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Abstract

We consider the problem of detection of features in the presence of clutter for spatio-
temporal point patterns. In the spatial context, Byers and Raftery (1998) used K-th nearest-
neighbour distances to classify points between clutter and features. They proposed a mixture
of distributions whose parameters were estimated using an EM algorithm. This paper extends
this methodology to the spatio-temporal context by considering the properties of the spatio-
temporal K-th nearest-neighbour distances. For this purpose we make use of a couple of
spatio-temporal distances which are based on the Euclidean and the maximum norms. We
show close forms for the probability distributions of such K-th nearest-neighbour distances,
and present an intensive simulation study together with an application to earthquakes.
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1 Introduction

One of the most important research fields of spatio-temporal data-mining is the identification of

features (clusters) of events. In particular, features are defined as subgroups of events in restrained

spatio-temporal volumes with a higher density than the events outside the spatio-temporal vol-

umes (called background, noise or clutter events). The identification of such spatio-temporal

features may yield insight for many applications. In practice, many geographical phenomena (e.g.

earthquakes, disease cases, crime data, forest fires) are modelled as spatio-temporal events, and

the detection of features is used to study the evolution of the phenomena, to reveal space or time

anomalies and spatio-temporal hotspots (Ratcliffe, 2005; Demattei and Cucala, 2010; Izakian and

Pedrycz, 2012; Eckley and Curtin, 2013; Costa and Kulldorff, 2014; Cheng and Wicks, 2014).

However, the detection of features is a challenge problem for the complexity caused by the space-

time coupling and the noise interference. Moreover, another element to consider depending on the

used methodology is the subjectivity in the choice of crucial aspects such as the spatio-temporal

window, and the corresponding critical values to classify an event as a feature or noise.

For point processes, the problem has been widely addressed from a spatial point of view. Allard

and Fraley (1997) developed a method to find the maximum likelihood solution using Voronoi

polygons. Dasgupta and Raftery (1998) used model-based clustering to extend the methodology

proposed by Banfield and Raftery (1993). An alternative and flexible Bayesian methodology that is

adaptable to these and other assumptions about the mine and clutter patterns was given by Cressie

and Lawson (2000). Some of the methods described above are somewhat restricted. For instance,

Allard and Fraley (1997) assumed that there is a single connected feature, whereas Dasgupta

and Raftery (1998) assumed the features to have a specific shape. Byers and Raftery (1998)

adopted a different approach in which they estimated and removed the clutter without making

any assumptions about the shape or number of features. This enabled them to estimate features

(and remove clutter) in quite general situations. In particular, their method of detection is based on

the distance to the K-th nearest-neighbour of a point in a spatial process. The observed distances

are modelled as a mixture distribution of distances coming from clutter and feature points, the

parameters of which are estimated by an EM algorithm. Following the steps of Byers and Raftery

(1998), Mateu et al. (2007) use distances between local product density functions, named LISA

functions, for local indicator of spatial association, rather than K-th nearest-neighbour distances,
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to remove clutter from images where one or several features are present and have to be detected.

The scan statistics are well established methodological tools to identify clusters and to as-

sess their significance in case events or in comparisons of case-control data. They have been

developed for both spatial (Kulldorff, 1997; Kulldorff and Nagarwalla, 1995) and spatio-temporal

data (Kulldorff et al., 1998, 2005; Kulldorff, 2001). Working with space-time data, the focus may be

retrospective (Kulldorff et al., 1998; Assunçäo et al., 2007) or on prospective surveillance of space-

time clusters (Kulldorff, 2001; Assunção and Correa, 2009). Moreover, in the spatio-temporal

context Pei et al. (2010) have proposed a method for the identification of spatio-temporal clus-

ters based on the windowed K-th nearest (WKN) distance. Demattei and Cucala (2010) proposed

ordering-based methods used for detecting spatio-temporal clusters and highlighting the flexibility

and their low computational demand. Liu et al. (2014) propose a novel spatio-temporal cluster-

ing method based on spatio-temporal shared nearest-neighbours for clusters with different sizes,

shapes, and densities.

In this paper, we use spatio-temporal distances obtained as a weighted version with respect to

the temporal component of the Euclidean and maximum distances (Demattei and Cucala, 2010)

and they are described in Section 2. Moreover, it is proven that the distribution of the K-th

nearest-neighbour based on the previous distances follow an inverse Gamma distribution under

the homogeneous Poisson assumption. Based on the previous results, we extend in Section 3

the methodology of Byers and Raftery (1998) to the spatio-temporal context by considering the

properties of the spatio-temporal K-th nearest-neighbour distances. In Section 4 the K-th nearest-

neighbour distance is analysed through a mixture model formulation of the corresponding distance

densities coming from the clutter and feature events. The corresponding parameters associated to

the two density distributions in the mixture model formulation are estimated using an expectation-

maximization (EM) algorithm. A simulation study with several scenarios is carried out in Section 5

to assess the performance of the proposed classification method. Our method is also compared

with the results obtained with the spatial methodology of Byers and Raftery (1998) in terms

of sensitivity, specificity and accuracy. Finally, we present in Section 6 a seismic application,

identifying noise and feature events in two well-known seismic sequences occurred in California

