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Abstract: This study introduces an extension of the shifting gradient local orientation histogram doubled (sGLOH2) local image
descriptor inspired by RootSIFT ‘square rooting’ as a way to indirectly alter the matching distance used to compare the
descriptor vectors. The extended descriptor, named RootsGLOH2, achieved the best results in terms of matching accuracy and
robustness among the latest state-of-the-art non-deep descriptors in recent evaluation contests dealing with both planar and
non-planar scenes. RootsGLOH2 also achieves a matching accuracy very close to that obtained by the best deep descriptors to
date. Beside confirming that ‘square rooting’ has beneficial effects on sGLOH2 as it happens on scale invariant feature
transform, experimental evidence shows that classical norm-based distances, such as the Euclidean and Manhattan distances,
only provide suboptimal solutions to the problem of local image descriptor matching. This suggests matching distance design as
a topic to investigate further in the near future.

1 Introduction

Local image descriptors are fundamental for many computer vision
applications such as image stitching [1], three-dimensional
reconstruction [2], and visual odometry [3]. The relevant role
played by local descriptors has granted an active interest in this
research topic over the decades, still evolving together with the
demand for the related applications.

The most common convention is to classify local image
descriptors into handcrafted and data-driven [4] according to how
descriptor vectors are extracted from the neighbourhood of local
keypoints, carrying salient content in images [5].

Handcrafted descriptors mainly employ histograms to
accumulate statistics reflecting some local patch property. The
scale invariant feature transform (SIFT) descriptor [6], based on
gradient orientation histograms, is the most popular local
descriptor, due to its efficiency, robustness, and accuracy in general
and common application scenarios. Other histogram-based
descriptors use pixel ordering [7], Haar wavelets [8], kernel
convolutions [9] or intensity value comparisons [10, 11]. However,
most of the histogram-based descriptors are largely inspired by the
authors of [12, 13] or even direct variants of SIFT [14–16].
RootSIFT [15] is a popular SIFT variant that replaces the
Euclidean distance with the Hellinger's distance, which is more
reliable for histogram comparisons. RootSIFT is nowadays
considered as the true SIFT replacement due to the minimum
amount of changes it requires in the descriptor matching process
and its improved performances over the original SIFT.

Data-driven descriptors are those whose behaviour is tuned and
refined according to data. The aim is to obtain low-dimensional
binary descriptors [17, 18], to find an optimal parameter setup [19,
20], or both these objectives simultaneously [4, 21]. Quite recently,
data-driven deep descriptors [22–24] have emerged, leveraging
deep learning, modern hardware capability offered by graphics
processing units (GPUs), and the availability of large datasets for
training [25, 26]. Deep descriptors have shown in recent
evaluations to outperform all other kinds of descriptors [27].

Despite the current research trend, strongly focused on deep
descriptors, handcrafted descriptors still play a key role in
descriptor design. Indeed, often handcrafted descriptors have been
the source of inspiration for successful deep descriptors
architectures. This is especially true for some recent state-of-the-art
deep descriptors [28–30] that can be seen as efficient, parameter-

optimised versions of the handcrafted descriptors under
consideration. On the other hand, when computational efficiency
on low-end or restricted hardware is demanded for non-deep
descriptors that do not mandatorily require GPUs to run still
provide the most efficient solutions.

Notwithstanding the recent advancements in the field,
descriptor matching accuracy is still today far from perfect,
especially when considering complex three-dimensional scenes.
This justifies the continue efforts for improving descriptors, both
the data-driven and the handcrafted. Among the latter, the recent
shifting gradient local orientation histogram doubled (sGLOH2)
descriptor [13] is currently one of the best in terms of matching
accuracy. Inspired by the RootSIFT successful approach, in this
study, sGLOH2 is further improved. The resulting RootsGLOH2
descriptor is shown to yield the best matching accuracy among
state-of-the art non-deep descriptors, as witnessed by the results of
recent evaluation contests on both planar and more challenging
non-planar scenes. RootsGLOH2 performance is also very close to
that of the best deep descriptors when the standard matching
pipeline is employed.

The paper is organised as follows. Section 2 gives an overview
of the current research on local image descriptors. In Section 3,
RootsGLOH2 is defined after providing a brief description of its
sources of inspiration, namely sGLOH2 and RootSIFT. Section 4
reports and discusses the results of RootsGLOH2 in recent
evaluations, where it was compared with state-of-the-art
descriptors. Finally, conclusions and future work are discussed in
Section 5.

