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Abstract. The main aim of this work is to evaluate how the use of an active protection method, 

consisting in an improved forced longitudinal ventilation system, can determine a positive 

impact on heat extraction and people evacuation time in a tunnel fire scenario, by considering a 

case study which simulations are based on a real gallery. 

1.  Introduction 

Tunnel fire safety has the ultimate goal of reducing the risk of injury and/or mortality for users, also 

by reducing damage to the tunnel structure and facilitating rescue operations. 

With increasing number of fire accidents [1] it is necessary to ancillary improve the current fire 

protection methods and technologies. Tunnel fires, however, are very complex phenomena because of 

the interactions among the general causes of fire (combustion, radiation, etc.), the tunnel geometry 

(tunnel shape, vehicle geometry, arrangement of vehicles, etc.) and the factors that might cause an 

increase in fire power (presence and kind of ventilation, back layering effect, presence of bituminous 

conglomerate causing pyrolysis, etc.) [2]. 

For this reason numerous Computational Fluid Dynamics (CFD) numerical investigations have 

been carried out in different tunnel scenarios to predict the smoke movement and temperature 

distribution [3, 4], by considering various aspects such as: different kind of ventilation systems 

(longitudinal or naturally ventilated tunnels with roof openings) [5, 6, 7, 8, 9], multiple fire sources, 

the presence of obstacles [10, 11], extinguishing systems [12], passive fire protection layers on the 

concrete, etc.. 

The advantage in using CFD is that such complex physical interactions can be modelled at the 

same time, thus studying their relative influence on fire behavior [13]. Small scale [14, 15] and full-

scale [16, 17] experiments were also performed to assess smoke removal efficiency, temperature 

distribution and compression strength of concrete tunnel lining during a fire. 

The main aim of this work is the use of CFD to evaluate how the use of an active protection 

method, forced longitudinal ventilation, can have an impact on the heat extraction and people 

evacuation time during a tunnel fire. 

In order to analyze the behavior of such improved ventilation system a real gallery (the 

“Caltanissetta Tunnel” in Italy) was considered as a case study for the simulations. 
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2.  Methodology 

In order to analyse the behaviour of the improved ventilation system, different scenarios were 

implemented, considering a real gallery as a case study for the simulations. In particular, the authors 

chose to model the active protection system of the tunnel by varying the ventilation capacity of the jet 

fans in the proximity of the fire occurrences.  

The ventilation system chosen for this study consists in the use of piston effect fans, also called 

accelerators or jet fans, which induce an air flow inside the tunnel along its entire section and length 

(supporting the air flow already induced by vehicles). By using a forced ventilation of this type, 

vehicles stacked upstream of the fire are preserved by smoke, that is driven towards the parts of the 

tunnel from which vehicles have already been removed [18]. In particular reversible axial type 

stainless steel accelerators operating in pairs (and arranged along the tunnel at a pace of about 100 m) 

have been considered. 

The simulations were carried out through the FDS (Fire Dynamics Simulator), that is indeed a CFD 

software created by the National Institute of Standards and Technology (NIST) during the 

investigation of the collapse of the World Trade Center. This program solves the Navier-Stokes 

equations according to a turbulence LES formulation, using finite volumes, and is particularly 

effective in predicting the dynamics of fire effluents (heat and smoke) once a suitable fire heat release 

rate (HRR) curve is prescribed.  

2.1.  The case study 

The gallery considered for the simulations is the “Caltanissetta Tunnel” (in Sicily), part of the 

extension works of S.S.640 "Porto Empedocle" route, consisting in the adjustment of the existing 

S.S.640 (extra-urban single carriageway road, double direction) one. 

The gallery is double-arched, with one-way traffic; it has a total length of about 8000 m and an 

average elevation a.s.l. of 519.50 m (with a maximum altitude a.s.l. of 550.81 m). The axes of the two 

arches are separated from each other by a minimum of 35 m (near the entrances) up to a maximum of 

85 m.  

The maximum coverage in the shell is 130 m. The road platform has a total width of 11.25 m, 

organized with 2 lanes (slow and overtaking), 3.75 m wide, flanked by a 0.50 m pier on the left and a 

3.25 m pier on the right (emergency lane) along the entire length of the tunnel. Throughout the tunnel, 

free vertical francs (≥ 5.00 m) are guaranteed on the carriageway [19]. 

