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Introduction

Identical quantum systems (e.g. photons, electrons, atoms, qubits, plasmons ...), for which all
the intrinsic properties, as mass and charge, are the same, constitute a crucial element on which
networks for quantum information processes are based [1, 2, 3, 4]. Let me take some exam-
ples. By treating a system of bosons as a gas of quantum identical systems, Einstein showed
that at low temperatures, particles are "trapped" in the ground state of the global system, form-
ing a "condensate" [5, 6]. Quantum correlated electrons are naturally created by split Cooper
pair in systems of quantum dots [7] coupled to superconductor structures [8]. Optical setups
[9, 10] have identical systems as building blocks and recent researches try to exploit plasmonic
platforms for the development of quantum technologies, sensing and computing [11, 12, 13].
All the cited identical particles-based systems, i.e. Bose-Einstein condensates, superconducting
circuits, quantum dots, optical setups and plasmonic platforms, are today essential to deploy
quantum communication, quantum metrology and quantum computing. As a result, the charac-
terization of features and correlations of identical quantum systems (particles) is essential from
both the conceptual and practical view points.

Classically, both nonidentical and identical particles (NIP and IP, respectively) are always
addressable. being possible to identify them by means of labels or to follow their trajectories
without affecting their dynamics. Therefore, both NIP and IP are always distinguishable and
their dynamics, given the same initial conditions, is the same. On the other hand in quantum
mechanics, IP systems present physical properties that significantly differentiate them from NIP
ones. This is due to the fact that now IP cannot be addressed by any physical label, since labels
are quantum numbers rendering particles nonidentical, and moreover the concept of trajectory
is lost. The IP unaddressability thus should require an approach different from the one used
for NIP. Nevertheless, curiously, the standard quantum mechanical description of IP, firstly, at-
tributes to them unphysical (mock) labels which make them nonidentical [14, 15] and secondly,
introduces a symmetrization postulate with respect to these labels. The latter do not correspond
physically to any measurable quantum property that really differentiates particles. This intro-
duces problems in the characterization not only of their quantum states but mostly of their quan-
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tum correlations. The symmetrization postulate establishes that the only allowed IP states are
the ones symmetric (fermions) or antisymmetric (bosons) with respect to the exchange of mock
labels, however, it gives place to some effects apparently in contrast for example, with relativis-
tic causality. As an example of this, consider the case of spatially separated and independently
generated IP: according to the symmetrization postulate, quantum states seem to imply that the
mere presence of particles of the same species in remote locations leads to nonzero probability
amplitudes that each particle occupies all the involved locations immediately after their gener-
ation, even if the events creating them are space-like separated. Moreover, the structure of IP
quantum states looks entangled with respect to mock labels.

Entanglement [16, 17] is another crucial feature of quantum-enhanced technologies [18, 19,
20, 21]. When quantum particles are entangled, single-particle measurements on different parti-
cles are correlated even if they are noninteracting and space-like separated. Thus, entanglement
can lead to non local behaviors, that is ones which cannot be reproduced by a classical local
hidden variable model [17, 22]. And it is just this purely quantum trait which is at the basis of
several protocols and instruments to implement quantum information, such as key distribution,
teleportation and quantum algorithms.

Being both IP and entanglement the core of quantum-enhanced devices, it is really essential
to characterize the IP-quantum correlations. However, as already said, ordinarily the structure
of IP quantum states in the particle-based standard approach is such that they look always entan-
gled, even when physically one expects that they must be uncorrelated, for example when they
are independently prepared at space-like separated locations [14]. This is due, as said before,
to the presence of unphysical labels characterizing the single-particle states, which leads the
Hilbert space of composite IP systems to lose the tensorial structure that, instead, characterizes
NIP systems. As a result, the usual criteria and tools used to characterize NIP-entanglement,
such as the separability criterion, Schmidt rank, partial trace and von Neumann entropy are
not well defined for IP and brings to physical inconsistencies [23, 24]. With the purpose of
separating the real physical correlation to the unphysical one due to labels, several different
theories, both in the standard particle-based [25, 24, 26] and second quantization approach
[27, 28, 29, 30], have been proposed for both spatially overlapping and nonoverlapping inde-
pendently prepared particles. However, some of these theories [23, 24], which use new concepts
as the Slater rank and the von Neumann entropy for bosons and fermions, give results in con-
trast with some experimental evidences: as an example, the affirmation that two noninteracting
IP in the same site prepared in orthogonal single-particle states are not entangled is in contrast
to recent the experimental results of [31]. Furthermore, in the standard approach, there is not
for IP the analogous of the operational framework based on local operations and classical com-
munication (LOCC) through which correlations of NIP are identified and exploited [17, 32].
The reason is due to the unaddressability of spatially overlapping IP, which makes the concept
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of particle-locality as used in LOCC meaningless.
Recently, a different particle-based approach has been introduced [33], named no-label ap-

proach, that does not use from start unphysical labels to characterize IP states. In this way
the problem of the unphysical entanglement present in the standard treatment is avoided from
the very beginning. The advantage of the no-label formalism is that, to quantify IP entangle-
ment, it exploits the same criteria and tools known for NIP, without conceptual and physical
inconsistencies. As a starting point, it gave the possibility of obtaining the following results:
the identification of the physical origin of IP-entanglement for pure states of two independently
prepared IP (both spatially separated and overlapping) [33, 34]; the existence of the Schmidt
decomposition for IP (showing that it is universally valid for any type of particles) [35]; a new
efficient generation scheme of multipartite W entangled states [36]; the definition of an oper-
ational framework for IP based on spatially localized operations and classical communication
(sLOCC), in order to directly exploit IP entanglement in a Bell-like scenario of separate loca-
tions, also when IP spatially overlap [34]. Recently in the literature, the no-label approach has
been confronted with alternative methods both in first [37] and second quantization [38, 39] and
it has also been applied to treat effects as the Hanbury Brown-Twiss with IP [40] and quantum
entanglement in one-dimensional systems of anyons [41].

This thesis is the result of my research work during the PhD in Physical Sciences at the
University of Palermo, under the supervision of Professor Giuseppe Compagno. My scientific
contributions are in the context of IP quantum systems, with the purpose of identifying, by
means of the no-label approach, the properties exploitable for quantum information processing.

- Part I: Background and new formalism for identical particles
In the first part of the thesis, I will analyse the basic concepts of the standard quantum

mechanical approach to IP that lead to difficulties in the characterization of their quantum cor-
relations. I will recall different theories, both in the standard first and second quantization
formalisms, proposed to overcome these drawbacks.
Then, original research results will be presented. I will generalize, to the case of N IP, the
no-label formalism and the operational framework based on spatially localized operations and

classical communication (sLOCC). This will give the possibility to quantify, in a Bell-like sce-
nario with separated locations, the role played by particle indistinguishability in the emergence
of the operationally exploitable entanglement in a generic mixed state of IP. Finally I will intro-
duce a measure for particle indistinguishability. This will permit to quantify its effects on the
implementation of quantum protocols.
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- Part II: Consequences of indistinguishability: concepts and applications
In the second part of the thesis, first of all, I will show an experiment implemented in col-

laboration with the research group of Guan-Can Guo at the CAS Key Laboratory of Quantum
Information of Hefei (China). The aim of the experiment is to show if and how one can prac-
tically control the degree of spatial indistinguishability of two IP and eventually exploit it for
quantum teleportation.
Then, I will deal with the role of particle statistics in the implementation of an entanglement
transfer in a large-scale quantum network.
After having shown how indistinguishability affects the emergence and the transfer of entangled
states, I will examine the possibility to use it also to preserve the preparation of correlations in
presence of an environment.
Successively, I will deal with the generalization to IP of the basic concepts of the resource The-
ory of quantum coherence known for NIP and I will investigate the exploitation of coherence
due to indistinguishability for quantum information processes.
Finally, a new class of operations, called "deformations", will be introduced for IP systems,
showing some of their physical effects.
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Chapter 1
Standard description of identical particles in
quantum mechanics

1.1 Introduction

In this Chapter, first of all I will recall the basic concepts of the ordinary standard approach
(SA) to quantum identical particles (IP) in first quantization, i.e. the exchange degeneracy due
to the presence of unphysical labels associated to each particle and the symmetrization postulate
introduced to remove it. Then the drawbacks coming from this treatment in the characterization
of IP entanglement will be highlighted, showing that the usual tools and concepts used for
nonidentical particles (NIP), such as the separability criterion, the Schmidt decomposition and
the von Neumann entropy, cannot be directly exploited for IP. When this is done, in fact, it
presents some physical inconsistencies or is meaningless. Some theories developed within the
SA, both in first and second quantization, to identify and quantify IP quantum correlations, will
be presented.

1.2 Exchange degeneracy and symmetrization postulate

"Two particles are said to be identical

if all their intrinsic properties (mass, spin, charge, etc...) are exactly the same."[15]

In classical physics, the fact that a system consists of IP or NIP is irrelevant for the description
of its configuration and evolution. In fact, even if particles are exactly of the same type, they
follow different spatial trajectories and I can always look at each of them without disturbing
its dynamics. I can also differently label them (using for example numbers), keeping them
always identical without modifying their physical behavior. No matter how I label them: all the
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configurations obtained exchanging labels follow the same dynamics, making all the physical
predictions unaffected by these labels [15].

Consider now quantum IP. In quantum mechanics, IP can be considered truly elementary or
not. In fact, any quantum system of interacting particles which is able to form a bound state
has a discrete energy spectrum. These systems in their ground states can be endowed with fixed
unchanging properties as long as the energy exchanges with their environment are much less
than the difference between the first excited state and the ground state. Under these conditions,
such systems act as elementary particles and if they are of the same species, they can be consid-
ered IP. All composed systems stop to being considered elementary and identical when excited
levels enter into play. As an example, helium atoms up to few kelvin, hydrogen atoms up to
T ∼ 103 K and nucleons up to T ∼ 105 K are elementary. On the other hand, particles without
internal structure (elementary excitations of quantum fields) are truly elementary. Therefore,
from now on, with IP I will mean systems of at least two elementary systems under the previ-
ously presented condition, e.g. qubits, atoms, quantum dots, photons, electrons, quasi-particles,
etc...

Contrary to the classical case, in quantum physics the trajectories of IP not only cannot be
observed without modifying their behavior, but also cannot be uniquely associated to a given
particle, if there are spatial regions in which the probability of finding more than one particle
is different from zero. The SA to deal with quantum IP assume that they are not [15], marking
them with labels which do not correspond to physical properties. Even if they are unphysical
(mock), formally the operation of labelling quantum IP makes them different and modifies
the description of their dynamics. As an example, let us consider two IP sharing a spatial
region: following the SA, I assign to one of them the number 1 and to the other the number 2.
According to the first postulate of quantum mechanics [42], the physical state of our system has
to be described by a ket |Ψ〉 belonging to the Hilbert space associated to the two particles. Let
us suppose that one particle is in the single-particle state |{α}〉, where {α} are the eigenvalues
associated to a set of commuting observables 1, and analogously, the other one is in |{β}〉.
Performing a two-particle measurement on the system, I will obtain {α} from one particle and
{β} from the other. But I don’t know if the state of our system is

|Ψ〉 = |{α}〉1 ⊗ |{β}〉2 , (1.1)

or
|Ψ〉 = |{α}〉2 ⊗ |{β}〉1 , (1.2)

1In quantum mechanics, physical quantities associated to a system are called "observables" and they are essen-
tial in defining its quantum state.
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or even one of their possible linear combinations

|Ψ〉 = a |{α}〉1 ⊗ |{β}〉2 + b |{α}〉2 ⊗ |{β}〉1 (1.3)

with |a|2 + |b|2 = 1. This is known as exchange degeneracy. Even if the physical state is
the same, the mathematical descriptions are different because of the presence of labels 1 and
2, which are physically unobservable but mathematically quantum numbers rendering particles
nonidentical. These labels not only cause the association of different kets to the same sets of
eigenvalues, but also different physical predictions. In fact, if I try to calculate the probability of
finding our system initially prepared in |Ψ〉 = a |{α}〉1⊗|{β}〉2+b |{α}〉2⊗|{β}〉1 in a different
state |Ψ′〉, it will depend on the coefficients a and b. As a result, the exchange degeneracy
given by the presence of mock labels does not give us the possibility to write uniquely the
ket associated to a specific physical state and to calculate probabilities to find the system in a
different quantum state. The fact is that no complete measurement performed on each particle
will give us the possibility to know which is exactly the form of the state |Ψ〉, since the different
mathematical possibilities depends on quantities that are not physically observable and come
only from the purely formal attempt to describe IP analogously to NIP [43].

The exchange degeneracy is removed by the symmetrization postulate [15], that gives us a
rule to associate to a physical state of IP a single ket: it can be completely symmetric or anti-
symmetric, depending on the nature of particles, with respect to permutation of the unphysical
labels. Particles for which the kets are symmetric are called bosons and the ones described by
antisymmetric kets are called fermions. As a result, in the previously considered two-particle ex-

ample, the state |Ψ〉 is uniquely represented setting a = b =
1√
2

for bosons and a = −b =
1√
2

.

An immediate consequence of the symmetrization postulate is that two or more fermions cannot
occupy simultaneously the same quantum state (Pauli’s exclusion principle).

In systems of N noninteracting IP, the physical states are (anti)symmetric, with respect
to unobservable labels, linear combinations of N ! tensor products of labelled single-particle
states. For bosons (fermions) they have the structure of a Slater permanent (determinant), and
the bigger is the number of particles, the more complicated is the expression of the state in the
SA.

1.3 No general agreement on entanglement of identical par-
ticles

In this section, I will show some examples of how the SA gives rise to methodological and prac-
tical difficulties in the characterization of the IP entanglement. These difficulties arise because
of the adoption of unphysical labels marking particles and of the required (anti)symmetrization
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of states with respect to them. Usual tools and criteria to study NIP entanglement cannot be
used for IP. Many theories have been developed for this purpose, giving however contradictory
results, which in certain cases, are also in contrast with experimental evidences.

1.3.1 Failure of usual tools to characterize identical particle entanglement

Consider a system S composed by a particle 1 and a particle 2. If they are nonidentical, this
labels are associated to physical observables. Suppose that the global system is described by
the two-particle pure state |Ψ〉 ∈ HS = H1 ⊗H2, where HS is the Hilbert space of the system
and Hi is the i-single-particle one (i = 1, 2). The state |Ψ〉 is separable if it reflects the tensor
product structure of the total Hilbert space, i.e. if it can be written as

|Ψ〉 = |φ〉1 ⊗ |χ〉2 , (1.4)

where |φ〉1 ∈ H1 and |χ〉2 ∈ H2. In this case, no measurement performed on the subsystem
1 affects the number 2 and I know exactly the state of each particle. Otherwise, the state |Ψ〉
is entangled. An important tool linked to the identification and quantification of the amount of
entanglement in bipartite systems is the Schmidt decomposition of the state [24]

|Ψ〉 =
r∑
i=1

√
λi |φi〉1 ⊗ |χi〉2 , (1.5)

where {|φi〉}1 and {|χi〉}2 are basis in H1 and H2, respectively, and are the eigenstates of the
single-particle reduced density matrices

ρ1 = Tr2[|Ψ〉 〈Ψ|],
ρ2 = Tr1[|Ψ〉 〈Ψ|],

(1.6)

respectively, which have the same spectrum {λi}. The value r, that is the number of nonzero
coefficients in the decomposition, is called Schmidt rank, and it goes from 1 (for separable
states) to d = min [dim(H1), dim(H2)] (maximally entangled states). A well known measure
of the entanglement of the two particles, which is a function of the Schmidt coefficients λi, is
the von Neumann entropy of the single-particle reduced density matrices

S(ρ1) = S(ρ2) = −
∑
i

λilog2λi. (1.7)

It represents our ignorance about the states of the single subsystems. A pure state of a bipartite
system is separable if and only if its Schmidt rank is 1, i.e. if it can be written in terms of a
single tensor product of one-particle states associated to the two subsystems, and if and only if
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the von Neumann entropy of the reduced density matrices is zero.
On the other hand, consider now the case in which the two particles are identical and sup-

pose that one of them occupies the single-particle state |φ〉 and the other one the state |χ〉.
Labels 1 and 2, introduced before, while for NIP are physical properties distinguishing them,
for IP are not physically meaningful. In the SA, for both independently prepared space-like
separated and spatially overlapping particles, the two-particle state |Ψ〉 is [14]

|Ψ〉± =
1√
2

(|φ〉1 ⊗ |χ〉2 ± |φ〉2 ⊗ |χ〉1), (1.8)

where + stands for bosons and− for fermions. The application of the symmetrization postulate
due to the presence of labels 1 and 2 implies that the previously presented tools characterizing
entanglement of pure states for two NIP cannot be directly applied. In fact not only they give
rise to unphysical results in some cases, but also they are not well defined, as I am going to
show.

• Separability
The fermionic (bosonic) Hilbert space is the antisymmetric (symmetric) subspace of the
Hilbert space H = H1 ⊗ H2. As a result, the tensor product structure (on which the
concept of particle-locality is based), associated to the total Hilbert space of NIP, is lost
for IP.

"An immediate consequence of the symmetrization postulate is that two particles of the

same type are always entangled, even if they were prepared independently, far away

from each other, in different laboratories."[14]

This is the obvious mathematical conclusion, based on the separability criterion, coming
from the formal label-based SA. However,

"we must now convince ourselves that this entanglement is not a matter of concern: no

quantum prediction, referring to an atom located in our laboratory, is affected by the

mere presence of similar atoms in remote parts of the universe."[14]

Independently prepared space-like separated (noncausally related) IP are clearly phys-
ically uncorrelated [24], that is measurements on one of them are independent on the
results of measurements performed on the other one. Therefore separability of the state
is a mathematical tool that gives, already for the simplest presented case, unrealistic in-
terpretations of quantum correlations when the symmetrization postulate is applied.
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• Schmidt rank
When particles are independently prepared and space-like separated, |φ〉 and |χ〉 of Eq.
(1.8) are orthonormal. The Schmidt rank of the state with respect to mock labels of Eq.
(1.8) is 2 and according to the Schmidt criterion for NIP, this state is entangled. Even
then, the direct exploitation of a well known tool used for NIP would give unphysical
correlations. Moreover, if |φ〉 and |χ〉 spatially overlap, it is not clear if the entangled
structure of the state of Eq. (1.8) represents a real physical correlation or it is only a result
of the SA with labels.

• von Neumann entropy
The operation of tracing out the particle 1 (2) to obtain the single-particle reduced density
matrix is a physically meaningless operation for IP, given thay are not addressable and
thus the concept of particle-locality is lost. As a result, the interpretation of von Neumann
entropy is no more directly linked to the presence of real physical correlations between
IP and a more careful analysis of it is required. As I will show, a certain link between von
Neumann entropy and IP entanglement has been proposed. However, in first quantization
it requires separate treatments for bosons and fermions, that give contradictory results
[23, 24, 44], and in second quantization it is based on an algebric concept of locality
[30, 44, 45], different from the particle one (used for NIP).

1.3.2 New standard tools: first quantization approach

Different theories have been developed in order to characterize the role played by the identity
of particles in the emergence of quantum correlations. Except for someone thinking that "all
identical particles are inherently correlated from the outset, regardless of how far apart their
creation took place" [46] because of the symmetrization postulate, the greater part of physicists
mathematically and physically agree that states of spatially separated identical particles, which
never interacted before, are intrinsically uncorrelated and this remain valid also after spatially
separated operations on the system. In this case, particles act as nonidentical ones and their

statistics does not play any role, neither in their dynamics nor in their correlations.

The situation is more confused when two IP have a certain probability to occupy the same
site (e.g. in systems of quantum dots, where electrons can tunnel towards different dots with
tunable probabilities [47, 48, 49]). In this case the effect of the particle statistics cannot be
ignored. As an example, it is not clear how to quantify the intrinsic (i.e. linked to the quantum
state, regardless of measurements) physical entanglement in states of IP in the same spatial re-
gions with opposite pseudospins, eventually separating it from the possible formal correlations
due only to the presence of mock labels. Therefore, are IP in the same site physically entangled
or not? Given a certain amount of entanglement, how can I separate the fictitious entanglement
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due to mock labels from the real physical one? These are the main questions to which they have
tried to reply, using different tools and new concepts. In the following, I recall some of them
with the corresponding conclusions.

• Slater rank
For bipartite systems of multilevel IP, the Schmidt rank has been substitued by the Slater
rank [24, 23, 25], which gives different results for fermions and bosons.

A generic state of 2 identical fermions with spin S can be written in its Slater decom-
position, i.e. as a linear combination of a number 1 ≤ r ≤ (2s + 1)/2 of terms, each
of which obtained antisymmetrizing with respect to mock labels tensor products of or-
thonormal 1-particle states [23]. r is the corresponding Slater rank of the state. If r = 1,
the state is of the form of |Ψ〉− of Eq. (1.8), where {|φ〉 , |χ〉} is an orthonormal basis
of the 1-particle Hilbert space C2s+1. In this case, the two fermions are considered phys-
ically uncorrelated, independently on their spatial configuration, since the sole origin of
the entanglement in the state is formal and linked to unobservable labels. Two-particle
fermionic entangled states correspond to a Slater rank strictly greater than 1, in perfect
analogy with the Schmidt rank for NIP.

On the other hand, for bosons the situation is less straightforward. In fact, in contrast to
fermions satisfying the Pauli exclusion principle [15], two bosons can occupy the same
quantum state and the global system can be described by the tensor product of the same
single-particle states (e.g. |Ψ〉 = |φ〉1 ⊗ |φ〉2), with the corresponding Slater rank r = 1.
In analogy with the case of nonidentical particles, r = 1 represents a nonentangled state.
However, if the two bosons occupy two different single-particle states, I can have two dif-
ferent situations, corresponding to r = 2: the global state can be obtained symmetrizing
a single tensor product of

(i) two 1-particle orthogonal states and, analogously to the fermionic case, the apparent
entangled structure is considered purely due to the symmetrization postulate. The state is
thus physically nonentangled;

(ii) two 1-particle nonorthogonal states: in this case "no definite property can be attributed
to both subsystems" [23] and the state is entangled.

Finally r > 2 corresponds to the case in which the global state cannot be obtained sym-
metrizing a single tensor product of single-particle states and also in this case, the state
is considered entangled. As a result, for bosons, it is not always sufficient to know the
Slater rank to establish if two bosons are entangled or not.

• Fermionic and bosonic von Neumann entropy
The physical interpretation of this quantity, which is based on the 1-particle reduced den-
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sity matrix, is intrinsically different from the one for NIP. Moreover, as the Slater rank, it
requires separate treatments for bosons and fermions.
For the latters, von Neumann entropy is bounded from below by 1, instead of zero (NIP):
it happens for r = 1, i.e. for nonentangled states according to the previously presented
criterion [23]. The interpretation of this difference relies on the fact that, in contrast
to uncorrelated NIP, single Slater determinants of the form of Eq. (1.8) contain an un-
certainty about which is the particle (1 or 2), which is reflected on the reduced density
matrix ρ(1 or 2) = Tr2[|Ψ〉 〈Ψ|] = Tr1[|Ψ〉 〈Ψ|]. As a result, the von Neumann entropy
S(ρ(1 or 2)), representing a measure of the lack of knowledge of the state corresponding
to the single particle, is different from zero. However, this ignorance is not linked to a
real physical correlation between particles, but only to the mathematical labels-dependent
description of the state. In some way, it is considered a measure of the unphysical entan-
glement due only to mock labels. Instead, when r > 1, von Neumann entropy is greater
than 1 and measures the presence of a real entanglement between IP [24]. Finally, for
fermions the connection between Slater rank and von Neumann entropy is analogous to
the one between the Schmidt rank and the von Neumann entropy for NIP, but the corre-
sponding values and the interpretations are different.
For bosons, the situation is more complicated because of the fact that nonentangled sys-
tems can be characterized by two different values of the von Neumann entropy : (i) 0 for
r = 1 and (ii) 1 for r = 2. The interpretation of the second case is analogous to the one
presented for fermions.
As illustrated above, both for bosons an femrions, some difficulties arise trying to inter-
pret the von Neumann entropy of the reduced density matrix of Eq. (1.8): in fact, not only
it seems to take into account another form of ignorance about the single particle quantum
states (different from the one characterizing states of NIP), intrinsically associated to the
meaningless question about which particle is the number 1 or the number 2, but it requires
different treatments of bosons and fermions [23, 24].

It is important to make a remark. Even if the previous tools give physical results for inde-
pendently prepared and spatially separated IP, they give predictions which contrast with some
recent experimental evidences when particles overlap. As an example, let us consider the case
of two IP in the same site, one in the state |φ〉 = |A ↓〉 where A is the spatial mode and ↓ is the
pseudospin, and the other one in |χ〉 = |A ↑〉. The global quantum state has the form of Eq.
(1.8) and according to the criteria presented before, since 〈φ|χ〉 = 0, the state is unentangled
for both bosons and fermions [26, 23, 24]. However, recently, it has been experimentally shown
that entangled states can be obtained by moving two IP with opposite pseudospins in the same
site [31], in contrast to what is expected from the theory previously treated.

The previously presented tools have been introduced in order to characterize, both for in-
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dependently prepared space-like separated and spatially overlapping IP, the so-called a priori

entanglement, i.e. the one strictly linked to the quantum state of the system, regardless of the
measurements that can be performed on it to reveal and exploit the correlations.

In the following, I will give an example of theories according to which, on the contrary, IP
entanglement depends on both the state and measurements.

• Measurement-induced entanglement

A B A B
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Figure 1.1: Measurement-induced entanglement. A and B are two independently prepared
and spatially separated IP (a): Unambiguous choice of detectors ÔL and ÔR, in which each of
them can be triggered only by one particle. (b): Ambiguous choice of detectors, each of which
can be triggered by both particles.

When particles are nonidentical, "only interaction between particles can lead to an entan-
gled state."[24]. On the other hand, if they are identical, measurements play an important
role in the emergence of entanglement, also between independently prepared and spatially
separated particles. Let us consider, as an example, two independently prepared identical
bosons, which never interacted before, in the following pure state

|Ψ〉 =
1√
2

(|A ↑〉1 ⊗ |B ↓〉2 + |A ↑〉2 ⊗ |B ↓〉1), (1.9)

where |A〉 and |B〉 are two spatially separated wavefunctions. According to the previously
presented criteria, this state is a priori physically unentangled. Let us now perform a
measurement, using two detectors ÔL and ÔR, spatially separated and localized in the
regions in which |A〉 and |B〉, respectively, are peaked (Fig. 1.1(a)). This set-up is called
unambiguous, since each detector can be triggered by a single particle and measurement’s
results are uncorrelated.

Let us now suppose that the two detectors ÔL and ÔR project in the delocalized spatial

states |L〉 =
1√
2

(|A〉 + |B〉) and |R〉 =
1√
2

(|A〉 − |B〉), respectively. This choice of
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detectors is called ambiguous, since they can be triggered by both particles (Fig. 1.1(b)):
post-selecting the cases in which both detectors measure a particle, the apparatus is not
able to say to which particle the result of each detector is associated (such an experi-
mental configuration is known as deleting which-way information setup [15, 24], like
the Hong-Ou-Mandel apparatus) and an intrinsically probabilistic measurement-induced

entanglement appears, even if the "a priori" (before the measurement) entanglement was
zero.

1.3.3 New standard tools: separability in second quantization ap-
proach

Some theories, showing that entanglement is not an absolute concept, recover the separa-
bility criterion (not applicable to IP states) associating it to expectation values of observ-
ables, in the second quantization formalism [28, 27]. In this context, physical observables
are expressed as self-adjoint polynomials of creation and annihilation operators defined
in the single-particle Hilbert space [24, 50, 27, 51].
Consider the Fock space H of a many-body system and the algebra B(H) generated by
the creation and annihilation operators acting on H. These operators create and annihi-
late, respectively, particles in the different modes of the system: a mode is a single-particle
vector state. Let us define an algebraic bipartition of B(H) consisting of any pair (A1,A2)
of commuting subalgebras A1, A2 ⊂ B(H) (Ai, with i = 1, 2, is a subset of the creation
and annihilation operators generating B(H)). An operator is said local with respect to the
bipartition (A1,A2) if it is the product A1A2 of an operator A1 in A1 and some A2 in A2

[30, 45]. This definition recover, at the level of observables, the concept of locality used
for NIP and that cannot be used at the level of states because of the unaddressability of
IP.
A state ρ is said to be separable with respect to the bipartition (A1,A2) if the expecta-
tion of any local operator A = A1A2 can be decomposed into a convex combination of
products of local expectation values as

Tr(ρA) =
∑
k

λkTr(ρ
(1)
k A1)Tr(ρ

(2)
k A2), λk ≥ 0,

∑
k

λk = 1, (1.10)

where ρ(1)
k and ρ(2)

k are admissible states for the systems leaving in the Hilbert subspaces
1 and 2 associated to the subalgebras A1 and A2, respectively. Otherwise the state is
entangled.

Following this approach, a difference between the entanglement between particles and
the one between sets of modes has been proposed [29].
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As a specific example, consider N bosons filling M different modes and define the an-
nihilation and creation operators of a particle in the jth-mode (j = 1, ...,M ), âj and â†j
respectively, satisfying the commutation rules [âj, â

†
l ] = δjl. Consider a bipartition of this

set of operators

{âj, â†j | j = 1, 2, ...m},
{âj, â†j | j = m+ 1,m+ 2, ...M},

(1.11)

representing two commuting subalgebras A1 and A2, respectively. A pure state is Mode-
separable with respect to (A1,A2) if and only if [30, 45]

|ψM〉 = P(â†1, ..., â
†
m) · Q(â†m+1, ..., â

†
M) |0〉 , (1.12)

where P and Q are arbitrary functions of the creation operators. Otherwise, it is Mode-
entangled with respect to the chosen algebraic bipartition.

The state of Eq. 1.12 can be written also in terms of the mode occupation number as
follows

|ψM〉 =
∑
n,σ,σ′

cnσσ′ |n, σ〉A1
⊗ |N − n, σ′〉A2

, (1.13)

where n is the local number of particles occupying the first m modes, σ (σ′) is the index
associated to the different configurations in which n (N − n) particles occupy the first m
modes (the modes m+ 1, ...,M ). The mode-entanglement of |ψM〉 is

EM(|ψM〉) = S(ρA1) = −Tr(ρA1 log2ρA1), (1.14)

with S(·) the von Neumann entropy of the reduced density matrix ρA1 = TrA2(|ψM〉 〈ψM|).
It can be shown that bipartite mode-entanglement may be reduced if there are restrictions
on allowed local 2 operations, i.e. if there are super selection rules (SSR) [52]. Generical
SSR limit the operations which can be implemented on a quantum system. The restric-
tion to LOCC gives rise to entanglement as a nonlocal resource, therefore particle number
conservation, additionally confining the possible operations, should give rise to a new re-
source [53].

2The term local is here used differently from how it is presented in quantum field theory (QFT), where it has
a spatial connotation. In fact, two configurations that are locally equivalent with respect to a subalgebra Ai (Ai-
locally equivalent) are not locally equivalent with respect to the QFT (QFT-locally equivalent). As an example, let
us consider two physical configurations, σ = 1 and σ = 2, with 3 particles in the 3-modes subalgebra A1. In the
configuration labeled by σ1, two particles are in the mode 1 and the other one in the mode 2. In the configuration
labeled by σ2, two particles are in the mode 2 and the other one in the mode 3. These two configurations are
A1-locally equivalent, since there is the same number of particles in A1, but they are not QFT-locally equivalent,
since occupying different modes, particles are differently distributed in space.
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Let us now assume that the local number of particles, i.e. the number of particles asso-
ciated to each of the two subalgebras, is a superselected observable, in the sense that the
corresponding operator commutes with all observables. This SSR implies that if Alice has
access to the m A1-modes and Bob to the A2-ones, each of them cannot prepare super-
position of states of different local number of particles by LOCC. Since |ψM〉 is a linear
combination of states with different local particle numbers (see Eq. (1.13)), the arbitrary
local manipulation will mean violating the SSR for particle number. Therefore, EM does
not take into account this SSR and so it does not represent the amount of entanglement to
which Alice and Bob have affectively access. According to the chosen particle-number
SSR, I call the operationally available entanglement EP where the subscript P stands for
particle. EP is the minimal amount of entanglement which Alice and Bob can produce
between their quantum states by local operations and it can be obtained by averaging over
the entropy obtained by first projecting the density matrix into a subspace with fixed local
numbers of particles n and N − n [29],

EP(|ψM〉) =
∑
n

pnEM(|ψ(n,N−n)
M 〉). (1.15)

In particular, I project the state of Eq. 1.12 into a specific subspace with fixed local (with
respect to subsalgebras) numbers of particles and it is entangled if

|ψP〉 6= Π
(n)
A1

Π
(N−n)
A2

P(â†1, ..., â
†
m) · Q(â†m+1, ..., â

†
M) |0〉 . (1.16)

It can be shown that EP ≤ EM.
In this context, a new point of view arises in the debate about the entanglement in systems
of particles in the same site:

"Any entanglement formally appearing amongst the identical particles, including

entanglement due purely to symmetrization, can be extracted into an entangled state of

independent modes, which can then be applied to any task. In fact, the entanglement of

the mode system is in one-to-one correspondence with the entanglement between the

inaccessible identical particles."[54]

This theory exploit the concept of extraction of the "symmetrization entanglement" [54]
by means of operations performed on the system.
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Figure 1.2: Ambiguity due to the standard approach to IP. System of two entangled spa-
tially overlapping IP. Using the SA it is not clear how to separate the fictitious entanglement,
coming from the symmetrization postulate with respect to mock labels, from the true physical
entanglement. The red and green clouds represent the single-particle wave functions.

1.4 Discussions

In conclusion, as a starting point I have recalled the essential ingredients of the SA to treat
IP: even if IP are not addressable in quantum mechanics, the allowed physical configuration in
which they can live are described by assuming, at first, that they are nonidentical, by labelling
them with mock labels, and exploiting then the symmetrization postulate with respect to these
labels. However, some ambiguities and inconsistencies arise in treating IP entanglement by
means of the tools usual for NIP. In fact, according to some of them, such as the separability
criterion, the Schmidt rank and von Neumann entropy, IP quantum states should be always en-
tangled. Understanding, by physical considerations, that this cannot by true in general, it has
been necessary to propose new concepts, tools, methods and entanglement definitions. Yet,
these theories require different treatments for bosons and fermions and, further, it remains un-
clear how to separate fictitious entanglement coming from mock labels from the real physical
one (Figure 1.2). Moreover, some of these theories [24, 23, 26] are in contrast with experimental
evidences [31] and troubles under general conditions of scalability remain.