2 Related work

The approach used by SIFT is easily the most successful one
among those employed for handcrafted descriptor design. Several
SIFT extensions have appeared across the years aimed at
improving different aspects of the descriptor, from robustness and
matching accuracy to space and computational efficiency, as
depicted in Fig. 1. Principal component analysis (PCA)-SIFT [14]
applies PCA to the SIFT vector in order to simultaneously
compress data and suppress noise. Affine SIFT [31] virtually
generates new viewpoints of the local image patches in order to
improve robustness. RootSIFT [15] efficiently replaces the
Euclidean distance with the Hellinger's distance, more reliable for
histogram comparisons, by simply ‘square rooting’ the SIFT
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vector. RootSIFT-PCA [32] further extends RootSIFT by also
applying PCA compression. Gradient local orientation histogram
[33] replaces the original Cartesian grid of SIFT with a log-polar
grid and applies PCA. In [34], an irregular grid with overlapping
cells is employed to improve robustness. Multi-support region
order-based gradient histogram [12] uses instead multiple support
regions and a variable grid according to an intensity order pooling
scheme. Intensity order pooling allows one to bypass the key point
patch rotation according to the canonical orientation, whose
estimation can be erroneous. Doing this before the actual descriptor
computation yields a truly rotationally invariant descriptor. Domain
size pooling SIFT [16] merges gradient data obtained at different
scales to improve accuracy. In [35], the SIFT behaviour is analysed
at different scales of the original patch using PCA so as to derive a
new descriptor. Rotational invariant feature transform [36] replaces
the grid with rings in order to achieve a rotationally invariant
descriptor. Binarisation of gradient orientation histograms [37] gets
a short-length binary descriptor by comparing consecutive SIFT
vector elements. Accumulated stability voting [38] thresholds the
differences between SIFT vectors for the same patch at different
scales and sums up the results. Linear discriminant analysis
hashing [18] defines thresholds on SIFT linear projections to
achieve a binary descriptor. sGLOH2 [13] defines a rotating SIFT
by arranging a circular grid organised so that discrete rotations of
the local patch can be obtained by a circular shift of the descriptor
vector. Binary sGLOH2 [13] further compares sGLOH2 vector
elements to get a binary version of the original descriptor. SIFT
handed hierarchical matching [39] achieves a fast match strategy
by filtering on the most informative SIFT vector elements.
Similarly, a multi-resolution exhaustive search [40] defines a fast
hierarchical cascade matching at increasing resolution levels.

Among data-driven descriptors, deep descriptors have recently
stepped into the limelight, thanks to the advent of effective
convolutional neural network architectures, powerful GPUs and the
availability of big data for training. Deep descriptors of the first
generation mainly differed from each other by the loss function
used, from triplet loss [22, 41] to hard negative mining [23] or
ranking [42]. Following the recent trend in deep learning, the last
generation of deep descriptors can rely on an even bigger amount
of data for training with respect to the past [26, 43]. This has been
exploited to constrain more the network architecture to follow

specific behaviours [24, 30], either by taking inspiration from some
handcrafted descriptors [28, 29, 43, 44] or by embedding more a
priori geometric knowledge from the data [45]. As a matter of fact,
modern deep descriptors achieved state-of-the-art results in
matching accuracy and, according to the latest comparative
evaluations [27, 46]; currently provide top notch performance in
image matching with local image descriptors.

3 RootsGLOH2

RootsGLOH2 extends the state-of-the-art sGLOH2, a rotating
SIFT providing robust matches, according to the ‘square rooting’
idea behind RootSIFT. The main features of both sGLOH2 and
RootSIFT will be briefly described hereafter for the sake of
completeness.

sGLOH2 is obtained by the concatenation of two sGLOH
descriptors [47]. Fig. 2 illustrates the main sGLOH property. 
Following the general design of histogram-based descriptors,
sGLOH is obtained by a concatenation of weighted oriented
gradient histograms (such as SIFT), one for each grid region the
local key point patch is divided into. Differently from other local
descriptors, sGLOH uses a circular grid of n rings and m sectors
and arranges histograms so that for each grid region, the first bin
corresponds to the orientation pointing outside and the others
follow in clockwise order. This implies that the minimal discrete
rotation of α = (2π /m) of the patch corresponds to a permutation of
the descriptor vector, specifically the one that cyclically shifts bins
inside the histogram for each ring, thus without needing to
recomputed the descriptor vector from scratch.