The fire scenario considered in the case study involves a Heavy Goods Vehicle (HGV) and asphalt 

pyrolysis (to obtain a more realistic burning-fire model). 

2.2.  Simulation 

Given the homogeneous characteristics of the whole road section, to simulate the fire scenario only a 

100 meters section of the tunnel was implemented in the CFD software. 

Considering that FDS is a computing code, it does not allow to draw curves; for this reason, they 

have been reproduced using a CAD model, approximating them with rectangles. For the sake of 

simplicity, the HGV used in the simulation was represented by a parallelepiped, whose characteristic 

dimensions are 2.5 m x 7 m x 3.5 m.  

Concerning the size of the mesh, two types of cells were sat: moderate (of a size of 1 m) and fine 

(of a size of 0.5 m). By adopting the use of a fine mesh only in the fire proximity, in order to estimate 

the temperature of the vault more accurately, the calculation domain of 15 m x 100 m x 10 m was 

divided into 35250 cells distributed as follows: 

 in the fire zone, with a domain of 15 m  7 m  10 m, 15600 cells of 0.5 m  0.5 m  0.5 m, of 

which 30 cells in the X (in the transverse direction to the section), 14 cells in the Y 

(longitudinal direction) and 20 cells in the Z (in height) directions, respectively; 

 in the adjacent fire zone, for a domain of 15 m  22 m  10 m, 13200 cells of 0.5 m  1.0 m  

1.0 m, of which 30 cells in the X (in the transverse direction to the section), 22 cells in the Y 

(longitudinal direction) and 10 cells in the Z (in height) directions, respectively; 
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 in the two zones, for a domain of 15 m  21/22 m  10 m, 6450 cells of 1 m  1 m  1 m, of 

which 15 cells in the X (in the transverse direction to the section), 21/22 cells in the Y 

(longitudinal direction) and 10 cells in the Z (in height) directions, respectively. 

 

Fig. 1 shows the sketch of the tunnel used for simulations. 

 

 

Figure 1. Sketch of the tunnel implemented into the FDS software (with outline of mesh domains). 

 

Once the mesh size and the calculation domain have been defined, the two extremity portals must 

be defined in order to provide a continuity solution. To do this, the open mesh boundaries function 

was used to open the two portals, as if they were ventilation surfaces (i.e. VENTs). 

The materials used in the modeling are concrete for the vault and asphalt (or bituminous 

conglomerate) for the road, which have been inserted in the FDS code by assigning specific heat, 

conductivity, density and emissivity values.  

The duration of the simulations was set to 3000 seconds, given the high computational burden, 

leading to a calculation time of over 6 hours, using a MacPro 6,1 equipped with a 12-Core Intel Xeon 

E5 single processor (2.7 GHz, 30 MB Cache). Regarding the output quantities given by the software, 

two boundary quantities were required: temperature and smoke’s height in different positions. In 

particular it was chosen to report in the present work the values of these parameters evaluated on the 

vault of the tunnel, in correspondence of the fire. Values of temperature and velocity of gasses have 

been also evaluated. 

To estimate the temperature trend over time, virtual sensors have been used: they were positioned 

on the vault of the tunnel in correspondence of the fire point, as shown in Fig. 2.  

 

Figure 2. Sensors and HGV positions. 
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The study of the dynamics of the tunnel fire, here considered, starts from the evaluation of the Heat 

Release Rate (HRR) from a hypothetical flaming vehicle, which indicates the thermal energy emitted 

by a fire per unit of time. It can be obtained mathematically, with CFD simulations or by experimental 

tests in a controlled environment. In this work to simulate the combustion of the material it was used 

an HRR determined by Carvel et al. [20]. 

The predetermined HRR was assigned to the fire source by placing proper ventilation surfaces 

(VENTs) on its surface. The truck was therefore equipped with three VENTs, respectively on the top, 

right side and left side, to exactly reproduce the thermal release of the same truck that, after 1200 

seconds, reaches a peak of about 200 MW (Fig. 3), according to literature data [21]. To do this, it has 

been hypothesized that all generic VENT cells emit an identical Heat Release Rate per Unit Area – 

HRRPUA (t) – given by: 

 

𝐻𝑅𝑅𝑃𝑈𝐴 (𝑡) =  
𝐻𝑅𝑅(𝑡)

𝐴
 

 

where A is the total area of the three VENTs, from which the thermal release comes, which in the case 

of the truck is equal to 61.6 m2. Such HRRPUA (t) is thus identical for all cells and it is 3295.45 

KW/m2. 