New concepts, such as entanglement of modes, in the context of second quantization have
been proposed, increasing the difference between the treatment of NIP and IP entanglement.

Finally, both in in the standard first and second quantization, the debate about entanglement
of spatially overlapping IP is still open. In addition, second quantization becomes purely formal
when not truly elementary IP, such as atoms, are considered, since they cannot be considered as
excitations of any field.
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Chapter 2
No-label approach to identical particles

2.1 Introduction

In the previous chapter, I have shown how the symmetrization postulate makes it the debate
about IP correlations still heated. In order to introduce the core of this chapter, let us start
making a first consideration, recalling the following Cohen-Tannoudji’s sentences [15],

"If application of the symmetrization postulate were always indispensable, it would be

impossible to study the properties of a system containing a restricted number of particles,

because it would be necessary to take into account all the particles in the universe which are

identical to those in the system. Under certain special conditions, identical particles behave as

if they were actually different and it is not necessary to take the symmetrization postulate into

account in order to obtain correct physical predictions."[15]

It is well known that when two IP are independently prepared in two well separated spatial
regions, L and R, one in the state |φ〉 and the other in |χ〉, respectively, and single-particle
measurements are performed using devices localized in L and R, the effects on the physical
predictions of the symmetrization postulate are null [55, 25, 15, 26, 56]. In this case, all the
probability amplitudes or matrix elements of an operator can be calculated considering L and
R as distinguishing real labels, and writing a global initial state without symmetrizing with
respect to these labels. In fact, the result of a measurement performed in the region L (R)
cannot come from particle inR (L) [15, 26]. The initial state of the system can be thus written
as a factorized state |Ψ〉 = |φ〉L ⊗ |χ〉R, both for bosons and fermions, and as a result IP
behave as NIP. Analogously, studying the thermodynamical statistics of a many IP system, it
is well known that at high densities, the system follows the Bose-Einstein statistics if they are
bosons or the Fermi-Dirac one if fermions. However in the limit of low densities (well separated
particles), the two distributions reduce to the Maxwell-Boltzmann one, valid for NIP [57].
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Figure 2.1: Simultaneous generation on the Earth and on the Andromeda galaxy of two identical
helium atom states.

In this case, one can qrite IP states without respecting the bosonic of fermionic symmetry,
when the symmetrization postulate is useless [15, 24, 26, 56]: for example, see the antisym-

metric Bell state |Ψ−〉 =
1√
2

(|0〉1 ⊗ |1〉2 − |0〉2 ⊗ |1〉1) for nonoverlapping photons (that are

bosons!) [24].

However, even in thise type of physical situations, in many works it seems that people
do not want to renounce formally to the symmetrization postulate when particles behave as
nonidentical. Thus, instead of eliminate the symmetric structures of the states, specific theories
have been developed to neutralize it, but in certain cases some counterintuitive aspects remais,
for example when ones considers time dependent problems.
In fact, in the SA when a particle is generated locally, it must instantaneously appear in a far

away location provided that another identical particle is already present there. To make this
point clear, consider an helium atom 4He in the state |He′E〉 on the Earth and the ionized atom
4He+ in the state |He+

A〉 plus an electron in the state |eA〉 on the Andromeda galaxy (subscripts
E and A representing the spatial localisation of states on Earth and Andromeda). Being at
the beginning all the involved particles distinguishable, the global state is the tensor product
|Ψ0−〉 = |He′E〉 ⊗ |He+

A〉 ⊗ |eA〉. At the universal time t = 0, 4He′ is scattered in 4He and
simultaneously ion 4He+ on Andromeda absorbs the electron e forming the atom 4He (see
Fig. 2.1). At t = 0+ on the Earth and on Andromeda two identical bosons appear in the
states |HeE〉 and |HeA〉. Being in the SA the identical atoms distinguished with labels 1 and

2, the global state is |Ψ0+〉 =
1√
2

(|He
(1)
E 〉 ⊗ |He

(2)
A 〉 + |He

(2)
E 〉 ⊗ |He

(1)
A 〉). Thus, while at

t = 0− each particles is separately localised on either E or A, at t = 0+ each of the two helium
atoms simultaneously occupies both states on E and A, as it can be easily seen in terms of
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Figure 2.2: Comparison between SA and no-label approach to IP. System of two entangled
spatially overlapping IP. Left: Using the SA it is not clear how to separate the fictitious en-
tanglement, coming from the symmetrization postulate with respect to mock labels, from the
true physical entanglement. Right: The absence of labels in the no-label approach implies the
absence of the fictitious entanglement appearing in the SA.

wave functions: Ψ0+(xE, xA) = ψ
(1)
He (xE)ψ

(2)
He (xA) +ψ

(2)
He (xE)ψ

(1)
He (xA), where (xE, xA) indicate

the positions of the two helium atoms on Earth and Andromeda, respectively. This approach
requires to accept the notion, for instance, that the nonrelativistic helium atom generated at
t = 0+ in A, because of the identical particle in E, instantaneously develops a nonzero amplitude
of being there, although the events (0+

E , 0
+
A) are spacelike separated.

"The underlying idea is that the particles are energy quanta without individuality." [57]

"To avoid the problems which arise when particles are identical,

we shall assume that they are not."[15]

Therefore, it seems that the origin of the difficulties in the descriptions of IP comes from
the first step of the SA, in which one assumes they are not identical [14, 15] and gives them
"individuality", marking them with unobservable1 labels. The SA to IP systems is the only case
in quantum mechanics where "unobservable" (as a contrast to Dirac’s observable) unphysical
(mock) labels are introduced, being instead quantum states defined by complete sets of com-
muting observables.

Recently a different state-based approach has been proposed [58, 34, 59, 60, 61, 62] which
describes the quantum states of IP without exploiting mock labels. This no-label approach,

1In quantum mechanics, physical quantities associated to a system are called "observables" and they are essen-
tial in defining the state of a system. No "unobservables" are required.
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initially presented for two IP [58], exhibits conceptual and practical advantages, linked in par-
ticular to the treatment of quantum correlations. In fact, from the beginning it completely avoids
the existence of the mock entanglement (Figure 2.2). It exploits furthermore, for quantifying the
entanglement in these systems, the same well-established notions, tools and criteria commonly
employed for NIP systems, such as Schmidt decomposition (showing that it is universally valid
both for NIP and IP) [35] and von Neumann entropy. This without the physical ambiguities
present in the approaches treated in Chapter 1.

In the following I will reconsider the no-label approach from a fundamental perspective and
generalise it to a system of many IP, starting by first principles [39].

2.2 No-label theory

2.2.1 The foundations of the N -particle formalism

Let us take a 1-particle state |{α}〉 characterised by a complete set of commuting observables
{α}. The state of two identical particles can be written, without involving unobservable la-
bels, as a list of the 1-particle states |{α1}, {α2}〉, that I write in a short hand notation as
|{α1}, {α2}〉 := |1, 2〉 and that is an overall symbol which cannot be decomposed as ten-
sor products of 1-particle vector states. The sets 1 and 2 may coincide, in this way giving
|{α1}, {α1}〉 = |1, 1〉. Generalising to the case of N identical particles, the global quantum
state |φ(N)〉 is simply a list of the 1-particle kets [39]

|φ(N)〉 := |1, 2, ..., N〉, (2.1)

which does not involve unobservable labels and where more indices may coincide. I remark
that, in general, each index in equation (2.1) does not indicate the position of the corresponding
1-particle state in the N particle ket.

In the example illustrated in Fig. 2.1, being the single-particle states at t = 0+ given by
|HeE〉 and |HeA〉, using (2.1) the global final state is |HeE,HeA〉. This means that one helium
atom is localised in E and one in A. Unphysical labels simply do not appear and the question
whether the two identical atoms are entangled is not even needed to be posed.

In order to predict the behavior of a quantum system, probabilities to occupy certain config-
urations have to be calculated [15]. For one particle, the relevant quantities to get probabilities
are the transition amplitudes 〈k′|k〉 to find the particle in the state |k′〉 if it is initially prepared
in the state |k〉. Being the state of equation (2.1) not separable in terms of tensor products of
1-particle states, how can the N -particle transition amplitude from it to the state |1′, ..., N ′〉,
namely 〈1′, ..., N ′|1, ..., N〉, can be written in the no-label approach?

As a starting point, let us require that it can be expressed in terms of the 1-particle prob-
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Figure 2.3: (a) and (b): Cluster decomposition principle. The set {P1, ..., PN} represents theN !
permutations of the 1-particle states |1〉, ..., |N〉. (c) General case where there is spatial overlap
among the entry 1-particle states in which the global system is prepared (red cloud) and among
the exit ones on which the system is measured (blue cloud). (d) Particular situation where only
all the entry 1-particle states do not overlap (red clouds). The coloured clouds represent the
spatial regions occupied by the states written within them. The arrows show the transition of
each |k〉 state (k = 1, ..., N ) towards one or more |k′〉 states (k′ = 1′, ..., N ′).

ability amplitudes. When each 1-particle state in the ket (bra) in the transition amplitude
is localised in a region far away from the others in the ket (bra) (see Fig. 2.3(a) and (b)),
the cluster decomposition principle, stating that distant experiments provide independent out-
comes [14], allows us to express the total transition amplitude as the product of the 1-particle
ones. In the specific case in which i-th state overlap with the i′-th one, it can be expressed
as 〈1′, 2′, ..., N ′|1, 2, ..., N〉 = 〈1′|1〉〈2′|2〉...〈N ′|N〉 (see Fig.2.3(a)). In general, the contribu-
tion to the transition amplitude can come from a generic permutation of the 1-particle states in
|1, 2, ..., N〉, as follows

〈1′, 2′, ..., N ′|1, 2, ..., N〉 = 〈1′|P1〉〈2′|P2〉...〈N ′|PN〉, (2.2)

where the set P1, P2, ..., PN indicates one of theN ! permutations of the 1-particle states |1〉...|N〉
and it represents the case in which the state |Pk〉 occupies the k-th region (see Fig. 2.3(b)). The
transition amplitude (2.2) is linear in each of the 1-particle states.

When both the entry (ket) and exit (bra) 1-particle states are localised in overlapping spa-
tial regions (see Fig. 2.3(c)), to maintain the property of linearity, the N -particle probability
amplitude can be expressed as a linear combination of N ! terms of the form (2.2)

〈1′, 2′, ..., N ′|1, 2, ..., N〉 =
∑
P

αP 〈1′|P1〉〈2′|P2〉...〈N ′|PN〉, (2.3)
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where P = {P1, P2, ..., PN} runs over all the 1-particle state permutations. Taking into account
that

〈1′, 2′, ..., N ′|1, 2, ..., N〉∗ = 〈1, 2, ..., N |1′, 2′, ..., N ′〉, (2.4)

let us take the complex conjugate of Eq. (2.3),

〈1′, ..., N ′|1, ..., N〉∗ =
∑
P

α∗P 〈P1|1′〉...〈PN |N ′〉. (2.5)

From Eq. (2.3), I have

〈1, ..., N |1′, ..., N ′〉 =
∑
Q

αQ〈1|Q′1〉...〈N |Q′N〉 =
∑
Q

αQ〈Q−1
1 |1′〉...〈Q−1

N |N ′〉, (2.6)

where, considering Eq. (2.4), I have reorderedQ′1, ..., Q
′
N such that (Q′1, ..., Q

′
N) −→ (1′, ..., N ′)

and thus (1, ..., N) −→ (Q−1
1 , ..., Q−1

N ), in which Q−1 is the inverse permutation of Q. Com-
paring Eqs. (2.5) and (2.6), I find that Q = P−1 and α∗P = αP−1 .

We now consider the simplest case of 2 identical particles, for which any αP is real and the
2-particle probability amplitude, using (2.3), is

〈1′, 2′|1, 2〉 = a〈1′|1〉〈2′|2〉+ b〈1′|2〉〈2′|1〉. (2.7)

The equation (2.7) associates the order of the states in the 2-particle probability amplitude on
the left with the order of the products of the 1-particle probability amplitudes on the right.
Swapping the single-particle states in the 2-particle state vector exchanges the weights of the
single-particle products. However, this swapping cannot modify the 2-particle amplitude im-
plying that amplitudes may differ only for a global phase factor, that is

〈1′, 2′|2, 1〉 = eiζ〈1′, 2′|1, 2〉 = eiζa〈1′|1〉〈2′|2〉+ eiζb〈1′|2〉〈2′|1〉
= a〈1′|2〉〈2′|1〉+ b〈1′|1〉〈2′|2〉

. (2.8)

We find that eiζb = a and eiζa = b, so |a| = |b| and (eiζ)2 := η2 = 1 from which η = ±1. In
this way, taking a = 1 in the linear combination of equation (2.7), b = η. So, the inner product
of two "holistic" state vectors is

〈1′, 2′|1, 2〉η := 〈1′|1〉〈2′|2〉+ η〈1′|2〉〈2′|1〉, (2.9)

where the subscript η indicates that it is a symmetrized product. The previous expression rep-
resents the core of our approach and includes the particle spin-statistics principle. In fact, ac-
cording to the Pauli exclusion principle, the probability amplitude of finding two fermions in
the same state is zero, so 〈1′, 1′|1, 2〉η = (1 + η)〈1′|1〉〈1′|2〉 requires that η is −1. The choice
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η = +1 gives the maximum amplitude of finding two particles in the same state and corresponds
to the case of bosons.

As it can be argued from Eq. (2.9), in the no-label approach, the information about the

IP statistics is restated in the language of transition amplitudes, instead of approaching it at

the level quantum states. In other words, the fundamental statistics-dependent unit is not the

quantum state, but the transition amplitude.

Generalising the expression (2.9) to an arbitrary number N of identical particles, I can write

〈1′, 2′, ..., N ′|1, 2, ..., N〉η :=
∑
P

ηP 〈1′|P1〉〈2′|P2〉...〈N ′|PN〉, (2.10)

where, in analogy with the 2-particle case, for bosons ηP (P being the parity of the permuta-
tion) is always 1 and for fermions it is 1 (−1) for even (odd) permutations. In the following
I shall omit, except where necessary, the subscript η in the bra-ket product. Equation (2.10)
induces the symmetrization property of the N -system state space: |1, 2, ..., j, ..., k, ..., N〉 =

η|1, 2, ..., k, ..., j, ..., N〉, for j, k = 1, ..., N . Linearity of the N -system state vector with respect
to each 1-particle state immediately follows from the linearity of the 1-particle amplitudes and
the N -particle state vectors thus span the physical symmetric state space H(N)

η . I have thus
derived, by first principles, the 2-particle probability amplitude [58] and generalised it to the
N -particle case.

We remark that in the situations represented by Fig. 2.3(b) and only in this case one can
write 〈1′, ..., N ′|P1, ..., PN〉 := (〈1′| ⊗ ...⊗ 〈N ′|)(|P1〉 ⊗ ...⊗ |PN〉). Therefore, for calculation
purposes |1, ..., N〉 ' |1〉 ⊗ ... ⊗ |N〉. This is not true if there is overlap either among the
1-particle entry states or among the exit ones (see Fig.2.3(c) and (d)). In this sense probability
amplitudes are more fundamental than quantum states.

An arbitrary elementary normalised N -identical particle state is defined as

|Φ(N)〉 :=
1

N |φ
(N)〉 :=

1

N |1, 2, ..., N〉, (2.11)

whereN =
√
〈1, 2, ..., N |1, 2, ..., N〉. |Φ(N)〉 is expressed in terms of single-particle states as a

single state vector, which is to be compared with theN ! product state vector in the SA approach:

|Θ(N)〉 =
1

N
∑

P η
P |1P1〉 ⊗ |2P2〉 ⊗ ...⊗ |NPN

〉.
The next step is to define the action of operators in the no-label approach. I limit ourselves

to an arbitrary 1-particle operator A(1) that acts on each 1-particle state at a time: A(1)|k〉 :=

|A(1)k〉. Its action on N -particle states is naturally defined as

A(1)|1, 2, ..., N〉 :=
∑
k

|1, ..., A(1)k, ..., N〉. (2.12)
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2.2.2 Partial trace and von Neumann entropy

I now show that in the no-label formalism, the ambiguities inherent in the operation of partial
trace in the SA, due to the lack of IP "individuality" [57], are absent.

To calculate the M -particle partial trace of an N -particle state Tr(M) |Φ(N)〉 〈Φ(N)|2, I have
to define a product operation between bra and ket of different number of particles.

I start considering the simplest case of M = 1. Given a 1-particle orthonormal basis {|k′〉}
and the 1-particle operator A(1) = |j′〉〈k′| and using equation (2.12), its action on a N -particle
state |1, ..., N〉 can be written as

A(1)|1, ..., N〉 :=
∑
k

|1, 2, ..., j′〈k′|k〉, ..., N〉

=
∑
k

ηk−1〈k′|k〉|j′, 1, 2, ...,��k, ..., N〉,
(2.13)

where, in the second line, I have taken out of the N -particle ket the complex number 〈k′|k〉
and shifted the state |j′〉 from the k-th site to the first one (��k indicate the lack of k-th state!).
Introducing with the symbol ∧ a non-separable symmetric external product between different
kets that I call wedge product (for fermions this product is the Penrose’s wedge product defined
in terms of labelled states [63]), the elementary N -particle states can be written as the wedge
product ofN single particle states, i.e. |1, 2, ..., N〉 := |1〉∧|2〉∧ ...∧|N〉 and (|1, 2, ..., N〉)† :=

〈N |∧...∧〈2|∧〈1|. Moreover, |P1〉∧|P2〉∧...∧|PN〉 = ηP |1〉∧|2〉∧...∧|N〉. The wedge product
coincides with the multiplication operation of the exterior algebra associated to the N -particle
symmetric Hilbert spaceH(N)

η . Therefore, equation (2.13) can be written as

A(1)|1, ..., N〉 := |j′〉 ∧
∑
k

ηk−1〈k′|k〉|1, 2, ...,��k, ..., N〉 (2.14)

and it suggests the introduction of a generalised dot product operation between a 1-particle bra
and and N -particle ket, defined as

〈k′| · |1, 2, ..., N〉 :=
N∑
k=1

ηk−1〈k′|k〉|1, ...,��k, ..., N〉. (2.15)

Expressing the N -particles state in terms of wedge products, the dot product is distributive with
respect to the wedge. The operation in Eq. (2.15) gives an (unnormalised) (N − 1)-particle
state. The corresponding normalised reduced (N − 1)-particles pure state |Φ(N−1)

k′ 〉 is

|Φ(N−1)
k′ 〉 =

〈k′| · |Φ(N)〉√
〈Π(1)

k′ 〉Φ(N)

, with Π
(1)
k′ = |k′〉〈k′|. (2.16)

2This operation corresponds to measure the states of M IP without registering the outcomes.
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Specifically the normalised 1-particle partial trace of an N -particle state is

ρ(N−1) :=
1

〈I(1)〉Φ(N)

Tr(1)|Φ(N)〉〈Φ(N)| =
∑
k′

pk′|Φ(N−1)
k′ 〉〈Φ(N−1)

k′ |, (2.17)

where the action of the 1-particle identity operator I(1) =
∑

k′ Π
(1)
k′ on a N -particles state is

I(1)|1, ..., N〉 = N |1, ..., N〉 and pk′ =
〈Π(1)

k′ 〉Φ(N)

〈I(1)〉Φ(N)

. It is important to remark that this 1-particle

partial trace and the resulting (N−1)-reduced density matrix are not affected by the ambiguities
of the analogous quantities obtained in the SA, since there is no pretence of establish "which"
is the traced out particle and to "which" particles the reduced state is associated.

Consider now the case M = 2. The relevant dot product is

〈l′,m′| · |1, ..., N〉 =
N∑
k=1

ηk−1〈l′|k〉
[∑
j<k

ηj−1〈m′|j〉|��j,��k〉+
∑
j>k

ηj−2〈m′|j〉|��k, ��j〉
]
, (2.18)

where |��j,��k〉 ≡ |1, ..., ��j, ...,��k, ..., N〉. IfN = 2 equation (2.18) coincide with the 2-particle prob-
ability amplitude given by Eq. (2.9). The 2-particle identity operator is I(2) = (1/2!)

∑
k̃′ Π

(2)

k̃′
,

where Π
(2)
k′ = |k̃′〉〈k̃′| is the 2-particle projection operator and {|k̃′〉 := |k′1, k′2〉 /Nk′} (Nk′

being a normalisation constant). The (N − 2)-particle reduced density matrix is

ρ(N−2) :=
1

2!〈I(2)〉Φ(N)

Tr(2)|Φ(N)〉〈Φ(N)| =
∑
k̃′

pk̃′|Φ
(N−2)

k̃′
〉〈Φ(N−2)

k̃′
|, (2.19)

where pk̃′ =
1

2!

〈Π(2)

k̃′
〉Φ(N)

〈I(2)〉Φ(N)

and |Φ(N−2)

k̃′
〉 = 〈k̃′|·|Φ(N)〉√

〈Π(2)

k̃′
〉
Φ(N)

is the normalised reduced (N − 2)-

particles pure state.
When required, the generalisation of equation (2.18) to the case of any M is straightforward.

Once the reduced density matrix is obtained, the entanglement between the bipartition of M
and (N −M) particles can be measured by the von Neumann entropy

S(ρ(N−M)) = −Tr(ρ(N−M) log2 ρ
(N−M)). (2.20)

Moreover, knowledge of the reduced density matrices of all the possible bipartitions of the sys-
tem allows the qualitative assessment of the genuine multipartite entanglement of the pure state
of N IP, as usually done for NIP [64]. Notice that, since the identical particles entanglement
intrinsically depends on both global state structure and observation measurements [65, 34], one
has to specify the partial trace and the reduced density matrix corresponding to a desired op-
erational framework [34]. This result differs from what is obtained in the SA where the partial

trace is meaningless [44].
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2.2.3 IP-Schmidt decomposition

In Chapter 1, it is shown that by means of the SA the direct application to IP of the Schmidt
decomposition known for NIP gives unphysical results, implying that IP are always entangled,
even if they are independently prepared and spatially separated. Moreover, it does not give a
criterion to understand which is the role of mock labels in the emergence of the entangled struc-
ture of the IP quantum states, when particles spatially overlap. As a result, by analogy with NIP,
the Slater decomposition [24, 23, 25] has been introduced for both bosons and fermions, with
the attempt to take into account the effect of the symmetrization postulate in the characteriza-
tion of entanglement. However, the Slater rank, i.e. the number of nonzero coefficients in the
decomposition, is not an entanglement witness (in contrast to what appends with the Schmidt
rank for NIP). Moreover it gives results which are in contrast with some experimental evidences
about IP quantum correlations.

In this section I will recall the generalization of the Schmidt decomposition to the case of
two IP, developed by using the no-label approach [35].

Consider two d-level IP in the pure state |Ψ〉 and choose an orthonormal 2-particle basis
{|i, j〉} in the linear symmetric 2-particle Hilbert spaceH(2)

η . The state |Ψ〉 can be expressed in
the chosen basis, as

|Ψ〉 =
1

2

∑
ij

|i, j〉 〈i, j|Ψ〉 (2.21)

and defining the state |̄i〉 =
∑

j〈i, j|Ψ〉 |j〉, it follows that

|Ψ〉 =
1

2

∑
i

|i, ī〉 . (2.22)

There exists a basis {|̄i〉} where 〈̄i′|̄i〉 ∝ δii′ . In fact, considering that 〈̄i′|̄i〉 = 2 〈i| ρ(1) |i′〉,
where the single-particle partial trace ρ(1) =

1

2

∑
j〈j| · |Ψ〉〈Ψ| · |j〉 has been used, it is evident

that when the states {|i〉} are the eigenstates of ρ(1) with eigenvalues {λi}. The state {|̄i〉} are
orthogonal and in particular 〈̄i|̄i′〉 = 2λiδii′ . As a result, the set of states

|̃i〉 =
1√
2λi
|̄i〉 =

1√
2

1√
λi

∑
j

〈i, j|Ψ〉 |j〉 (2.23)

is orthonormal. Both |i〉 and |̃i〉 are eigenstates of ρ(1) with the same eigenvalues [35] and
substituting |̄i〉 =

√
2λi |̃i〉 in |Ψ〉, we obtain

|Ψ〉 =
1√
2

∑
i

√
λi |i, ĩ〉 , (2.24)

with λi > 0 and
∑

i λi = 1. Eq. (2.24) constitutes the sought IP-Schmidt decomposition for

38



two d-level IP, where the "Schmidt coefficients"
√
λi are the square roots of the eigenvalues

of the reduced 1-particle density matrix ρ(1) and the states {|i〉} its eigenstates. The states |̃i〉
belongs to the basis {|i〉} and {|i, ĩ〉} is the symmetric Schmidt basis.

As for NIP, the positive integer "IP-Schmidt number" s of terms appearing in the IP-Schmidt
decomposition, that is the number of nonzero eigenvalues of ρ(1), is an entanglement witness:
in fact s = 1, indicates that ρ(1) is pure and so |Ψ〉 is nonentangled. If s > 1, ρ(1) is mixed and
|Ψ〉 is entangled. The IP-Schmidt coefficients are directly linked to an entanglement quantifier,
that is to the von Neumann entropy of ρ(1): S(ρ(1)) = −∑i λi log2 λi.

2.2.4 Connection of the no-label formalism with second quantization

Above I have introduced relations between states differing in the number of particles. This
suggests a relationship between the no-label approach to IP and second quantization. However,
while in the second quantization particles are elementary excitations of fields, our approach
applies to any system of identical quantum objects. Moreover, while in second quantization,
creation and annihilation operators connect states differing only by one particle, in the no-label
approach, the dot product connect states differing for a generic number of particles. Finally, in
the second quantization the fundamental role is played by the commutation rules, while in our
approach it is played by the symmetry of probability amplitudes.

To show the connection between the two approaches, I notice that Eq. (2.15) suggests the
introduction of a 1-particle annihilation operator

a(k)|1, ..., N〉 := 〈k| · |1, ..., N〉 (2.25)

and its the adjoint is
a†(k)|1, ..., N〉 := |k〉 ∧ |1, ..., N〉. (2.26)

Analogously, Eq. (2.18) directly suggests the introduction of 2-particle annihilation and cre-
ation operators defined as

a(j, k)|1, ..., N〉 := 〈j, k| · |1, ..., N〉, (2.27)

a†(j, k)|1, ..., N〉 := |j, k〉 ∧ |1, ..., N〉 (2.28)

which, in terms of the wedge product can be written as follows

a(j, k)|1, ..., N〉 = (〈k| ∧ 〈j|) · |1, ..., N〉 = 〈k| · (〈j| · |1, ..., N〉), (2.29)

a†(j, k)|1, ..., N〉 = |j〉 ∧ |k〉 ∧ |1, ..., N〉. (2.30)
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From the symmetry properties of the states, it is simple to obtain the a’s commutation rules.
For the 1-particle creation and annihilation operators of equations (2.25) and (2.26) I obtain

[a(j), a†(k)]η = 〈j|k〉
[a†(j), a†(k)]η = [a(j), a(k)]η = 0,

(2.31)

where [a(j), a†(k)]η = a(j)a†(k)− ηa†(k)a(j) is the commutator for bosons and the anticom-
mutator for fermions. Using Eq. (2.18), Eq. (2.31) generalises, for the 2-particle creation and
annihilation operators, to (see Appendix A)

[a(j, k), a†(m,n)] = 〈j, k|m,n〉η,
[a†(j, k), a†(m,n)] = [a(j, k), a(m,n)] = 0.

(2.32)

In the first equation of (2.32) the η in right hand side keeps the memory of the bosonic or
fermionic nature of the particles.

2.3 Applications

2.3.1 Spin exchanged states

We consider the well-known W entangled state of nonidentical particles, which constitutes an
important resource state for several quantum information tasks [66, 36]. I explicitly describe a
single-particle state with the spatial mode φi (i = 1, . . . , N ) and the pseudospin ↑, ↓. The W
state has the structure

|W 〉 = |φ1 ↑, φ2 ↓, ..., φN ↓〉+ |φ1 ↓, φ2 ↑, ..., φN ↓〉+ ...+ |φ1 ↓, ..., φN−1 ↓, φN ↑〉, (2.33)

where for nonidentical particles each term of the superposition is a tensor product of single-
particle states. The very same structure is considered to hold also for identical particles in
separated locations. In this case, is this structure valid under any circumstance? To analyse this
aspect, I choose 3 fermions localised in three separated spatial modes A, B and C, so that the
state of equation (2.33) is |W3〉 = |A ↑, B ↓, C ↓〉 + |A ↓, B ↑, C ↓〉 + |A ↓, B ↓, C ↑〉. When
two fermions are in the same spatial mode, for instance A = B, this state becomes

|W̄3〉 = |A ↑, A ↓, C ↓〉+ |A ↓, A ↑, C ↓〉, (2.34)

where the state |A ↓, A ↓, C ↑〉 does not appear because of the Pauli exclusion principle (its
norm tends to zero). Using the symmetry properties of the elementary states, |A ↓, A ↑, C ↓
〉 = −|A ↑, A ↓, C ↓〉, one gets |W̄3〉 = 0, while one expects no restriction arising from
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particle statistics, considering that the two fermions inA have opposite spins. The same problem
is thus expected to arise even when the particles are spatially nonoverlapping but non-local
measurements are performed. Hence, the form of the W state of equation (2.33) for identical
particles does not work in general.

We define a spin exchanged state (SPES) as a suitable linear combination of (unnormalized)
elementary states where only particle pseudospins are exchanged, that is

|SPES〉 :=
1

N
∑
P

ηP |φ1 σP1 , ..., φN σPN
〉, (2.35)

where P are here the cyclic permutations of pseudospins σPi
andN is the global normalisation

constant. When σ1 = ↑ and σ2 = . . . = σN = ↓, the SPES represents a generalisation of the W
state for identical particles valid bosons and fermions under any circumstances. Other states of
interest are obtained from (2.35) for different pseudospin conditions; for instance, assuming a
ring configuration of the N particle and taking σ1 = . . . = σM = ↑ and σ(M+1) = . . . = σN = ↓
such states can represent a linear combination of spin block systems in the ring chain.

2.3.2 Separability of spatial and spin degrees of freedom

For any elementary state of NIP, the spatial and spin degrees of freedom, being associated to
the individual particle, are independent and separable [67]. This is not the case for elementary
states of IP.

As mentioned above, the essence of the no-label approach is the absence of labels and the
consequent holistic form of the states that are not separable in tensor products of single-particle
states. For a single particle, I have |ϕ σ〉 ≡ |ϕ〉 ⊗ |σ〉, i.e. the spatial part of the state can be
treated separately from the pseudospin one. Instead, for two IP, when ϕ1 6= ϕ2 and σ1 6= σ2, it
is |ϕ1 σ1, ϕ2 σ2〉 6= |ϕ1, ϕ2〉 ⊗ |σ1, σ2〉, so measures of position and pseudospin operators may
be not independent. One may ask which structure a state of IP must have in order that spatial
and pseudospin degrees of freedom are independent from each other.
To fix our ideas, let me take the 2-particle state

|φ(2)〉 = α|ϕ1 σ, ϕ2 τ〉+ β|ϕ1 τ, ϕ2 σ〉, (2.36)

with ϕ1 6= ϕ2, τ 6= σ. Let me calculate the probability amplitude of finding a particle with a
wave function ϕ′1 and pseudospin σ′ and the other one with wave function ϕ′2 and pseudospin τ ′,
that is the probability amplitude to find in any elementary 2-particle state |φ′(2)〉 = |ϕ′1 σ′, ϕ′2 τ ′〉
the system prepared in |φ(2)〉 of Eq. (2.36),

〈φ′(2)|φ(2)〉 = 〈ϕ′1 σ′, ϕ′2 τ ′|{α|ϕ1 σ, ϕ2 τ〉+ β|ϕ1 τ, ϕ2 σ〉}. (2.37)
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Using the expression (2.9), I find that, given α = 1, only when β = ±1 equation (2.37) can be
written as

〈φ′(2)|φ(2)〉 = 〈ϕ′1ϕ′2|ϕ1ϕ2〉ηβ〈σ′τ ′|στ〉β, (2.38)

where 〈µ′ ν ′|µ ν〉γ indicates the probability amplitude of the form of equation (2.9) with η

substituted by γ. Thus, the well known attitude of separating the spatial and spin part of the IP
state in the SA [67], is here restated in the language of transition amplitudes. Since the obtained
result is independent of the structure of the elementary bra in the LHS of Eq. (2.38), I can say
that in the entangled states of the form |φ(2)

± 〉 = |ϕ1 σ, ϕ2 τ〉±|ϕ1 τ, ϕ2 σ〉 the physical behaviour
of the spatial part is independent of the spin part. As a result, the actions of two generic spatial
and spin operators respectively AΨ and AΣ, (where the subscripts Ψ and Σ indicate the spatial
and spin degrees of freedom, respectively) on this state can be expressed as

AΨ |φ(2)
± 〉 := (AΨ|ϕ1, ϕ2〉η±)⊗ |σ, τ〉±,

AΣ |φ(2)
± 〉 := |ϕ1, ϕ2〉η± ⊗ (AΣ|σ, τ〉±),

(2.39)

where the kets’ subscripts indicate the symmetry of the state: |κ, χ〉γ = γ|χ, κ〉γ . When σ =↑
and τ =↓, |φ(2)

± 〉 are two (unnormalized) Bell states for a generic value of the IP spatial overlap.
It is moreover immediate to show that, analogously, an entangled state of the form |ψ(2)

± 〉 =

|ϕ1 σ, ϕ2 σ〉 ± |ϕ1 τ, ϕ2 τ〉 always gives

AΨ |ψ(2)
± 〉 := (AΨ|ϕ1, ϕ2〉η)⊗ (|σ, σ〉 ± |τ, τ〉),

AΣ |ψ(2)
± 〉 := |ϕ1, ϕ2〉η ⊗ (AΣ(|σ, σ〉 ± |τ, τ〉)).

(2.40)

Finally, one can separately write in the no-label formalism the actions on the entangled Bell
states of spatial and spin operators.