sGLOH packs m different descriptors of the same patch at
different orientations so that two descriptor vectors H and H′ are
compared using the distance

D(H, H′) = min
k = 0, …, m − 1

D̄(H, H′αk) (1)

induced by a generic distance D̄, such as the Euclidean or
Manhattan distance, where H′αk corresponds to the permuted
descriptor vector H′ according to rotation αk. Matching strategies
for sGLOH can be designed so as to exploit the additional
orientation information provided by limiting the rotations to check.
This can reduce the number of wrong matches since some of these
are dropped and cannot be selected by chance. In particular, the
shifting global orientation matching strategy uses information
provided by the scene context to get a global reference orientation,
under the reasonable assumption that all keypoints of the scene
roughly undergo the same rotation αg, not known a priori. The
range of discrete orientations in (1) is modified to
k = (g − 1) mod m, g, (g + 1) mod m, where g ∈ {0, 1, …, m − 1},
can be robustly estimated as the orientation maximising the number
of best matches [47]. In [13], it was observed that sGLOH
matching can suffer from performance degradations when the
relative rotation between corresponding patches approaches the
value in-between two discrete rotations, i.e. it is of the form
k(2π /m) + (π /m) for k = 0, …, m − 1. The sGLOH2 descriptor was
designed to solve this issue: it concatenates the standard sGLOH
descriptor of the original patch with the sGLOH descriptor
obtained after applying a rotation of π /m to the patch. sGLOH2,
can handle up to 2m discrete rotations of π /m degrees. Fig. 3 shows
SIFT, sGLOH, and sGLOH2 matching accuracy in terms of mean
average precision (mAP) for a simple test considering some images
matched against their corresponding rotated versions. mAP is
computed as the average on a set of different test images (see [13]
for more details). sGLOH2 solves sGLOH issues when rotation
approaches the one in-between two consecutive discrete rotations.
The gap in terms of matching accuracy between SIFT and
sGLOH2, not so evident for this simple case, increases when more
complex image transformations than bare rotations are considered
(see the experimental section). The upright SIFT, i.e. when key
point patch is not rotated according to the canonical orientation [6]
before SIFT computation is reported too for completeness. In this
sense, sGLOH2 is a ‘rotating SIFT’. sGLOH2 matching can also
take advantage of the global reference orientation as for sGLOH,

Fig. 1  SIFT-centric taxonomy of local image descriptors. The proposed
RootsGLOH2 is underlined in red (best viewed in colour)

 

Fig. 2  Rotation of an image patch by a factor (2π /m) with the
superimposed sGLOH grid (left), corresponding to a cyclic shift of the
histogram bins inside each ring (right). In the example n = 2 and m = 4,
colour labels on the patch grid identify the corresponding gradient
orientation histograms on the descriptor vector (best viewed in colour)
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and at the meantime speed up by an efficient adaptive run-time
cascade filtering matching. The resulting matching strategy is
named sGOr2a⋆ [13].

RootSIFT [15] manipulates SIFT descriptors so that the
Euclidean distance between two RootSIFT descriptor vectors h′

and w′ becomes equivalent to the Hellinger's distance between
the corresponding original SIFT descriptor vectors h and w,
defined as

DH(h, w) = ∑
i

hi
∑ j hj

wi
∑ j wj

(2)

The vector element hi′ of the RootSIFT descriptor h′ is

hi′ = hi
∑ j hj

(3)

and similarly for w′. Hence, the squared Euclidean distance
between two RootSIFT descriptors is

∥ h′ − w′ ∥2 = h′h′T + w′w′⊤ − 2h′w′⊤

= 2 − 2∑
i

hi
∑ j hj

wi
∑ j wj

= 2 − 2DH(h, w)
(4)

i.e. it is equal to the Hellinger's distance up to a constant factor.
The Hellinger's distance is generally preferable to the Euclidean
distance at comparing histograms [15], of which SIFT descriptors
are a particular instance. The reason for this superiority lies in the

Q1

observation that when matching two histograms, the Euclidean
distance tends to emphasise large errors occurring on a few bins
with respect to small errors on the remaining majority of bins,
while the Hellinger's distance does the opposite. As suggested in
[13], the lower order Manhattan distance can also be usefully
employed in the place of the Euclidean distance for mitigating this
issue.