Thanks to these data it is possible to realize a more realistic scenario, by introducing a model of 

asphalt pyrolysis and one of forced longitudinal ventilation. 

In this regard, as previously mentioned, for the present case study it was chosen to consider a 

reversible stainless-steel ventilation system, in which the fans operate in pairs and are arranged along 

the tunnel with a 100 m pace, having a flow rate of 24.0 m³/s. In particular each end side of the tunnel 

has been equipped with two inlet fans that can be converted into suction fans by simply inverting the 

flow rate sign. In the FDS software, the fan was represented as a square with a side of 0.75 m.  

Regarding the behavior of the bituminous conglomerate (and its ability to increase the load of fire), 

in order to create a model in FDS, the results of the BRE center for fire safety engineering at the 

University of Edinburgh were taken into account, concordant with the results of the PAVIREX project 

[22]. In particular, the following features were implemented in the FDS code: 

 the asphalt combustion heat is equal to 35166 kJ/kg; 

 the pyrolysis reaction heat is equal to 3000 kJ/kg; 

 the reference temperature is equal to 450°C; 

 a pyrolysis range of 60°C; 

 a binder content of 6% in bulk. 

3.  Results 

3.1.  Base simulation (first scenario) 

In order of confirming the value of HRR assumed in our study (that according to the method must be 

considered as a pre-determined parameter), we have conducted here a basic simulation of the fire 

phenomenon, in which standard forced longitudinal ventilation has been considered. 

The obtained results confirm an HRR slightly exceeding 203 MW (Fig. 3), which ripple is due to 

the presence of oxygen from forced ventilation.  

Fig. 4 show the gasses temperatures, where A, B, C and D are the sensors, indicated in Fig. 2, 

positioned in the fire occurrence point, namely at y = 50 m, while A-10 and A+10 represent the sensors 

positioned in A but at a y position of respectively 40 m and 60 m, that is at 10 m from the fire center (y 

= 50 m).  
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Figure 3. Heat Release Rate (first scenario). 

 

 

  

Figure 4. Gasses temperatures (first scenario). 

 

 

In order to evaluate the effects of smoke on people, and their ability to react to the fire, the smoke 

stratification was also analyzed throughout the longitudinal section of the tunnel axis. For this purpose, 

layer devices have been placed, other than in the point where the fire occurs (HGV), also at 25 m (i.e. 

y = 25 m and y = 75 m) and at 50 m (y = 0 m and y = 100 m) from the HGV, respectively. 

The obtained values (Fig. 5) allow to evaluate the smoke stratification along the longitudinal 

section of the tunnel.  

Although their absolute values are questionable, these results therefore provide a comparison term 

for the subsequent simulations with improved ventilation. 
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Figure 5. Smoke stratification (first scenario). 

 

3.2.  Simulations of alternative scenarios (second and third scenarios) 

As previously reported, the improved ventilation system was modelled by varying the ventilation 

capacity and characteristics of the jet fans in the proximity of the fire occurrences; the axial fans used 

in the tunnel, in fact, give the possibility to vary the flow rate and they can also be switched off in 

conditions of complete evacuation of the tunnel.  

This way, despite having the negative effect of providing more oxygen to the combustion reaction, 

allowing the benefit of removing smoke - which causes suffocation - more quickly, and of having a 

better visibility for the evacuation of the area. In particular, two different scenarios were used: in the 

first, an increase of twice the standard airflow was assumed; in the second, the same hypothesis of the 

base simulation were assumed, but considering all fans working in aspiration. 

Since the standard airflow rate is 24.0 m³/s for each fan placed on each portal, in the second 

scenario such flow rate was set at a value of 48.0 m³/s. Each simulation lasted almost 7 hours.  

The obtained results for the first scenario (Fig. 6) showed a delay of the back-layering effect of 

about 700 s (almost double respect to that of the base simulation) and a better smoke zoning, albeit 

slightly, going from a visibility of 1 m to a 2 m one.  

The values of gasses’ temperature (Fig. 7) have decreased compared to those of base simulation; 

anyway, it must be noted that the investigated cases didn’t take into account a fire active protection 

system for controlling the gasses temperature’s values. 