2.3.3 Effects of indistinguishability in a system of three identical qubits

Consider three identical qubits, each in the state |ϕk σk〉 ≡ |ϕk〉 ⊗ |σk〉 (k = 1, 2, 3), where
ϕk is the k-th spatial wavefunction and σk is the corresponding pseudospin ↑, ↓. The 3-qubit

elementary state is |Φ(3)〉 =
1

N |ϕ1 σ1, ϕ2 σ2, ϕ3 σ3〉, where N is the normalization constant.

We start taking the total system in the pure state

|Φ(3)〉 = |A ↓,B ↓,C ↑〉, (2.41)

where the three spatial wavefunctions have support in the three corresponding separated spa-
tial regions A, B and C, as depicted in Fig. 2.4(a). Considering all the possible bipartitions
(AB)-C, (CA)-B, (BC)-A of the three-particle system, by performing localized projective
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Figure 2.4: (a) Configuration associated to the state |Φ(3)〉 when particles are in separate spatial
regions (grey zones). (b) Complete spatial overlap of three qubits in the spatial region A.

measurements and partial traces [39] one finds that all the three bipartitions give pure one-
particle and two-particle reduced density matrices. Following conventional wisdom this state
is, as expected, fully uncorrelated [64]. Thus, separated identical particles, addressed by spa-
tially localized measurements, behave analogously to distinguishable particles. However, in
contrast with the case of distinguishable particles which are individually addressable, quan-
tum correlations between identical particles depend on the region where measurements are
performed. In fact, if partial traces of an identical particle state are made onto non-local ba-
sis, a “measurement-induced” entanglement [58] is obtained. For example, by making on our
system of Fig. 2.4(a) in the state ρ(3) = |Φ(3)〉〈Φ(3)| a non-local one-particle trace onto the

delocalized basis
{ 1√

2
|(B + C) ↓〉, 1√

2
|(B + C) ↑〉

}
, I obtain the two-particle mixed state

ρ(2) =
1

2
(|A ↓,C ↑〉〈A ↓,C ↑ |+ |A ↓,B ↓〉〈A ↓,B ↓ |). This shows how entanglement of spa-

tially separated identical particles is affected by the non-local nature of measurements.

I now compare the above results with the analogous case of nonidentical qubits. The global
state can be written as the tensor product of single-particle labeled states, namely

|Φ(3)
d 〉 = |A ↓〉1 ⊗ |B ↓〉2 ⊗ |C ↑〉3 (2.42)

(where labels 1, 2, and 3 are physical labels making particles different). This state is mani-
festly separable and so unentangled [64]. Moreover, if I make partial traces over a non-local

basis (e.g., Bk =
{ 1√

2
|(A + B) ↓〉, 1√

2
|(A + B) ↑〉

}
k
), due to the fact that now measurements

are made on an individual particle, pure reduced density matrices are obtained: the particles
thus remain fully uncorrelated. This result does not change even when the three distinguish-
able qubits completely spatially overlap (A=B=C). This aspect highlights the difference on the
entanglement properties of independently-prepared identical and non-identical particles.

To have entanglement of three spatially separated qubits by local measurements, linear
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combinations of elementary states [39] are necessary. In particular, I take a superposition of
two three-qubit states corresponding to the well-known GHZ state of distinguishable particles
[64, 68], |Λ(3)

GHZ〉 = 1√
2
(|A ↓,B ↓,C ↓〉 + |A ↑,B ↑,C ↑〉). All the distinct bipartitions, by

means of local partial traces, are easily seen to produce totally mixed reduced density matrices:
therefore, the state is maximally three-partite entangled. A further advantage of the no-label
formalism here emerges because, when the |Λ(3)

GHZ〉 is expressed in terms of unphysical labels, it
consists of a linear combination of twelve different product states of three one-particle state vec-
tors. This would make the analysis technically cumbersome and would hinder the identification
of physical entanglement from the unphysical one associated to labels.

To evidence the role of the spatial overlap, I now consider the state of three boson qubits
condensed in the same spatial mode A, as illustrated in Fig. 2.4(b). This state has the form
|Ψ(3)〉 = 1√

2
|A ↓,A ↓,A ↑〉 and admits only one bipartition (two particles)-(one particle). By

performing partial traces onto this bipartition, one obtains the one-particle and two-particle
reduced density matrices

ρ(1) =
1

Ñ
Tr(2)|Ψ(3)〉〈Ψ(3)| = 2

3
|A ↓〉〈A ↓ |+ 1

3
|A ↑〉〈A ↑ |, (2.43)

ρ(2) =
1

N Tr(1)|Ψ(3)〉〈Ψ(3)| = 2

3
|A ↑,A ↓〉〈A ↑,A ↓ |+ 1

3

|A ↑,A ↑〉√
2

〈A ↑,A ↑ |√
2

. (2.44)

These density matrices are manifestly mixed and give the same von Neumann entropy S(ρ(1)) =

S(ρ(2)) = −1

3
log2

1

3
− 2

3
log2

2

3
. This result, differently from the uncorrelated state |Φ(3)〉, wit-

nesses that |Ψ(3)〉 is three-partite entangled [64].

2.4 Discussions

In conclusion, the foundations of a formalism, named no-label formalism, alternative to the
particle-based SA, to treat a generic number N of IP have been presented. The novelty of this
approach is the absence of unobservable labels addressing particles, in this way avoiding al the
difficulties and inconsistencies, due to mock labels, present in the SA to IP quantum states and
entanglement. Elementary quantum states of N IP are thus defined as lists of N single-particle
states and must not be expressed as tensor products of the latters.

The crucial element of this approach, that is the probability amplitude between N -particle
states, has derived by first principles, i.e. the cluster decomposition and the linearity with respect
to 1-particle states. In this approach, the fundamental quantities are the probability amplitudes,
not the states. Thus this approach translates in the language of probability amplitudes the prop-
erties of IP statistics (bosonic and fermionic), which in the SA are contained at the level of
quantum states.
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The no-label formalism allows us to evaluate, without the ambiguities present in the SA,
the entanglement between bipartitions of N IP, not only by treating fermions and bosons on the
same footing but also by exploiting the same tools known for NIP, i.e. the (N −M)- particles
partial trace (which here regains the physical meaning lost in the SA), the von Neumann entropy
of the (N −M)-particles reduced density matrix and the Schmidt decomposition.

Generalized products between IP states of different dimensions have been defined, showing
that the corresponding vector spaces can be connected by generalized multi-particle creation and
annihilation operators. This gave the possibility to connect the no-label approach into second
quantization, showing that the commutation rules betweenN -particles creation and annihilation
operators are established by the N -particles properties of probability amplitudes.

Some applications have been presented: a new class of states, called spin-exchanged states
(SPES) has been introduced, which are the generalization of the W state to spatially overlapping
IP. Finally, the effects of spatial overlap on the entanglement of three identical qubits have been
treated. It has also been shown that IP quantum correlations are not an intrinsic property of the
quantum state alone but also depend on the performed measurements. We have then shown for
a system of three bosonic qubits in the same site that spatial overlap constitutes an entangling
mechanism.
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Chapter 3
Spatially localized operations and classical
communication (sLOCC)

3.1 Introduction

In Chapter 2, it has been shown that entanglement between a bipartition M and (N −M) of
N identical particles (IP) can be measured by the von Neumann entropy of the reduced density
matrix, obtained by the M -particle (or N −M ) partial trace for IP (see Section 2.2.2).

Entanglement is especially relevant to carry out quantum information tasks in a Bell-like
scenario (i.e. between spatially separated locations). However, it is easy to show that, in gen-
eral, the two reduced density matrices of M and N −M particles can still spatially overlap, if
at the beginning overlap among the N particles is present. This depends on the basis chosen to
perform the partial trace. Therefore, the entanglement measured by von Neumann entropy in
this case may not be directly exploitable in a Bell-like setup.

In this Chapter, I will introduce an operational framework based on spatially localised oper-

ations and classical communication (sLOCC) to quantify, as function of the spatial overlap of a
number N of IP, the entanglement operationally exploitable for quantum information processes
between separate laboratories.

Then, I will define the sLOCC-based concurrence of a generic state of 2 IP [69], to charac-
terize their entanglement analogously to the case of nonidentical particles (NIP).

Finally, a measure of the spatial indistinguishability of IP will beintroduced [69].

3.2 Operational framework

The identification, manipulation and exploitation of purely quantum resources is essential to
implement quantum information processes [70]. Usually identical particles are the elementary
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building blocks of quantum networks [71, 72, 73, 74, 75]: as a result, the interest for the role
played by particle indistinguishability is increasing. However, while for NIP an operational
framework to exploit in practice their properties is well established by individual (local) opera-
tions on each particle and classical communication (LOCC) [64], for IP, which are individually
unaddressable [76, 24, 58, 39], the concept of "particle locality" residing in LOCC is mean-
ingless. The problem of their direct utilization remained open for a long time, in particular
when they spatially overlap, since the quantum correlations are primarily usefull to implement
quantum information tasks between separate locations. In this respect, a new framework based
on spatially localized operations and classical communication (sLOCC) has been recently in-
troduced for systems of 2 IP [34]. I now introduce its generalization to the case of a generic
number N of IP and, in the rest of the chapter, I show how it allowed us to clearly highlight the
role of spatial overlap of IP, and so of spatial indistinguishability, in the emergence of opera-
tionally exploitable entanglement.

Consider a system of N independently prepared IP. The i-th single-particle state (i =

1, 2, ..., N ) is characterized by a spatial wave function ψi and in general particles can spatially
overlap (Fig.3.1). A local one-particle measurement for systems of IP is the measurement of a
property of one particle performed on a localized region of spaceR [33].

The sLOCC framework is based on the choice of N spatial regions Ri in which to perform
single-particle measurements, satisfying the following Properties:

1. Ri have to be spatially separated,

2. the probability of finding at least one particle in each region has to be different from zero.

In this case, analogously to what happens for NIP in which I individually (locally) address

Figure 3.1: Illustration of different single-particle spatial wave functions ψi (i = 1, . . . , N )
associated to N identical particles in a generic spatial configuration. The sLOCC framework
is based on local single-particle measurements, each performed in one of N separate spatial
regionsRi [69].
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particles independently from their spatial configurations (LOCC framework), I here address
separate spatial regions. This concept is closer to the spirit of quantum field theory, which
exploits "space locality" instead of "particle locality". This configuration is particularly useful
to exclude correlations between the distant regions induced by the measurement process [24]
and, as I are going to show, it gives us the possibility to make it emerge in a quantitative way not
only the role played by the spatial indistinguishability of particles in their quantum correlations
and features [34, 61, 62, 69], but also to introduce an entropic indistinguishability measure as
an information resource [69].

3.3 Entanglement of a pure state of 2 identical particles: von
Neumann entropy

Let us consider two independently prepared NIP, A and B. Particle A is prepared with the wave
function ψ and pseudospin ↑ and particle B with the wave function ψ′ and pseudospin ↓. The
global state is |Ψ〉AB = |ψ ↑〉A⊗ |ψ′ ↓〉B and under LOCC it is separable, independently on the
spatial configuration of ψ and ψ′. On the other hand, if particles are identical the global state in
the no-label approach is

|Ψ〉 = |ψ ↑, ψ′ ↓〉 . (3.1)

Do particles in the state of Eq. (3.1) present correlations? In order to establish under LOCC
correlations between single-particle measurements for NIP pure states, von Neumann entropy
of the reduced density matrices associated to the different particles is used. Ananlogously, un-
der sLOCC correlations between single-particle measurements on IP in two separated spatial
regions can be quantified by knowing the reduced density matrices localized in the two regions.
Let us choose two separate spatial regions, called L and R (Fig.3.2). By performing the par-
tial trace of |Ψ〉 〈Ψ|, as an example, onto the one-particle basis {|L ↓〉 , |L ↑〉}, where |L〉 is a
specific state localized in L, and by projecting onto the subspace spanned by {|R ↓〉 , |R ↑〉},
where |R〉 is a specific state localized inR, one obtains the following 1-particle reduced density
matrix inR

ρ
(1)
R =

1

PLP ′R + P ′LPR
(PLP

′
R |R ↓〉 〈R ↓|+ P ′LPR |R ↑〉 〈R ↑|), (3.2)

where PX = |x|2 = |〈X|ψ〉|2 and P ′X = |x′|2 = |〈X|ψ′〉|2 (X = L,R and x = l, r) are the
probabilities of finding a particle in |X〉.

The von Neumann entropy S(ρR) = −Tr(ρ
(1)
R log2 ρ

(1)
R )1 quantifies the entanglementELR(Ψ)

1We remark that, by performing the partial trace in the basis {|R ↓〉 , |R ↑〉} and projecting onto the subspace
spanned by {|L ↓〉 , |L ↑〉}, I obtain ρ(1)L and S(ρ

(1)
L ) = S(ρ

(1)
R ).
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Figure 3.2: System composed by two IP, with opposite pseudospins and spatially overlapping
single-particle wave functions ψ and ψ′. Their entanglement is quantified by performing in the
sLOCC framework single-particle measurements localized in separate spatial regions L and R
[34].

between the pseudospins in the separate spatial regions, [34] thai is

ELR(Ψ) = − PLP
′
R

PLP ′R + P ′LPR
log2

PLP
′
R

PLP ′R + P ′LPR
− P ′LPR
PLP ′R + P ′LPR

log2

P ′LPR
PLP ′R + P ′LPR

. (3.3)

It can be shown that it coincides with the entanglement of formation of the state (see Supp. Mat.
of [34])

|ΨLR〉 =
lr′ |L ↑,R ↓〉+ ηrl′ |L ↓ R ↑〉√

|lr′|2 + |rl′|2
, (3.4)

where η is 1 for bosons and −1 for fermions, conditionally obtained projecting |Ψ〉 in the
subspace spanned by the basis BLR = {|Lσ,Rτ〉 ;σ, τ =↓, ↑}. This state is the distributed
resource state between L and R2. The entanglement coming from Eq.(3.3) has been analysed
in function of the spatial overlap of the two wave functions ψ and ψ′. If their square moduli
do not share a common region of space (no spatial overlap), ELR(Ψ) = 0. As an example
consider the case in which ψ is localized in L and ψ′ inR: thus P ′L = PR = 0 and the resource
state of Eq. (3.4) becomes |ΨLR〉 = |L ↑,R ↓〉, that under the chosen framework can be written
as a separable state |ΨLR〉 = |L ↑〉 ⊗ |R ↓〉, since particles are spatially addressable and so
distinguishable (like NIP).

If ψ and ψ′ partially overlap and one or both the spatial regions L and R are outside the
overlap region, the framework does not allow to make it emerge the effects due to the spatial
indistinguishability of particles and the result is analogous to the case of no spatial overlap.

2If the two particles have the same pseudospin and so |Ψ〉 = |ψσ, ψ′σ〉, the state obtained after the projection
onto the chosen operational subspace is always unentangled, in fact it is |ΨLR〉 = |Lσ,Rτ〉, even if particles
completely spatially overlap.
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On the other hand, if L and R are both in the overlap region, a certain amount of entangle-
ment associated to the state of Eq. (3.4) and quantified by Eq. (3.3) is conditionally obtained
with a probability PLR = |lr′|2 + |rl′|2.

Finally, if ψ and ψ′ completely overlap, i.e. when the spatial region in which the two parti-
cles can be found with nonzero probabilities is the same, it is evident from Eq. (3.3) that there
is always a certain amount of entanglement. The latter reachs the maximum value ELR(Ψ) = 1

when PL = P ′L and PR = P ′R, with a probability PLR = 2PLPR. This probability is maximum
(PLR = 1/2) when PL = PR = 1/2.

The entanglement quantified by Eq. (3.3), as I have shown, is strictly due to the parti-
cle indistinguishability coming from the spatial overlap of single-particle wave functions. The
sLOCC operational framework naturally suggests the introduction, from an experimental per-
spective, of a figure of merit for the exploitable entanglement of identical particles given by
Eexp := ELRPLR.

We now use the pseudospin observable OS := OS · σS (S = L,R) with eigenvalues ±1,
where OS is the unit vector in an arbitrary direction in the spin space and σS = (σSx , σ

S
y , σ

S
z ) is

the Pauli matrices vector. The CHSH-Bell inequality [77] in this context is

B(ρLR) = |〈OLOR〉+ 〈OLO′R〉+ 〈O′LOR〉 − 〈O′LO′R〉| ≤ 2, (3.5)

where B(ρLR) is the Bell function expressed in terms of the correlation functions of the pseu-
dospin observables and O′S indicates the measurement in a direction different from that of OS
[33]. The maximum value of the Bell function Bmax in terms of the concurrence (entanglement)
[78, 64] of the state |ΨLR〉 is [39]

Bmax = 2
√

1 + C(ΨLR)2 = 2

√
1 +

(
2|lr′l′r|
PLR

)2

, (3.6)

where I have used the explicit expression of C(ΨLR). We have obtained Bmax(ρLR) > 2 when
C(ΨLR) > 0, i.e. whenever there is spatial overlap between ψ and ψ′ and the local measure-
ments are performed inside the overlap region (that is, all the four probability amplitudes l, l′, r,
r′ are nonzero). The violation of the CHSH-Bell inequality identifies the presence of nonlocal
correlations between the pseudospin outcomes in the regions L andR.

Therefore, spatial overlap between wave functions associated to independently prepared IP
can generate nonlocality effects which can be tested in quantum optical scenarios [79].

In the next Chapters, I will show that this correlations and nonlocal effects are physical, in
the sense that they can be used to operationally implement both theoretically and experimentally
quantum information tasks.
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3.4 Concurrence of a mixed state of two identical particles

In Section 3.3 I have shown how the sLOCC framework gives us the possibility to quantify the
entanglement of two independently prepared IP in a pure state. I now generalize our treatment
to the case of a generic mixed state of two IP.

The entanglement of formation known for NIP [80] can be straightforwardly redefined to
the case of IP, thanks to the same sLOCC framework presented in Section 3.3.

Consider, as before, two identical qubits, with spatial wave functions ψ = ψ1 and ψ′ = ψ2,
for which one desires to characterize the entanglement between the pseudospins. The density
matrix of an arbitrary state of the two identical qubits can be written as

ρ =
∑

σ1,σ2,σ′1,σ
′
2=↓,↑

pσ
′
1,σ
′
2

σ1σ2
|ψ1σ1, ψ2σ2〉 〈ψ1σ

′
1, ψ2σ

′
2| /N , (3.7)

where N is a normalization constant. Projecting ρ onto the (operational) subspace spanned by
the computational basis BLR = {|L ↑,R ↑〉 , |L ↑,R ↓〉 , |L ↓,R ↑〉 , |L ↓,R ↓〉} by the projector

Π
(2)
LR =

∑
τ1,τ2=↑,↓

|Lτ1,Rτ2〉 〈Lτ1,Rτ2| , (3.8)

one gets the distributed resource state

ρLR = Π
(2)
LRρΠ

(2)
LR/Tr(Π

(2)
LRρ), (3.9)

with probability PLR = Tr(Π
(2)
LRρ). The trace operation must clearly be performed in the LR-

subspace. The state ρLR, containing one particle in |L〉 and one particle in |R〉, is the ex-
ploitable distributed resource state for quantum information tasks and can be diagonalized as
ρLR =

∑
i pi |ΨLR

i 〉 〈ΨLR
i |, where pi is the weight of each pure state |ΨLR

i 〉 which is in general
unseparable. Entanglement of formation of ρLR is as usual [81]Ef (ρLR) = min

∑
i piE(|ΨLR

i 〉),
where minimization occurs over all the decompositions of ρLR and E(ΨLR

i ) is the entanglement
of the pure state |ΨLR

i 〉. We thus define the operational entanglement ELR(ρ) of the original
state ρ obtained by sLOCC as the entanglement of formation of ρLR, that is

ELR(ρ) := Ef (ρLR). (3.10)

We can conveniently quantify the entanglement of formationEf (ρLR) by the concurrenceC(ρLR),
according to the well-known relation Ef = h[(1 +

√
1− C2)/2] [82, 80], in which h(x) =

−x log2 x− (1− x) log2(1− x). The IP-concurrence CLR(ρ) in the sLOCC framework can be
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easily introduced by

CLR(ρ) := C(ρLR) = max{0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (3.11)

where λi are the eigenvalues, in decreasing order, of the non-Hermitian matrix R = ρLRρ̃LR,
being ρ̃LR = σL

y ⊗ σR
y ρ
∗
LRσ

L
y ⊗ σR

y with localized Pauli matrices σL
y = |L〉 〈L| ⊗ σy, σR

y =

|R〉 〈R| ⊗ σy. I remark that the tensor product in σL
y ⊗ σR

y is allowed by the chosen framework
in which |L〉 and |R〉 are two spatially separated states, thus the procedure to obtain the non-
Hermitian matrix R is analogous to the one for NIP [83]. The entanglement quantifier of ρ
so obtained contains all the information about spatial indistinguishability, due to the spatial
overlap, and statistics (bosons or fermions) of the particles.

As I have shown in this section and in the previous one, entanglement of IP is strictly linked
to the spatial overlap of the single-particle wave functions and so to the spatial indistinguisha-
bility with respect to specific set of measurements. In order to bring our results to a more
fundamental level, a measure of the degree of spatial indistinguishability has been introduced
and I will present it in the following section [69].

3.5 Entropic measure of spatial indistinguishability

Identity of particles is a yes or not property both in classical and quantum mechanics. In
the literature the terms "identical" and "indistinguishable" are generally used as synonymous
[84, 26, 43]. However, as I have shown, IP can be distinguishable under certain measurements,
behaving like NIP. In other words, quantum mechanically, to IP it can be attributed the further
property of indistinguishability, associated to a specific set of quantum measurements, differ-
ently from identity that is an intrinsic property of the system. And it is to indistinguishability,
not to identity by itself, that the effects of bosonic and fermionic statistics is attributed. In fact,
as an example, no bosonic behavior is associated to two independently prepared and spatially
separated identical photons, although identical, under sLOCC (distinguishable photons).

With respect to the set of measurements, it seems natural to define a continuous degree of in-
distinguishability, quantifying how much the measurement process can distinguish the particles.
In this section, I deal with this aspect that has been developed within sLOCC. For simplicity,
the treatment shall be presented for pure states, but it is also valid for mixed states.

Consider a N IP elementary pure state |Ψ(N)〉 = |χ1, χ2, ..., χN〉, where |χi〉 is the i-th
single-particle state. Each |χi〉 is characterized by the set of values χi = χai , χ

b
i , . . . , χ

n
i corre-

sponding to a complete set of commuting observables â, b̂, . . . , n̂. For example, if â describes
the spatial distribution of the single-particle states, χai is a spatial wavefunction ψi. The N -
particle degree of indistinguishability is expected to depend both on their quantum state and the
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measurement performed on the system. To define a suitable class of measurements, I take the
N -particle state

|αβ〉N := |α1β1, α2β2, . . . , αNβN〉 , (3.12)

where the i-th single-particle state |αiβi〉 is characterized by a subset â, b̂, . . . , ĵ of the â, b̂, . . . , n̂
commuting observables with eigenvalues αi = αai , α

b
i , . . . , α

j
i , and by the remaining observ-

ables k̂, . . . , n̂ with eigenvalues βi = βki , . . . , β
n
i . In the first member of Eq. (3.12) I have set

α = {α1, ..., αN} and β = {β1, ..., βN}. The N -particle projector on outcomes (α, β) of the
complete set of observables is Π

(N)
αβ = |αβ〉N 〈αβ|, while the projector on outcomes α of the

partial set of observables is
Π(N)
α =

∑
β

Π
(N)
αβ . (3.13)

Within the sLOCC framework, I can quantify to which extent particles in the state |Ψ(N)〉 can
be distinguished by knowing the results α of the local measurements described by Π

(N)
α of Eq.

(3.13), considering that single-particle spatial wave functions {ψi} can overlap (Fig. 3.1). The
(sLOCC) measurements have to satisfy the following properties: 1) the N single-particle states
{|αiβi〉} are peaked in separated spatial regions {Ri} (Fig. 3.1); 2) 〈Ψ(N)|Π(N)

α |Ψ(N)〉 6= 0, i.e.
the probability of obtaining the projected state must be different from zero.
I indicate with Pαiχj

the single-particle probability that the result αi comes from the state |χj〉.
I then define the joint probability PαP := Pα1χp1

Pα2χp2
· · ·PαNχpN

, where P = {p1, p2, ..., pN}
is one of the N ! permutations of the N single-particle states {|χi〉}. Notice that PαP can be
nonzero for each of the N ! permutations, since in general the outcome αi can come from any of
the single-particle state |χj〉. The quantity Z =

∑
P PαP thus accounts for this no which-way

effect concerning the probabilities. The amount of the no-which way information, emerging
from the outcomes α of the measurement Π

(N)
α , is a measure of the indistinguishability of the

particles in the state |Ψ(N)〉. Using PαP and Z , that enclose the essence of this lack of informa-
tion, the following entropic measure of the indistinguishability degree has been introduced

Iα := −
∑
P

PαP
Z log2

PαP
Z . (3.14)

This quantity depends on measurements performed on the state. If the particles are initially all
spatially separated, each in a different measurement region, only one permutation remains and
Iα = 0: I have complete knowledge on the single-particle state |χj〉 which gives the outcome
αi, meaning that the particles are distinguishable with respect to the measurement Π

(N)
α . On the

other hand, if for each pair pi ∈ P and p′i ∈ P ′ 6= P one has Pαiχpi
= Pαiχp′

i

, indistinguisha-
bility is maximum and reaches the value Iα = log2N !. We now apply the previous theory to a
two-particle system.
Consider the state of two identical qubits |Ψ(2)〉 = |χ1, χ2〉 = |ψ1σ1, ψ2σ2〉, where ψi (i = 1, 2)
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is the spatial degree of freedom (wave function) and σi is the internal degree of freedom (pseu-
dospin, basis {↑, ↓}). In general, |ψ1〉 and |ψ2〉 can spatially overlap. To quantify the degree of
spatial indistinguishability, I perform a measurement of the form of Eq. (3.13), where α are only
the spatial degrees of freedom. I choose two spatial regions L and R satisfying the Properties
1. and 2. presented in Section 3.2. So, spatially localized measurements are performed by the
projector Π

(2)
LR of Eq. (3.8). Calling PXψi

= |〈X|ψi〉|2 (X = L,R and i = 1, 2) the probability of
finding in |X〉 the particle coming from |ψi〉, the measure of the spatial indistinguishability of
the particles is quantified, from Eq.(3.14), as

ILR =− PLψ1PRψ2

Z log2

PLψ1PRψ2

Z
− PLψ2PRψ1

Z log2

PLψ2PRψ1

Z ,

(3.15)

where Z = PLψ1PRψ2 + PLψ2PRψ1 . In general, 0 ≤ ILR ≤ 1. If particles do not spatially
overlap, I have maximal information and ILR = 0. It’s the same if particles spatially overlap
but one of the two spatial regions, for example L, of the chosen framework is out of the overlap
region: in this case, performing a measurement in L only one of the two particles has nonzero
probability to be detected and it is so spatially distinguishable from the other. I attains 1 when
PLψ2 = PLψ1 and PRψ2 = PRψ1: there is no information about the origin of the two particles
found in L andR.

3.6 Discussions

In this Chapter, the generalization to a number N of IP of the well known LOCC-framework
for NIP has been introduced. This substitutes, because of the unaddressability of IP, the con-
cept of particle-locality (as used in LOCC) with the one of space-locality (in the same spirit
of quantum field theory). In fact, within sLOCC single-particle measurements address spatial
regions occupied by IP, contrary to what happens for NIP in which are the particles which are
addressed. This gives the possibility of identifying and quantifying the effect played by IP
spatial overlap in the emergence of the operationally exploitable entanglement in a Bell-like
scenario. Concurrence and entanglement of formation have been defined for an arbitrary pure
or mixed state of two identical qubits, generalizing the methods known for NIP by means of
the sLOCC framework and showing explicitly that entanglement depends on spatial overlap
between single-particle wave functions.

In this Chapter I have introduced the difference between identity and indistinguishability of
IP in quantum mechanics, in contrast to what happens in the standard quantum mechanical ap-
proach where they are considered synonyms. Not having realized this difference is what causes,
in the label-based standard approach, some of the formal mock effects of particle statistics in
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systems of physically distinguishable IP (e.g. when they are independently prepared and space-
like separated). I have defined the continuous degree of spatial indistinguishability of IP by
an entropic measure of information, showing that it is not an intrinsic property of IP systems
(contrary to identity), but a measurement-dependent one. This achievement entails a continuous
quantitative identification of indistinguishability as an informational resource. Hence, one can
evaluate the amount of operational entanglement exploitable by sLOCC under general condi-
tions of indistinguishability and state mixedness.
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Part II

Consequences of indistinguishability:
concepts and applications

57





Chapter 4
Quantum teleportation activated by
experimentally tailored indistinguishability

4.1 Introduction

In this Chapter, I will present a conceptual setup to control the degree of spatial indistinguisha-
bility (Chapter 3) of two identical particles (IP) in the framework of spatially localized opera-
tions and classical communication (sLOCC). Then I will show the experiment implemented in
order to achieve the following goals: (i) tune the indistinguishability of two initially uncorre-
lated photons by the tailoring their spatial overlap, (ii) activation of a nonlocal entanglement, in
two well separated regions of space, only by spatial indistinguishability and (iii) implementa-
tion of the teleportation of the state of a third photon, distinguishable from the others, exploiting
the entanglement due to indistinguishability.

4.2 Theory

4.2.1 Preparation of the system

Consider a system of two identical qubits with opposite pseudospins in the state

|Ψ〉 = |ψ ↑, ψ′ ↓〉 . (4.1)

In order to verify the presence of indistinguishability-enabled correlations within a Bell-like
scenario of separate locations, consider the specific case in which the wave function of each
particle is a superposition of two specific bound states, |L〉 and |R〉, peaked in correspondence
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L R

Figure 4.1: System of two completely overlapping identical particles, one with wave function
ψ and pseudospin ↑, the other with wave function ψ′ and pseudospin ↓ [34].

of two separated spatial regions L andR (Fig.4.1), respectively, that is

|ψ〉 = l |L〉+ r |R〉 ,
|ψ′〉 = l′ |L〉+ r′ |R〉 ,

(4.2)

with |l|2 + |r|2 = |l′|2 + |r′|2 = 1. Using Eq.(4.2), the global state |Ψ〉 of Eq. (4.1) can be
expanded as

|Ψ〉 = ll′ |L ↑,L ↓〉+ rr′ |R ↑,R ↓〉+
√
PLR |ΨLR〉 , (4.3)

where |ΨLR〉 is the distributed resource state of Eq.(3.4), whose explicit expression is

|ΨLR〉 =
lr′ |L ↑,R ↓〉+ ηrl′ |L ↓,R ↑〉√

|lr′|2 + |rl′|2
, (4.4)

in which η is 1 for bosons and -1 for fermions. As I have shown in Section 3.3, the spatial
overlap of the two particles, depending on the probabilities with which they occupy the same
spatial regions, directly influences their entanglement [34]. Operating in the sLOCC framework,
by choosing the two spatial regions L andR to perform single-particle local measurements, the
state |ΨLR〉 can be obtained from |Ψ〉 with a probability PLR = |lr′|2 + |l′r|2. In order to
exploit the effects of particle indistinguishability in the chosen framework, each region has to
be occupied by at least one particle (second property of the sLOCC framework, presented in
Section 3.2), so the cases l = l′ = 1 (|Ψ〉 = |L ↑,L ↓〉) and l = l′ = 0 (|Ψ〉 = |R ↑,R ↓〉) are
excluded. I here recall the indistinguishability degree introduced in Eq. (3.15) of Section (3.5)

I = −
2∑
i

p
(i)
LR log2 p

(i)
LR, (4.5)
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Figure 4.2: The simplest setup thought to produce entanglement by sLOCC due to spatial in-
distinguishability.

where p(1)
LR = |lr′|2/(|lr′|2 + |l′r|2) and p(2)

LR = 1 − p(1)
LR. This measure differs from zero only

when the two wave functions spatially overlap in both measurement regions (0 < |l|, |l′| < 1),
reaching the maximum (I = 1) for complete overlap (|l|2 = |l′|2, which implies |r|2 = |r′|2).

To implement this theoretical scenario, we have proposed a neat conceptual scheme with
polarized photons illustrated in Figure 4.2. Two initially-uncorrelated photons are created, one
with polarization ↑ and one with ↓. Each photon is then spread in a controllable manner by
a beam-splitter (BS) towards two separated locations L and R, where single-photon measure-
ments are simultaneously performed by sLOCC. This scheme can be seen as a modified version
of the Hanbury Brown and Twiss (HBT) experiment [40, 85]: the relevant difference consists
in initially polarizing the photons and in controlling their spatial wave functions. It allows us to
establish the direct connection between the amount of entanglement and the degree of photon
spatial indistinguishability.

In the next section, I will show that the indistinguishability-enabled entanglement present
in the distributed resource state |ΨLR〉 has a physical operational role, since it can be used to
implement quantum teleportation.