According to these observations, the RootsGLOH2 descriptor
vector is defined and computed by ‘square rooting’ the
corresponding sGLOH2 vector. Differently from the case of SIFT,
sGLOH2 vectors are normalised, to sum up to 1 by design, so
normalisation is not needed. As with sGLOH2, RootsGLOH2
matching is performed by the sGOr2a⋆ strategy [13] using the
Manhattan distance as matching distance, which was found to
perform better than the Euclidean distance with sGLOH-like
descriptors. Obviously, in this case, it is not possible to relate the
resulting metric to the Hellinger's distance, as it was done before in
the Euclidean case. Nevertheless, the key idea to avoid
emphasising large errors on a few histogram bins at the expense of
small errors on most of the bins is still valid.

4 Evaluation

Two recent contests for local image descriptor matching will be
considered for the evaluation of RootsGLOH2, namely the ‘which
is which contest’ (WISW) [27] and the ‘image matching workshop
challenge’ (IMW) [46], held, respectively, at the ‘18th International
Conference on Computer Analysis of Images and Patterns (CAIP
2019)’ and the ‘2019 IEEE Conference of Computer Vision and
Pattern Recognition (CVPR 2019)’.

4.1 WISW benchmark setup

WISW relies on the well-consolidated evaluation of correct
matches defined according to the overlap error between putative
corresponding patches that, in the case of planar scenes, is the
standard evaluation approach. The Oxford benchmark [33] and its
evolution HPatches [48] are the most representative benchmarks of
this kind. In addition to HPatches, WISW allows for custom patch
orientations to maximise the rotational invariance of the
descriptors, and considers viewpoint transformation combined with
illumination changes, blur and noise effects, instead of analysing
these kinds of transformations one at a time. WISW results are
expressed in terms of mAP of correct matches. A match is
considered correct if the patch reprojection overlap error does not
exceed 50%. WISW uses 15 different scenes of six images each, of
which only one is used as reference inside each scene, yielding a
total of 15 × (6 − 1) = 75 image pairs. The scenes include ‘bar’,
‘boat’, ‘graffiti’ and ‘wall’ from the Oxford dataset, the whole
viewpoint dataset [49] and six new scenes, each including more
than one image transformation. Some image pair examples are
shown in Fig. 4 (top row). Evaluation on planar scenes is not
enough to gain an effective insight into descriptor behaviour on
non-planar scenes, which represent nowadays the true field of
application for image descriptors. For instance, it would be quite
hard to derive how descriptors work in the presence of self-
occlusions on the basis of planar scene analysis only. In order to
overcome this limitation, WISW incudes a further evaluation on
non-planar scenes according to a piecewise approximation [50] of
the overlap error. In this case, the dataset employed in the
evaluation contains images from 35 different scenes used in
previous works (19 having three images, the remaining 16 with two
images only), for a total of 19 × 3 + 16 = 73 image pairs, some of
which are shown in Fig. 4 (middle row).

4.2 IMW benchmark setup

Another possible approach to deal with non-planar scenes is the
one exploited by IMW, i.e. somewhat complementary to the one
used in WISW. Specifically, the IMW approach relies on an
indirect evaluation of the descriptors according to the
reconstruction quality they achieve when employed in a structure-
from-motion (SfM) pipeline, similar to the approach proposed in
[51, 52]. In detail, the state-of-the-art SfM COLMAP [53] is

Fig. 3  Descriptor matching accuracy for SIFT, sGLOH, and sGLOH2 (see
text for details) (best viewed zoomed in and in colour)

 

Fig. 4  Sample image pairs for the WISW contest in the case of planar (top
row) and non-planar (middle row) scenes, and for the IMW challenge
(bottom row) (best viewed in colour)
(a) Graffiti, (b) Spidey, (c) Castle, (d) Horse, (e) Florence, (f) London bridge
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employed to get the dense 3D ground-truth reconstructions from 11
scenes of popular landmarks—see Fig. 4 (bottom row) for some
sample images. Each scene is reconstructed from a high number of
input images in order to get high-quality reconstructions.
Descriptors are then evaluated according to the pose estimation
error resulting from SfM reconstruction (using only a very small
subset of images for each sequence), or stereo matching. In
particular, robust matching by RANSAC is applied to each possible
image pair of the subsets, and the surviving inliers are used to
retrieve the relative pose between the two cameras. Matching
accuracy is then measured by using the angular difference between
the estimated and ground truth vectors for both rotation and
translation. To reduce these to one value, a variable threshold (set
to the same value for rotation and translation) is used in order to
determine each pose as correct or not, and the area under the curve
up to a defined angular threshold is finally computed. According to
the IMW organisers, the empirical threshold of 15° is an adequate
proxy for wide-baseline stereo matching performance. Other
reconstruction statistics, such as the number of 3D points, the
average key point track length, the 3D to 2D key point reprojection
error, and the ratio of successfully registered images within the
model are also presented but are less relevant for descriptor
evaluation. As pointed out in [54], the obtained stereo matching
results are not so reliable due to the RANSAC parameter setup of
the evaluation. Hence, only SfM results will be considered
hereafter in the analysis of IMW results.

