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Abstract In this paper we present a stereo Visual
Odometry (VO) system developed for autonomous un-
derwater vehicle localization tasks. The main idea is

to make use of only highly reliable data in the esti-
mation process, employing a robust keypoint tracking
approach and an effective keyframe selection strategy,

so that camera movements are estimated with high ac-
curacy even for long paths. Furthermore, in order to
limit the drift error, camera pose estimation is referred

to the last keyframe, selected by analyzing the feature
temporal flow.

The proposed system was tested on the KITTI eval-

uation framework and on the New Tsukuba stereo
dataset to assess its effectiveness on long tracks and
different illumination conditions. Results of a live ar-
chaeological campaign in the Mediterranean Sea, on an

AUV equipped with a stereo camera pair, show that
our solution can effectively work in underwater envi-
ronments.

Keywords Visual Odometry · Stereo · Underwater ·

AUV · RANSAC · Feature Matching · Keyframe
Selection

1 Introduction

The exploration of underwater environments is a rel-

evant topic both for the industry and the academic
world. Typically inspection operations in the sea re-
quire an expensive setup that could include support

ships, high qualified personnel and remotely operated
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vehicles (ROVs). While this setup could be affordable
for industrial targets, academic research campaigns, e.g.
for archaeological, biological and ecological purposes,

need more user-friendly and economic alternatives.

Autonomous Underwater Vehicles (AUVs) can be
easily deployed in order to survey underwater areas in
close proximity to the seabed without human supervi-

sion. Moreover, they can be equipped with variable pay-
load encompassing acoustic devices and high resolution
cameras. AUVs must be able of self-localizing (Paull

et al 2014), to reach predefined way-points and to nav-
igate on the basis of cues extracted from on-line mea-
surements. This can be achieved using dead-reckoning

techniques based on inertial measurements or employ-
ing fixed acoustic transponder deployed into the sea
before mission (Long BaseLine system, LBL) (Whit-
comb et al 1999). More recently, dynamic transponders

(Ultra-Short BaseLine system, USBL) have been pro-
posed, which require a support ship and are sensitive
to noise.

An alternative approach employs Simultaneous Lo-

calization and Mapping (SLAM) techniques (Durrant-
Whyte and Bailey 2006), globally exploiting the opti-
cal (Kim and Eustice 2013) or acoustic (Mallios et al

2014) input data. Furthermore, Visual Odometry (VO)
approaches aim at estimating the vehicle trajectory in-
crementally with only local information provided by the

current acquired images, using for instance the Kanade
Lucas Tomasi (KLT) tracker (Shi and Tomasi 1993) as
done in (Badino et al 2013).

1.1 Related Work

VO systems are mainly defined in two subsequent, con-

tinuously iterated steps: i) feature point extraction from
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images and computation of correspondences; ii) local

motion estimation by registration of independent 3D
maps (Horn 1987) or minimization of the reprojection
error over a set of 2D/3D matches (Garro et al 2012).

In (Scaramuzza and Fraundorfer 2011; Fraundorfer and
Scaramuzza 2012) an in deep review on VO is given.

Nistér et al (2004) proposed a VO framework for
terrestrial applications that uses monocular and stereo

camera setups in order to accurately compute the nav-
igated path. Since VO systems tend to accumulate a
drift error as the estimation proceeds, the authors put

firewalls at fixed times to localize the estimation and
avoid error growth.

VO approaches have been presented also for the
underwater domain. Using pipelines that include fea-

ture tracking and motion estimation, those systems are
able to compute planar (Botelho et al 2009) or full six
degrees-of-freedom (Corke et al 2007; Wirth et al 2013)

incremental transformations of the camera pose. Iner-
tial measurements can also be included to improve per-
formance (Hildebrandt and Kirchner 2010).

Underwater environments are typically character-

ized by unstructured, noisy and highly textured im-
ages, with repetitive patterns and poor local illumina-
tion conditions (vignetting effects and other artifacts).

Consequently, image keypoints are hard to track and
match correctly underwater, even if stable and robust
feature detectors/descriptors are employed, such as the

Scale Invariant Feature Transform (SIFT) (Lowe 2004),
the Speeded-Up Robust Features (SURF) (Bay et al
2008) or feature descriptors based on the Zernike mo-

ments (Eustice et al 2008; Kim and Eustice 2009).