4.2.2 Teleportation by means of indistinguishability-enabled entanglement

In order to implement a quantum teleportation protocol [20, 86], it is useful to exploit the maxi-
mal operational entanglement achievable from the state of Eq.(4.3) with the highest probability.
For instance, by choosing |ψ〉 = |ψ′〉 = (|L〉+ |R〉)/

√
2, the distributed resource state, available

with probability Pmax
LR = 1/2, is the maximally entangled Bell state

|Ψmax
LR 〉 = (|L ↑,R ↓〉+ η |L ↓,R ↑〉)/

√
2. (4.6)

In the same laboratory where the site L is, a third particle is prepared with an arbitrary
pseudospin. This third particle is distinguishable from the others for being either of a different
species, independently from its spatial overlap with them, or identical but spatially separated
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from the other particles and its state can be written as |ϕ〉d = a |L′ ↑〉d + b |L′ ↓〉d, where |L′〉
is localized in a site accessible together with L yet separated from the latter and the subscript
"d" stands for "distinguishable". After having obtained the state |Ψmax

LR 〉 of Eq. (4.6), the global
state of the three particles can be written as

1

2

[
|1(η)

L′L〉 1R + |1(−η)
L′L 〉σR

z + |2(η)
L′L〉σR

x + |2(−η)
L′L 〉 (−i)σR

y

]
|ϕR〉 , (4.7)

where

|1(η)
L′L〉 = (|L′ ↑〉d |L ↓〉+ η |L′ ↓〉d |L ↑〉)/

√
2,

|2(η)
L′L〉 = (|L′ ↑〉d |L ↑〉+ η |L′ ↓〉d |L ↓〉)/

√
2,

(4.8)

are the Bell states between the particle "d" and one of the two IP (1 and 2 in the kets indicate
the number of excited spins in the Bell states), 1R is the identity operator inR, σR

i (i = x, y, z)
are the Pauli matrices and |ϕ〉R = a |R ↑〉+ b |R ↓〉 is the target state teleported in the regionR.
Eq.(4.7) has the structure of the standard teleportation protocol [20]. The implementation of the
latter, starting from the initial state |Ψ〉 and exploiting the resource state |Ψmax

LR 〉, succeeds with
probability Pmax

LR and follows the standard recipe [20]: (i) Luna in the laboratory containing L′
and L performs the Bell measurements and (ii) communicates the outcomes to Rudy placed in
R who (iii) performs a given operation. If Luna counts either zero or two particles in L, she
tells Rudy to reject the procedure; in the other cases, Luna communicates the outcome (|Ψ(η)

L′L〉,
|Φ(η)

L′L〉, |Φ
(−η)
L′L 〉, |Ψ

(−η)
L′L 〉) to Rudy who makes a corresponding operation (1R, σR

x , σR
y , σR

z ) to
transform the state of its particle into the desired one. This teleportation protocol, although
conditional, is purely quantum since it beats the classical teleportation fidelity threshold 2/3

[64]. The teleportation mechanism here described basically differs from previous ones using

identical particles, based on entangled particle number states [30, 87].

4.3 Experiment

4.3.1 Preparation of the system: experimental setup

An experiment proving that two initially independent photons become entangled only to their
spatial indistinguishability has been implemented in an all-optical setup (Fig.4.3(a)) at the CAS
Key Laboratory of Quantum Information of Hefei (China) by the group of Guang-Can Guo,
reproducing the theoretical scheme presented in Fig.4.2 and quantitatively showing the depen-
dence of entanglement on the spatial indistinguishability degree of Eq. (4.5).

The first purpose is the preparation of the state |Ψprep〉 = |ψH,ψ′V 〉, where H (↑) and V (↓)
denote, respectively, the horizontal and vertical polarization of photons. I now present the setup.
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Figure 4.3: Experimental setup. (a.) State preparation. Two initially-uncorrelated photons
from a BBO crystal with polarization H (↑) and V (↓), respectively, are collected separately
by two single-mode fibers via fiber couplers (FCs). A BS for each photon is realized by the
sequence of a half-wave plate (HWP1, HWP2), a polarization beam splitter (PBS) and a final
HWP at 45◦ placed before L, which leaves the initial polarization of each photon unchanged.
The spatial degrees of freedom ψ and ψ′ in which the photons share the same wavelength are
marked as the blue and red colors, respectively, to differentiate. In each region L and R, one
beam displacer (BD) is used to combine two paths of photons. The inset displays the unit of
polarization analysis detection (PAD) at the final detection placed in L and R, consisting of
a quarter-wave plate (QWP), a HWP and a PBS before the single photon detector (SPD). (b.)
Experimental illustration of quantum teleportation. The photons in L are sent to perform
the Bell state measurement (BSM) and meanwhile the PAD here which is marked by the dashed
frame is removed. One of the photon pair generated by pumping another BBO is prepared as
the state to be teleported, while the other photon detected directly is treated as the trigger signal.
BSM is implemented with a PBS followed by two HWPs at 22.5◦ and PBSs. The signals from
two SPDs are processed by a CD to coincide with the signals fromR and trigger.

Pumping by pulsed ultraviolet light at 400 nm a BBO (beta-barium borate) crystal, two pho-
tons are emitted (with wavelength 800 nm) via type II spontaneous parametric down conversion
(SPDC) with initial polarization H and V , respectively, and then collected into single-mode
fibers.

At first, their identity has been characterized by performing the two-photon interference and
using the visibility of the Hong Ou-Mandel (HOM) dip (the set up for the HOM experiment and
the dip are shown in Fig. 4.4(a) and (b), respectively). Here one obtained a visibility ν = 97.7%,
clearly revealing the indistinguishability of the employed operational photons.

Moreover it has been verified with a very high fidelity of (99.9 ± 0.1)% that photons are
initially completely uncorrelated in the product state |H〉 ⊗ |V 〉 (Fig. 4.4(c)).
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The state |Ψprep〉 is prepared by adjusting the spatial degrees of freedom |ψ〉 and |ψ′〉 by
a sequence of a half-wave plate (HWP), a polarizing beam-splitter (PBS) and a final HWP at
45◦ before the location L. Notice that the setup is devised in such a way that all the optical
elements independently act on a single photon (Fig 4.3(a)). The operation of HWP on photon
polarization with an angle θ compared with the optical axis could be written as

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

By setting HWP1 at (π/2 − α)/2, the photon in |ψ〉 with polarization |H〉 (↑) changes to
sinα |H〉 + cosα |V 〉. As the PBS transmits |H〉 polarization and reflects |V 〉 polarization,
I have |V 〉 before L which should be |H〉. Thus, here, a HWP at 45◦ is used to flip |V 〉 to
|H〉. Now, |ψ,H〉 is prepared to be |ψ,H〉 = cosα |LH〉 + sinα |RH〉. Following the same
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Figure 4.4: (a) Experimental illustration of HOM measurement. The first polarization beam
splitter (PBS) combines two photons which are in the polarizationH (↑) and V (↓), respectively.
One photon is placed on a movable stage to scan the position. The photons are detected by two
single photon detectors (SPD) after a half-wave plate (HWP) at 22.5◦ and a second PBS. The
coincidence device analyzes the signals from two SPDs and outputs the coincidence counting.
(b) The HOM dip of the two-photon interference. The counts are obtained in 5 seconds
with the pumping power 30 mW. The blue dots are the experimental results. The red curve
represents the fitting Gaussian function Gx = a(1 − d e−b(x−c)2

) (parameters a, b, c and d are
determined from the fit) and the visibility of HOM dip is defined as ν = (Gmax−Gmin)/Gmax.
(c) Experimental tomography of the initial state |H〉 ⊗ |V 〉 of the two photons from BBO
crystal with a high fidelity (99.9± 0.1)%. Two subgraphs show the real and imaginary parts of
the density matrix, respectively.
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Figure 4.5: (a) and (b): No overlap cases. Two subgraphs in (a) correspond to the real and
imaginary part of |ΨLR〉 with α = β = π/2, respectively. And the fidelity is (99.8 ± 0.1)%.
The results of α = β = 0 are presented in (b) and a fidelity (99.4± 0.1)% is obtained.

method with HWP2 at −β/2, I prepare the other photon in |ψ′〉 with |V 〉 (↓) to be |ψ′, V 〉 =

sin β |LV 〉 + cos β |RV 〉. In other words, by rotating HWP1 and HWP2, characterized by
the angles (π/2 − α)/2 and −β/2, respectively, one can conveniently control the weights of
each spatial wave function on the two final measurement locations, while the PBSs separate
the different polarizations of the photons. The final HWPs at 45◦ have the role of maintaining
the initial polarization of each photon unvaried before detection. By suitably setting α and β, I
can prepare a series of |Ψprep〉 for different configurations of the wave functions and thus of the
degree of spatial indistinguishability I.
The unit of polarization analysis detection (PAD), consisting of a quarter-wave plate (QWP),
a HWP and a PBS, is placed on both sides of L and R to implement the spatially localized
operations and measurements (see inset of Fig. 4.3(a)). Classical communication is realized
with the help of a coincidence device which deals with the electrical signals of single-photon
detectors (SPDs) and outputs the coincidence counting on the two locations L and R. An
interference filter whose full width at half maximum is 3 nm is placed before each SPD. The
sLOCC framework is so achieved at the measurement stage.
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4.3.2 Entanglement from experimentally tunable indistinguishability

The experimental setup of Fig.4.3(a), after the sLOCC measurements are performed (which
formally means projecting onto the two-particle operational subspace spanned by the basis
BLR = {|Lσ,Rτ〉 , σ, τ = H,V }) [34], produces the two-photon state

|ΨLR〉 =
cosα cos β |LH, RV 〉+ sinα sin β |LV, RH〉√

cos2 α cos2 β + sin2 β sin2 α
, (4.9)

obtained with probability PLR = cos2 α cos2 β + sin2 β sin2 α. This distributed resource state,
conditionally obtained, is in general an entangled state contained in the prepared state |Ψprep〉
(see Eq.(4.3)). Looking at the experimental scheme, its origin can be exclusively attributed to
the spatial indistinguishability of the photons. We are now able to experimentally verify the
amount of entanglement for different spatial configurations of the two wave functions |ψ〉 and
|ψ′〉 on the two measurement regions L andR.

As a first point, no entanglement is found when the two wave functions do not spatially
overlap. In fact, in this case I = 0 since the two photons can be distinguished by their spatial
locations. This situation is retrieved when α = β = 0 (π/2) (Fig.4.5(a) and (b)), which gives
|ψ〉 = |L〉 (|R〉) and |ψ′〉 = |R〉 (|L〉). The final state of the experiment reduces to the product
state |ΨLR〉 = |LH, RV 〉 (|LV, RH〉).

Entanglement is then produced both for partial and complete overlap of the wave functions.
Under partial overlap, ψ and ψ′ do not exhibit the same probabilities to find the particle in
regions L and R. The degree of indistinguishability is 0 < I < 1, which in turn provides
a given amount of entanglement lower than 1. From Eq. (4.9), one then observes that the
maximally entangled (Bell) states |Ψ±LR〉 = (|LH, RV 〉 ± |LV, RH〉)/

√
2 are obtained for

α ± β = π/2 (with α 6= 0, π/2), which corresponds to complete overlap of the two wave
functions and thus to I = 1.

To experimentally prove the different amounts of entanglement for various spatial configu-
rations of the wave functions, one conveniently fix α = π/4, for which |ψ〉 = (|L〉 + |R〉)/

√
2

and
|ΨLR〉 = cos β |LH, RV 〉+ sin β |LV, RH〉 . (4.10)

The concurrence [83] of this state, here used to quantify the shared entanglement between pho-
ton polarizations in L and R, is given by C(ΨLR) = sin 2β. The degree of spatial indistin-
guishability of Eq. (4.5) becomes I = − cos2 β log2(cos2 β) − sin2 β log2(sin2 β) which
happens to coincide with the entanglement of formation Ef (ΨLR) of the state |ΨLR〉 [34].
Therefore, a monotonic relation C(ΨLR) = f(I) exists between the concurrence and the in-

distinguishability of the photons. Furthermore, the experimental test of Bell inequalities on the
various distributed resource states |ΨLR〉 under sLOCC is performed to obtain a direct verifica-
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Figure 4.6: Entanglement versus indistinguishability. a, b. Concurrence C(ΨLR) of the
distributed resource state |ΨLR〉 for α = π/4 as a function of β and spatial indistinguishability
I, respectively. The blue line is the theoretical prediction. The pink dots with the error bars
in a are the experimental results. The red and green dots in b denote the experimental results
for β ∈ [0, π/2] and β ∈ (π/2, π], respectively. c, d. Behaviour of the Bell function S in the
CHSH test for α = π/4 versus β and I. The black curve and red points with error bars in c
represent the quantum prediction and experimental results, respectively. The blue line in d is the
theoretical prediction while the pink and green dots are the experimental results for β ∈ [0, π/2]
and β ∈ (π/2, π], respectively. All error bars here are estimated as the standard deviation from
the statistical variation of the photon counts, which is assumed to follow a Poisson distribution.

tion of the (nonlocal) entanglement between the photon polarizations [88]. Here, the Bell func-
tion S is employed to perform a Clauser-Horne-Shimony-Holt (CHSH) test [89]. For the pure
two-qubit state of Eq. (4.10) theoretically predicted, I get S = 2

√
1 + C2 = 2

√
1 + sin2 2β

[17, 90]. Bell inequality is violated when S > 2, witnessing the presence of quantum correla-
tions which are not reproducible by any classical local model.

The experimental results of C(ΨLR) as a function of both β and I are shown in Fig. 4.6
(a)-(b) respectively, obtained after state reconstruction. While the experimental results of Bell
function S versus β and I are displayed in Fig. 4.6(c)-(d), respectively. The results for S of
most of the generated states are above the classical threshold 2, while some others do not pass
the CHSH test because of the imperfect behaviour of experimental elements. Results clearly
demonstrate that most of generated states are Bell nonlocal (entangled) states. For β = π/4,
|ΨLR〉 in Eq. 4.10 is expected to be maximally entangled. In the experiment, in correspon-
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Figure 4.7: Maximally entangled state generation. Experimental results of the generated
maximally entangled states in correspondence to complete spatial overlap of the wave functions
(I = 1). Panel a shows the real part and imaginary part of the reconstructed density matrix for
α = π/4 and β = 0.776± 0.006, for which the expected state is |Ψ+

LR〉. Panel b shows the real
part and imaginary part of the reconstructed density matrix for α = π/4 and β = 2.352±0.004,
the expected state being |Ψ−LR〉.

dence of β = 0.776 ± 0.006 I achieve S = 2.79 ± 0.03, which violates the Bell inequality by
26 standard deviations. The generated state holds a fidelity of (98.6 ± 0.2)% compared to the
expected maximally entangled state |Ψ+

LR〉, whose reconstructed density matrix is presented in
Fig. 4.7(a). Moreover, when β = 3π/4, that is when |ψ′〉 = (|L〉 − |R〉)/

√
2 and |ψ〉 are or-

thogonal yet completely overlapping, the maximally entangled state |Ψ−LR〉 should be retrieved.
In the experiment, such a state is generated with fidelity (98.0 ± 0.8)% in correspondence to
β = 2.352±0.004, as shown in Fig. 4.7(b). All the results provide strong experimental evidence
that entanglement is effectively generated by spatial indistinguishability of photons.

4.3.3 Results of the teleportation

We have verified the generation of polarization entangled states exploiting only different degrees
of spatial indistinguishability of two independently prepared initially uncorrelated photons. I
now show that the maximal amount of the indistinguishability-enabled entanglement is high
enough to implement the quantum teleportation process shown in Section 4.2.2. The detailed
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state |H〉 |V 〉 |+〉 |−〉 |φ−〉 |φ+〉
Fexp(%) 90.0 ± 2.0 84.7 ± 1.9 83.1 ± 2.0 82.2 ± 1.9 84.3 ± 1.7 86.3 ± 2.2

Table 4.1: Fidelities of the six states ρexp with respect to the initially prepared state in the
quantum teleportation process.

setup is presented in Fig. 4.3(b). A heralded single photon is generated by pumping a sec-
ond BBO crystal. One photon is used as the trigger signal while the other photon is sent to
the side of L′ as the target to be teleported. The combination of a HWP and a QWP is used
to prepare the photon into an arbitrary state |φ〉 = a |H〉 + b |V 〉 with |a|2 + |b|2 = 1. To
teleport the information of |φ〉 to the photon located in R, a Bell-state measurement (BSM) is
performed between L and L′. Here, the Bell state |ΦLL′〉 = (|LH, L′H〉 + |LV, L′V 〉)/

√
2

is performed by exploiting a PBS and setting the two HWPs at 22.5◦ [91, 92]. Correspond-
ingly, the single-particle operation in R rotating the state of its photon to the desired one is
σx = |H〉 〈V | + |V 〉 〈H| which is implemented with a HWP at 45◦. Performing the quantum
tomography of single-qubit state in R, one can obtain the teleportation information. Quantum
teleportation is here realized exploiting the distributed maximally entangled state |Ψ+

LR〉 above,
generated by complete spatial indistinguishability (I = 1) of the original two photons. The
value α = β = π/4 is chosen which implies that |Ψ+

LR〉 is obtained with maximum probability
(Psucc = 50%). The results of the tomography give a visibility of 87, 9%. The eigenvectors of
σi (i = x, y, z) are prepared as the additional photon states |φ〉 in L′ to be teleported. This
implies |φideal〉 ∈ {|H〉, |V 〉, |+〉 = (|H〉 + |V 〉)/

√
2, |−〉 = (|H〉 − |V 〉)/

√
2, |φ−〉 =

(|H〉 − i|V 〉)/
√

2}, |φ+〉 = (|H〉 + i|V 〉)/
√

2}. First, one perform the tomography of the ef-
fectively prepared ρprep = |φprep〉〈φ∗prep| in L′. Comparing it with |φideal〉, the fidelity of ρprep

is F = 〈φideal|ρprep|φideal〉. In this experiment, the average fidelity of prepared ρprep is about
99.8%. With tomographic measurements performed in R, the experimental states of quantum
teleportation ρexp have been reconstructed.

The state fidelity Fexp with respect to the initially prepared state ρprep is then introduced as
a figure of merit for the teleported state ρexp. For the six initial states listed above, without the
background subtraction, the corresponding fidelities are measured and shown in Table 4.1 which
are clearly higher than the classical fidelity limit of 2/3 [93]. Furthermore, the quantum process
matrix χ of quantum teleportation [94] is reconstructed by means of a tomographic analysis
by comparing ρprep and ρexp. The matrix χ is defined with ρexp = Σ4

i, j=1 χij σi · ρprep · σj
where σ1 = I and σ2, 3, 4 = σx, y, z, which in the ideal case gives χ11 = 1 with all the other
elements equal to 0 [95]. By assuming χ with several unknown parameters and employing
the experimental results of ρprep and ρexp, I can calculate the elements of χ. The experimental
results are shown in Fig.4.8 with a fidelity Fχ = (79.4± 1.6)%. All error bars in this work are
estimated as the standard deviation from the statistical variation of the photon counts, which is
assumed to follow a Poisson distribution.
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Figure 4.8: The quantum process matrix of quantum teleportation. Experimental reconstruction
of quantum process matrix χ for the teleportation protocol. a, b show the real and imaginary
parts of χ, respectively. Here, I is identity matrix σ1 and X, Y, Z correspond to σx, σy, σz,
respectively.

4.4 Discussions

In this Chapter, I have presented an experiment realized in an all-optical setup, in which the
spatial indistinguishability of two initially uncorrelated photons has been directly tailored by
controlling their spatial degrees of freedom, in such a way that they are led to partially or to-
tally overlap in two separated regions. The fact that photons were initially not entangled has
been verified with a very high fidelity (99.9 ± 0.1)%. In order to study the effect of indistin-
guishability on the emergence of entanglement between photons, single-particle measurements
have been performed for different values of spatial overlap within sLOCC. The result is that
the amount of entanglement increases with the degree of photon spatial indistinguishabiliy. The
Clauser-Horne-Shimony-Holt (CHSH) test has been also performed, showing that the generated
entanglement is nonlocal. Moreover, it is useful to remark that the realization of the sLOCC
framework excludes any possible measurement-induced entanglement on the initial state, as
may instead happen in optical interferometry with spread detection.

Notice that if the setup was run by two initially uncorrelated nonidentical particles, no en-
tanglement would be generated.

The results of the experiment have shown that spatial indistinguishability is a fundamental
catalyst of nonlocal entanglement and this is high enough to enable conditional teleportation
with fidelities above the classical threshold (82-90%).
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Chapter 5
Transfer of entanglement in a quantum
network by means of indistinguishability

5.1 Introduction

Usual state transfer procedures [96] uses identical particles (IP) and exploit their entanglement.
However, no effect associated to the statistical nature of particles typically shows up, since in
these processes they are always distinguishable. One may wonder if, in general, employing
IP may lead to new features in the context of quantum communication, when their indistin-
guishability can be exploited as a direct resource. Indistinguishability has been already shown
to be useful for some quantum information protocols [97, 98, 99, 100, 101, 58, 35, 36, 39, 34]
and for quantum metrology [2, 75, 61]. In this context, one of the problems which remains
to investigate is the role played by the quantum statistical nature of IP into the mechanisms of
entanglement transfer within large-scale networks.

In this Chapter, I will present a new process of entanglement transfer for fermions in a many-
node quantum network, exploiting their indistinguishability by means of sLOCC. Although the
idea of using IP indistinguishability to generate entanglement is not a new one, the present pro-
cess shows that remote entanglement among two distant sites can be generated by only locally
counting particles in the sites and classical communication. These characteristics constitute
the key achievement of this project. I will compare this process to that with indistinguishable
bosons in the same network and to that with IP (both bosons and fermions) in a network with the
number of nodes equal to the number of particles, whose essential ingredients recall, although
partially, the standard process of entanglement swapping.
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5.2 Entanglement swapping in a nutshell

I concentrate the attention on the entanglement swapping (ES), which is a key process in the
context of large-scale distribution of quantum information [102, 103, 104, 105], to build quan-
tum relays and quantum repeaters [106, 96] and is subject of intense experimental interest
[107, 108, 109, 110, 111, 112]. ES is an intrinsically quantum phenomenon which permits
to entangle two particles not sharing a common past, each particle being outside the light cone
of the other. So far, in all the implementations, essential ingredients are

1. preparation of entangled pairs,

2. Bell measurements [113].

In particular, in the standard ES process [114], two pairs of entangled particles are initially
prepared (particles in each pair are not independently prepared) and a Bell measurement is suc-
cessively performed on two particles of the different pairs. As a result, the other two particles
become entangled even if they never interacted [115, 116]. ES has been experimentally real-
ized using identical but distinguishable particles (photons) by applying the usual operational
framework for NIP, based on particle addressability (local operations and classical communica-
tion (LOCC)) [64]. The initial entangled pairs of photons are typically created by spontaneous
parametric down conversion (SPDC) [107, 108, 111, 109, 110]. To exclude the possibility of
initial classical correlations, some experiments have adopted two synchronized independent
SPDC sources [109, 110]. Recently, ES has been successfully achieved in a quantum net-
work, entangling two photons over a distance of 100 km [112]. and, moreover, multiple ES has
been theoretically proposed and experimentally realized by extension of the standard protocol
[117, 118, 119, 120]. However, the overall success of the process is influenced by the low cre-
ation rate of photon pairs in SPDC [121, 122, 123] and by the inefficiency in the realization of
Bell measurements [113, 109, 124, 125, 126, 127, 128, 129].

5.3 Network with coincident intermediate nodes

5.3.1 Fermions

Experimental techniques to control fermions in quantum networks have been recently developed
[130, 131, 132, 133, 134, 135, 136]. In the following I focus on unveiling remarkable aspects
introduced by both fermionic statistics and spatial overlap in the process of remote entanglement
distribution.

To this aim, I first describe the basic process which serves as the elementary step for the
extension to a many-node quantum network. As displayed in Fig. 5.1, I take four identical
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S1 S2 S3 S4

BS1 BS2 BS3 BS4

Figure 5.1: Basic network. Scheme for the entanglement transfer by four independently-
prepared indistinguishable fermions, with a shared intermediate node M. The delocalized spa-
tial modes α and β partially overlap in correspondence of the intermediate node M. Post-
selection by sLOCC leaves two fermions with opposite pseudospins in the central node M and
two entangled fermions in the extreme nodes, A and B.

fermions (two pairs), prepared by four independent (space-like separated) sources {Si, i =

1, ..., 4}. Each particle is sent to the corresponding beam splitter BSi. The two sources S1 and
S2 independently prepare two fermions with opposite pseudospin. Each beam splitter sends the
particle with the same amplitude into two separated spatial nodes (sites) A and M, so that each
particle is in the same delocalized spatial mode |α〉 = (|A〉 + |M〉)/

√
2. Similarly, sources S3

and S4 generate the fermions of the second pair with opposite pseudospin in the delocalized
spatial mode |β〉 = (|M〉 + |B〉)/

√
2 (right side of Fig. 5.1). The modes |α〉 and |β〉 partially

overlap in the shared intermediate node M and the I-th node (I = A, M, B) is chosen such that
only the localized bound state |I〉 is present. The condition that particles are in the chosen local-
ized bound states can be assured by keeping only the cases when local detectors do not measure
particles elsewhere and by classically communicating the results. The initially prepared four-
fermion state |Ψ(4)

f 〉 (Appendix B.1) can be then formally obtained from |α ↓, α ↑, β ↓, β ↑〉 by
dropping, because of the Pauli exclusion principle, the terms with the same pseudospins in the
central node (same spatial state |M〉)[137]. The ultimate scope is to generate entanglement be-
tween particles in the far nodes A and B. This can be achieved by using sLOCC [34], which
here consist in a post-selection locally counting only one particle of the first pair in A and
one particle of the second pair in B and using classical communication among these sites (this
counting implies that in the central node M there are two particles). The classical communi-
cation allows sites A and B to know when an entangled pair is obtained. Notice that the local
counting operation is a free operation with respect to entanglement [138]. Such a post-selection
can be implemented utilizing, for instance, absorbtionless particle-counting detectors in A and
B, which do not disturb the pseudospin state [139, 140, 141, 101]. Similar non-demolition
measurements are applied in the other post-selections by sLOCC used in this Chapter.
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<latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit>

|� #i
<latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit>

|� #i
<latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit>

|� "i
<latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit>

B

A M1

<latexit sha1_base64="3FCF2CXL+zd2bw7njue+YmnCpOo=">AAACDXicbVC7TgJBFJ3FF+Jr1crYTCQmVmTXmGhJtLHERB4JEHJ3uMCE2dnNzF0JQeIn+BW2WtkZW7/Bwn9xQQoFT3Vyzn2eIFbSkud9Opml5ZXVtex6bmNza3vH3d2r2CgxAssiUpGpBWBRSY1lkqSwFhuEMFBYDfpXE796h8bKSN/SMMZmCF0tO1IApVLLPbhvgIp7wBvtaKDBmGjQMKC7Cltu3it4U/BF4s9Ins1Qarlf6QyRhKhJKLC27nsxNUdgSAqF41wjsRiD6EMX6ynVEKJtjqYvjPlxYoEiHqPhUvGpiL87RhBaOwyDtDIE6tl5byL+59UT6lw0R1LHCaEWk0UkFU4XWWFkmg3ytjRIBJPLkUvNBRggQiM5CJGKSRpWLs3Dn/9+kVROC75X8G/O8sXLWTJZdsiO2Anz2TkrsmtWYmUm2AN7Ys/sxXl0Xp035/2nNOPMevbZHzgf3+ihnDw=</latexit><latexit sha1_base64="3FCF2CXL+zd2bw7njue+YmnCpOo=">AAACDXicbVC7TgJBFJ3FF+Jr1crYTCQmVmTXmGhJtLHERB4JEHJ3uMCE2dnNzF0JQeIn+BW2WtkZW7/Bwn9xQQoFT3Vyzn2eIFbSkud9Opml5ZXVtex6bmNza3vH3d2r2CgxAssiUpGpBWBRSY1lkqSwFhuEMFBYDfpXE796h8bKSN/SMMZmCF0tO1IApVLLPbhvgIp7wBvtaKDBmGjQMKC7Cltu3it4U/BF4s9Ins1Qarlf6QyRhKhJKLC27nsxNUdgSAqF41wjsRiD6EMX6ynVEKJtjqYvjPlxYoEiHqPhUvGpiL87RhBaOwyDtDIE6tl5byL+59UT6lw0R1LHCaEWk0UkFU4XWWFkmg3ytjRIBJPLkUvNBRggQiM5CJGKSRpWLs3Dn/9+kVROC75X8G/O8sXLWTJZdsiO2Anz2TkrsmtWYmUm2AN7Ys/sxXl0Xp035/2nNOPMevbZHzgf3+ihnDw=</latexit><latexit sha1_base64="3FCF2CXL+zd2bw7njue+YmnCpOo=">AAACDXicbVC7TgJBFJ3FF+Jr1crYTCQmVmTXmGhJtLHERB4JEHJ3uMCE2dnNzF0JQeIn+BW2WtkZW7/Bwn9xQQoFT3Vyzn2eIFbSkud9Opml5ZXVtex6bmNza3vH3d2r2CgxAssiUpGpBWBRSY1lkqSwFhuEMFBYDfpXE796h8bKSN/SMMZmCF0tO1IApVLLPbhvgIp7wBvtaKDBmGjQMKC7Cltu3it4U/BF4s9Ins1Qarlf6QyRhKhJKLC27nsxNUdgSAqF41wjsRiD6EMX6ynVEKJtjqYvjPlxYoEiHqPhUvGpiL87RhBaOwyDtDIE6tl5byL+59UT6lw0R1LHCaEWk0UkFU4XWWFkmg3ytjRIBJPLkUvNBRggQiM5CJGKSRpWLs3Dn/9+kVROC75X8G/O8sXLWTJZdsiO2Anz2TkrsmtWYmUm2AN7Ys/sxXl0Xp035/2nNOPMevbZHzgf3+ihnDw=</latexit><latexit sha1_base64="3FCF2CXL+zd2bw7njue+YmnCpOo=">AAACDXicbVC7TgJBFJ3FF+Jr1crYTCQmVmTXmGhJtLHERB4JEHJ3uMCE2dnNzF0JQeIn+BW2WtkZW7/Bwn9xQQoFT3Vyzn2eIFbSkud9Opml5ZXVtex6bmNza3vH3d2r2CgxAssiUpGpBWBRSY1lkqSwFhuEMFBYDfpXE796h8bKSN/SMMZmCF0tO1IApVLLPbhvgIp7wBvtaKDBmGjQMKC7Cltu3it4U/BF4s9Ins1Qarlf6QyRhKhJKLC27nsxNUdgSAqF41wjsRiD6EMX6ynVEKJtjqYvjPlxYoEiHqPhUvGpiL87RhBaOwyDtDIE6tl5byL+59UT6lw0R1LHCaEWk0UkFU4XWWFkmg3ytjRIBJPLkUvNBRggQiM5CJGKSRpWLs3Dn/9+kVROC75X8G/O8sXLWTJZdsiO2Anz2TkrsmtWYmUm2AN7Ys/sxXl0Xp035/2nNOPMevbZHzgf3+ihnDw=</latexit>

|↵1 #i |↵1 "i
<latexit sha1_base64="Twxioz227UDAL7TCwIBLcJuCXQY=">AAACC3icbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3xkRLo40lJqIkHCFzywAb9vY2u3Mag/wEf4WtVnbG1h9h4X/xOCkUfNXLezOZeS8ySjry/U+vMDe/sLhUXC6trK6tb5Q3t65dklqBdZGoxDYicKikxjpJUtgwFiGOFN5Eg/Oxf3OL1slEX9G9wVYMPS27UgBlUru88xCCMn3gYWrA2uQutKB7Ctvlil/1c/BZEkxIhU1Qa5e/wk4i0hg1CQXONQPfUGsIlqRQOCqFqUMDYgA9bGZUQ4yuNcwDjPh+6oASbtByqXgu4u+NIcTO3cdRNhkD9d20Nxb/85opdU9aQ6lNSqjF+BBJhfkhJ6zMmkHekRaJYPw5cqm5AAtEaCUHITIxzaoqZX0E0+lnyfVhNfCrweVR5fRs0kyR7bI9dsACdsxO2QWrsToTbMSe2DN78R69V+/Ne/8ZLXiTnW32B97HN0Kbm1U=</latexit><latexit sha1_base64="Twxioz227UDAL7TCwIBLcJuCXQY=">AAACC3icbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3xkRLo40lJqIkHCFzywAb9vY2u3Mag/wEf4WtVnbG1h9h4X/xOCkUfNXLezOZeS8ySjry/U+vMDe/sLhUXC6trK6tb5Q3t65dklqBdZGoxDYicKikxjpJUtgwFiGOFN5Eg/Oxf3OL1slEX9G9wVYMPS27UgBlUru88xCCMn3gYWrA2uQutKB7Ctvlil/1c/BZEkxIhU1Qa5e/wk4i0hg1CQXONQPfUGsIlqRQOCqFqUMDYgA9bGZUQ4yuNcwDjPh+6oASbtByqXgu4u+NIcTO3cdRNhkD9d20Nxb/85opdU9aQ6lNSqjF+BBJhfkhJ6zMmkHekRaJYPw5cqm5AAtEaCUHITIxzaoqZX0E0+lnyfVhNfCrweVR5fRs0kyR7bI9dsACdsxO2QWrsToTbMSe2DN78R69V+/Ne/8ZLXiTnW32B97HN0Kbm1U=</latexit><latexit sha1_base64="Twxioz227UDAL7TCwIBLcJuCXQY=">AAACC3icbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3xkRLo40lJqIkHCFzywAb9vY2u3Mag/wEf4WtVnbG1h9h4X/xOCkUfNXLezOZeS8ySjry/U+vMDe/sLhUXC6trK6tb5Q3t65dklqBdZGoxDYicKikxjpJUtgwFiGOFN5Eg/Oxf3OL1slEX9G9wVYMPS27UgBlUru88xCCMn3gYWrA2uQutKB7Ctvlil/1c/BZEkxIhU1Qa5e/wk4i0hg1CQXONQPfUGsIlqRQOCqFqUMDYgA9bGZUQ4yuNcwDjPh+6oASbtByqXgu4u+NIcTO3cdRNhkD9d20Nxb/85opdU9aQ6lNSqjF+BBJhfkhJ6zMmkHekRaJYPw5cqm5AAtEaCUHITIxzaoqZX0E0+lnyfVhNfCrweVR5fRs0kyR7bI9dsACdsxO2QWrsToTbMSe2DN78R69V+/Ne/8ZLXiTnW32B97HN0Kbm1U=</latexit><latexit sha1_base64="Twxioz227UDAL7TCwIBLcJuCXQY=">AAACC3icbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3xkRLo40lJqIkHCFzywAb9vY2u3Mag/wEf4WtVnbG1h9h4X/xOCkUfNXLezOZeS8ySjry/U+vMDe/sLhUXC6trK6tb5Q3t65dklqBdZGoxDYicKikxjpJUtgwFiGOFN5Eg/Oxf3OL1slEX9G9wVYMPS27UgBlUru88xCCMn3gYWrA2uQutKB7Ctvlil/1c/BZEkxIhU1Qa5e/wk4i0hg1CQXONQPfUGsIlqRQOCqFqUMDYgA9bGZUQ4yuNcwDjPh+6oASbtByqXgu4u+NIcTO3cdRNhkD9d20Nxb/85opdU9aQ6lNSqjF+BBJhfkhJ6zMmkHekRaJYPw5cqm5AAtEaCUHITIxzaoqZX0E0+lnyfVhNfCrweVR5fRs0kyR7bI9dsACdsxO2QWrsToTbMSe2DN78R69V+/Ne/8ZLXiTnW32B97HN0Kbm1U=</latexit>

<latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="0tsykUkgVwQ1pgw/n3wLTVo7Pjs=">AAACCnicbVC7TsNAEDyHVwivABINzYkIiSqyERKUETSUQSIPKY6i9WUTTjmfrbs1KEryB3wFLVR0iJafoOBfcEwKSJhqNLOrnZ0gVtKS6346uaXlldW1/HphY3Nre6e4u1e3UWIE1kSkItMMwKKSGmskSWEzNghhoLARDK6mfuMejZWRvqVhjO0Q+lr2pABKpU7xYOwHSMD9JAZjogffgO4r7BRLbtnNwBeJNyMlNkO1U/zyu5FIQtQkFFjb8tyY2iMwJIXCScFPLMYgBtDHVko1hGjboyz/hB8nFijiMRouFc9E/L0xgtDaYRikkyHQnZ33puJ/Xiuh3kV7JHWcEGoxPURSYXbICiPTYpB3pUEimCZHLjUXYIAIjeQgRComaVOFtA9v/vtFUj8te27ZuzkrVS5nzeTZITtiJ8xj56zCrlmV1ZhgY/bEntmL8+i8Om/O+89ozpnt7LM/cD6+AW76muE=</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit><latexit sha1_base64="REr4SjhgU8+QsQFqUhL1N6Ihcsg=">AAACDHicbVC7TgJBFJ31ifhCbUxsJhITK7JrTLQk2lhiIo8ECLk7XHDC7Oxm5q6ErPgJfoWtVnbG1n+w8F/cRQoFT3Vyzn0eP1LSkut+OguLS8srq7m1/PrG5tZ2YWe3ZsPYCKyKUIWm4YNFJTVWSZLCRmQQAl9h3R9cZn79Do2Vob6hUYTtAPpa9qQASqVOYf++5SMBb3XDoQZjwmHLgO4r7BSKbsmdgM8Tb0qKbIpKp/CVzhBxgJqEAmubnhtROwFDUigc51uxxQjEAPrYTKmGAG07mXww5kexBQp5hIZLxSci/u5IILB2FPhpZQB0a2e9TPzPa8bUO28nUkcxoRbZIpIKJ4usMDKNBnlXGiSC7HLkUnMBBojQSA5CpGKcZpVP8/Bmv58ntZOS55a869Ni+WKaTI4dsEN2zDx2xsrsilVYlQn2wJ7YM3txHp1X5815/yldcKY9e+wPnI9vFDebyA==</latexit>

<latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit><latexit sha1_base64="O8TlmdkrmGDgt7pJaP7PKOnDgD8=">AAACDXicbVC7TgJBFJ31ifhCrYzNRGJiRXaNiZZEG0tM5JEAIXeHC06Ymd3M3JUQJH6CX2GrlZ2x9Rss/BcXpFDwVCfn3OcJYyUd+f6nt7C4tLyymlnLrm9sbm3ndnYrLkqswLKIVGRrIThU0mCZJCmsxRZBhwqrYe9y7Ffv0DoZmRsaxNjU0DWyIwVQKrVy+/eNLmgNvNGO+gasjfoNC6arsJXL+wV/Aj5PginJsylKrdxXOkMkGg0JBc7VAz+m5hAsSaFwlG0kDmMQPehiPaUGNLrmcPLCiB8lDijiMVouFZ+I+LtjCNq5gQ7TSg1062a9sfifV0+oc94cShMnhEaMF5FUOFnkhJVpNsjb0iIRjC9HLg0XYIEIreQgRComaVjZNI9g9vt5UjkpBH4huD7NFy+myWTYATtkxyxgZ6zIrliJlZlgD+yJPbMX79F79d6895/SBW/as8f+wPv4BuO0nDk=</latexit>

<latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit><latexit sha1_base64="uw9XLP0Nipft1HN/Wjc+GnipkNA=">AAACC3icbVC7TgJBFJ31ifhCLSxsJhITK7JrTLQk2lhiIo+EJeTucMEJM7ObmbsagnyCX2GrlZ2x9SMs/BcXpFDwVCfn3Jt7z4kSJR35/qe3sLi0vLKaW8uvb2xubRd2dmsuTq3AqohVbBsROFTSYJUkKWwkFkFHCutR/3Ls1+/QOhmbGxok2NLQM7IrBVAmtQv7D2EPtAYepglYG9+HFkxPYbtQ9Ev+BHyeBFNSZFNU2oWvsBOLVKMhocC5ZuAn1BqCJSkUjvJh6jAB0YceNjNqQKNrDScBRvwodUAxT9ByqfhExN8bQ9DODXSUTWqgWzfrjcX/vGZK3fPWUJokJTRifIikwskhJ6zMmkHekRaJYPw5cmm4AAtEaCUHITIxzarKZ30Es+nnSe2kFPil4Pq0WL6YNpNjB+yQHbOAnbEyu2IVVmWCjdgTe2Yv3qP36r157z+jC950Z4/9gffxDT20m1I=</latexit>

BM2 … 
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Figure 5.2: Many-node quantum network. Scheme for remote entanglement distribution
between distant nodes A and B by n independently-prepared indistinguishable particles with
k = N − 1 shared intermediate nodes, being N = n/2 the number of involved particle pairs.
This process is the straightforward generalization of the scheme of Fig. 5.1.

One then gets the post-selected global state (see Appendix B.1)

|Ψ(4)
f,PS〉 = |ΨM, 1

−
AB〉, (5.1)

where
|ΨM〉 = |M ↑,M ↓〉 , |1−AB〉 =

|A ↓,B ↑〉 − |A ↑,B ↓〉√
2

(5.2)

in which 1 in the ket indicates the number of excited spins in the state. Therefore, it has been
obtained a maximally entangled state over the distant nodes A and B, despite the latter are
always independent and the particles do not share any common past. I stress that if the four
particles are not identical, the same post-selection procedure does not give rise to an entangled
state. The probability with which the state of Eq. (5.1) is obtained is shown in Appendix B.1. I
remark that this entanglement distribution is reached without entanglement-inducing Bell mea-
surements on the central particles, but just exploiting the indistinguishability of non-interacting
fermions in M. In fact, the spatial overlap of fermions in the shared intermediate site M plays
the key role of an entanglement-transfer gate. Schemes for entanglement swapping without Bell
measurements have been proposed in contexts where interaction is essential (e.g., cavity QED)
[125, 142, 126, 143].

The basic scheme of Fig. 5.1 can be straightforwardly iterated to create a remote entan-
glement transfer in a many-node quantum network. This is achieved by means of n identical
fermions and k = N − 1 shared intermediate nodes Mi (i = 1, . . . , k), where N = n/2 is the
number of particle pairs. As displayed in Fig. 5.2, each j-th pair (j = 1, . . . , N ) has opposite
pseudospins and spatial mode |αj〉, with |α1〉 = (|A〉+|M1〉)/

√
2, |αN〉 = (|Mk〉+|B〉)/

√
2 and

|αj〉 = (|Mj−1〉 + |Mj〉)/
√

2 for j = 2, . . . , k. The aim is to activate entanglement of particles
in the remote far nodes A and B of the network. The modes |αi〉 and |αi+1〉 partially overlap in
the shared intermediate node Mi and the I-th node (I = A, Mi, B) is taken, as already mentioned
above, such that only the localized bound state |I〉 is present. Once again the initial n-fermion
state |Ψ(n)

f 〉 can be formally determined starting from the state |α1 ↓, α1 ↑, . . . , αN ↓, αN ↑〉
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simply by dropping, because of the Pauli exclusion principle, the terms having the same pseu-
dospins in each intermediate node. After that, by counting one particle in A and one in B (this
entails that each node Mi contains two particles) and allowing for classical communication as
before, the post-selected global state is

|Ψ(n)
f,PS〉 = |ΨM1 ,ΨM2 , . . . ,ΨMk

, 1−AB〉, (5.3)

obtained with a probability Pf(n) = |〈Ψ(n)
f,PS|Ψ

(n)
f 〉|2 explicitly shown in Appendix B.1 and

where |1Mi
〉 = |Mi ↑,Mi ↓〉 and |1−AB〉 is the maximally entangled (Bell) state of Eq. (5.2).

Thus, it has been generated entanglement of particle pseudospins between the independent dis-
tant locations A and B of the many-node network, starting with independently-prepared iden-
tical fermions, with no Bell measurements and only using local counting operations. I remark
that all these features make the remote entanglement activation based on identical fermions
deeply different from the standard processes of entanglement transfer, such as ES (Section 5.2).

5.3.2 Bosons

The basic setup of Fig. 5.1 can be also thought to be run with identical bosons. I shall show
that, in this case, a Bell measurement onto the intermediate site M is eventually required for
achieving the desired entanglement transfer, similarly to a standard protocol of ES. The sLOCC
framework is now realized by locally counting two particles in the intermediate node M and
only one particle in each of the far nodes A and B, also allowing for classical communication
among the different sites. From the initial (unnormalized) state |α ↓, α ↑, β ↓, β ↑〉, one gets the
four-boson post-selected state (see Appendix B.2)

|Ψ(4)
b,PS〉 =

|ΨM, 1
+
AB〉+ |Φ+

M, 2
+
AB〉 − |Φ−M, 2−AB〉√

3
, (5.4)

where |Φ±M〉 = (|M ↓,M ↓〉 ± |M ↑,M ↑〉)/2, |ΨM〉 is given in Eq. (5.2), while the distant sites
A and B share the Bell states

|1+
AB〉 =

1√
2

(|A ↓,B ↑〉+ |A ↑,B ↓〉),

|2±AB〉 =
1√
2

(|A ↓,B ↓〉 ± |A ↑,B ↑〉).
(5.5)

I remark that in Eqs. (5.4) and (5.5), 1 and 2 in the kets indicate the number of excited spins in
the Bell states. The presence of these three Bell states is a consequence of the fact that bosonic
systems admit two-particle states with the same pseudospins in M. As in the standard ES pro-
cedure, a joint (Bell) measurement in the shared intermediate node M determines the entangled
state in which the first and the last boson of the network collapse, each outcome occurring with
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Figure 5.3: Four-node scheme for the entanglement swapping by indistinguishable particles
(bosons or fermions). Four independent single-particle sources Si (i = 1, ..., 4) send each
particle to the corresponding beam splitter (BSi). α and β are the (delocalized) spatial modes
peaked in correspondence of the separated spatial nodes A-C and D-B, respectively. Post-
selection by sLOCC leaves only one particle in each node and Bell measurements are finally
performed.

probability p = 1/3, as seen from Eq. (5.4). Since each of the three Bell-state outcomes from
the joint measurement in M realizes the desired entanglement transfer over A and B, the success
probability of the process coincides with the probability of obtaining the post-selected state of
Eq. (5.4) (Appendix B.2). This bosonic protocol can be then extended, analogously to the stan-
dard multiple ES, by a cascaded procedure [118]. The scheme remains that of Fig. 5.2 with n
independently-prepared identical bosons and k = N − 1 intermediate nodes (N = n/2). The
sLOCC framework again consists in counting two particles in each intermediate node and one
in the distant nodes A and B, also allowing for classical communication of the counting out-
comes. One gets the post-selected state |Ψ(n)

b,PS〉 and performs Bell measurements step by step
on each intermediate node Mi (i = 1, ..., k) to transfer entanglement over A and B. The success
probability is Pb(n) = |〈Ψ(n)

b,PS|Ψ
(n)
b 〉|2 (see Appendix B.2).

5.4 Network with separated intermediate nodes

I shall now discuss a procedure, much closer to the standard ES, which can be obtained with
indistinguishable particles (bosons or fermions) by employing intermediate separated nodes
instead of common intermediate ones.

We take a system made of four IP (either bosons or fermions), prepared by four independent
(space-like separated) sources {Si, i = 1, ..., 4}. Each particle is sent to the corresponding
beam splitter BSi, as depicted in Fig. 5.3. The two sources S1 and S2 independently prepare
two particles with opposite pseudospin. Each beam splitter sends the particle with the same
amplitude into two separated sites A and C, so that each particle is in the same delocalized
spatial mode |α〉 = (|A〉 + |C〉)/

√
2. Similarly, sources S3 and S4 generate the particles of the

second pair with opposite pseudospin in the delocalized spatial mode |β〉 = (|D〉 + |B〉)/
√

2

(right side of Fig. 5.3). All the nodes are spatially separated (the modes |α〉 and |β〉 are or-
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thogonal) and the I-th node (I = A, B, C, D) is chosen such that only the localized bound state
|I〉 is present. The condition that particles are in the chosen localized bound states can be as-
sured by keeping only the cases when local detectors do not measure particles elsewhere and
by classically communicating the results. The global four-particle quantum state [58] is there-
fore |Ψ(4)〉 = |α ↓, α ↑, β ↓, β ↑〉. From this state it is possible to obtain entanglement in the
pseudospin degrees of freedom linked to the spatial overlap of particles in each pair. This is
achieved by sLOCC [34], which here consist in a post-selection counting only one particle of
the first pair in A and one particle of the second pair in B and classically communicating this
outcome to each other. This post-selection can be implemented using, for instance, one ab-
sorbtionless particle-counting detector in A and one in B, which do not disturb the pseudospin
state [139, 140, 141, 101]. Similar non-demolition measurements are applied in the other post-
selections used along the paper. As a result, each node contains one particle and I obtain the
state (see Appendix B.3)

|Ψ(4)
PS〉 = |1ηAC, 1

η
DB〉 , (5.6)

where |1ηAC〉 and |1ηDB〉 are the two-particle Bell states

|1ηAC〉 =
1√
2

(|A ↓,C ↑〉+ η|A ↑,C ↓〉),

|1ηDB〉 =
1√
2

(|D ↓,B ↑〉+ η|D ↑,B ↓〉). (5.7)

Even if the particles have been independently prepared, as a consequence of sLOCC, the state
|Ψ(4)

PS〉 shows that the pair of particles in A and C is maximally entangled in the pseudospin de-
grees of freedom, as the DB-pair. This state is obtained with probability P (4) = |〈Ψ(4)

PS|Ψ(4)〉|2 =

1/4. At this stage the particles can be distinguished, since they are in spatially separated sites.
I stress that for each pair, if the particles are nonidentical, the same post-selection proce-

dure does not give rise to an entangled state. The structure of the state of Eq. (5.6) allows
to implement the standard protocol of entanglement swapping (ES) [114]: performing a Bell
measurement on near central nodes C and D transfers entanglement to the particles in the far
nodes A and B. Notice that this procedure does not require, at the preparation stage, two en-
tangled pairs. The present scheme works for both bosons and fermions, also when particles
of different pairs are not identical. Moreover, in analogy with the standard ES, it can be natu-
rally iterated by a cascaded procedure [118] to realize multistage entanglement swapping with
n = 2N independently-prepared particles, being N the number of involved particle pairs. This
is achieved by using a network with n− 2 separated central nodes, where each pair of identical
particles (either bosons or fermions) is prepared with opposite pseudospins in an equal delo-
calized spatial mode peaked in correspondence of two separated nodes (as shown for the two
pairs in Fig. 5.3). After obtaining a single particle in each central node and performing Bell
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measurements step by step onto two central nodes [118], one eventually entangles the particles
in the extreme nodes of the network with probability P (n) = 1/2N .

5.5 Discussions

In this Chapter I have presented a new way to obtain entanglement transfer in a large-scale quan-
tum network which is fundamentally activated by IP spatial indistinguishability. The standard
ES, that is the renowned process for entanglement transfer with distinguishable particles, ne-
cessitates to start from entangled particle pairs and requires final Bell measurements [114]. Our
process, when run by identical fermions, enables remote entanglement among distant nodes
through the following different mechanisms: (i) no distribution of initial entangled pairs, (ii)
without performing Bell measurements. This because IP spatial overlap acts as an entangling
gate, therefore, the process only requires local counting of independently-prepared IP.

The key advantage of this process is that it simplifies the task of distributing entanglement,
overcoming the drawbacks encountered in the usual entanglement transfer procedures during
the initial preparation stage and the final measurement phase. In fact, it skips the necessity of
sources of entangled particle pairs, which are for instance generated by SPDC at the very low
rate of about 10−2 for single laser pulse [122], and also avoids the experimental inefficiency
associated to Bell measurements [113, 109, 124, 125, 126, 127, 128, 129].

Our results make it emerge once more [34] that IP spatial indistinguishability is a resource
that can be operationally exploited in the framework based on sLOCC.

The proposed fermionic process could be, for instance, realized by using: quantum dots
as sources of single electrons that can be initialized in particular spin states [131], emitted
on demand [132] and directed to quantum point contacts acting as electronic beam splitters
[133, 144]; single electrons, that have been also recently shown to be controlled within atomic
circuits [134]; urther setups in quantum optics, simulating fermionic statistics using photons
and integrated photonics [135, 136] that could, in principle, represent convenient platforms.
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Chapter 6
Robust entanglement preparation against
noise by controlling spatial
indistinguishability

6.1 Introduction

Entanglement is a form of quantum correlation at the heart of quantum information and quan-
tum computing processes. It is therefore very important to initialize composite quantum systems
into highly entangled states. However, the interaction of these systems with the environment
tends to wear down entanglement, not only during the dynamics but already in the initial phase
of pure state preparation, rendering it mixed. As a result, the protection of entanglement from
noise is of great relevance for quantum-enhanced processes. In this Chapter, I will treat this
subject by means of a system of two identical particles (IP) in the Werner state, which is an
emblematic example of a pure entangled state preparation in presence of white noise. By ex-
ploiting the concurrence for identical particles (IP-concurrence) and the entropic measure of
indistinguishability (Chapter 3, I will study the possibility to protect nonlocal entanglement
from preparation noise.

6.2 Entanglement of formation of the IP-Werner state under
sLOCC

Werner state is defined as a mixture of a pure maximally entangled Bell state and of the maxi-
mally mixed state (white noise [17, 16]). Assuming to be interested in generating the Bell state
|1±AB〉 = (|↑A, ↓B〉 ± |↓A, ↑B〉)/

√
2, where 1 in the ket indicates the number of excited spins in

the state, the explicit expression of the Werner state, is W±
AB = (1−p) |1±AB〉 〈1±AB|+pI4/4, I4 is
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Figure 6.1: Noisy entanglement preparation with tailored spatial indistinguishability. Il-
lustration of two controllable spatially overlapping wave functions ψ1, ψ2 peaked in the two
localized regions of measurement L and R. The two identical qubits are prepared in an entan-
gled state under noisy conditions, givingW±. The degree of spatial indistinguishability can be
tuned, being 0 ≤ ILR ≤ 1.

the 4× 4 identity matrix and p is the noise probability which accounts for the amount of white
noise in the system during the pure state preparation stage. It is known that the concurrence for
such state is C(W±

AB) = 1− 3p/2 when 0 ≤ p < 2/3, being zero otherwise [17].

In perfect analogy, the IP-Werner state with spatial wave functions ψ1, ψ2 can be defined by

W± = (1− p) |1±〉 〈1±|+ pI4/4, (6.1)

where I4 =
∑

i=1,2;s=± |is〉 〈is| is expressed in the orthogonal Bell-state basis B{1±,2±} =

{|1+〉 , |1−〉 , |2+〉 , |2−〉} with

|1±〉 := (|ψ1 ↑, ψ2 ↓〉 ± |ψ1 ↓, ψ2 ↑〉)/
√

2,

|2±〉 := (|ψ1 ↑, ψ2 ↑〉)± |ψ1 ↓, ψ2 ↓〉)/
√

2. (6.2)

where 1 and 2 indicates in the LHS kets indicates the number of excited spins. In Eq. (6.1), |1±〉
is the target pure state to be prepared and I4/4 is the noise as mixture of the four Bell states.
Notice that the states of Eqs. (6.1) and (6.2) are in general not normalized, this depending on
the specific spatial degrees of freedom [39]. Focusing on the observation of entanglement in
a Bell scenario of separate locations L and R, a well-suited configuration for the spatial wave
functions is |ψ1〉 = l |L〉+ r |R〉 and |ψ2〉 = l′ |L〉+ r′eiθ |R〉, where l, r, l′, r′ are non-negative
real numbers (l2 + r2 = l′2 + r′2 = 1) and θ is a phase. The wave functions are thus peaked
in the two localized measurement regions L and R, as depicted in Figure 6.1. I here recall the
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degree of spatial indistinguishability ILR of Eq. (3.15) in Chapter 3

ILR =− PLψ1PRψ2

Z log2

PLψ1PRψ2

Z
− PLψ2PRψ1

Z log2

PLψ2PRψ1

Z ,

(6.3)

where with PLψ1 = l2, PLψ2 = l′2 (implying PRψ1 = r2, PRψ2 = r′2), and Z = PLψ1PRψ2 +

PLψ2PRψ1 . The degree of spatial indistinguishability is tailored by adjusting the shapes of |ψ1〉
and |ψ2〉.

Given the configuration of the spatial wave functions and using the sLOCC framework, the
amount of operational entanglement contained in W± can be obtained by the IP-concurrence
(see Section 3.4 of Chapter 3). ProjectingW onto the subspace spanned by the computational
basis BLR = {|L ↑,R ↑〉 , |L ↑,R ↓〉 , |L ↓,R ↑〉 , |L ↓,R ↓〉} by means of the projector

Π
(2)
LR =

∑
τ1,τ2=↑,↓

|Lτ1,Rτ2〉 〈Lτ1,Rτ2| , (6.4)

the following distributed resource state

W±LR = Π
(2)
LRW±Π

(2)
LR/Tr(Π

(2)
LRW±), (6.5)

is obtained with probability PLR = Tr(Π
(2)
LRW±). The trace operation is performed in the LR-

subspace. The (normalized) state W±LR can be then treated as the state of two distinguishable
qubits in separated bound states |L〉, localized in the region L, and |R〉, localized in the region
R. Therefore, the sLOCC-based concurrence CLR(W±) := C(W±LR) can be calculated by the
usual criterion for distinguishable qubits [82, 80] (Chapter 3).

I now report the explicit expressions of C(W±LR) for some cases of particular interest. In the
following, only the cases θ = 0, π in |ψ2〉 will be considered.

- Werner stateW−

Consider at first in Eq. (6.1) the state W−, by choosing for fermions the value θ = 0 and
for bosons θ = π. One finds

C(W−LR) = max

{
0,

(4− 3p)(lr′ + l′r)2 − 3p(lr′ − l′r)2

4 (l2r′2 + l′2r2 + lr′rl′(2− 3p))

}
, (6.6)

which is the same for both fermions and bosons, but with a statistically-dependent probability

PLR =
2 (l2r′2 + l′2r2 + lr′rl′(2− 3p))

2− η(2− 3p)(ll′ − ηrr′)2
. (6.7)

The plot of the concurrence as a function of ILR and p, fixing l = r′, is reported in Figure 6.2(a).
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(a) (b)

Figure 6.2: a. Concurrence of the Werner state W−. Contour plot of entanglement
CLR(W−) versus noise probability p and spatial indistinguishability ILR for target state |1−〉,
fermions (with θ = 0) or bosons (with θ = π), fixing l = r′. b. Concurrence of the
Werner states W± for completely indistinguishable and distinguishable qubits. Entan-
glement CLR(W±) as a function of noise probability p for different degrees of spatial indis-
tinguishability ILR and system parameters: blue solid line is for target state |1−〉, ILR = 1
(l = l′), fermions (with θ = 0) or bosons (with θ = π); red dashed line is for target state |1+〉,
ILR = 1 (l = l′), fermions (with θ = π) or bosons (with θ = 0); black dot-dashed line is for
distinguishable qubits (ILR = 0, l = 1 and l′ = 0 or vice versa).

When the indistinguishability degree is maximum, i.e. ILR = 1 (l = l′), using in Eq. (6.2) the
explicit expressions of the wave functions |ψ1〉 and |ψ2〉, we obtain by sLOCC the distributed
Bell state W−LR = |1−LR〉 〈1−LR|, with |1−LR〉 = (|L ↑,R ↓〉 − |L ↓,R ↑〉)/

√
2. In this case, the

concurrence is

C(W−LR) = 1, for any noise probability p and given ILR = 1, (6.8)

whose behaviour in function of the noise probability p is shown by the blue solid line of
Figure 6.2b. The probability PLR of Eq. (6.7) is plotted in Figure 6.3(a) as a function of
noise probability p for some degrees of the spatial indistinguishability. PLR is maximized when
l = l′ = 1/

√
2, taking the values PLR = 1/2 for fermions and PLR = 1− 3p/4 for bosons.

- Werner stateW+

Differently, when in Eq. (6.1) the stateW+ is considered and the values θ = π and θ = 0
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Figure 6.3: Probabilities. sLOCC probability PLR as a function of noise probability p for some
degrees of spatial indistinguishability ILR := I and particle statistics, fixing l = r′ in the wave
functions |ψ1〉 and |ψ2〉. a. Target pure state |1−〉 in Eq. (6.1). b. Target pure state |1+〉 in Eq.
(6.1).

are chosen for fermions and bosons, respectively, one obtains again a statistically-independent
concurrence

C(W+
LR) = max

{
0,

(4− 5p)(lr′ + l′r)2 − p(lr′ − l′r)2

4 (l2r′2 + l′2r2 + lr′rl′(2− p))

}
, (6.9)

Figure 6.4: Concurrence of the Werner state W+. Contour plot of C(W+) versus noise
probability p and spatial indistinguishability ILR, for fermions (with θ = π) or bosons (with
θ = 0), fixing l = r′ in the spatial wave functions |ψ1〉 and |ψ2〉.
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with a statistically-dependent probability

PLR =
2 (l2r′2 + l′2r2 + lr′rl′(2− p))

2 + η(2− p)(ll′ + ηrr′)2
(6.10)

The concurrence of Eq. (6.9) is given by the contour plot in Fig. 6.4 in terms of both indistin-
guishability degree ILR and noise probability p, fixing l = r′.

However, differently from the previous case (W−), when particles are maximally indistin-
guishable, i.e. ILR = 1 (l = l′), one gets a p-dependent concurrence C(W)+

LR, with

C(W+
LR) =

 (4− 5p)/(4− p), for 0 ≤ p < 4/5

0 elsewhere
, given ILR = 1. (6.11)

The entanglement now decreases with increasing noise, remaining however larger than the one
for nonidentical qubits (red dashed line of Fig. 6.2b). The sLOCC probability is maximized
when l = l′ = 1/

√
2, taking the value PLR = 1− p/4 for fermions and PLR = 1/2 for bosons.

The probability PLR of Eq. (6.10) is plotted in Fig. 6.3(b) as a function of noise probability p
for some degrees of spatial indistinguishability ILR.

The choice of the state to generate (either |1−〉 or |1+〉) makes a difference relative to noise
protection by indistinguishability. However, we remark that identical qubits in the distributed
resource stateW±LR, are individually addressable. Local unitary operations (rotations) in L and
R can be applied to each qubit to transform the noise-free prepared |1LR

− 〉 into any other Bell
state [17]. Moreover, notice that these behaviours are achieved with probabilities PLR high
enough to be of experimental relevance.

Since the preparation of |1−〉, represented by Eq. (6.1), results to be noise-free for both
fermions and bosons when ILR = 1, it is important to know what happens when the degree of
spatial indistinguishability realistically not perfectly maximum (between 0.7 and 1). In Fig.6.2a
we display entanglement as a function of both p and ILR. The plot reveals that entanglement
preparation can be efficiently protected against noise also for ILR < 1.

6.3 CHSH-Bell inequality violation for theW± state

For distinguishable particles a given value of entanglement by itself does not guarantee that
the correlations cannot be reproduced by a classical local hidden variable model [17, 22]. The
Bell inequality violations are therefore utilized to show that a given amount of entanglement
of mixed states assures not classically reproducible nonlocal quantum correlations [17]. For
two distinguishable qubits in an arbitrary state ρ, the CHSH-Bell inequality can be written as
B(ρ) ≤ 2 [17], where 2 represents the classical threshold. Whenever a quantum state produces
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B(ρ) > 2, its corresponding entanglement is inherently quantum nonlocal.

These arguments can be straightforwardly generalized to the case of indistinguishable parti-
cles. In fact, after sLOCC the identical qubits can be individually addressed and a Bell test can
be performed on their global state by spin-like measurements onto the separated bound states
|L〉, localized in the region L, and |R〉, localized in the regionR [34]. The distributed resource
stateW±LR, stemming fromW± of Eq. (6.1) after sLOCC, has an X structure in the computa-
tional basis BLR = {|L ↑,R ↑〉 , |L ↑,R ↓〉 , |L ↓,R ↑〉 , |L ↓,R ↓〉}. That is, only the diagonal
and off-diagonal elements are in general nonzero. According to the Horodecki criterion for
the CHSH-Bell inequality violation of a two-qubit density matrix [78], the expression of the
optimized Bell function for an X-shape density matrix ρX can be written as [145]

B(ρX) = 2
√
P2 +Q2, (6.12)

withP = ρ11+ρ44−ρ22−ρ33 andQ = 2(|ρ14|+|ρ23|), where ρij are the density matrix elements
in the computational basis. ForW±LR, these elements are functions of both the degree of spatial
indistinguishability ILR, through the wave function parameters l and l′, and the noise probability
p. It is thus possible to look for Bell inequality violations, that is BLR(W±) := B(W±LR) > 2,
for different values of ILR and p. Fixing l = r′ in the wave functions |ψ1〉 and |ψ2〉, the degree
of spatial indistinguishability can be continuously varied.

As shown in the previous section, entanglement can be protected by noise also for ILR < 1.
What is the minimum degree of ILR that guarantees nonlocal protected entanglement in L and
R?

- Werner stateW−
For both fermions and bosons, the behaviour of the Bell function B(W−LR) is displayed in

Figure 6.5a. When 0.76 < ILR ≤ 1, that is 0.56 < C(W−LR) ≤ 1, the Bell inequality is violated

independently of noise probability p.

This is basically different from the case of distinguishable qubits A and B where, as known
[17], the Werner state W±

AB violates Bell inequality only for small white noise probabilities
0 ≤ p < 0.29 (giving 0.68 < C(W±

AB) ≤ 1).

- Werner stateW+

For both fermions and bosons, the behavior of B(W+
LR) is reported in Figure 6.5b. When

ILR = 1, the violation of the Bell inequality depends on the noise probability p: one has
B(W+

LR) > 2 for 0 ≤ p < 0.36, which means 0.6 < C(W+
LR) ≤ 1.

The main result comes from the case ofW−: although significant changes in the shapes of
the 1-particle wave functions, the spatial indistinguishability ILR anyway remains beyond the
threshold (≈ 0.76) which assures noise-free generation of non-local entanglement. We notice
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Figure 6.5: Bell function. Bell function B(W±LR) versus noise probability p and degree of
spatial indistinguishability. To vary ILR we fix l = r′ in|ψ1〉 and |ψ2〉. a. Target pure state |1−〉
in Eq. (6.1) for both fermions (with θ = 0) and bosons (with θ = π). b. Target pure state |1+〉
in Eq. (6.1) for both fermions (with θ = π) and bosons (with θ = 0).

that if the two operational regions L andR are two nodes of a quantum network, the protection
of entanglement between the two nodes for a fixed value of indistinguishability (I) is invariant
with respect to finite changes of the 1-particle spatial wave functions in the nodes. In this sense
we may talk about "topological protection" of entanglement

6.4 Discussions

In this Chapter, I have analysed the effect of quantum indistinguishability on entanglement
preparation in the generalised IP-Werner state. This IP-state is obtained from the Werner state
of two distinguishable (separated) identical qubits after letting them overlapping (see Chapter
8). I have shown that, starting with a noisy Werner state, the sLOCC permit to obtain, when
indistinguishability is maximum, a noiseless nonlocal maximally entangled state; this result is
independent of particle statistics. Moreover, spatial indistinguishability possesses robustness to
variations in the configuration of spatial wave functions. In this sense, the main result of this
chapter is that indistinguishability behaves analogously to a topological resource of quantum

networks.
These results may also provide the explanation of coherence endurance due to particle in-

distinguishability [146].
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Chapter 7
Indistinguishability-enabled coherence

7.1 Introduction

In this Chapter, I will study the coherence of independently prepared identical particles (IP) in
function of their spatial indistinguishability, showing how to generalize all the notions of re-
source theory of quantum coherence [147, 148, 149, 150, 151, 152, 153], known for nonidenti-
cal particles (NIP), due to IP. Then, I will investigate whether the IP indistinguishability-enabled
coherence plays an operational role in the implementation of quantum information tasks. In par-
ticular, I will exploit this coherence in a phase discrimination game [149]. Finally I will examine
in a specific case the role played by particle statistics in the protocol.

7.2 Coherence as a resource

The purpose of a quantum resource theory (QRT) is to characterize tools useful for the imple-
mentation of quantum-enabled tasks under certain physical constraints. Indeed, it comes from
the impossibility to perform certain operations at no cost. The operations to which I have access,
in accordance with these constraints (e.g. superselection rules or experimental difficulties), are
the so-called free operations. Due to the fact that they represent only a certain subgroup of all
the possible quantum operations, only certain quantum states can be obtained by means of them
and these are the free states of the theory.

"Basic economic principles dictate that

objects acquire value when they cannot be easily obtained."[138]

As consequence, all the other states are called resources, not only since they cannot be
obtained for free but also since they allow us to circumvent the physical constraints to implement
some tasks unachievable by using only free states and free operations.
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Resource theories are useful since it allows us to quantitatively evaluate the advantage used
by a quantum state rather than another carrying out a physical processes. All the measures of
a resource remain constants or monotonically decrease under the free operations, according to
the fact that the resource has a value and no arbitrary amount of it can be created without a
cost. Moreover, the resource theory gives the possibility to approach quantum tasks in terms of
required free operations and of the consumptions of the resources.

Quantum coherence is a property of quantum systems coming from the possibility to prepare
them in quantum states which are superposition of two or more different physical configurations
and it is a basis-dependent concept.

Being a purely quantum feature, it represents the core of quantum-enhanced technolo-
gies [148, 154] and, as a consequence, a resource theory [138] of coherence for noniden-
tical particles has been proposed, in order to characterize, quantify and exploit coherence
[147, 148, 149, 150, 151, 152, 153]. Chosen a reference basis, diagonal and non diagonal states
in that basis are called incoherent (free) states and coherent (resource) states, respectively. The
free operations to which I have access are the so-called incoherent operations and they cannot
create coherence starting from incoherent states. They map the set of incoherent states into
itself and all the measures of coherence proposed, such as the relative entropy of coherence, the
l1 norm of coherence [155] and the robustness of coherence [149] are monotones under inco-
herent operations.