Q2

4.3 WISW benchmark results

Table 1 reports WISW results in terms of mAP according to the
evaluation protocol described in Section 4.1. Descriptors are
ranked according to their performances on non-planar scenes that
are more relevant for practical applications. For a clearer
evaluation, keypoints are all extracted with the same HarrisZ
detector [55]. Examples of correct matches found by RootSIFT,
sGLOH2, RootsGLOH2, and SOSNet according to the WISW
ground-truth in complex scenes for both the planar and non-planar
cases are reported in Fig. 5. As shown by the results, RootsGLOH2
clearly improves upon sGLOH2 by increasing the mAP by about
4% in both the planar and non-planar cases. This suggests that
avoiding to emphasise large errors on a few histogram bins at the
expense of a few errors on the vast majority of bins is effective at
improving descriptor distance. Moreover, the mAP gap between
RootsGLOH2 and the best deep-descriptors is quite limited: except
for the very recent SOSNet [24], the gap is no more than 4% for
any kind of scene, while this gap is about 8% for the current
second best non-deep descriptor sGLOH2. RootsGLOH2 turns out
to be well-aligned in terms of matching accuracy with HardNet and
L2Net, neglecting the minimal differences from the planar to the
non-planar cases. Additionally, when it comes to non-planar scene
matching, RootsGLOH2 works slightly better than the recent
GeoDesc descriptor, which is comparable to the top best SOSNet
and HardNet2 (reported as HardNetA in the WISW evaluation) on
planar scenes. In this sense, GeoDesc appears somewhat overfitted
on planar transformations only at the expense of non-planar scene
transformations that are more general, complex, and relevant for
actual applications. Except for GeoDesc, rank is roughly preserved
between the planar and non-planar evaluation. Notice also that 5%
of mAP discrepancy on a base of 70% mAP, which happens in the
planar case is less problematic for any application than the same
difference on a base of 50% mAP baseline, obtained for the non-
planar case.

4.4 IMW benchmark results

Table 2 reports IMW results, both in terms of pose mAP up to a
tolerance of 15° and in terms of the number of images that were
correctly registered to the model, according to the setup protocol
described in Section 4.2. Besides the average mAP results over all
the subsets considered in the SfM, by which descriptors are ranked
in the table, results considering only subsets of five and 25 images,
respectively, the second smallest and the largest subset sizes are
reported (the minimum subset size of three images is very close to
a stereo matching evaluation, and as previously stated it is not
reliable). As for the WISW evaluation (see Table 1), ranking is
roughly preserved among columns. In the case, descriptor
information and details have not been yet released, the not
available (na) mark denotes the missing reference. Notice that,
differently from WISW, IMW does not limit the key point
extraction method to use. Since IMW allows more submissions of
the same detector + descriptor pairs with different parameters, in
order to better focus on the evaluation, Table 2 only reports results
for the best setups, excluding matching strategies relying on key
point localisation. This choice is motivated by the fact that in the
latter case the evaluation would be somewhat unfair, since matches
for submissions that apply geometric matching strategies similar to
[57, 58] would be clearly better filtered for the successive
RANSAC step, independently from the descriptor employed. 
Specifically, the default matching strategy for the results reported
in the table is the nearest neighbour (NN), except for HarrisZ + 
RsGLOH2 using sGOr2a⋆, and the descriptors superscripted with
‘ + ‘, that use the mutual NN. The maximum number of keypoints
allowable per image is 8000, except for any version of SuperPoint
and DELF (2048), and ELF-SIFT (512). Inspecting the results,
except for the SIFT + ContextDesc+ pair, which employs the very
recent ContextDesc [28] descriptor with mutual NN, the Harrisz + 
RootsGLOH2 pair mAP gap with respect to state-of-the-art
detector/descriptor pair using deep learning, is quite limited (<5%)
as in WISW. For the second best non-deep descriptor considered,
i.e. AKAZE, this is more relevant (up to about 12%). Notice also
that mAP increases and performance gap decreases as the image