The majority of proposed solutions prefer stereo se-
tups instead of monocular setups to improve the robust-
ness and accuracy of the output, avoiding issues such

as the delayed 3D feature initialization (Montiel et al
2006), i.e. when a point is seen for the first time, and
the scale factor uncertainty (Strasdat et al 2010).

1.2 Our Contribution

In this paper a stereo VO system, named SSLAM, is
introduced. The main idea is to make use of only highly
reliable data in the estimation process. This is reflected

mainly in the feature matching scheme and the selection
of good video frames.

The feature matching process is the main source of
noise in a VO system, especially in underwater environ-

ments, since wrong matches can lead to very erroneous
estimates. In order to limit as much as possible the oc-
currence of errors in early processing stages, we choose

to employ an accurate matching strategy based on the

detection of high repeatable corner keypoints (Bellavia

et al 2011), matched by an accurate SIFT-like descrip-
tor (Bellavia et al 2010). Moreover, a robust loop chain
matching scheme is adopted, improving upon VISO2-

S (Geiger et al 2011).

The other aspect mainly characterizing our ap-
proach is the selection of the keyframes used as base
references for estimating the camera trajectory. Since

errors propagate from the uncertainty in the 3D map,
higher for distant points that correspond to matches
with low temporal flow, the proposed approach picks

a input frame as keyframe when enough features with
strong temporal flow are detected.

Our keyframe choice is similar to the firewall con-
cept of (Nistér et al 2004), but instead of a constant

time selection our approach works adaptively according
to the input sequence. Moreover, the proposed approach
is more robust than other methods which evaluate 3D

flow (Geiger et al 2011) or use predefined thresholds
over the average flow disparity (Lee et al 2011).

This paper extends our previous work (Bellavia et al
2013), by providing a detailed description of the pro-

posed method in Sect. 2, followed in Sects. 3-4 by a pre-
liminary evaluation on the KITTI framework (Geiger
et al 2012), commonly the main reference for VO com-

parison, and the New Tsukuba dataset (Martull et al
2012), relevant for illumination issues. Finally, in Sect. 5
we present results of an open sea test with cameras on

board of an AUV. Conclusions and final remarks are
given in Sect. 6.

2 System Overview

We assume to work with intrinsic and extrinsic cali-

brated stereo input data: A stereo frame ft = (I lt , I
r
t ),

composed by the left I lt and Irt right images at time t,
is rectified exploiting the relative positions of the left

and right cameras (i.e. the extrinsic calibration), and
the radial distortion is corrected. The intrinsics camera
parameters (focal length, screw, aspect ratio and prin-

cipal point) are assumed known for all the frames of the
input sequence.

Our method alternates between two main steps: i)
computation of feature correspondences between the

last detected keyframe fi and the current frame fj ; ii)
estimation of the relative six degrees-of-freedom mo-
tion from fi to fj as Pi,j = [Ri,j |ti,j ] ∈ R

3×4, where

Ri,j ∈ R
3×3 is the rotation matrix and ti,j ∈ R

3 is the
translation vector, see Fig. 1.

The absolute position Pn for a general camera frame
fn w.r.t. the first frame of the sequence is obtained

by concatenating the incremental transformations P0,0,
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P0,k, . . ., Pi,j , Pj,n, where P0,0 is composed by the iden-

tity rotation matrix and the null translation vector and
f0, fk, fi, fj are selected keyframes.

After a new pose is successfully estimated, the cur-
rent keyframe is updated accordingly to temporal flow.

Fig. 1: The SSLAM system pipeline

2.1 Loop Chain Matching

Given the last detected keyframe fi = (I li , I
r
i ) and a

new frame fj = (I lj , I
r
j ), stable corner features are ex-

tracted using the HarrisZ detector (Bellavia et al 2011).
Correspondences in the four image pair (I li , I

r
i ), (I

l
i , I

l
j),

(Iri , I
r
j ) and (I lj , I

r
j ) are found exploiting the sGLOH

descriptor with the sCOr Nearest Neighbour match-
ing (Bellavia et al 2014) on the L1 distance. In order to
reduce computation times and to improve the match-

ing accuracy we introduce both an epipolar spatial con-
straint exploiting the stereo calibration and a temporal

flow limit under the hypothesis that image points are

subject to a limited motion between subsequent frames,
see Fig. 2.