It has been shown that coherence of a quantum state has an operational relevance in the
implementation of phase discrimination protocols using distinguishable particles: the robust-
ness of coherence quantifies not only the amount of coherence of a quantum state but also the
advantage offered by its presence in a metrology protocol [149, 156]. In the context of quantum
thermodynamics, a link between the coherence of a quantum state and the extractable work has
been identified [157], and very recently the role of quantum coherence as a resource for the
non-equilibrium entropy production has been pinpointed [158].

The resource theory of coherence is well defined for single-particle systems and for systems
of multi-distinguishable particles. On the other hand, recently, it has been shown that indistin-
guishability of identical particles confers on quantum systems original properties that can be
used as sources of entanglement to implement quantum information processes, impossible to
perform if particles are distinguishable [54, 34, 62, 97, 98, 99, 100, 101].

In the following, I will show how the sLOCC framework gives the possibility to characterize
the coherence of identical particles under general conditions of spatial overlap [61]. The aim
now is to show how indistinguishability may be a source of operational coherence, highlighting
also the role of particle statistics. Clearly, and in contrast to the case of distinguishable particles,
to achieve this I must consider at least two (identical) particles.
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7.3 Coherence of identical particle states

Let us consider, in the no-label formalism [58, 59, 39], two identical pseudospins (that is parti-
cles with a two-level internal state space) in the mixed state

ρIP =
∑

σ,τ=↓,↑

pστ |ψσ, ψ′τ〉 〈ψσ, ψ′τ | , (7.1)

where ψ and ψ′ represent the spatial degrees of freedom and σ and τ are the pseudospins. The
coefficients pστ are such that Tr[ρI ] = 1. Each term |ψσ, ψ′τ〉 in the sum is the state of two IP,
one of which is characterised by ψ and σ, the other by ψ′ and τ .

To define the coherence of this state, an orthonormal basis has to be chosen. Let us now
make some considerations about which "preferred" basis is opportune to choose, depending on
the possible operations that can be performed for free on the system. As I have said, a resource
theory requires the identification of a physically and operationally meaningful set of free oper-
ations, to manipulate resourceful states. Analogously to the case of distinguishable particles,
both single-particle and two-particle operations on the system are allowed. Identical particles
are physically not addressable individually [159, 50], thus the concept of single-particle opera-
tion may seem ill-defined, requiring us to differentiate them. As an example, since the global
Hilbert space is not a tensor product of two single-spin spaces, if a CNOT gate1 (free operation
for distinguishable particles [152]) has to operate, it is not possible to differentiate between the
control and the target particle.

Following the procedure to identify and quantify the useful entanglement between identi-
cal particles [34], in order to characterize the quantum coherence I here adopt a framework
based on sLOCC, which consists of the identification of specific separate spatial regions to
make single-particle and two-particle local measurements. In particular, I choose the basis
BIP = {|Lσ,Rτ〉 ; σ, τ =↓, ↑}, where |L〉 and |R〉 are two states spatially localized in the sep-
arate regions L and R, respectively. If ρIP is diagonal in the chosen basis, it is incoherent,
otherwise I say that ρI is coherent.
For NIP, identified by labels A and B, the state of Eq. (7.1) would correspond to ρNIP =∑

σ,τ pστ (|ψσ〉 〈ψσ|)A⊗(|ψ′τ〉 〈ψ′τ |)B. Being particles addressable, the framework of spatially
local operations and classical communication coincides with the LOCC one and the operational
basis is BNIP = {|Lσ〉A⊗ |Rτ〉B ;σ, τ =↓, ↑}. Regardless of the spatial overlap of |ψ〉 and |ψ′〉,

1The CNOT is a quantum logic gate which acts on two qubits. It modifies or not the state of a qubit (target
qubit) after having controlled the state of the other qubit (control qubit). It is used as an entangling gate in quantum
circuits [16].
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ρNIP is incoherent, in fact

ρNIP
LR =

1

N
∑
στ

pστ (ΠL |ψσ〉 〈ψσ|ΠL)A ⊗ (ΠR |ψ′τ〉 〈ψ′τ |ΠR)B

=
∑
στ

pστ (|Lσ〉 〈Lσ|)A ⊗ (|Rτ〉 〈Rτ |)B,
(7.2)

where ΠL =
∑

σ(|Lσ〉 〈Lσ|)A and ΠR =
∑

σ(|Rσ〉 〈Rσ|)B. As a result, the mixed state ρNIP for
two independently prepared NIP, being diagonal in the chosen basis, is incoherent. Projecting,
on the other hand, ρIP of Eq. (7.1) on the chosen subspace spanned by the basis BIP, I obtain
the following state

ρIP
LR =

1

N
∑

σ,τ=↓,↑

pστ (|l|2|r′|2 |Lσ,Rτ〉 〈Lσ,Rτ |+ ηlr′l′∗r∗ |Lσ,Rτ〉 〈Lτ,Rσ|

+ ηl′rl∗r′∗ |Lτ,Rσ〉 〈Lσ,Rτ |+ η|l′|2|r|2 |Lτ,Rσ〉 〈Lτ,Rσ|),
(7.3)

where N is a global normalization factor, l = 〈L|ψ〉, r′ = 〈R|ψ′〉, l′ = 〈L|ψ′〉 and r = 〈R|ψ〉
are the probability amplitudes of finding one particle in the two spatially separate states |L〉 and
|R〉, and η is 1 for bosons and -1 for fermions. I recall from Section 3.5 of Chapter 3 that the
spatial indistinguishability degree is

ILR = −
2∑
i

p
(i)
LR log2 p

(i)
LR, (7.4)

where p(1)
LR = |lr′|2/(|lr′|2 + |l′r|2) and p(2)

LR = 1 − p(1)
LR. Assuming, for instance, l, r′ 6= 0, the

remaining probability amplitudes l′ and r are zero if and only if |ψ〉 and |ψ′〉 do not spatially
overlap. If p↓↑ = p↑↓ = 0, the state ρIP does not contain coherence, regardless of the spatial
indistinguishability of particles. Otherwise, the state is coherent if and only if the particles
spatially overlap (ILR 6= 0 from Eq. (8.26)). If they do not overlap (ILR = 0), the state is
incoherent: nonoverlapping identical particles act like nonidentical ones. In the chosen frame-
work, all the monotones introduced to quantify the coherence of nonidentical particles can be
used. As an example, all the considerations just done for the coherence C(ρIP) of the state of
Eq. (7.3) are reflected in the l1-norm of the state Cl1(ρIP

LR) =
∑

i 6=j |(ρIP
LR)ij|, that is

C(ρIP) := Cl1(ρIP
LR) =

2

N (|p↓↑lr′l′∗r∗|+ |p↑↓l′rl∗r′∗|) (7.5)

explicitly dependent on the overlap parameters and so on the spatial indistinguishability (Eq.
8.26).

The sLOCC framework has the advantage that, incoherent operations, known for NIP, can
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L

Figure 7.1: CNOT gate for spatially overlapping IP in the sLOCC framework. |ψ〉 and |ψ′〉
are the 1-particle spatial wave functions. |L〉 and |R〉 are two specific states localized in two
spatially separated spatial regions L andR, respectively.

be straightforwardly translated in the context of IP systems. Let us consider for example the
CNOT gate. In the standard implementation with NIP, there are individually addressed control
and target spins. By analogy, for IP one can identify the measurement regions L and R as
control and target regions, respectively (Fig. 7.1). Applying it to the state of Eq. (7.3) when it
is incoherent, it can be easily shown that it gives us an incoherent state. Therefore the CNOT
gate remains an incoherent operation which transforms incoherent states of IP into incoherent
states.

7.4 Application: phase discrimination protocol

IP have been used for purposes of quantum metrology within the context of particle-number
states [160]. Our purpose here is to exploit the contribution to coherence due to the spatial
indistinguishability, so determining its operational role in quantum information processing. It
is known that within the context of quantum metrology, quantum coherence of states of non-
identical particles is a resource for phase discrimination tasks [149, 161]. I now describe an
analogous game for indistinguishability-enabled quantum coherence. The state of two inde-
pendently prepared nonidentical particles A and B, for instance, |Ψ〉AB = |ψ ↓〉A ⊗ |ψ′ ↑〉B,
is manifestly incoherent in the basis BNIP = {|Lσ〉A ⊗ |Rτ〉B}, regardless of the spatial over-
lap of |ψ〉 and |ψ′〉. Differently, let us consider the corresponding elementary state for two
independently prepared identical particles

|Ψ〉 = |ψ ↓, ψ′ ↑〉, (7.6)
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�1
<latexit sha1_base64="p8T/Ao0FkaoytNuev8HmDzDGk0M=">AAAB+XicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWEYwD0hCmJ3cJENmZ4eZu0JY8hG2WtmJrV9j4b84u26hiac6nHMv99wTaiks+v6nV1pb39jcKm9Xdnb39g+qh0dtGyeGQ4vHMjbdkFmQQkELBUroagMsCiV0wtlt5ncewVgRqwecaxhEbKLEWHCGTur09VQMAzqs1vy6n4OukqAgNVKgOax+9UcxTyJQyCWzthf4GgcpMyi4hEWln1jQjM/YBHqOKhaBHaR53AU9SyzDmGowVEiai/B7I2WRtfModJMRw6ld9jLxP6+X4Ph6kAqlEwTFs0MoJOSHLDfC9QB0JAwgsiw5UKEoZ4YhghGUce7ExBVTcX0Ey9+vkvZFPXD8/rLWuCmaKZMTckrOSUCuSIPckSZpEU5m5Ik8kxcv9V69N+/9Z7TkFTvH5A+8j29HnJOS</latexit><latexit sha1_base64="p8T/Ao0FkaoytNuev8HmDzDGk0M=">AAAB+XicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWEYwD0hCmJ3cJENmZ4eZu0JY8hG2WtmJrV9j4b84u26hiac6nHMv99wTaiks+v6nV1pb39jcKm9Xdnb39g+qh0dtGyeGQ4vHMjbdkFmQQkELBUroagMsCiV0wtlt5ncewVgRqwecaxhEbKLEWHCGTur09VQMAzqs1vy6n4OukqAgNVKgOax+9UcxTyJQyCWzthf4GgcpMyi4hEWln1jQjM/YBHqOKhaBHaR53AU9SyzDmGowVEiai/B7I2WRtfModJMRw6ld9jLxP6+X4Ph6kAqlEwTFs0MoJOSHLDfC9QB0JAwgsiw5UKEoZ4YhghGUce7ExBVTcX0Ey9+vkvZFPXD8/rLWuCmaKZMTckrOSUCuSIPckSZpEU5m5Ik8kxcv9V69N+/9Z7TkFTvH5A+8j29HnJOS</latexit><latexit sha1_base64="p8T/Ao0FkaoytNuev8HmDzDGk0M=">AAAB+XicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWEYwD0hCmJ3cJENmZ4eZu0JY8hG2WtmJrV9j4b84u26hiac6nHMv99wTaiks+v6nV1pb39jcKm9Xdnb39g+qh0dtGyeGQ4vHMjbdkFmQQkELBUroagMsCiV0wtlt5ncewVgRqwecaxhEbKLEWHCGTur09VQMAzqs1vy6n4OukqAgNVKgOax+9UcxTyJQyCWzthf4GgcpMyi4hEWln1jQjM/YBHqOKhaBHaR53AU9SyzDmGowVEiai/B7I2WRtfModJMRw6ld9jLxP6+X4Ph6kAqlEwTFs0MoJOSHLDfC9QB0JAwgsiw5UKEoZ4YhghGUce7ExBVTcX0Ey9+vkvZFPXD8/rLWuCmaKZMTckrOSUCuSIPckSZpEU5m5Ik8kxcv9V69N+/9Z7TkFTvH5A+8j29HnJOS</latexit><latexit sha1_base64="p8T/Ao0FkaoytNuev8HmDzDGk0M=">AAAB+XicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWEYwD0hCmJ3cJENmZ4eZu0JY8hG2WtmJrV9j4b84u26hiac6nHMv99wTaiks+v6nV1pb39jcKm9Xdnb39g+qh0dtGyeGQ4vHMjbdkFmQQkELBUroagMsCiV0wtlt5ncewVgRqwecaxhEbKLEWHCGTur09VQMAzqs1vy6n4OukqAgNVKgOax+9UcxTyJQyCWzthf4GgcpMyi4hEWln1jQjM/YBHqOKhaBHaR53AU9SyzDmGowVEiai/B7I2WRtfModJMRw6ld9jLxP6+X4Ph6kAqlEwTFs0MoJOSHLDfC9QB0JAwgsiw5UKEoZ4YhghGUce7ExBVTcX0Ey9+vkvZFPXD8/rLWuCmaKZMTckrOSUCuSIPckSZpEU5m5Ik8kxcv9V69N+/9Z7TkFTvH5A+8j29HnJOS</latexit>

or                �2?
<latexit sha1_base64="vpDcLySSJYTm+q7vfHVG4tieAEU=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIjJOiIoKEMEnlIiRWdL5vklPP5dLdGiqx8BC1UdIiWr6HgX7CNC0iYajSzq52dQEth0XU/ndLa+sbmVnm7srO7t39QPTzq2Cg2HNo8kpHpBcyCFAraKFBCTxtgYSChG8xuM7/7CMaKSD3gXIMfsokSY8EZplJ3oKdi2LgeVmtu3c1BV4lXkBop0BpWvwajiMchKOSSWdv3XI1+wgwKLmFRGcQWNOMzNoF+ShULwfpJHndBz2LLMKIaDBWS5iL83khYaO08DNLJkOHULnuZ+J/Xj3F85SdC6RhB8ewQCgn5IcuNSHsAOhIGEFmWHKhQlDPDEMEIyjhPxTgtppL24S1/v0o6jbqX8vuLWvOmaKZMTsgpOSceuSRNckdapE04mZEn8kxenMR5dd6c95/RklPsHJM/cD6+AXl9k7I=</latexit><latexit sha1_base64="vpDcLySSJYTm+q7vfHVG4tieAEU=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIjJOiIoKEMEnlIiRWdL5vklPP5dLdGiqx8BC1UdIiWr6HgX7CNC0iYajSzq52dQEth0XU/ndLa+sbmVnm7srO7t39QPTzq2Cg2HNo8kpHpBcyCFAraKFBCTxtgYSChG8xuM7/7CMaKSD3gXIMfsokSY8EZplJ3oKdi2LgeVmtu3c1BV4lXkBop0BpWvwajiMchKOSSWdv3XI1+wgwKLmFRGcQWNOMzNoF+ShULwfpJHndBz2LLMKIaDBWS5iL83khYaO08DNLJkOHULnuZ+J/Xj3F85SdC6RhB8ewQCgn5IcuNSHsAOhIGEFmWHKhQlDPDEMEIyjhPxTgtppL24S1/v0o6jbqX8vuLWvOmaKZMTsgpOSceuSRNckdapE04mZEn8kxenMR5dd6c95/RklPsHJM/cD6+AXl9k7I=</latexit><latexit sha1_base64="vpDcLySSJYTm+q7vfHVG4tieAEU=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIjJOiIoKEMEnlIiRWdL5vklPP5dLdGiqx8BC1UdIiWr6HgX7CNC0iYajSzq52dQEth0XU/ndLa+sbmVnm7srO7t39QPTzq2Cg2HNo8kpHpBcyCFAraKFBCTxtgYSChG8xuM7/7CMaKSD3gXIMfsokSY8EZplJ3oKdi2LgeVmtu3c1BV4lXkBop0BpWvwajiMchKOSSWdv3XI1+wgwKLmFRGcQWNOMzNoF+ShULwfpJHndBz2LLMKIaDBWS5iL83khYaO08DNLJkOHULnuZ+J/Xj3F85SdC6RhB8ewQCgn5IcuNSHsAOhIGEFmWHKhQlDPDEMEIyjhPxTgtppL24S1/v0o6jbqX8vuLWvOmaKZMTsgpOSceuSRNckdapE04mZEn8kxenMR5dd6c95/RklPsHJM/cD6+AXl9k7I=</latexit><latexit sha1_base64="vpDcLySSJYTm+q7vfHVG4tieAEU=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIjJOiIoKEMEnlIiRWdL5vklPP5dLdGiqx8BC1UdIiWr6HgX7CNC0iYajSzq52dQEth0XU/ndLa+sbmVnm7srO7t39QPTzq2Cg2HNo8kpHpBcyCFAraKFBCTxtgYSChG8xuM7/7CMaKSD3gXIMfsokSY8EZplJ3oKdi2LgeVmtu3c1BV4lXkBop0BpWvwajiMchKOSSWdv3XI1+wgwKLmFRGcQWNOMzNoF+ShULwfpJHndBz2LLMKIaDBWS5iL83khYaO08DNLJkOHULnuZ+J/Xj3F85SdC6RhB8ewQCgn5IcuNSHsAOhIGEFmWHKhQlDPDEMEIyjhPxTgtppL24S1/v0o6jbqX8vuLWvOmaKZMTsgpOSceuSRNckdapE04mZEn8kxenMR5dd6c95/RklPsHJM/cD6+AXl9k7I=</latexit>

⇢out
<latexit sha1_base64="sk7q7PtN+W1OQ6k6Q/5sQ0f5Ai4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CESE50vm+SU8511t0aKrPAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCSAqLrvvpLC2vrK6tlzbKm1vbO7uVvf2W1bHh0ORaatMJmAUpFDRRoIROZICFgYR2MLnK/PYDGCu0usVpBH7IRkoMBWeYSnc9M9b3iY5x1q9U3Zqbgy4SryBVUqDRr3z1BprHISjkklnb9dwI/YQZFFzCrNyLLUSMT9gIuilVLATrJ3niGT2OLUNNIzBUSJqL8HsjYaG10zBIJ0OGYzvvZeJ/XjfG4YWfCBXFCIpnh1BIyA9ZbkRaBdCBMIDIsuRAhaKcGYYIRlDGeSrGaTfltA9v/vtF0jqteSm/OavWL4tmSuSQHJET4pFzUifXpEGahBNFnsgzeXEenVfnzXn/GV1yip0D8gfOxzfoo5W2</latexit><latexit sha1_base64="sk7q7PtN+W1OQ6k6Q/5sQ0f5Ai4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CESE50vm+SU8511t0aKrPAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCSAqLrvvpLC2vrK6tlzbKm1vbO7uVvf2W1bHh0ORaatMJmAUpFDRRoIROZICFgYR2MLnK/PYDGCu0usVpBH7IRkoMBWeYSnc9M9b3iY5x1q9U3Zqbgy4SryBVUqDRr3z1BprHISjkklnb9dwI/YQZFFzCrNyLLUSMT9gIuilVLATrJ3niGT2OLUNNIzBUSJqL8HsjYaG10zBIJ0OGYzvvZeJ/XjfG4YWfCBXFCIpnh1BIyA9ZbkRaBdCBMIDIsuRAhaKcGYYIRlDGeSrGaTfltA9v/vtF0jqteSm/OavWL4tmSuSQHJET4pFzUifXpEGahBNFnsgzeXEenVfnzXn/GV1yip0D8gfOxzfoo5W2</latexit><latexit sha1_base64="sk7q7PtN+W1OQ6k6Q/5sQ0f5Ai4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CESE50vm+SU8511t0aKrPAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCSAqLrvvpLC2vrK6tlzbKm1vbO7uVvf2W1bHh0ORaatMJmAUpFDRRoIROZICFgYR2MLnK/PYDGCu0usVpBH7IRkoMBWeYSnc9M9b3iY5x1q9U3Zqbgy4SryBVUqDRr3z1BprHISjkklnb9dwI/YQZFFzCrNyLLUSMT9gIuilVLATrJ3niGT2OLUNNIzBUSJqL8HsjYaG10zBIJ0OGYzvvZeJ/XjfG4YWfCBXFCIpnh1BIyA9ZbkRaBdCBMIDIsuRAhaKcGYYIRlDGeSrGaTfltA9v/vtF0jqteSm/OavWL4tmSuSQHJET4pFzUifXpEGahBNFnsgzeXEenVfnzXn/GV1yip0D8gfOxzfoo5W2</latexit><latexit sha1_base64="sk7q7PtN+W1OQ6k6Q/5sQ0f5Ai4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CESE50vm+SU8511t0aKrPAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCSAqLrvvpLC2vrK6tlzbKm1vbO7uVvf2W1bHh0ORaatMJmAUpFDRRoIROZICFgYR2MLnK/PYDGCu0usVpBH7IRkoMBWeYSnc9M9b3iY5x1q9U3Zqbgy4SryBVUqDRr3z1BprHISjkklnb9dwI/YQZFFzCrNyLLUSMT9gIuilVLATrJ3niGT2OLUNNIzBUSJqL8HsjYaG10zBIJ0OGYzvvZeJ/XjfG4YWfCBXFCIpnh1BIyA9ZbkRaBdCBMIDIsuRAhaKcGYYIRlDGeSrGaTfltA9v/vtF0jqteSm/OavWL4tmSuSQHJET4pFzUifXpEGahBNFnsgzeXEenVfnzXn/GV1yip0D8gfOxzfoo5W2</latexit>

| LRi
<latexit sha1_base64="zNWkP+XRfaVjlCwlZFA8HRNQwTk=">AAACDnicbVC7TsNAEDzzDOEVoIPmRIREhWyEBGUEDQVFQCQgxVa0PpZw4ny27tZIkbHEJ/AVtFDRIVp+gYJ/wTYpeE01mtnVzk6YKGnJdd+dsfGJyanp2kx9dm5+YbGxtNy1cWoEdkSsYnMegkUlNXZIksLzxCBEocKz8Pqg9M9u0FgZ61MaJhhEMNDyUgqgQuo3Vm/9tpX9zI+ArkyUHZ3kuW9ADxT2G013y63A/xJvRJpshHa/8eFfxCKNUJNQYG3PcxMKMjAkhcK87qcWExDXMMBeQTVEaIOs+iHnG6kFinmChkvFKxG/b2QQWTuMwmKyjGp/e6X4n9dL6XIvyKROUkItykMkFVaHrDCyKAf5hTRIBGVy5FJzAQaI0EgOQhRiWrRVL/rwfn//l3S3t7yCH+80W/ujZmpsja2zTeaxXdZih6zNOkywO/bAHtmTc+88Oy/O69fomDPaWWE/4Lx9AgpQnN8=</latexit><latexit sha1_base64="zNWkP+XRfaVjlCwlZFA8HRNQwTk=">AAACDnicbVC7TsNAEDzzDOEVoIPmRIREhWyEBGUEDQVFQCQgxVa0PpZw4ny27tZIkbHEJ/AVtFDRIVp+gYJ/wTYpeE01mtnVzk6YKGnJdd+dsfGJyanp2kx9dm5+YbGxtNy1cWoEdkSsYnMegkUlNXZIksLzxCBEocKz8Pqg9M9u0FgZ61MaJhhEMNDyUgqgQuo3Vm/9tpX9zI+ArkyUHZ3kuW9ADxT2G013y63A/xJvRJpshHa/8eFfxCKNUJNQYG3PcxMKMjAkhcK87qcWExDXMMBeQTVEaIOs+iHnG6kFinmChkvFKxG/b2QQWTuMwmKyjGp/e6X4n9dL6XIvyKROUkItykMkFVaHrDCyKAf5hTRIBGVy5FJzAQaI0EgOQhRiWrRVL/rwfn//l3S3t7yCH+80W/ujZmpsja2zTeaxXdZih6zNOkywO/bAHtmTc+88Oy/O69fomDPaWWE/4Lx9AgpQnN8=</latexit><latexit sha1_base64="zNWkP+XRfaVjlCwlZFA8HRNQwTk=">AAACDnicbVC7TsNAEDzzDOEVoIPmRIREhWyEBGUEDQVFQCQgxVa0PpZw4ny27tZIkbHEJ/AVtFDRIVp+gYJ/wTYpeE01mtnVzk6YKGnJdd+dsfGJyanp2kx9dm5+YbGxtNy1cWoEdkSsYnMegkUlNXZIksLzxCBEocKz8Pqg9M9u0FgZ61MaJhhEMNDyUgqgQuo3Vm/9tpX9zI+ArkyUHZ3kuW9ADxT2G013y63A/xJvRJpshHa/8eFfxCKNUJNQYG3PcxMKMjAkhcK87qcWExDXMMBeQTVEaIOs+iHnG6kFinmChkvFKxG/b2QQWTuMwmKyjGp/e6X4n9dL6XIvyKROUkItykMkFVaHrDCyKAf5hTRIBGVy5FJzAQaI0EgOQhRiWrRVL/rwfn//l3S3t7yCH+80W/ujZmpsja2zTeaxXdZih6zNOkywO/bAHtmTc+88Oy/O69fomDPaWWE/4Lx9AgpQnN8=</latexit><latexit sha1_base64="zNWkP+XRfaVjlCwlZFA8HRNQwTk=">AAACDnicbVC7TsNAEDzzDOEVoIPmRIREhWyEBGUEDQVFQCQgxVa0PpZw4ny27tZIkbHEJ/AVtFDRIVp+gYJ/wTYpeE01mtnVzk6YKGnJdd+dsfGJyanp2kx9dm5+YbGxtNy1cWoEdkSsYnMegkUlNXZIksLzxCBEocKz8Pqg9M9u0FgZ61MaJhhEMNDyUgqgQuo3Vm/9tpX9zI+ArkyUHZ3kuW9ADxT2G013y63A/xJvRJpshHa/8eFfxCKNUJNQYG3PcxMKMjAkhcK87qcWExDXMMBeQTVEaIOs+iHnG6kFinmChkvFKxG/b2QQWTuMwmKyjGp/e6X4n9dL6XIvyKROUkItykMkFVaHrDCyKAf5hTRIBGVy5FJzAQaI0EgOQhRiWrRVL/rwfn//l3S3t7yCH+80W/ujZmpsja2zTeaxXdZih6zNOkywO/bAHtmTc+88Oy/O69fomDPaWWE/4Lx9AgpQnN8=</latexit>

Figure 7.2: Phase discrimination game. A 2-particles state |Ψ〉LR, obtained projecting the
state |Ψ〉 of two IP in the chosen operational subspace, is sent in a box where a unitary operator
Uk applies either a phase φ1 or a phase φ2 to the state. The state ρout coming out of the box is
a classical mixture. The optimal POVM is performed in order to guess which phase has been
applied.

whose projection in the operational subspace spanned by BIP is

|ΨLR〉 =
1

NLR

(lr′|L ↓,R ↑〉+ ηl′r|L ↑,R ↓〉), (7.7)

with the normalization constant NLR =
√
|lr′|2 + |l′r|2. Notice that the resource (coherent)

state above is conditionally prepared depending on the spatial overlap of the particles [34]. A
non-zero coherence for this state can only stem from indistinguishability (l′r 6= 0). Let us send
|ΨLR〉 in a box where a unitary transformation Uk = eiĜφk (Ĝ is the generator of the transfor-
mation) applies one of the phases {φk}k=1,2 with a probability pk to the state (see Fig. 7.2). The
requirement is that Uk is a free (incoherent) operation, so Ĝ =

∑
στ ωστ |L σ,R τ〉〈L σ,R τ |.

The action of the box is

|Ψk
LR〉 = Uk|ΨLR〉

=
1

NLR

[lr′eiω↓↑φk |L ↓,R ↑〉+ ηl′reiω↑↓φk |L ↑,R ↓〉].
(7.8)

Due to our ignorance of which of the two phases has been applied, the state coming out of the
box is in the following classical mixture

ρout =
∑
k=1,2

pk|Ψk
LR〉〈Ψk

LR|. (7.9)

Physically, the effect of the box can be realized with Ĝ corresponding to the Hamiltonian of
two independent spins subject to localized magnetic fields Bk

L and Bk
R which randomly occur

with a probability pk.
The purpose now is to establish which phase has actually been applied. In other words, the
phase discrimination game translates in a state discrimination one. The two states |Ψ1

LR〉 and
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|Ψ2
LR〉 are in general not orthogonal: in order to discriminate them, a positive operator-valued

measure (POVM) [162, 16] has to be chosen. I look for a POVM described by a set of oper-
ators {Π̂1, Π̂2}, each of which is associated to an outcome of the measurement: if I obtain 1,
associated to the operator Π̂1, I conclude that the state coming of the box is |Ψ1

LR〉, if the result
is 2, associated to the operator Π̂2, the state is |Ψ2

LR〉. The optimal POVM can be obtained by
minimizing the probability of making an error in the discrimination, that is the probability of
obtaining the result associated to Π̂k when the state was |Ψk′

LR〉 with k′ 6= k. Such a probability
is [162, 163]

Perr = p1〈Ψ1
LR|Π̂2|Ψ1

LR〉+ p2〈Ψ2
LR|Π̂1|Ψ2

LR〉. (7.10)

Using the property
∑

k Π̂k = I [16], I can rewrite Eq. (7.10) as follows

Perr = p1 − Tr
[
(p1|Ψ1

LR〉〈Ψ1
LR| − p2|Ψ2

LR〉〈Ψ2
LR|)Π̂1

]
. (7.11)

The minimization of Perr is obtained when Π̂1 is the projector onto the positive eigenvector of
the operator ∆ = p1|Ψ1

LR〉〈Ψ1
LR| − p2|Ψ2

LR〉〈Ψ2
LR|. Choosing a rotated orthonormal basis |0〉

and |1〉 (with |0〉 slicing in half the angle between |Ψ1
LR〉 and |Ψ2

LR〉), I can write

|Ψ1
LR〉 = cos θ|0〉+ sin θ|1〉, |Ψ2

LR 〉 = cos θ|0〉 − sin θ|1〉. (7.12)

The positive eigenvalue of ∆ and the associated eigenvector are respectively

λ+ =
1

2
(p1 − p2 +

√
1− 4p1p2|〈Ψ1

LR|Ψ2
LR〉|2,

|+〉 =
1

N+

a(|Ψ1
LR〉+ |Ψ2

LR〉) + b(|Ψ1
LR〉 − |Ψ2

RL〉),
(7.13)

where N+ =
√

cos2 θ sin2 θ + [λ+(p1 − p2) cos2 θ]2, a = sin(θ)/2 and b = [λ+ − (p1 −
p2) cos2 θ]/(2 sin θ). The optimal POVM, dependent on the spatial overlap of the two spins,
is therefore {|+〉〈+|, I− |+〉〈+|} which gives the probability of error

Perr =
1

2

(
1−

√
1− 4p1p2|〈Ψ1

LR|Ψ2
LR〉|2

)

=
1

2
−
√

1

4
− p1p2

∣∣∣∣ |lr′|2eiω↓↑φ12 + |l′r|2eiω↑↓φ12

N 2
LR

∣∣∣∣2,
(7.14)

where φ12 = φ1 − φ2. The probability of error depends on the indistinguishability and, for the
chosen initial state, is independent of the statistics of particles. Our approach also allows us to
evidence the effects of particle statistics on the game efficiency starting from a different initial
state, as shown in the next section.
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�12
<latexit sha1_base64="o6/s6G4pKad022QFIlW9sEHczYU=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB4osaLzZZOccmef7tZIkeWvoIWKDtHyMRT8C45xAQlTjWZ2tbMTaCksuu6nU1pb39jcKm9Xdnb39g+qh0cdG8WGQ5tHMjK9gFmQIoQ2CpTQ0waYCiR0g9nNwu8+grEiCu9xrsFXbBKKseAMM+lhoKdimHiNdFituXU3B10lXkFqpEBrWP0ajCIeKwiRS2Zt33M1+gkzKLiEtDKILWjGZ2wC/YyGTIH1kzxwSs9iyzCiGgwVkuYi/N5ImLJ2roJsUjGc2mVvIf7n9WMcX/mJCHWMEPLFIRQS8kOWG5E1AXQkDCCyRXKgIqScGYYIRlDGeSbGWTWVrA9v+ftV0mnUvYzfXdSa10UzZXJCTsk58cglaZJb0iJtwokiT+SZvDip8+q8Oe8/oyWn2Dkmf+B8fAM2FJSw</latexit><latexit sha1_base64="o6/s6G4pKad022QFIlW9sEHczYU=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB4osaLzZZOccmef7tZIkeWvoIWKDtHyMRT8C45xAQlTjWZ2tbMTaCksuu6nU1pb39jcKm9Xdnb39g+qh0cdG8WGQ5tHMjK9gFmQIoQ2CpTQ0waYCiR0g9nNwu8+grEiCu9xrsFXbBKKseAMM+lhoKdimHiNdFituXU3B10lXkFqpEBrWP0ajCIeKwiRS2Zt33M1+gkzKLiEtDKILWjGZ2wC/YyGTIH1kzxwSs9iyzCiGgwVkuYi/N5ImLJ2roJsUjGc2mVvIf7n9WMcX/mJCHWMEPLFIRQS8kOWG5E1AXQkDCCyRXKgIqScGYYIRlDGeSbGWTWVrA9v+ftV0mnUvYzfXdSa10UzZXJCTsk58cglaZJb0iJtwokiT+SZvDip8+q8Oe8/oyWn2Dkmf+B8fAM2FJSw</latexit><latexit sha1_base64="o6/s6G4pKad022QFIlW9sEHczYU=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB4osaLzZZOccmef7tZIkeWvoIWKDtHyMRT8C45xAQlTjWZ2tbMTaCksuu6nU1pb39jcKm9Xdnb39g+qh0cdG8WGQ5tHMjK9gFmQIoQ2CpTQ0waYCiR0g9nNwu8+grEiCu9xrsFXbBKKseAMM+lhoKdimHiNdFituXU3B10lXkFqpEBrWP0ajCIeKwiRS2Zt33M1+gkzKLiEtDKILWjGZ2wC/YyGTIH1kzxwSs9iyzCiGgwVkuYi/N5ImLJ2roJsUjGc2mVvIf7n9WMcX/mJCHWMEPLFIRQS8kOWG5E1AXQkDCCyRXKgIqScGYYIRlDGeSbGWTWVrA9v+ftV0mnUvYzfXdSa10UzZXJCTsk58cglaZJb0iJtwokiT+SZvDip8+q8Oe8/oyWn2Dkmf+B8fAM2FJSw</latexit><latexit sha1_base64="o6/s6G4pKad022QFIlW9sEHczYU=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB4osaLzZZOccmef7tZIkeWvoIWKDtHyMRT8C45xAQlTjWZ2tbMTaCksuu6nU1pb39jcKm9Xdnb39g+qh0cdG8WGQ5tHMjK9gFmQIoQ2CpTQ0waYCiR0g9nNwu8+grEiCu9xrsFXbBKKseAMM+lhoKdimHiNdFituXU3B10lXkFqpEBrWP0ajCIeKwiRS2Zt33M1+gkzKLiEtDKILWjGZ2wC/YyGTIH1kzxwSs9iyzCiGgwVkuYi/N5ImLJ2roJsUjGc2mVvIf7n9WMcX/mJCHWMEPLFIRQS8kOWG5E1AXQkDCCyRXKgIqScGYYIRlDGeSbGWTWVrA9v+ftV0mnUvYzfXdSa10UzZXJCTsk58cglaZJb0iJtwokiT+SZvDip8+q8Oe8/oyWn2Dkmf+B8fAM2FJSw</latexit>