Table 1 Results for WISW (see Sections 4.1 and 4.3)
mAP (%)

Planar Non-planar↓
SOSNet [24] ∘ 76.30 53.40

AffNet + HardNet2 [56] ∘ 74.11 52.34

HardNet2 [26] ∘ 74.29 50.09

L2Net [22] ∘ 69.49 48.79

RootsGLOH2 — ∙ 70.68 48.20

HardNet [23] ∘ 71.49 47.80

GeoDesc [45] ∘ 75.60 47.56

sGLOH2 [13] ∙ 67.25 44.86

DOAPQ2 [42] ∘ 69.80 40.66

MKDQ2 [9] ∙ 59.52 39.05

RootSIFT [15] ∙ 58.46 37.73

MIOPQ2 [7] ∙ 56.83 33.38

LIOPQ2 [7] ∙ 54.51 32.05

↓, sorting column; ∘, deep descriptor; ∙, non-deep descriptor.
 

Fig. 5  Examples of planar (top row) and non-planar (bottom row) image
pairs of the WISW contest, with superimposed the optical flow of correct
matches found by RootSIFT (yellow), sGLOH2 (green), RootsGLOH2
(magenta) and SOSNet (blue) according to the WISW evaluation (best
viewed zoomed in and in colour)
(a) Graffiti, (b) Fountain
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initial subset for estimating the SfM model is enlarged. Similar
considerations hold for the number of correctly registered images,
where it can also be noted that for a subset size of 25 images
Harrisz + RootsGLOH2 achieve the topmost rate of registered
images, witnessing again the robustness of RootsGLOH2.

4.5 Running times

Concerning running times, RootsGLOH2 descriptor computation is
practically the same of sGLOH2 (square rooting can be neglected
compared to the other operations needed), which is less than half of
the time needed to compute a RootSIFT descriptor, since patch
rotation in the canonical orientation (and its estimation) needs not
to be computed [13]. For instance, on a Intel i5-2500 CPU @ 3.30 
GHz with 16 Gb of RAM, the extraction of 2048 descriptors takes
>2 s for SIFT and <1 s for sGLOH2, while for deep descriptors
based on L2Net (including SOSNet, HardNet2, and Geodesc),
excluding patch normalisation and canonical orientation estimation
that take more than 1 s, 4.5 s are needed on a CPU. For
completeness, SIFT GPU implementation is almost 150% faster
than GeoDesc on an NVidia GeForce GTX1080 [45]. On the other
hand, amortised computational time for matching two descriptors,
using single-threaded SSE 4.1 optimised code, changes from about
400 to 650 ns as one moves from sGLOH2 to RootsGLOH2. This
is due to the fact that RootsGLOH2 requires float operations
instead of integer operations due to the presence of the square
rooting operation. For reference, the corresponding amortised
matching time for RootSIFT and any other real-value descriptor,
including deep descriptors, is 50 ns since there is no need to check
distances at several patch orientations. Finally note that, differently
from deep descriptors, handcrafted descriptors such as
RootsGLOH2 do not need high-capability GPU hardware to run
efficiently.

5 Conclusion and future work

This study proposed to embed the RootSIFT ‘square rooting’ idea
into the sGLOH2 handcrafted descriptor. The resulting
RootsGLOH2 descriptor provides clear improvements upon
sGLOH2, as RootSIFT does for SIFT. The results obtained give a

further evidence of the fact that both the classical Euclidean and
Manhattan distances (used by SIFT and sGLOH2, respectively) are
suboptimal solutions for the associated histogram-based
descriptors, as they tend to emphasise the importance of large
errors on a few histogram bins instead than that of small errors on
the majority of bins. Future work will be devoted to extending the
square rooting concept, by investigating which transformations can
be said to be truly optimal for each given kind of handcrafted
descriptor.

The evaluation of RootsGLOH2, taken out according to very
recent benchmark comparing the best and latest descriptors, also
shows that RootsGLOH2 matching accuracy on both the planar and
non-planar cases is very close to that of the top notch deep
descriptors, currently the unquestionable rulers of this research
area, and clearly better than the matching accuracy achieved by
other non-deep descriptors. This suggests that investigating on
handcrafted descriptors, spending time, and resources, even
nowadays is not a waste of time as it can provide fresh and novel
ideas, capable of making deep descriptors less black-boxed, also
considering that the implicit design of current state-of-the-art deep
descriptors is often inspired by handcrafted descriptor approaches.
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