Very variable data were obtained both for the smoke stratification and the gasses temperatures 

(comparison of Fig. 6 with 5 and Fig. 7 with 4, respectively), probably due to the fan speed acting on 

the flames. In return though, an increase in the evacuation time and a better smoke stratification have 

been obtained in the second part of the tunnel, thanks to the contrast between ventilation and back-

laying speeds.  

Overall, regarding people evacuation time, these results represent a worsening compared to the 

basic simulation (comparison Fig. 6 with 5); they do not therefore contribute to an increase in tunnel 

safety from this point of view. 
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Figure 6. Smoke stratification with improved ventilation – second scenario. 

 

 

 

Figure 7. Gasses temperatures with improved ventilation – second scenario 

 

 

In the third scenario, in an attempt to increase the sliding speed of the smoke, all fans were 

considered working in aspiration, by inverting the airflow direction of the fan positioned at y = 0. 

The results regarding the smoke (Fig. 8) show an obvious increase in their stratification height, 

which allows a safer evacuation of the tunnel. While, regarding the gasses’ temperatures (Fig. 9) it can 

be noted an increase of the values in the area near the tunnel ceiling in the point where the fire starts, 

and a decrease, instead, at lower heights. 

Hence, acting on the fans’ airflow rate direction, when a fire begins, actually enables to improve 

the control of smoke stratification inside a tunnel. 
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Figure 8. Smoke stratification with improved ventilation – third scenario. 

 

 

 

Figure 9. Gasses temperatures with improved ventilation – third scenario. 

 

4.  Discussions 

Comparing the results of the first and second scenario, it can be noted how increasing the air flow rate 

in the second scenario will certainly lower the temperature of the gasses (Fig. 10), especially in the 

position, A-10, foregoing the point where the fire occurs (considering that the direction of the airflow is 

assigned by the fans). Conversely, there is an increase in the smoke temperature at lower altitudes and, 

above all, the height of smoke stratification in the second scenario often remains below 2 m in 

positions following the point where the fire occurs (Fig. 11). 

Regarding the third scenario, instead, the gasses temperatures are similar to those of the first 

scenario, but, in some cases, they are even slightly higher. In contrast, however, the height of the 

smoke stratification is always higher than 4 m. 

Consequently, the third scenario would seem to be the most interesting one. 
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Figure 10. Comparison of gasses temperatures in the sensors A, A+10, A-10 and D for the three 

scenarios. 

 

 

 

      

Figure 11. Comparison of smoke stratification in the layer devices positioned at y = 25 m and y = 75 

m for the three scenarios. 

 

 

The previous considerations lead to think that an improvement to the fire safety of tunnels, where 

there is no an active fire protection system, could be made through a fans direction management, by 

means of a control system that identifies the position of the fire through some sensors specifically 

installed along the gallery 

Moreover, such a solution, that is a combination of proper sensors and a system for controlling and 

managing the rotating direction of the fans, should be a fairly simple and a relatively low-cost system 

to be implemented. 
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5.  Conclusions 

The present work started from considerations regarding the use of CFD to evaluate how the use of an 

active protection method, that is forced longitudinal ventilation, can have an impact on the heat 

extraction and people evacuation time during a tunnel fire. 

The obtained results confirmed that CFD simulation do provide a powerful analysis tool for tunnel 

fires protection analysis; geometry, materials and ventilation can, in fact, be represented by taking 

advantage of a three-dimensional prediction. Thus, when applied to the design of a new and/or 

improved ventilation system, the CFD simulation provides a local understanding of the general 

behavior of fire (in terms of heat release rate), smokes stratification and people evacuation time from 

which an optimal configuration of the system can be developed. 

In fact, the analysis of the effects of such active protection system in the tunnel, object of this case 

study, provided useful data to be taken into consideration in an eventual design phase. 

It would be interesting, as further future development of this work, to elaborate the study by 

implementing a model for the entire tunnel which could also take into account, in addition to the 

longitudinal ventilation, the use of a behavioral evacuation model, a fire extinguishing system and a 

material behavior analysis, in order to have a complete representation of the interaction phenomena. 

In conclusion, it has been shown that CFD simulations give an enough realistic indication about the 

physical fire’s phenomenon and protection methods, and therefore provide a good starting point for a 

suitable design, recovery and restoration of artifacts. 
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