In more detail, let xd
s = [xd

s , y
d
s ]

T ∈ R
2, d ∈ {l, r},

s ∈ {i, j} be a point in the image Ids . Then, a spatial
correspondence is searched for into a rectangular win-
dow of size 2δx × 2δy, with δx >> δy since the stereo

pair is rectified, centered on the old feature position,
i.e.

|xl
s − xr

s| < δx (1)

|yls − yrs | < δy (2)

while for temporal matches we use a circular search
region of radius δr, as

∥ xd
i − xd

j ∥< δr (3)

Then RANSAC (Fischler and Bolles 1981) iterations
are executed to eliminate wrong correspondences. Fi-

nally, only matches that are consistent among the four
image pairs, {(xl

i,x
r
i ), (x

l
i,x

l
j), (x

l
j ,x

r
j), (x

r
i ,x

r
j)}, are

retained and collected into the set Ci,j .

The proposed loop chain matching draws inspiration

from the circle match of VISO2-S (Geiger et al 2011).

However we choose to employ a robust detector and de-

scriptor pair, avoiding the two-step matching strategy
employed by VISO2-S, and achieving longer and more
stable keypoint tracks, crucial for the pose estimation,

especially for the underwater environment.

In particular, the HarrisZ detector (Bellavia et al

2011), with results comparable to other state-of-the-art
detectors, is used to extract robust and stable corner
features in the affine scale-space instead of the sim-

pler corner and blob masks used in VISO2-S. To obtain
the candidate correspondences, the sGLOH descriptor
with the sCOr Nearest Neighbour matching (Bellavia

et al 2014) replaces the concatenation of Sobel filter
responses employed by VISO2-S.

2.2 Robust Pose Estimation

To estimate the relative pose Pi,j between the last
keyframe fi and the current frame fj , at first a local 3D
map is computed exploiting the stereo matches (xl

i,x
r
i )

of fi. The corresponding 3D point Xi,j can be com-
puted using the iterative linear triangulation method
described in (Hartley and Sturm 1997), since both in-
trinsic and extrinsic parameters are known.

After initializing Pi,j with the last estimated trans-

formation, the system projects Xi,j onto fj : The
obtained projections exl

j and exr
j , and the previously

matched keypoints xl
j and xr

j , are used to compute on

both the right and the left image the reprojection errors
that have to be minimized in order to obtain an accu-
rate localization for fj , see again Fig. 2. More formally,

we want to minimize

D(Pi,j) =
∑

Ci,j

∥ exl
j − xl

j ∥ +
∑

Ci,j

∥ exr
j − xr

j ∥ (4)

Since outliers could be still present among the matches
in Ci,j , this minimization is wrapped in a RANSAC
framework. At every RANSAC iteration, three candi-

date loop matches are randomly extracted and used to
compute a candidate transformation P̂i,j . Then using
the whole matching set, inlier correspondences for P̂i,j

are found, bounding the reprojection error to a thresh-
old δt. RANSAC ends when the maximum inlier set
C∗

i,j ⊆ Ci,j is found. A final refinement is carried out

using all the loop matches in C∗
i,j .

If the estimation fails due to wrong matches or

high noisy data, which practically leads to a final small
RANSAC consensus set C∗

i,j , the frame fj is discarded
and the next frame fj+1 is tested.

Finally, we add a pose smoothing constraint be-
tween frames, so that the current relative pose estima-

tion Pi,j cannot abruptly vary from the previous Pz,i,
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Left
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Time