Perr
<latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit>

(a) (b)

l0
<latexit sha1_base64="4K41sPKL7MExQB24eeAOXRD6FH8=">AAAB9HicbVC7TsNAEDyHVwivACXNiQhBFdkICcoIGsqAyENKrOh82YRTzmfrbh0psvIHtFDRIVr+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YO2iRLNocUjGeluwAxIoaCFAiV0Yw0sDCR0gslN5nemoI2I1APOYvBDNlZiJDhDK93L00G15tbdHHSZeAWpkQLNQfWrP4x4EoJCLpkxPc+N0U+ZRsElzCv9xEDM+ISNoWepYiEYP82TzulJYhhGNAZNhaS5CL83UhYaMwsDOxkyfDSLXib+5/USHF35qVBxgqB4dgiFhPyQ4VrYCoAOhQZEliUHKhTlTDNE0IIyzq2Y2E4qtg9v8ftl0j6ve5bfXdQa10UzZXJEjskZ8cglaZBb0iQtwsmIPJFn8uJMnVfnzXn/GS05xc4h+QPn4xvV+5Gm</latexit><latexit sha1_base64="4K41sPKL7MExQB24eeAOXRD6FH8=">AAAB9HicbVC7TsNAEDyHVwivACXNiQhBFdkICcoIGsqAyENKrOh82YRTzmfrbh0psvIHtFDRIVr+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YO2iRLNocUjGeluwAxIoaCFAiV0Yw0sDCR0gslN5nemoI2I1APOYvBDNlZiJDhDK93L00G15tbdHHSZeAWpkQLNQfWrP4x4EoJCLpkxPc+N0U+ZRsElzCv9xEDM+ISNoWepYiEYP82TzulJYhhGNAZNhaS5CL83UhYaMwsDOxkyfDSLXib+5/USHF35qVBxgqB4dgiFhPyQ4VrYCoAOhQZEliUHKhTlTDNE0IIyzq2Y2E4qtg9v8ftl0j6ve5bfXdQa10UzZXJEjskZ8cglaZBb0iQtwsmIPJFn8uJMnVfnzXn/GS05xc4h+QPn4xvV+5Gm</latexit><latexit sha1_base64="4K41sPKL7MExQB24eeAOXRD6FH8=">AAAB9HicbVC7TsNAEDyHVwivACXNiQhBFdkICcoIGsqAyENKrOh82YRTzmfrbh0psvIHtFDRIVr+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YO2iRLNocUjGeluwAxIoaCFAiV0Yw0sDCR0gslN5nemoI2I1APOYvBDNlZiJDhDK93L00G15tbdHHSZeAWpkQLNQfWrP4x4EoJCLpkxPc+N0U+ZRsElzCv9xEDM+ISNoWepYiEYP82TzulJYhhGNAZNhaS5CL83UhYaMwsDOxkyfDSLXib+5/USHF35qVBxgqB4dgiFhPyQ4VrYCoAOhQZEliUHKhTlTDNE0IIyzq2Y2E4qtg9v8ftl0j6ve5bfXdQa10UzZXJEjskZ8cglaZBb0iQtwsmIPJFn8uJMnVfnzXn/GS05xc4h+QPn4xvV+5Gm</latexit><latexit sha1_base64="4K41sPKL7MExQB24eeAOXRD6FH8=">AAAB9HicbVC7TsNAEDyHVwivACXNiQhBFdkICcoIGsqAyENKrOh82YRTzmfrbh0psvIHtFDRIVr+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YO2iRLNocUjGeluwAxIoaCFAiV0Yw0sDCR0gslN5nemoI2I1APOYvBDNlZiJDhDK93L00G15tbdHHSZeAWpkQLNQfWrP4x4EoJCLpkxPc+N0U+ZRsElzCv9xEDM+ISNoWepYiEYP82TzulJYhhGNAZNhaS5CL83UhYaMwsDOxkyfDSLXib+5/USHF35qVBxgqB4dgiFhPyQ4VrYCoAOhQZEliUHKhTlTDNE0IIyzq2Y2E4qtg9v8ftl0j6ve5bfXdQa10UzZXJEjskZ8cglaZBb0iQtwsmIPJFn8uJMnVfnzXn/GS05xc4h+QPn4xvV+5Gm</latexit>

r
<latexit sha1_base64="SZ+7iVlRP7THtEkjPzjsOHA94xs=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTSw2rNr/s56CoJClIjBZrD6tdglHAbg0IumTH9wE8xnDONgktYVAbWQMr4lE2g76hiMZhwngdd0DNrGCY0BU2FpLkIvzfmLDZmFkduMmb4YJa9TPzP61scX4dzoVKLoHh2CIWE/JDhWrgGgI6EBkSWJQcqFOVMM0TQgjLOnWhdJRXXR7D8/SrpXNQDx1uXtcZN0UyZnJBTck4CckUa5I40SZtwAuSJPJMXz3qv3pv3/jNa8oqdY/IH3sc3fTGRew==</latexit><latexit sha1_base64="SZ+7iVlRP7THtEkjPzjsOHA94xs=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTSw2rNr/s56CoJClIjBZrD6tdglHAbg0IumTH9wE8xnDONgktYVAbWQMr4lE2g76hiMZhwngdd0DNrGCY0BU2FpLkIvzfmLDZmFkduMmb4YJa9TPzP61scX4dzoVKLoHh2CIWE/JDhWrgGgI6EBkSWJQcqFOVMM0TQgjLOnWhdJRXXR7D8/SrpXNQDx1uXtcZN0UyZnJBTck4CckUa5I40SZtwAuSJPJMXz3qv3pv3/jNa8oqdY/IH3sc3fTGRew==</latexit><latexit sha1_base64="SZ+7iVlRP7THtEkjPzjsOHA94xs=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTSw2rNr/s56CoJClIjBZrD6tdglHAbg0IumTH9wE8xnDONgktYVAbWQMr4lE2g76hiMZhwngdd0DNrGCY0BU2FpLkIvzfmLDZmFkduMmb4YJa9TPzP61scX4dzoVKLoHh2CIWE/JDhWrgGgI6EBkSWJQcqFOVMM0TQgjLOnWhdJRXXR7D8/SrpXNQDx1uXtcZN0UyZnJBTck4CckUa5I40SZtwAuSJPJMXz3qv3pv3/jNa8oqdY/IH3sc3fTGRew==</latexit><latexit sha1_base64="SZ+7iVlRP7THtEkjPzjsOHA94xs=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTSw2rNr/s56CoJClIjBZrD6tdglHAbg0IumTH9wE8xnDONgktYVAbWQMr4lE2g76hiMZhwngdd0DNrGCY0BU2FpLkIvzfmLDZmFkduMmb4YJa9TPzP61scX4dzoVKLoHh2CIWE/JDhWrgGgI6EBkSWJQcqFOVMM0TQgjLOnWhdJRXXR7D8/SrpXNQDx1uXtcZN0UyZnJBTck4CckUa5I40SZtwAuSJPJMXz3qv3pv3/jNa8oqdY/IH3sc3fTGRew==</latexit>

Perr
<latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit><latexit sha1_base64="kTEXCbTcOyMH3oo1t0bLG3DmaIk=">AAACBHicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CEllnW+bMIp54fu1pEiyy1fQQsVHaLlPyj4F87GBSRMNZrZ1c5OkEih0XE+rZXVtfWNzdpWfXtnd2/fPjjs6jhVHDo8lrHqB0yDFBF0UKCEfqKAhYGEXjC9KfzeDJQWcXSP8wS8kE0iMRacoZF822772TBk+KDCDJTKc99uOE2nBF0mbkUapELbt7+Go5inIUTIJdN64DoJehlTKLiEvD5MNSSMT9kEBoZGLATtZWXynJ6mmmFME1BUSFqK8HsjY6HW8zAwk0VIvegV4n/eIMXxlZeJKEkRIl4cQiGhPKS5EqYSoCOhAJEVyYGKiHKmGCIoQRnnRkxNR3XTh7v4/TLpnjddw+8uGq3rqpkaOSYn5Iy45JK0yC1pkw7hZEaeyDN5sR6tV+vNev8ZXbGqnSPyB9bHNzphmJ0=</latexit>

Pr
ob

ab
ili

ty
 o

f e
rr

or

P̃err
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Perr

Figure 7.3: Probability of error in the phase discrimination game. (a): Probability of error

in function of the phase difference φ12, with p1 = 1/3, |l|2 = |r′|2 =
1

2
, and ω↓↑ − ω↑↓ =

1. The orange dashed line corresponds to Perr (Eq. 7.14) when there is no overlap (l′r = 0)
or, analogously, to the case with distinguishable particles. The blue one corresponds to P̃err

(Eq. 7.15), i.e. to the case of spatial overlap with |l′|2 = |r|2 =
1

2
. (b): Contour plot of Perr

(Eq. 7.14) in function of r and l′, with φ12 = π, p1 = 1/3, |l|2 = |r′|2 =
1

2
, and ω↓↑ − ω↑↓ = 1.

Let me fix |l|2 = |r′|2 = 1/2: when the two particles spatially overlap with |l′|2 = |r|2 =
1

2
,

Eq. (7.14) reduces to

P̃err =
1

2

(
1−

√
1− 4p1p2 cos2

[(
ω↓↑ − ω↑↓

2

)
φ12

])
, (7.15)

which is zero when
(
ω↓↑ − ω↑↓

2

)
φ12 = π/2. The behavior of Perr is displayed in Fig. 7.3.

In particular in Fig.7.3 (a) I show, as a function of the phase difference, P̃err (blue solid line)
and the probability of error Perr for spatially separated particles (l′, r = 0, orange dashed line).
This latter case is analogous to that of non-identical particles. Among the two, P̃err is always
smaller. For non-overlapping spins, being the state incoherent, the best guess is to suppose that
the most probable phase φ2 has been applied. The optimal probability of success is Psucc = p2

and so Perr = 1 − Psucc = p1 (see orange dashed line in Fig. 7.3(a)). In Fig. 7.3 (b) a contour
plot of Perr in terms of l′ and r is shown, in the case φ12 = π. The optimal choice to minimize
Perr is to have two overlapping identical spins with |l′|2 ∼ |r|2 ∼ 1/2.
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Distinguishable particles
Indistinguishable fermions

Indistinguishable bosons

Figure 7.4: Role of particle statistics in the phase discrimination game. Probability of error
in function of φ12 with |l|2 = |r′|2 = 1/2 for identical particles initially prepared in the state
of Eq.(7.16): distinguishable (blue solid line) and indistinguishable with |l′|2 = |r|2 = 1/2
(orange-dashed line for bosons and green dotted line for fermions), with a = b, ω↓↑ = 3,
ω↑↓ = 2 and ω↓↓ = 1.

7.4.1 Role of particle-statistics

The phase discrimination game, within the elementary state of Eq.(7.6), is independent of parti-
cle statistics. However, for a generic state this characteristic is not maintained. As an example,
let us consider the following state

|Φ〉 =
1

NΦ
|ψ ↓, ψ′s〉, (7.16)

where |s〉 = a |↑〉 + b |↓〉, with a, b ∈ R, and NΦ the normalization constant. Projecting |Φ〉 in
the operational subspace spanned by the basis BIP = {|Lσ,Rτ〉 , σ, τ =↓, ↑}, I obtain

|ΦLR〉 =
1

NΦ
LR

(|L ↓,Rs′〉+ aηl′r |L ↑,R ↓〉), (7.17)

where |s′〉 = alr′ |↑〉 + b(lr′ + ηl′r) |↓〉, NΦ
LR =

√
a2(|lr′|2 + |l′r|2) + b2|lr′ + ηl′r|2. The

state of Eq. (7.16) is coherent in BIP (see Eq. (7.17)) and in the chosen framework of spatially
localized measurements, a contribution to the coherence due only to indistinguishability can
be identified when particles spatially overlap (l′r 6= 0). The latter indistinguishability-enabled
contribution plays a statistics-dependent operational role in a phase discrimination game. Let
us send |ΦLR〉 in the previously introduced box, in which a unitary transformation Uk = eiĜφk

applies to the state one of the phases {φk}k=1,2 with a probability pk and Ĝ is the generator of
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Figure 7.5: Role of particle statistics in the phase discrimination game. Three-dimensional
(3D) plot of the probability of error with |l|2 = |r′|2 = 1/2 for identical particles initially
prepared in the state of Eq.(7.16): distinguishable (blue) and indistinguishable with |l′|2 =
|r|2 = 1/2 (orange for bosons and green for fermions) in function of φ12 and of ω↓↓, with
|l|2 = |r′|2 = 1/2, a = b, ω↓↑ = 3, ω↑↓ = 2.

the transformation previously used. I thus obtain

|Φk
LR〉 = Uk|ΦLR〉

=
1

NΦ
LR

[a(lr′eiω↓↑φk |L ↓,R ↑〉+ ηl′reiω↑↓φk |L ↑,R ↓〉)

+ b(lr′ + ηl′r)eiω↓↓φk |L ↓,R ↓〉].

(7.18)

When the state comes out of the box, it is in a classical mixture

ρoutΦ =
∑
k=1,2

pk|Φk
LR〉〈Φk

LR|, (7.19)

which represents our ignorance of which phase has been applied to the state. Using the first line
of Eq. (7.14), in which |Ψi

LR〉 is substituted by |Φi
LR〉, the probability of making an error in the

discrimination game is now

Perr =
1

2

1−
√

1− 4p1p2

∣∣∣∣ 1

N 2
RL

[a2(|lr′|2eiω↓↑φ12 + |l′r|2eiω↑↓φ12) + b2|lr′ + ηl′r|2eiω↓↓φ12 ]

∣∣∣∣2
 ,

(7.20)
where φ12 = φ1 − φ2. From Figs. 7.4 and 7.5 it is easy to see that for certain ranges of the
parameters φ12 and ωστ (σ, τ =↓, ↑), the probability of error using indistinguishable particles
is considerably smaller than the one associated to distinguishable ones. In particular, in these
ranges, fermions are more advantageous than bosons.
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Figure 7.6: Sketch of the experimental proposal.

7.5 Sketch of the experimental proposal

An experimental proposal has been presented by the research group of Professor Guan-Can Guo
of the University of Science and Technology of China, in order to characterize coherence of IP
states due to their indistinguishability and to operationally use it to implement phase discrimi-
nation protocols. In Figure 7.6 the designed setup is presented. In particular, in the block (a) the
setup for the generation of IP states with a sLOCC-tunable spatial indistinguishability in two
spatially separated regions L andR is designed and in the block (b) the sketch of the apparatus
implementing the phase discrimination game is proposed, where a sequence of non-polarizing
beam splitter (BS) and of two movable shutters determine the classical probabilities of applying
or not a phase on the states obtained in the block (a). A final part in block (b) implements the
POVM measurements. The experiment is in progress at the CAS Key Laboratory of Quantum
Information.

7.6 Discussions

In this Chapter I have defined the coherence of a couple of two-level IP in the framework of
spatially localized operations and classical communication (sLOCC). I have shown that while
independently prepared distinguishable particles are incoherent under local operations, the anal-
ogous configuration with indistinguishable particles can exhibit quantum coherence. There-
fore, the IP spatial indistinguishability is a source of coherence. One can naturally identify (in
the sLOCC framework) the contribution to coherence exclusively due to the spatial overlap of
single-particle wave functions. The incoherent operations, as the CNOT gate, known for NIP
particles are straightforwardly generalized to systems of IP.
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I have then applied the above results in the context of quantum metrology. In particular,
I have presented a phase discrimination protocol, for which I can explicitly demonstrate the
operational advantage of using indistinguishable rather than distinguishable particles. This
significantly reduces the error probability of guessing the phase by means of the optimal POVM.
Moreover, I have shown that:particle statistics affects coherence and the efficiency in a phase-

discrimination game.
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Chapter 8
Deformations of identical particle states

8.1 Introduction

In this Chapter I will introduce, for both pure and mixed states, a class of transformations of
quantum systems, that I name deformations. In systems of nonidentical particles (NIP), a global
transformation, where one acts in the same way on each part of the system, is represented by a
unitary operator. An example of this is a block space translation of the system. If, instead, one
acts differently on each part of the systems, by changing the relative relations among parts, I
will speak about a NIP deformation of the system and it continues to be represented by a unitary
operator.

On the other hand, the situation completely changes when one considers identical particles
(IP). In fact, while global transformations of the system remain always represented by unitary
operators, I will show that IP deformations are represented by nonunitary operators, even if the
action on each single part of the system remains unitary.

I finally will present some physical consequences of the IP-deformations on some IP states,
which are the generalization of the NIP Werner and Bell diagonal states for a varying degree of
indistinguishability (introduced in Section 3.5 of Chapter 3).

8.2 Elementary deformation of pure states

Let me start by considering a system ofN NIP with the single-particle orthonormal basis {|k〉},
where k indicates a given set of eigenvalues of single-particle commuting observables. Consider
the N -particles orthonormal basis {|ϕ(N)

i 〉 = |1i〉 ⊗ |2i〉 ⊗ ... ⊗ |Ni〉}NIP , where the position
of each single-particle state in the global state acts as a particle physical label. The system is
prepared in the state |Φ(N)〉 =

∑
i φ

i |ϕ(N)
i 〉 in which φi is the probability amplitude of finding

the system in the state |ϕ(N)〉.

99



Consider a class of N -particle transformations {D(N)
a1,a2,...,aN}, where the subscripts {ai}

represent physical parameters characterizing the transformation. These operations act in general
differently unitarily on each single-particle state as follows

D(N)
a1,a2,...,aN

|Φ(N)〉 =
∑
i

φi |U (1)
a1

1i〉 ⊗ |U (1)
a2

2i〉 ⊗ ...⊗ |U (1)
aN
Ni〉 , (8.1)

where in general an 6= am and U (1)
an represents the unitary action of U (N)

a1,a2,...,aN in the single-
particle subspace. I call the operations defined in Eq.(8.1) elementary deformations. As an
example, let me consider an operation in which each particle is translated in space for a differ-
ent vectorial quantity so that the system is "spatially deformed". If in Eq. (8.1), the 1-particle
unitary operations U (1)

ai are linear combinations of different unitary operations, Eq. (8.1) gener-
alizes to

D(N) =
∑
~a

c~aD
(N)
~a , (8.2)

with ~a = a1, ..., aN and c~a arbitrary coefficients, constitute a group, in general non unitary
((D(N))† 6= D(N)−1). Composed deformations C(N) on a N -particle system can be obtained by
sequentially performing different deformations of the form of Eq. 8.1 (e.g. a rotation followed
by a reflection), as follows

C(N) =
∏
~a

D
(N)
~a . (8.3)

Introducing the notation D(N)
a1,...,aN | · 〉 := | · 〉D, Eq. (8.1) can be written in the following com-

pact form |Φ(N)〉D =
∑

i φ
i |ϕ(N)

i 〉D. The basis of the deformed elementary states {|ϕ(N)〉D} is
orthonormal and |Φ(N)〉D is normalized. Finally the probability to find |Φ(N)〉D in |ϕ(N)

i 〉D is
always φi. In other words, for NIP a deformation of this type is a unitary transformation.

On the other hand, consider now a system of distinguishable IP. Eq. (8.1) becomes

D(N)
a1,...,aN

|Φ(N)〉 =
∑
i

φi |U (1)
a1

1i, U
(1)
a2

2i, ...〉 , (8.4)

where each N -particle elementary state in the linear combination is written in the no-label
formalism (see Chapter 2), thus it is an overall object which cannot be decomposed in terms of
tensor products.

Take, as an example, the case N = 2: the scalar product 〈1j, 2j|1i, 2i〉 = δij (see Section
2.2 of Chapter 2). After a deformation, the scalar product of the i-th deformed state with the
j-th one is

〈U (1)
a1

1j, U
(1)
a2

2j|U (1)
a1

1i, U
(1)
a2

2i〉 = δij + 〈1j|U (1)†
a1

U (1)
a2
|2i〉〈2j|U (1)†

a2
U (1)
a1
|1i〉. (8.5)

The presence of the second term in the RHS of Eq. (8.5) makes the difference with the analo-
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gous NIP case. This term is in general different from zero, thus D(N)
a1,...,aN does not preserves the

scalar products: in other words, the deformation is not in general a unitary operation for IP.
The introduced class of N -particle deformations is unitary for NIP and not unitary for IP.

From now on, I will consider IP systems.
The set of the deformed N -particles vectors {|ϕ(N)

i 〉D} remains complete but, in general, non-
orthonormal and the state |Φ(N)〉D results unnormalized. After a deformation, φi are not any-
more the probability to find |Φ(N)〉D in |ϕ(N)

i 〉D. In order to obtain probability amplitudes one
must normalize both the deformed state and the deformed basis. Thus, considering the follow-
ing scalar product

D〈ϕ(N)
i |Φ(N)〉D =

∑
j

aijφ
j = φi, (8.6)

where I introduced the coefficient aij = D〈ϕ(N)
i |ϕ(N)

j 〉D, one has D〈Φ(N)|Φ(N)〉D =
∑

i φ
i∗φi :=

N and D〈ϕ(N)
i |ϕ(N)

i 〉D = Ni. The normalized deformed elementary states are |ϕ̄(N)
i 〉D =

|ϕ(N)
i 〉D /

√Ni and in this basis the normalized deformed state |Φ̄(N)〉D is

|Φ̄(N)〉D =
∑
i

φi
√Ni√
N
|ϕ̄(N)
i 〉D . (8.7)

By using Eqs. (8.6) and (8.7), one obtains that the probability amplitude of finding the state
|Φ̄(N)〉D in the state |ϕ̄(N)

i 〉D is

φ̄i = D〈ϕ̄(N)
i |Φ̄(N)〉D =

∑
j

aij
φj√NNi

=
φi√NNi

.

(8.8)

If the transformed complete basis {|ϕ̄(N)
j 〉D} is orthogonal, i.e. D〈ϕ̄(N)

i |ϕ̄(N)
j 〉D = δij , the

probability amplitudes are φ̄i = φi
√Ni/

√
N .

8.3 Elementary deformation of mixed states

The previous results can be extended to the case of a generic mixed N -IP mixed state

ρ(N) =
∑
ij

wij |ϕ(N)
i 〉 〈ϕ(N)

j | , (8.9)
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written in the orthonormal basis {|ϕi〉}. Applying an N -particle deformation D
(N)
a1,...,aN , one

obtains the following normalized deformed state

ρ̄
(N)
D =

∑
ij

wij
√
NiNj

Tr[ρ
(N)
D ]

|ϕ̄(N)
i 〉D 〈ϕ̄

(N)
j | . (8.10)

expressed in terms of the elementary normalized states. The population of each state |ϕ̄(N)
i 〉D

becomes

pi = D〈ϕ̄(N)
i |ρ̄(N)

D |ϕ̄
(N)
i 〉D =

∑
kj

wkjaikaji

Tr[ρ
(N)
D ] Ni

=
wii

Tr[ρ
(N)
D ] Ni

,

(8.11)

where, as in the previous section aij =D 〈ϕ(N)
i |ϕ(N)

j 〉D and wii =
∑

kj w
kjaikaji. If the com-

plete set of states {|ϕ̄(N)
i 〉D} is orthogonal, populations are pi =

wiiNi
Tr[ρ

(N)
D ]

.

From Eqs. (8.10) and (8.11), it emerges that the deformation can be obtained by applying a
convex quasi-linear map [164]. In fact, given a convex set of density matrices ρi and pi ∈ [0, 1],
with

∑
i pi = 1, and the state ρ =

∑
i piρi, the deformation map D acts as

D[ρ] =
DρD†

Tr[DD†ρ]
=
∑
i

p̄iD[ρi], (8.12)

with

p̄i = pi
Tr[DD†ρi]

Tr[DD†ρ]
and D[ρi] =

DρiD
†

Tr[D†Dρi]
. (8.13)

where D ≡ D~a (being ~a = a1, ..., aN the set of physical parameters associated to the deforma-
tion).

8.4 Applications

In this section, I will treat the effects of the spatial deformations of two paradigmatic states, the
Werner and the Bell-diagonal states, generalizing them to the case of indistinguishable particles.
Finally I will shown how deformations influence the internal energy variation of IP systems.
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8.4.1 Deformation of the Werner state

Consider two spatially separated identical qubits, one in the spatial state |ψ〉 and the other one
in |ψ′〉, prepared in the Werner state W [22]

W = (1− p) |i〉 〈i|+ p

4
I, (8.14)

where |i〉 is one of the four orthonormal Bell states

|2±〉 =
1√
2

(|ψ ↓, ψ′ ↓〉 ± |ψ ↑, ψ′ ↑〉),

|1±〉 =
1√
2

(|ψ ↓, ψ′ ↑〉 ± |ψ ↑, ψ′ ↓〉).
(8.15)

and I =
∑

i=1±,2±
|i〉 〈i| is the identity operator. Physically, this state describes the presence,

with a probability p, of a white noise [17, 16], represented by the term I/4, in the initial prepa-
ration of a Bell state |i〉. Let me now apply a deformation D(2)

ψ,ψ′ , acting only on the spatial
degrees of freedom ψ and ψ′, which modifies the shape of the 1-particle wave functions such
that |U (1)

ψ ψ〉 := |ψ̃〉 and |U (1)
ψ′ ψ

′〉 := |ψ̃′〉 spatially overlap, as follows

|ψσ, ψ′τ〉D = |(U (1)
ψ ψ)σ, (U

(1)
ψ′ ψ

′)τ〉 = |ψ̃σ, ψ̃′τ〉 . (8.16)

If |ψ̃〉 and |ψ̃′〉 are not orthogonal, the set {|i〉D} of the deformed Bell states becomes un-
normalized but it remains orthogonal. I now define the deformed IP-Bell states, that is the
generalization to IP, for any spatial overlap of the 1-particle wave functions, of the Bell states
for distinguishable particles of Eq. (8.15), as

|2̄±〉D :=
1√

2N2±

(|ψ ↓, ψ′ ↓〉D ± |ψ ↑, ψ′ ↑〉D),

|1̄±〉D :=
1√

2N1±

(|ψ ↓, ψ′ ↑〉D ± |ψ ↑, ψ′ ↓〉D),
(8.17)

with N2± = N1+ = (1 + η|〈ψ̃|ψ̃′〉|2) and N1− = (1− η|〈ψ̃|ψ̃′〉|2).
Deforming the state of Eq. (8.14) as D(2)

ψ,ψ′WD
(2)†
ψ,ψ′ , I define the deformed IP-Werner state as

W̄D :=
1

N

(1− p)Ni |̄i〉D 〈̄i|+
p

4

∑
k=1±,2±

Nk |k̄〉D 〈k̄|

 , (8.18)

where N is such that Tr[W̄D] = 1 and |̄i〉D are the IP-Bell states of Eq. (8.17). The state W̄D

reduces to the standard Werner state for NIP when there is no spatial overlap between particles
or the shifted single-particle wavefunctions are orthogonal. The state W̄D can be physically
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obtained after the action of a depolarizing channel on the i-th IP-Bell state [69].

The deformation not only modifies the population (1 − p)Ni of the pure deformed state
|̄i〉D that we want to prepare, but also influences the effect of the environment on the sys-
tem: in fact, in contrast to what happens with the Werner state for distinguishable particles,
ID =

∑
k=1±,2±

Nk |k̄〉D 〈k̄| does not have the properties of the identity operator,i.e. acting on
a two-particle state, it does not leave it unchanged. As a result, ID is not a white noise as for
the standard Werner state of Eq. (8.14), but a coloured one. As shown in Chapter 6, spatial
deformations of the Werner state, modifying the degree of spatial indistinguishability of par-
ticles (see Section 3.5 of Chapter 3), determine a noise-free nonlocal quantum entanglement
preparation.

8.4.2 Decoupling induced by deformations

The previous theory of spatial deformations gives the opportunity to recover, in a formal way,
some physical behaviours of IP quantum systems as function of the continuous variation of the
spatial indistinguishability. I shall present an example.

Consider two spatially separated identical qubits, one in the spatial state |ψ〉 and the other
one in |ψ′〉 and let me prepare them in the Bell-diagonal state

ρ =
∑

i=1±,2±

pi |i〉 〈i| , (8.19)

where |i〉 is one of the four orthonormal Bell states of Eq. (8.15) and pi is the probability that
the system occupies the i-th Bell state, with

∑
i p

i = 1.
Let me now apply a 2-particle spatial deformation on the system such that the deformed

1-particle wave functions |ψ̃〉 and |ψ̃′〉 spatially overlap. One thus obtains the IP Bell-diagonal

state, that is the generalization to IP, for any spatial overlap of the 1-particle wave functions, of
the Eq. (8.19), whose expression is

ρ̄D =
1

N
∑

i=1±,2±

piNi |̄i〉D 〈̄i| , (8.20)

where

N2± = N1+ = (1 + η|〈ψ̃|ψ̃′〉|2),

N1− = (1− η|〈ψ̃|ψ̃′〉|2)

N =
∑
i

piNi
(8.21)
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and |̄i〉D are the IP-Bell states of Eq. 8.17. The population of each state |̄i〉D is

p̄i = piNi/N (8.22)

with
∑

i p̄
i = 1. The state of Eq. (8.20) reduces to the standard one for distinguishable particles

of Eq. (8.19) when particles are spatially separated.

Now I will show an interesting aspect consequence of deformations, that is how some states
"decouple" from the physical processes because of the fermionic and bosonic statistics. The
state of Eq. (8.20) takes into account the bosonic and fermionic behaviour of the system: in
fact, the population of each of the four IP-Bell states satisfies all the requirements of the particle
statistics, as continuous functions of the indistinguishability. In fact, for bosons (η = 1), when
the deformed 1-particle wave functions are such that |ψ̃〉 −→ |ψ̃′〉, one physically expects that
the Bell state |1̄−〉 of Eq. (8.17) tends to decouple from all the physical processes, since it
becomes an antisymmetric combination under exchange of the two particles. Consistently with
that, in the classical mixture of Eq. (8.20), its population is such that it continuously decreases
increasing the spatial overlap of the deformed spatial wave functions, up to the limit in which

lim
ψ̃−→ψ̃′

p̄1− = 0, (8.23)

since N1− −→ 0 (Eq.(8.22)).

Analogously, for fermions (η = −1), in the same limit the states |2̄±〉 and |1̄+〉 are physically
not allowed: in fact, the first two ones are excluded for the Pauli exclusion principle, containing
fermions with the same pseudospin, and the latter becomes a symmetric combination under
exchange of the two fermions. Consistently with that, their populations in the IP-Bell diagonal
state decrease, increasing the spatial overlap of the deformed spatial wavefunctions, up to the
limit in which

lim
ψ̃−→ψ̃′

p̄k = 0, k = 1+, 2±, (8.24)

since N1+ −→ 0 (Eq.(8.22)).

All the four Bell states exist for both bosons and fermions but, incresing their spatial overlap
with a deformation, the probability amplitudes of occupying some of them decreases up to
zero1. Such a type of decoupling is ordinarily imposed, when one considers systems of bosons
or fermions, as an initial condition. This decoupling can be followed, by means of sLOCC, as
function of the continuously variable spatial indistinguishability (introduced in Chapter 3). In
fact, suppose that the 1-particle states appearing in the state of Eq. (8.20) have the following

1This point of view recalls the way in which Quantum Field Theory treats the longitudinal mode of massive
photons, when the mass goes to zero. It describes the absence of this third degree of freedom showing that it exists,
but the probability amplitude of emitting a photon with the longitudinal mode tends to zero in the zero mass limit
[165, 166].
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Figure 8.1: Von Neumann Entropy of ρLR for both bosons (S(ρLR)b, blue curve) and fermions
(S(ρLR)f , orange curve), and degree of spatial indistinguishability (I, green curve) in function
of the probability amplitude l, when pi = 1/4, ∀i and r′ = l.

specific form
|ψ̃〉 = l |L〉+ r |R〉 , |ψ̃′〉 = l′ |L〉+ r′ |R〉 , (8.25)

and project Eq. (8.20) in the subspace spanned by BLR = {|Lσ,Rτ〉 ; σ, τ =↓, ↑}, where
|L〉 and |R〉 are specific quantum states peaked in correspondence of two spatially separated
regions L and R, obtaining ρLR = Π

(2)
LRρΠ

(2)
LR/Tr(Π

(2)
LRρ), where we have used the projector

Π
(2)
LR =

∑
σ,τ=↑,↓ |Lσ,Rτ〉 〈Lσ,Rτ |. I recall the degree of spatial indistinguishability, introduced

in Eq.(3.15) of Section 3.5

I = −
2∑
i

p
(i)
LR log2 p

(i)
LR, (8.26)

where p(1)
LR = |lr′|2/(|lr′|2 + |l′r|2) and p

(2)
LR = 1 − p

(1)
LR. By assuming that the probability

amplitude of finding |ψ̃〉 in |L〉 is always equal to the one to find |ψ̃′〉 in |R〉, i.e. r′ = l,
the behaviour of I is shown by the green curve of Figure 8.1. When l is 0 or 1, particles do
not spatially overlap, so their indistinguishability is null. It reaches the maximum value when
l = 1/

√
2.

