specimens is also shown. The vertical grey band 

610 indicates the extent of sapropel S1. The coloured vertical bars show the 95 % confidence level error 



19

611 associated to the counting for each taxon.

612

613 Figure 4: Downcore variations of selected calcareous nannofossil species at ODP Hole 968C, 

614 plotted versus depth (cmcd). From the left, it is shown the relative abundance of S. pulchra, U. 

615 sibogae, Umbellosphaera spp.,  D. tubifera and S. histrica. The vertical grey band indicates the 

616 extent of sapropel S1. The coloured vertical bars show the 95 % confidence level error associated to 

617 the counting for each taxon.

618

619 Figure 5: Downcore variations of selected calcareous nannofossil groups at ODP Hole 968C, 

620 plotted versus depth (cmcd). From the left, it is shown the relative abundance of Placoliths, 

621 Miscellaneous, UPZ, LPZ and holococcoliths. Black arrows in the Placoliths distribution pattern 

622 show the high-frequency variability within sapropel S1. The vertical grey band indicates the extent 

623 of sapropel S1. The coloured vertical bars show the 95 % confidence level error associated to the 

624 counting for each group.
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626 Figure 6: Downcore variations of calcareous nannofossils at ODP Hole 968C (present study) and 

627 geochemical and geophysical records from the eastern Mediterranean, plotted versus age (ka). (A): 

628 calcareous nannofossil N ratio at ODP 968C (present study), used as a proxy for nutricline depth. 

629 Black arrows show the high-frequency variability within sapropel S1. (B): Monsoon Index, 

630 calculated as the difference between the Tropic of Cancer and the Equator insolation (Rossignol-

631 Strick et al., 1982, 1985). (C): Ba/Ca ratio calculated at SL112 core, as a proxy for Nile River 

632 runoff (Weldeab et al., 2014). (D): Composite record of 18O speleothem values from Chinese 

633 caves, as a proxy for Asian Monsoon activity (Cheng et al., 2016). (E): Holococcoliths at ODP 

634 968C (present study), used as a proxy for seafloor and/or pore water calcite preservation. (F): 

635 Colour lightness at ODP 968C (Emeis et al., 1996). (G): Wet/dry index, calculated by elemental 

636 proxies at ODP Site 967 (Grant et al., 2017). (H): CEX index at ODP 968C (present study), used as 

637 a proxy for coccolith dissolution. (I): Calcareous nannofossil reworked specimens at ODP 968C 

638 (present study). (J): Ti/Al ratio at the ODP 967/968 composite section, used as a proxy for aeolian 

639 dust deposition (Konijnendijk et al., 2014).