Fig. 2: (Best viewed in color) Keypoint matches between the keyframe fi and the new frame fj must satisfy

the spatial constraint imposed by the epipolar rectification (yellow band) as well as the temporal flow motion
restriction (orange cone). Furthermore, the four matching points must form a loop chain C (dotted line). In the
ideal case, points xl

j , x
r
j in frame fj must coincide with the projections exl

j , ex
r
j of Xi,j obtained by triangulation

of xl
i, x

r
i in fi in order for the chain C to be consistent with the pose Pi,j . However, due to data noise, in the real

case it is required that the distances ∥ exl
j − xl

j ∥ and ∥ exr
j − xr

j ∥ are minimal

z < i < j. This is achieved by imposing that the relative
rotation around the origin between the two incremental
rotations Rz,i and Ri,j is bounded

|rki,j
T
rkz,i| < δθ1 (5)

where rka,b is any k-th column of the rotation matrix

Ra,b. In the case of highly constrained motions, like
those of a car, a further criterion can be added to let
the estimate of the direction between two incremental

translations tz,i and ti,j to change smoothly over time:

|ti,j
Ttz,i|

∥ ti,j ∥∥ tz,i ∥
< δθ2 (6)

This last constraint can also resolve issues in the case of

no camera movement or when moving objects crossing
the camera path cover the scene.

2.3 Keyframe Selection

Keyframes are selected according to the observation
that 3D points related to low temporal flow disparity
matches have a higher uncertainty when compared to

3D points with greater temporal disparities. As shown
in Fig. 3, high temporal disparities can be found in dis-
tant frames. Moreover, only points with sufficient dis-

placement can give information about both the trans-
lational and rotational motions. This idea is a straight
generalization of the well-known baseline length issues

related to the trade-off between reliable correspondence

Fig. 3: (Best viewed in color) The uncertainty of
matches in the image planes is lower bounded by the

image resolution (red) and it is propagated to the 3D
points. In order to estimate the 3D point Xi,j , by using
close frames fi and fj , a low temporal disparity flow is

present in the image planes, and the 3D point location
Xi,j can assume a higher range of values (dark gray
quadrilateral). In the case of distant frames fi and fw,

the possible locations of Xi,w are more circumscribed
(blue quadrilateral), for the same resolution limits

matching and accurate point triangulation (Hartley and
Zisserman 2004).

Under this observation, two disjoint subsets Fi,j and
F̄i,j are defined over the set of chain matches Ci,j such

that Ci,j = Fi,j∪F̄i,j . The sets Fi,j and F̄i,j respectively
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include fixed and non-fixed points, i.e. matching points

with low and high temporal disparities according to a
given threshold δf

Fi,j = {C ∈ Ci,j |Td(∥ xd
i − xd

j ∥≤ δf )} and, (7)

F̄i,j = Ci,j \ Fi,j , (8)

where d ∈ {l, r} and Td(∗) is an indicator function that
outputs 1 if its predicate is true for all admissible val-
ues of d or 0 otherwise. A high number of non-fixed

points implies a high temporal flow, so that frame fj
is accepted as new keyframe if the number of non-fixed
points between frames fi and fj is greater than a de-

fined threshold δm

1− |Fi,j |

|Ci,j |
> δm . (9)

The fixed and non-fixed point subsets are only used in
the keyframe selection criterion. Indeed, no improve-
ments were experimented using only non-fixed matches

as input for RANSAC.

Fig. 4: (Best viewed in color) Examples of the temporal
flow for successive keyframes of two different sequences
of the KITTI dataset. Involved keyframes are superim-

posed as for anaglyphs, only images for the left cameras
are shown. Good fixed and non-fixed point matches are
shown in dark and light blue, respectively, while wrong

correspondences are reported in cyan

Examples of fixed and non-fixed points estimates
are shown in Fig. 4 (dark and light blue lines, respec-

tively). Our strategy is adaptive and thus it can better
handle keyframe drops with respect to the average flow
threshold commonly employed by other systems such

as (Lee et al 2011). As an example, referring to Fig. 4,
the average flow in the top configuration is consider-
ably higher than that of the bottom one, which would

be discarded. Lowering the average flow threshold, so

as to also accept the bottom frame, would also include

very low disparity frames (just consider to replace in
the bottom frame the non-fixed light blue matches by
twice the matches with half disparity). This does not

hold for the proposed frame selection which resembles
RANSAC, since it minimizes the number of matches
below a disparity threshold. On the other hand, the se-

lection based on the average flow is close to the less
robust least-square approach, which just minimizes the
average error.

3 Evaluation setup

3.1 General Overview

The KITTI vision benchmark suite (Geiger et al 2012)
and the New Tsukuba stereo dataset (Martull et al

2012) were used to obtain a dry evaluation of our sys-
tem, given that to the best of our knowledge no public
underwater stereo datasets are available.