The von Neumann entropy of ρLR is S(ρLR) = −∑i λ
LR
i log2 λ

LR
i , where λLR

i are the eigen-
values of ρLR, and in Figure8.1 its behaviour is shown in function of the probability amplitude l
for both bosons (blue curve) and fermions (orange curve), in the particular case in which r′ = l

and p̄i = 1/4, ∀i. The two curves physically represent how the von Neumann entropy behaves
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Bosons

Fermions

Figure 8.2: Von Neumann Entropy of ρLR in function of the degree of spatial indistinguishability
I for bosons (blue curve) and fermions (orange curve) when pi = 1/4, ∀i and r′ = l.

by changing the spatial indistinguishability of |ψ̃〉 and |ψ̃′〉. When l is 0 or 1, particles in the two
1-particle states |ψ̃〉 and |ψ̃′〉 are completely spatially distinguishable (ILR = 0) and ρ̄D of Eq.
(8.20) is the maximally mixed state: the 2-particle system occupies with the same probability
the four Bell states and S(ρLR) joints for both bosons and fermions, as expected, the maximal
entropy for a system of two qubits, i.e. S(ρLR) = 2 (Holevo bound [167]). Increasing l, the
spatial overlap of |ψ̃〉 and |ψ̃′〉 increases and some of the deformed IP-Bell states tend to become
unphysical. For bosons only three generalized Bell states tend be populated for |ψ̃〉 −→ |ψ̃′〉
(Eq. (8.23)): ILR −→ 1 and the system behaves like a qutrit, in fact S(ρLR) joints the maximal
value achievable for a qutrit, i.e. S(ρLR) = log2 3 (Holevo bound [167]), as shown by the blue
curve in Fig.8.1. On the other hand, for fermions the state of Eq. (8.20) tends to the pure state
|1−〉 〈1−| (Eq. (8.24)) and S(ρLR) reaches zero (orange curve in Fig.8.1). When the spatial
indistinguishability I (green curve in Fig.8.1) reaches 1, i.e. for l = 1/

√
2, entropy is minimum

for both bosons and fermions . Finally, when the wave functions of the two IP tend to become
exactly the same, the initial 2-qubit mixed state is analogous to the maximally mixed state of a
qutrit, for bosons, and to a 2-qubit pure state, for fermions. In Figure 8.2 the behaviour of von
Neumann entropy of ρLR as a function of the degree of spatial indistinguishability ILR := I for
both bosons and fermions is shown.

The chosen sLOCC framework gives also the possibility to give a measure of the mutual
information [16] for the IP-Bell diagonal state. I recall that the quantum mutual information
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Fermions

Bosons

Figure 8.3: sLOCC-based Mutual information for the IP Bell-diagonal state of Eq. (8.20) when
pi = 1/4 ∀i in function of the degree of IP spatial indistinguishability.

expresses how much uncertainty one has about a composite system, expressed by its von Neu-
mann, by looking at all the system, with respect to the uncertainty that one has by looking at
the subsystems. Or differently formulated: quantum mutual information of a bipartite system is
the average information which one obtains about a subsystem after a measurement performed
on the other subsystem [16]. The mutual information for the IP Bell-diagonal state is

I(ρL; ρR) = S(ρL) + S(ρR)− S(ρLR) (8.27)

where ρL = TrR(ρLR) and ρR = TrL(ρLR) are the 1-particle reduced density matrices localized
in L andR respectively.

Thanks to the sLOCC framework, also initially overlapping IP become addressable in sepa-
rate locations and mutual information can be directly linked to their spatial indistinguishability
linked to the initial spatial overlap.

The behaviour of I(ρL; ρR) in function of the degree of spatial indistinguishability is shown
in Figure 8.3. For both bosons and fermions, the mutual information is zero when I is zero. In
fact, in this case, from Eq. (8.22) one sees that the populations of the for Bell states are p̄i = pi =

1/4, ∀i: a Bell diagonal state for distinguishable particles is separable when all the population
are less than 1/2. Therefore the IP-Bell diagonal state does not present quantum correlations
and a measure on L does not give me any information about the system inR. By increasing the
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spatial indistinguishability, on the other hand, correlations between the overlapping particles
arise, increasing the value of the mutual information. For fermions it reaches the maximum
value, since the system occupies only the maximally entangled IP-Bell state |1−〉.

8.4.3 Quantum thermodynamical first principle for identical particles

Operations on a quantum system can have different effects, e.g. either changes in the energy
spectrum or in the energy eigenvalues or both. Let me consider for example a spin 1/2 in null
magnetic field: by switching on the field, changes are in the eigenvalues, not in the eigenstates.
On the other hand, if we consider the rotation along x of a spin 1/2 along z, the eigenvalues
are always ±1/2 but the eigenstates are different. Finally, a double-well potential with a finite
central barrier presents changes on both energy eigenvalues and eigenstates by changing the
barrier’s height.

Suppose to have a system of two spatially nonoverlapping IP, whose hamiltonian is H =∑
i ε
i |ϕ(2)

i 〉 〈ϕ(2)
i |, where εi and |ϕ(2)

i 〉 are the energy eigenvalues and the 2-particle eigenvec-
tors, respectively. The system is in the two-particle mixed state ρ(2) =

∑
iw

i |ϕ(2)
i 〉 〈ϕ(2)

i |. I now
suppose to deform adiabatically the system in such a way that at the end the Hamiltonian has
the most general form HD =

∑
i ε
i
DNi |ϕ̄(2)

i 〉D 〈ϕ̄
(2)
i |, where the new energy eigenvalues have a

contribution εiD due to the changes in the old eigenvalues and Ni due to the deformation of the
eigenstates. |ϕ̄(2)

i 〉D are the normalized deformed states, following the notation introduced in
Section 8.2. The states {|ϕ̄(2)

i 〉D} are supposed orthonormal, as a result they remain eigenstates
of the deformed hamiltonian. According to the adiabatic theorem, the system will be in the

deformed state ρ̄(2)
D =

∑
i p

i |ϕ̄(N)
i 〉D 〈ϕ̄

(N)
i |, where pi =

wiNi
N and N =

∑
iw

iNi: in other
words, it remains in a classical mixture of the eigenstates of the hamiltonian of the system after
the transformation. The internal energy of the system is U = Tr[ρ̄

(2)
D HD] = piε

i
DNi. From the

expression of U I have,

dU =
∑
i

εiDw
iNi
N

(
2dNi −

Ni
N
∑
j

wjdNj
)

︸ ︷︷ ︸
A

−
∑
i

εiDw
i(Ni)2

N 2

∑
j

Njdwj︸ ︷︷ ︸
B

+
∑
i

(Ni)2

N (εiDdw
i + widεiD)︸ ︷︷ ︸

C

).

(8.28)

The A and B terms are intrinsically linked to the identity of particles. In fact, if particles
are nonidentical one has that Ni = 1 and N =

∑
iw

i = 1. As a result, dNi = 0 and
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∑
j dw

i = d
∑

j w
j = 0 (in other words, the sum of the variations of the populations wi is

1, since for NIP the deformation is unitary), therefore only the C term is present, becoming
dU =

∑
i(ε

idwi + widεi), as expected.
From Eq. (8.28) it results that is present a further contribution to the internal energy variation

due only to the indistinguishability.

8.5 Discussions

In this Chapter, I presented a class of operations, called deformations which are always unitary
for NIP, while can be non unitary for IP depending on their spatial configuration. I have then
presented some applications showing the effects of deformations on paradigmatic states, that is
the Werner and Bell-diagonal states. It emerged that the white noise of Werner state becomes a
coloured noise when particles becomes indistinguishable; in the case of the Bell diagonal state,
one sees that, as a consequence of the deformations, some of the Bell states decouple from
the rest of the system, not anymore contributing to physical processes. Finally, I have shown
that IP indistinguishability affects the first principle of quantum thermodynamics, introducing a
statistics-dependent variation of the internal energy of a deformed state.
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Chapter 9
Conclusions

Quantum identical particles (IP) have always attracted interest not only for their fundamental
differences from their classical counterpart, but also for the interesting features of their quantum
states compared to the ones of nonidentical particles (NIP). They are also the main components
of quantum platforms used for quantum information processes and quantum computing [71,
72, 75]. Therefore, the attention for their properties has increased with the aim of optimize the
existent quantum technologies and to conceive new ones.

Quantum information theory basically relies on the concept of entanglement, a feature com-
ing from the possibility of creating quantum states as linear combinations of different multi-
particle configurations [17].

Therefore, both from the fundamental and experimental points of view, it is interesting to
understand the interplay between the quantum nature of IP and their entanglement. However,
in the attempt to reach this goal, some difficulties have come to the light. Although the IP unad-
dressability (they are "quanta without individuality" [57]), in quantum mechanics the standard
approach (SA) treats them as they are nonidentical, by attributing them unobservable (mock) la-
bels and symmetrizing their quantum states with respect to these labels. Bosonic and fermionic
statistics then arise associated to the symmetric and antisymmetric structure, respectively, of
quantum states, while problems emerge in the characterization of entanglement between IP. In
fact, because of the presence of mock labels, all the IP states possess an unseparable structure
which is recognised as entangled by using the known tools for NIP [14]. However the doubt
is that this type of entanglement is a consequence of the symmetrization postulate and so it is
entirely or partially fictitious. A case when the whole unphysical nature of this formal entangle-
ment is evident is the one of independently prepared and space-like separated IP: according to
the usual tools to quantify entanglement of NIP, they are always "formally" entangled, although
it is "physically" natural that it is not the case. No measurements performed on one electron in
the universe is affected by the mere presence of another electron in another remote part of the
universe separated by the first by a spacelike interval, if they never interacted before.
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The most obnoxious problem arises in the quantification and exploitation of the entangle-
ment of spatially overlapping IP, where particle statistics directly influences their quantum be-
haviour. In fact, in this case, the SA-symmetrization postulate with respect to unphysical labels
is necessary. The difficulties arise from the fact that, because of particle unaddressability, not
only local operations and classical communication (LOCC) cannot be operationally used to
exploit IP correlations (rendering unapplicable many of the entanglement witnesses and quan-
tifiers known for NIP), but even it is not clear how to separate, for a given amount of entangle-
ment, the "operationally exploitable" entanglement from the "unphysical" one.

Several different theories have been developed to this purposes. Some of them have ev-
idenced that there is an intrinsic entanglement, coming from the structure of quantum states
[24], and a measurement-induced one, coming from the interplay between quantum states and
observables [44]. The latter characterizes only systems of IP. The problem is that there is no
agreement among these theories about the entanglement of spatially overlapping independently
prepared IP. Some theories [26, 23, 24], that use the particle-based SA approach, introduced
new criteria to affirm that when noninteracting particles are in the same site with opposite in-
ternal degrees of freedom, they are not entangled. However this is in contrast to the fact that
in this case the presence of correlations has been experimentally shown [31]. Others introduce
new definitions of entanglement in terms of the structure of observables, thus not at the state
level but at that of the operators [44, 28, 27, 168], in this way substituting the concept of particle
partial trace with the concept of partial trace with respect to a subalgebra. Still others resort to
the second quantization (to avoid the problems arising from the mock labels of the first quan-
tization formalism) giving new forms of entanglement [29], valid only for IP, and proposing
new meachanisms to characterize it, such as the extraction procedure [155]. Nevertheless, the
debate is still open.

A new particle-based formalism to treat IP, named no-label approach, has been introduced
[33]. It has the advantage of not using labels to address particles, avoiding in this way all the
misunderstandings and inconsistencies coming from the corresponding SA. It has been firstly
applied to the case of two IP, showing that it is possible to use the same notions known for NIP
to characterize their entanglement. In this new approach, it clearly comes out that IP quantum
correlations strictly depend both on spatial overlap among particles and on spatially localised
measurements. It gives the possibility to recover the result, as already experimentally shown
[31], that two IP in the same site with opposite pseudospins present correlations. Also a for-
mulation of the Schmidt decomposition (SD) of bipartite quantum systems has been given with
the added advantage of treating bosons and fermions on the same footing, in this way showing
the universal validity (both for NIP and IP) of the SD [35]. Within this approach, it turns out
that spatial indistinguishability acts as a catalyst of IP W states, which are extremely useful in
quantum information because of their robustness against the interaction with the environment
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[36]. Moreover, always for two IP systems, it has led to the introduction of a new operational
framework that characterizes the dependence of IP entanglement on spatial overlap in a Bell-
like scenario and to use this entanglement to implement quantum teleportation [34].

The first part of this thesis treats in Chapter 1 some of the problems discussed above in the
characterization of IP entanglement. In Chapters 2 and 3, original results about the foundations
of the no-label formalism for a generic number N of IP are presented.

In the second part of the thesis, some original conceptual and practical consequences of par-
ticle indistinguishabiliy are presented, exploiting the tools provided by the no-label formalism.

I now shall collect the main results I have obtained.

Part I: Background and new formalism for identical particles

- Generalization of the no-label approach to many identical particles.
The no-label approach for a number N of IP is presented [39], starting from the derivation, by
first principles, of the basic particle statistics-dependent element, i.e. the probability amplitude
between N -particle states. In this context, bosons and fermions are treated on the same footing
and the usual tools known for NIP, such as the partial trace and the von Neumann entropy,
recover their physical meaning and validity in the characterization of the entanglement of a
bipartition of N IP. Moreover, generalized products between IP states of different dimensions,
named dot and wedge products, have been introduced. This allowed us to connect the no-label
approach and second quantization language, in particular obtaining the commutation rules of
N -particle creation and annihilation operators by the N -particles probability amplitudes. It has
been shown that, as a consequence of spatial overlap, it is not possible to directly generalize to
IP some paradigmatic NIP states. For example, the W states for IP are replaced by a new type
of states named spin exchanged states (SPES). It emerged also that, the well known attitude of
separating the spatial and spin part for the IP states in the SA [67], here can be restated directly
in the language of transition amplitudes. Finally, systems of three identical qubits have been
treated [169], showing that a measurement-induced entanglement can arises, when particles are
independently prepared and spatially separated, and that furthermore spatial overlap is a source
of intrinsic entanglement.

- Introduction of an entropic measure for spatial indistinguishability
It has been presented an operational framework based on spatially localized operations and
classical communication (sLOCC) for N IP, in order to characterize, in a Bell-like scenario, the
exploitable entanglement due to spatial overlap [69]. It consists in choosing N separate spatial
regions in each of which the probability of finding at least one particle is different from zero. As
a result, a clear dependence of the operational entanglement on the spatial overlap of particles
emerges. This framework has given the lead to define the entanglement of formation also of
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a generic (mixed) state of IP, analogously to the case of NIP. Finally the difference between
identity and indistinguishability has been underlined: the first is an intrinsic property of particles
of the same species, the second is a property depending not only on the system but also on the
type of measurements that are performed on it. A measure of the amount of indistinguishability
has been introduced within sLOCC. This measure, that is of entropic type, permits to associate
it to the overlap of one-particle wave functions. Since these last ones can be continuously tuned,
we get an experimentally friendly way to control the amount of indistinguishability and to show
the dependence from it of the relevant quantities.

Part II: Consequences of indistinguishability: concepts and
applications

- Experimental control of photon entanglement and teleportation
An experiment which utilizes the sLOCC framework to measure and exploit quantum indistin-
guishability of two IP has been designed and completed. The setup, that we have theoretically
proposed and that has been successively constructed, can be seen as a modified Hanbury Brown
and Twiss experiment [40, 85], in which the polarization of photons have to be initialized and
their spatal degrees of freedom are suitably controlled. By tuning the spatial degrees of freedom
of two initially uncorrelated photons with opposite pseudospins, by means of measurements in
two separate spatial regions, it has been possible to control their degree of indistinguishability
and to produce an indistinguishability-dependent non local polarization entanglement. It has
been shown that entanglement increases with indistinguishability which is quantified by the en-
tropic measure presented in Chapter 3. Finally it has been proved that this type of entanglement
is enough to successfully implement, with fidelities above the classical threshold (82-90%),
quantum teleportation of the state of another distinguishable photon.

- Entanglement transfer
A new way to obtain entanglement transfer in a large-scale quantum network has been pre-
sented, which is fundamentally activated by IP spatial indistinguishability [62]. It emerged that,
compared to the standard entanglement swapping, the present process, when one uses fermions,
enables remote entanglement among distant nodes: (i) with no distribution of initial entangled
pairs and (ii) without performing Bell measurements. The process only requires local counting
of independently-prepared IP. In such a way we overcome the drawbacks encountered in the
usual entanglement transfer procedures during the initial preparation stage [122] and the final
measurement phase [113, 109, 124, 125, 126, 127, 128, 129]. The process with fermions has
been compared to the corresponding one with bosons and with distinguishable pairs of particles:
the result is that fermions are the more advantageous.
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- Protection from noise of entanglement preparation
The entanglement of formation of the IP Werner state has been analysed as function of spatial
indistinguishability and of the environmental noise [69]. Controlling particle spatial overlap, it
emerged a lower bound for the entropic degree of indistinguishability (' 0.76) beyond which
the generated entanglement is nonlocal and completely unaffected by noise. The main result
of this Chapter is that indistinguishability behaves analogously to a topological resource of
quantum platforms made of identical qubits, enabling noise-free entanglement generation that
violates the CHSH-Bell inequality.

- Operationally useful quantum coherence
Quantum coherence for a system of two IP with 2-level internal degrees of freedom has been
defined [61]. It emerged by sLOCC that while quantum states of independently prepared and
distinguishable particles are incoherent under local operations, the analogous states with in-
distinguishable particles can exhibit quantum coherence. In other words, IP spatial indistin-

guishability is a source of coherence. It has been highlighted that all the concepts and tools
characterising the Resource Theory of coherence for NIP can be translated to IP. An application
in quantum metrology has been presented, consisting in a phase-discrimination protocol: it has
been shown that coherence due to the spatial indistinguishability significantly reduces the error
probability of guessing the phase by means of the optimal generalized Helstrom measurement.
The efficiency of the phase-discrimination game is affected by particle statistics. A proposal
to experimentally implement our theoretical scheme has been done from the Huang-Can Guo’s
research group, in China and the experimental work is in progress.

- Deformations of N -identical particle systems.
There are transformations on many-particle systems which are implemented by acting differ-
ently on each particle. While they are unitary for NIP, they result in general, as a consequence
of particle indistinguishability, nonunitary for IP. We have analysed this type of operations on IP
Werner and Bell-diagonal states. In the Werner case, where the environment is represented by a
white noise term, deformations change this last into a coloured one (this is in contrast with NIP
case where these deformations leave the noise spectrum unchanged). The Bell-diagonal case
permits to clearly evidence the appearance, because of deformations, of a new phenomenon,
that is the decoupling of certain states from physical processes. This manifests itself in the
fact that the probability of finding the system in these states becomes zero even if initially was
not. The decoupling is a consequence of particle statistics which does not allow some physical
configurations. It is clear that such a phenomenon can play a role when, for example, thermo-
dynamics of partially overlapping IP systems is considered. Finally, a formulation of the first
principle of thermodynamics for IP has been given, showing the contribution to the variation of
the internal energy caused by particle indistinguishability.
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Appendix A
Appendix A

Here I give the explicit derivation of equation (2.32).

• I first consider the action of a(m′, n′)a†(m,n) on a generical N -particle state |φ(N)〉 (see
equation (2.1)). Using equation (2.18)) I find:

a(m′, n′)a†(m,n)|φ(N)〉 = a(m′, n′)|m,n, 1, 2, ..., N〉 =

= (〈m′|m〉〈n′|n〉+ η〈m′|n〉〈n′|n〉)|φ(N)〉+

+
N∑
k=1

ηk−1〈m′|k〉
∑
j<k

ηj−1〈n′|j〉|m,n, ��j,��k〉+

+
N∑
k=1

ηk−1〈m′|k〉
∑
j>k

ηj−2〈n′|j〉|m,n,��k, ��j〉

where |m,n,��k, ��j〉 = |m,n, 1, ...��k..., ��j..., N〉.

• The action of a†(m,n)a(m′, n′) on the same state is

a†(m,n)a(m′, n′)|φ(N)〉 =a†(m,n)
N∑
k=1

ηk−1〈m′|k〉
∑
j<k

ηj−1〈n′|j〉|��j,��k〉+

+ a†(m,n)
N∑
k=1

ηk−1〈m′|k〉
∑
j>k

ηj−2〈n′|j〉|��k, ��j〉 =

=
N∑
k=1

ηk−1〈m′|k〉
∑
j<k

ηj−1〈n′|j〉|m,n, ��j,��k〉+

+
N∑
k=1

ηk−1〈m′|k〉
∑
j>k

ηj−2〈n′|j〉|m,n,��k, ��j〉.
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From above equations I get

a(m′, n′)a†(m,n)− a†(m,n)a(m′, n′) = 〈m′|m〉〈n′|n〉+ η〈m′|n〉〈n′|m〉

which is the first rule of equation (2.32). Similarly, the relations in the second line of equation
(2.32) can be straightforwardly proven.
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Appendix B
Appendix B

B.1 Shared intermediate nodes with fermions

The four-fermion global state |Ψ(4)
f 〉 is

|Ψ(4)
f 〉 =

1

3
(|A ↓,A ↑,M ↓,M ↑〉+ |A ↓,A ↑,M ↓,B ↑〉

+ |A ↓,A ↑,B ↓,M ↑〉+ |A ↓,A ↑,B ↓,B ↑〉
+ |A ↓,M ↑,M ↓,B ↑〉+ |A ↓,M ↑,B ↓,B ↑〉
+ |M ↓,A ↑,B ↓,M ↑〉+ |M ↓,A ↑,B ↓,B ↑〉
+ |M ↓,M ↑,B ↓,B ↑〉).

(B.1)

The sLOCC here consists in counting one particle in A and one in B (this entails having two
particles in M) and allowing for classical communication of the outcomes. Projecting therefore
the above prepared state onto the subspace spanned by the basis Bf = {|A σ,M ↑,M ↓,Bτ〉}
(σ, τ = ↓, ↑), I find the post-selected state

|Ψ(4)
f,PS〉 = |M ↑,M ↓〉 ∧ |1−AB〉 , (B.2)

which is obtained with probability Pf(4) = |〈Ψ(4)
f,PS|Ψ

(4)
f 〉|2 = 2/9 and where

|1−AB〉 =
|A ↓,B ↑〉 − |A ↑,B ↓〉√

2
(B.3)

is one of the maximally entangled Bell states (the number 1 in the ket indicates the number of
excited spins in the state).

The scheme presented for the minimum core with four particles can be extended to the case
of n = 2N particles, where N is the number of involved particle pairs. The generalized scheme
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with k = N − 1 shared intermediate nodes Mi (i = 1, . . . , k) is displayed in Fig. 5.1 of the
main text.

Each j-th pair (j = 1, . . . , N ) has opposite pseudospins and (delocalized) spatial mode |αj〉,
with |α1〉 = (|A〉 + |M1〉)/

√
2, |αN〉 = (|Mk〉 + |B〉)/

√
2 and |αj〉 = (|Mj−1〉 + |Mj〉)/

√
2

for j = 2, . . . , k. I take as the initially prepared n-fermion state |Ψ(n)
f 〉 the one obtained from

|α1 ↓, α1 ↑, . . . , αN ↓, αN ↑〉 by eliminating, because of the Pauli exclusion principle, the terms
with two particles in the same node with the same pseudospin. The normalization constant
Nf of |Ψ(n)

f 〉 can be conveniently expressed as Nf =
√

det(M(n)) where det(M(n)) is the
determinant of the n× n matrix

M(n) =


〈α1 ↓ |α1 ↓〉 · · · 〈α1 ↓ |αN ↑〉

... . . . ...
〈αN ↑ |α1 ↓〉 · · · 〈αN ↑ |αN ↑〉

 , (B.4)

defined in the n-dimensional one-particle basis {|α1 ↓〉 , |α1 ↑〉 , . . . , |αN ↓〉 , |αN ↑〉}.
The sLOCC framework is once again realized by counting one particle in each of the nodes

A and B (this entails that two particles are in each node Mi), also allowing for classical com-
munication of the counting outcomes. The post-selected global state results to be

|Ψ(n)
f,PS〉 = |Ψ−M1

,ΨM2 , . . . ,ΨMk
, 1−AB〉, (B.5)

where |ΨMi
〉 = |Mi ↑,Mi ↓〉 and |1−AB〉 is a maximally entangled Bell state of Eq. (B.3). The

probability to obtain the state above, that is the success probability of the remote entanglement
transfer process, is given by Pf(n) = |〈Ψ(n)

f,PS|Ψ
(n)
f 〉|2. It is straightforward to show that its

explicit expression as a function of the number of fermions is (Figure B.1, orange points)

Pf(n) =
1

2n−1det(M(n))
. (B.6)

B.2 Shared intermediate nodes with bosons

The four-boson global state |Ψ(4)
b 〉 is

|Ψ(4)
b 〉 =

1

5
|(A + M) ↓, (A + M) ↑, (M + B) ↓, (M + B) ↑〉. (B.7)

The basis for sLOCC, corresponding to counting two particles in the shared intermediate mode

M and one particle in each mode A and B, is Bb =
{ |A σ,M τ,M σ′,B τ ′〉

Nτσ′
}

(σ, τ, σ′, τ ′ =↓, ↑)
where Nτσ′ =

√
1 + 〈τ |σ′〉. The four-boson post-selected state, after projection onto Bb (also
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allowing for classical communication), is then

|Ψ(4)
b,PS〉 =

1√
6

(|A ↓,M ↑,M ↑,B ↓〉+ |A ↓,M ↑,M ↓,B ↑〉

+ |A ↑,M ↑,M ↓,B ↓〉+ |A ↑,M ↓,M ↓,B ↑〉),
(B.8)

which is found with probability Pb(4) = |〈Ψ(4)
b,PS|Ψ

(4)
b 〉|2 = 6/25.

In the M-subspace, the Bell basis for bosons is given by the three states |Φ±M〉 = (|M ↓
,M ↓〉 ± |M ↑,M ↑〉)/2 and |ΨM〉 = |M ↑,M ↓〉. The post-selected state |Ψ(4)

b,PS〉 can be then
expressed in terms of this Bell basis as

|Ψ(4)
b,PS〉 =

|ΨM, 1
+
AB〉+ |Φ+

M, 2
+
AB〉 − |Φ−M, 2−AB〉√

3
, (B.9)

where in each term the particles in the distant sites A and B are in a Bell state (see Eq. (B.18)).
Therefore, each outcome of the joint Bell measurement successfully realizes the entanglement
swapping over the distant nodes A and B.

The four-particle bosonic protocol can be extended, analogously to the standard ES, by a
cascaded procedure [118]. The scheme is again that of Fig. 5.2 with n independently-prepared
identical bosons and k = N − 1 intermediate nodes (N = n/2 is the number of particle pairs).

The initially prepared n-boson state is

|Ψ(n)
b 〉 =

1

Nb
|α1 ↓, α1 ↑, α2 ↓, α2 ↑, . . . , αN ↓, αN ↑〉, (B.10)

where the normalization constantNb =
√

perm(M(n)), with perm(M(n)) being the permanent
of the matrix of Eq. (B.4).

By counting two particles in each intermediate node and one in each of the distant nodes A
and B, also allowing for classical communication of the counting outcomes, one gets the post-
selected state |Ψ(n)

b,PS〉. Bell measurements are then performed step by step on each intermediate
node Mi (i = 1, ..., k) to transfer entanglement over A and B. The type of the final Bell state
transferred over A and B will depend on the consecutive outcomes of the cascaded Bell mea-
surements. The success probability of the protocol is obtained by Pb(n) = |〈Ψ(n)

b,PS|Ψ
(n)
b 〉|2. Its

explicit expression as a function of the number of bosons is (Figure B.1, blue triangles)

Pb(n) =
3

n
2
−1

2n−1perm(M(n))
. (B.11)

In order to be more explicit concerning the cascaded procedure leading to the Bell states
over A and B, I treat the case with n = 6 bosons (N = 3 pairs) and two shared intermediate
nodes M1, M2. From the initially prepared state |Ψ(6)

b 〉, easily obtained from Eq. (B.10), the
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sLOCC framework counting two particles in the intermediate nodes and one particle in each of
the far nodes A and B, including classical communication, leads to the post-selected state

|Ψ(6)
b,PS〉 =

√
2

3
(|ΨM1 , 2

+
AM2
〉+ |Φ+

M1
, 2+

AM2
〉

− |Φ−M1
, 2−AM2

〉) ∧ |1+
M2B〉 , (B.12)

where the relevant Bell states are analogous to those given after Eq. (B.8) and in Eq. (B.18). A
first Bell measurement has to be performed on the intermediate node M1 in order to entangle
bosons in A and M2. Any outcome is good for continuing the protocol. Let us suppose, without
loss of generality, that the result of this first Bell measurement is |Φ−M1

〉. From |Ψ(6)
b,PS〉 above,

one sees that the remaining four bosons are left into the state− |2−AM2
, 1+

M2B〉. This state, suitably
normalized and expressed in terms of the Bell basis in the node M2, assumes the form

|Ψ(4)〉AM2B =
|Φ+

M2
, 1−AB〉+ |Φ−M2

, 1+
AB〉+ |ΨM2 , 2

−
AB〉√

3
. (B.13)

It is now clear that a second Bell measurement on the intermediate node M2 has the final ef-
fect to transfer a Bell state over the far nodes A and B. Thus, for six bosons, two cascaded
Bell measurements realize the desired entanglement swapping protocol. This procedure can be
continued analogously for successive steps with more particles.

B.3 Separated intermediate nodes

Here, I report the calculations regarding the scheme above, depicted in Fig. 5.3 . The prepared
state |Ψ(4)〉 can be written as the superposition of 16 terms

|Ψ(4)〉 =
1

4
(|A ↓,A ↑,D ↓,D ↑〉+ |A ↓,A ↑,D ↓,B ↑〉

+ |A ↓,A ↑,B ↓,D ↑〉+ |A ↓,A ↑,B ↓,B ↑〉
+ |A ↓,C ↑,D ↓,D ↑〉+ |A ↓,C ↑,D ↓,B ↑〉
+ |A ↓,C ↑,B ↓,D ↑〉+ |A ↓,C ↑,B ↓,B ↑〉
+ |C ↓,A ↑,D ↓,D ↑〉+ |C ↓,A ↑,D ↓,B ↑〉
+ |C ↓,A ↑,B ↓,D ↑〉+ |C ↓,A ↑,B ↓,B ↑〉
+ |C ↓,C ↑,D ↓,D ↑〉+ |C ↓,C ↑,D ↓,B ↑〉
+ |C ↓,C ↑,B ↓,D ↑〉+ |C ↓,C ↑,B ↓,B ↑〉).

(B.14)

In the linear combination of Eq. (B.14), there are contributions in which two particles oc-
cupy the same site. I perform sLOCC in the form of a post-selection counting a single particle
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in each site A, B and classically communicating their outcomes to each other (notice that a
single particle in A entails one particle in C and a single particle in B implies one particle
in D). This post-selection corresponds to project the global four-particle state |Ψ(4)〉 onto the
subspace spanned by the spatially localized basis B = {|A σ,C τ,D σ′,B τ ′〉}, by the projec-
tor Π̂ACDB =

∑
σ,τ,σ′,τ ′=↓,↑ |A σ,C τ,D σ′,B τ ′〉〈A σ,C τ,D σ′,B τ ′|. The post-selected (pro-

jected) state is thus obtained as

|Ψ(4)
PS〉 = Π̂ACDB|Ψ(4)〉/N , (B.15)

where N =

√
〈Ψ(4)|Π̂ACDB|Ψ(4)〉 = 1/2. Its explicit expression is

|Ψ(4)
PS〉 =

1√
2

(|A ↓,C ↑〉+ η|A ↑,C ↓〉)

∧ 1√
2

(|D ↓,B ↑〉+ η|D ↑,B ↓〉),
(B.16)

This state is obtained with probability P (4) = |〈Ψ(4)
PS|Ψ(4)〉|2 = 1/4. Notice that in this sLOCC

framework, the prepared state |Ψ(4)〉 can be written as |Ψ(4)〉 = |α ↓, α ↑〉 ∧ |β ↓, β ↑〉, from
which one then obtains particle entanglement between (A, C) and (D, B), as evidenced in
Eq. (B.16). This is linked to the concept of indistinguishability as a resource by sLOCC in-
troduced in Ref. [34]. Since the sites (A, C) and (D, B) are separated, the identical particles
can be distinguished by their spatial location. Once got the post-selected state |Ψ(4)

PS〉, the en-
tanglement swapping proceeds following the lines of the standard protocol for distinguishable
particles [114]. A Bell measurement is therefore performed on the intermediate nodes (C, D) to
obtain entanglement over the far nodes A and B. In fact, one can write

|Ψ(4)
PS〉 =

1

2
[|1+

CD, 1
+
AB〉 − |1−CD, 1

−
AB〉

+ η|2+
CD, 2

+
AB〉 − η|2−CD, 2

−
AB〉],

(B.17)

where

|1±IJ〉 =
1√
2

(|I ↓, J ↑〉 ± |I ↑, J ↓〉),

|2±IJ〉 =
1√
2

(|I ↓, J ↓〉 ± |I ↑, J ↑〉),
(B.18)

with IJ=AB, CD. The result of the Bell measurement does not depend on the particle statistics,
as expected from the fact that the post-selected state describes identical particles in separated
spatial regions under sLOCC.

The previous protocol can be straightforwardly extended to multiple entanglement swapping
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Figure B.1: Success probability to implement multiple entanglement transfer as a function of the
number of particles n, for separated nodes with either bosons or fermions (P (n), green squares)
and for shared intermediate nodes with fermions (Pf(n), orange points) and with bosons (Pb(n),
blue triangles).

(with n = 2N independently prepared particles, beingN the number of involved particle pairs),
in analogy to the case of distinguishable particles [118], by a cascaded procedure with a success
probability P (n) = 1/2

n
2 (Figure B.1, green squares).

B.4 Probabilities of success

We finally compare the efficiency of the protocol for the various cases treated above, given the
prepared state before post-selection. I have already shown that, in the case of separated nodes,
the success probability for both bosons and fermions is P (n) = 1/2

n
2 (see green squares in

Fig. B.1). In the case of shared intermediate nodes, the success probabilities Pf(n) for fermions
and Pb(n) for bosons decrease as a function of the particle number similarly to P (n), as dis-
played in Fig. B.1 (orange points and blue triangles, respectively). From the experimental view-
point, one has to take into account that the requirement of Bell measurements further hinders the
protocol efficiency [109, 113, 124, 125, 126, 127, 128, 129]. Therefore, the fermionic process
results in being not only qualitatively different, but also more advantageous from a practical
viewpoint than the other procedures that necessarily require Bell measurements.
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