It’s worth noting that even if these tests are con-
ducted on terrain images, they can give an insight into
the general performance of SSLAM, also for the under-

water environment. Indeed, while tests on the KITTI
dataset, composed by long trajectories, can provide re-
sults to assess the robustness of our method w.r.t. drift

errors, the New Tsukuba sequence can provide evidence
about its reliability in challenging illumination scenar-
ios.

Unless otherwise specified, the parameter triplet
(δr, δx, δy) for the spatial and temporal constraints (see

Sect. 2.1) is set to (500, 300, 12) px in the case of
the KITTI dataset and to (100, 100, 12) px for the
New Tsukuba dataset, since images are taken at lower

resolution and shorter baseline. For pose estimation
(see Sect. 2.2) we set δθ1 = 15◦ while the additional
translation constraint δθ2 = 10◦ is only employed for

the KITTI dataset. About the flow constraints (see
Sect. 2.3), we set δf = 55 px and δm = 5%.

We tested SSLAM using keypoints detected at full

and half resolution videos. In the latter case, the no-
tation SSLAM† is used. For SSLAM†, keypoints local-
ization is less accurate and bigger (normalized) key-

point patches are found, which are more sensitive to fast
camera movements. Note also that more keypoints are
found in full resolution SSLAM implementation than

with SSLAM†. Nevertheless, different image resolutions
do not affect the other parameters of the methods since
keypoint positions are rescaled at the full resolution be-

fore the constrained matching in both cases.
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3.2 The KITTI Dataset

Recently, the KITTI dataset has become a reference
benchmark for VO systems. The dataset provides se-
quences recorded from car driving sessions on high-

ways, rural areas and inside cities up to 80 km/h. The
benchmark consists of 22 rectified stereo sequences from
about 500 m to 5 km, taken at 10 fps with a resolution

of 1241×376 pixels. Ground truth trajectories are avail-
able to users only for the first 11 sequences to train the
parameters of the methods, while results should be sub-

mitted to the authors page for the remaining sequences
to get a final ranking. Translation and rotation errors
normalized with respect to the path lengths and speeds

are computed in order to rank the methods.

3.3 The New Tsukuba Dataset

The New Tsukuba dataset is a virtual sequence that
navigates into a laboratory reconstructed manually by
computer graphics. Images with a resolution of 640 ×

480 pixels are recorded at 30 fps for one minute while
accurate ground truth positions are registered and pro-
vided to the users. The sequence is rendered with four

different illuminations from the more classical fluores-
cent or daylight to the more challenging flashlight and
lamps, see Fig. 5.

4 Evaluation Results

4.1 The KITTI Dataset

In order to show the benefits provided by our keyframe
selection strategy, our full SSLAM† pipeline is com-
pared against the case when keyframe selection is not

employed, indicated by SSLAM†⋆. Furthermore, we
present the results obtained with different numbers of
RANSAC iterations to underline the stability of the

method. In particular, results of SSLAM† with 500,
15 (set as default) and 3 RANSAC iterations, and
SSLAM†⋆ with 500 iterations are presented, indicated

respectively by SSLAM†/500, SSLAM†/15, SSLAM†/3
and SSLAM†⋆/500.

Figure 6 shows the relative average translation and

rotation errors of the different SSLAM† variants for
the first 11 sequences of the dataset, according to the
KITTI error metric (Geiger et al 2012) for increasing

path length and speed. We verified that similar re-
sults hold in the case of full resolution SSLAM. The
chain loop matching scheme together with the cho-

sen keypoint detector and descriptor can track long

(a) (b)

(c) (d)

Fig. 5: Example keyframes of the New Tsukuba stereo
dataset: (a) fluorescent, (b) daylight, (c) flashlight, (d)
lamps. Keyframes are superimposed as for anaglyphs,

only images for the left cameras are shown. Good fixed
and non-fixed point matches are shown in dark and light
blue, respectively, while wrong correspondences are re-

ported in cyan

paths, without bundle adjustment or loop closure de-
tection. SSLAM with keyframe selection exhibits less

errors, confirming that the proposed keyframe selection
strategy is effective. Moreover, results for SSLAM†/15
and SSLAM†/500 are equivalent, while SSLAM†/3 ob-

tains inferior results but close to those obtained by
SSLAM†⋆/500, underlining that our matching selection
is robust, since the number of RANSAC outliers must

be low to work with such few iterations.

We now report results on the KITTI odometry

benchmark at submission time for only stereo meth-
ods that do not rely on laser data, more details are
available online (Geiger et al 2012). Figure 7 shows

the average translation and rotation errors of the dif-
ferent methods for increasing path length and speed.
SSLAM and SSLAM†, ranked among the first posi-

tions of the KITTI benchmark, obtaining respectively
a mean translation error of 1.57% and 2.15% w.r.t.
the sequence length and a rotation error of 0.0042 and

0.0058 deg/m. These rank placements show the robust-
ness of the proposed methodology. Note however that
the benchmark provides partial results, since these er-

ror metrics cannot take into account all the proper-
ties of a VO system. In particular, referring to Fig. 8
where two sample tracks of the KITTI dataset are

shown, it can be seen that while both Multi-frame Fea-
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Fig. 6: (Best viewed in color) Average relative errors on the first 11 sequences of the KITTI dataset. Plots (a-b)
refer to the average relative translation and rotation error for increasing path length respectively, while plots (c-d)
refer to increasing speed

ture Integration (MFI) (Badino et al 2013) and Visual
odometry with Bundle adjustment (VoBa) (respectively
ranked in 1st and 4th positions) provide slightly bet-

ter results than SSLAM in term of KITTI metrics on
long paths, SSLAM† (11th ranked) clearly improves on
the 7th ranked efficient Visual Odometer (eVO) (San-

fourche et al 2013). This can also be observed in the
relative translation error for an increasing path length
in Fig. 7(a), where the SSLAM† plot remains stable

when compared to the increasing error of eVO.

For the sake of completeness, we further added

results with Stereo Structure from Motion (Stere-
oSFM) (Badino and Kanade 2011), not available at
submission time, based on the KLT tracker. As can be

noted from Fig. 7, its results in terms of KITTI error
metric are close to those of SSLAM, but by looking in
detail Fig. 8a, SSLAM seems slightly better in tracking

the path than StereoSFM.

Table 1 shows the input matches and the inliers

found in the RANSAC pose estimation by SSLAM,
SSLAM† and VISO2-S (Geiger et al 2011). Note that
VISO2-S works similarly to SSLAM and its code is free

available. As it can be noted, VISO2-S outputs a com-
parable number of initial input matches with SSLAM†,
but a higher number of outlier (about 50%), being less

robust and error prone than SSLAM†. Note also that
the temporal and spatial flow constraints of VISO2-S
(δr = 200, δx = 200 and δy = 3) are more tight. These

constraints would lead theoretically to a higher num-
ber of matches, with a lower probability to have an
accidentally wrong match w.r.t. SSLAM and SSLAM†,

employing relatively wider matching search areas. Yet,

in practice, as clear from Table 1, VISO2-S outputs a
lower number of inliers than SSLAM†. This is as a fur-
ther evidence of the better behavior of the proposed

methodology with respect to VISO2-S.

4.2 The New Tsukuba Dataset

To further demonstrate the robustness of our method,
we tested SSLAM on the New Tsukuba sequence for

all the available illuminations. Figure 9 shows the esti-
mated trajectories together with the ground truth, for
the daylight and lamps illuminations, results for fluo-

rescent and flashlight illumination conditions are simi-
lar to the daylight and lamps illuminations and not re-
ported. All the investigated methods track the sequence

well, however results of SSLAM and StereoSFM are bet-
ter in terms of the KITTI error metrics reported in
Fig. 10. Note that these relative errors are higher than

those obtained in the KITTI dataset for both methods.

Table 1: Average number of input matches before the
RANSAC pose estimation and final inlier ratios

pts inl(%)

SSLAM 766 98
SSLAM† 222 96
VISO2-S 245 50
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Fig. 7: (Best viewed in color) Average relative error
on the KITTI benchmark. Plots (a-b) refer to the aver-
age relative translation and rotation error for increasing

path length respectively, while plots (c-d) refer to in-
creasing speed

4.3 Running Times

Table 2, reports the average running times of our SS-
LAM multithreaded C/C++ implementation, freely

available1, for a single frame computation. As it can be
noted, SSLAM scales with the resolution. The feature
detector is accurate but slow, since it requires large size

kernel convolutions. However by taking into account
that only keyframes are required by SSLAM, real-time
performance is achieved when the keyframe computa-

tional time is less than fk/fv, where fk is the keyframe
rate and fv is the frame rate of the video sequences.

Table 3 shows the average number of frames between
two consecutive keyframes and the corresponding stan-
dard deviations. The values are slightly higher for the

New Tsukuba dataset with respect to KITTI, accord-
ing to the different camera speeds. Note also that the

1 link removed for paper submission.
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Fig. 8: (Best viewed in color) Trajectories on the se-
quences 13 (a) and 15 (b) of the KITTI dataset

Table 2: Average computational time for a single frame
on a Intel-i7 3.50GHz CPU, 8 cores are used

SSLAM SSLAM†

KITTI 3.85 s 0.55 s
New Tsukuba 0.87 s 0.24 s

keyframe distribution is not uniform but it is denser
near camera turns and accelerations, see Fig. 11.

In conclusion the ratio fk/fv is equal to 0.20 s and
0.17 s respectively for the KITTI and New Tsukuba se-

quences. Although only SSLAM† can run almost in real-
time on these datasets, real-time requirements could be
fulfilled if the robot could be adapted to make slow

turns and accelerations.
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Fig. 9: (Best viewed in color) Estimated trajectories

on the New Tsukuba sequence for the daylight (a) and
lamps(b) illuminations, respectively

Table 3: Framerate (fps) and average (Avg) number
of frames between two consecutive keyframes with the
corresponding standard deviations (std) for the KITTI

and New Tsukuba sequences

fps Avg Std

KITTI 10 2 1
New Tsukuba 30 5 3

5 Test in the Sea

Underwater data were gathered during a test mission
in the Israeli Sea using the MARTA AUV (Allotta et al
2014) developed within the ARROWS project (Allotta

et al 2013). Tests were conducted during daylight at a
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Fig. 10: (Best viewed in color) Average translation

(a)-(c) and rotation (b)-(d) error for increasing path
length for the New Tsukuba sequence with the daylight
and lamps illuminations, respectively

maximum depth of 40 meters. Images of the sea bottom

were acquired with a pair of Basler ACE 2040 cameras
with GiGE connection, installed in waterproof hous-
ings on the side of the vehicle and pointing toward

the sea floor at an angle of around 15 degrees w.r.t.
the AUV vertical axis. No artificial illumination was
needed; Sunlight passing through the water produces

noticeable flickering effects (see Fig. 12) that increase
the difficulty of finding correct feature matches.

The camera stereo pair was calibrated off-line di-
rectly in water to implicitly account for the water re-

fraction index. The images acquired are rectified on-line
and radial distortion is removed at the same time.

Figure 13 shows the computed trajectory and sparse
3D map. Moreover, with minor effort, the 3D point

cloud can be upgraded to a meshed and textured model
of the seabed, see Fig. 14. Although no ground-truth is
available, the path and the 3D environment reconstruc-

tion are visually consistent with the input data.
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Fig. 11: (Best viewed in color) An example of keyframe

distribution along the Sequence 00 of the KITTI
dataset for SSLAM. At each estimated camera posi-
tion the number of keyframes that fall inside a window

of 10 frames centred at the camera location is shown
according to the colorbar gradation

6 Conclusion

In this paper a practical stereo VO system was pre-
sented. The approach achieves a low drift error even
for long paths and exploits only local information.

A robust loop chain matching scheme for tracking
keypoints is provided, supported by a frame discard-
ing system to improve pose estimation. According to

the experimental results, the proposed keyframe se-
lection strategy is effective to reduce the error of the
estimated poses. Results from the KITTI and New

Tsukuba datasets show the effectiveness of the system,
which is robust even with an extremely small number of
RANSAC iterations and able to properly estimate long

path and to work under different illuminations. Under-
water tests with an AUV equipped with stereo cameras,
concretely demonstrate the goodness of the method.
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(a) (b)

Fig. 14: (a): Frame of the underwater sequence; (b): 3D model of the seabed