(near the Landers town, in 1992) and in Italy (L’Aquila city, in 2009).
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2 Mathematical background

We consider a spatio-temporal point process with no multiple points as a random countable

subset X of Rd−1 × R, where a point (u, s) ∈ X corresponds to an event at u ∈ Rd−1 occurring

at time s ∈ R. We observe n events {(ui, si)}ni=1 of distinct points of X within a bounded

spatio-temporal region W × T ⊂ Rd−1 × R, with volume |W | > 0, and with length |T | > 0

where n ≥ 0 is not fixed in advance. In the sequel, N(B) denotes the number of events of the

process falling in a bounded region B ⊂ W × T , for more details see (Diggle, 2013; González

et al., 2016). We assume that the basic point process X is completely stationary, i.e. for all

u ∈ Rd−1 and all real s it holds that X
D
= X(u,s), where X(u,s) is the translated process given

by X(u,s) = {[u1 + u, s1 + s], [u2 + u, s2 + s], . . .}. In the context of summary characteristics we

additionally assume complete isotropy, which means that all rotations of X around the origin of

Rd−1×R have the same distribution as the original spatio-temporal point process X. A completely

stationary spatio-temporal point process has a constant intensity λ, defined as λ = E[N(B)], i. e.,

λ is the mean number of points per unit volume and unit time (Illian et al., 2008; Ballani et al.,

2018).

Let (u, s) = (u1, u2, . . . , ud−1, s), and (v, l) = (v1, v2, . . . , vd−1, l) be points of a spatio-temporal

homogeneous Poisson process in W × T ⊂ Rd−1 × R. Hereafter we denote by DS the spatial

(d− 1)-dimensional distance defined by the p-norm as

DS (u,v) =

(
d−1∑
i=1

|ui − vi|p
)1/p

for u,v ∈ Rd−1,

where p ≥ 1 is a suitable real value to measure spatial distances induced by the p-norm (Bartle

and Sherbert, 2000). In the same way, it is possible to introduce the temporal distance DT given

by

DT (s, l) = |s− l| for s, l ∈ R.

Following Demattei and Cucala (2010), we consider the spatio-temporal d-dimensional distance

as a mixture of the defined distances DS and DT , given by the expression

DST ((u, s), (v, l)) =
(
DS(u,v)p + ρpDT (s, l)

p) 1
p ,

where ρ is a scaling coefficient for the temporal and spatial scales to be commensurate. For the

case d = 3 and p = 2, the Euclidean norm is obtained. Let |W | be the area of the observation
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region and |T | the time interval length. Then, D = 2
√
|W |/π is the diameter of a disc with area

|W | and therefore ρ is the ratio D/|T |. The spatio-temporal Euclidean distance for d = 3 and

p = 2 is then given by

DSTE ((u, s), (v, l))) =

√
(u1 − v1)2 + (u2 − v2)2 + ρ2|s− l|2. (1)

In addition, when d = 3 and p =∞, DST is the well-known spatio-temporal maximum distance,

which we denote as DSTM and is given by

DSTM ((u, s), (v, l)) = max (|u1 − v1|, |u2 − v2|, ρ|s− l|) . (2)

For more details about the spatio-temporal maximum distance and its usefulness in the spatio-

temporal point process context, see Cronie and van Lieshout (2011).

3 K-nearest-neighbour distances and their distributions

Following Byers and Raftery (1998) and Mateu et al. (2007), we assume that the clutter is dis-

tributed as a homogeneous spatio-temporal Poisson point process in W × T ⊂ Rd−1 × R, and

the features are distributed as a Poisson process restricted to a certain spatio-temporal volume

in W × T and overlaid on the clutter, defining a spatio-temporal Poisson process of piecewise

constant rate. Considering a homogeneous spatio-temporal Poisson process in W × T , the proba-

bility that there are no events within the hypersphere with radius ζ of an arbitrary point is given

by P(DST ≥ ζ) = P (N(Bζ) = 0) = exp{−αdλζd}, where αd is the coefficient in the volume of

the hypersphere in the associated topology selected to the spatio-temporal distance, and given by

Vol(Bζ) = αdζ
d. Therefore, the probability density function of DST (the point-to-nearest-event

distance) is

fDST (ζ) = dαdλζ
d−1 exp{−αdλζd}, (3)

for more details see Cressie (1993).

Furthermore, the probability that there are no events between distances ζK−1 and ζK with

ζK−1 ≤ ζK of an arbitrary point in W × T is P
(
N(BζK \BζK−1

) = 0
)

= exp{−αdλ(ζdK − ζdK−1)}.

The cumulative distribution and the probability density functions of DST
K = ζK (where DST

K is

the distance from a random point in the process to its K-th nearest-neighbour), given DST
1 =
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ζ1, D
ST
2 = ζ2, . . . , D

ST
K−1 = ζK−1 for 0 ≤ ζ1 ≤ ζ2 ≤ · · · ≤ ζK−1 ≤ ζK , are

FDST
K

(
ζK |DST

1 = ζ1, D
ST
2 = ζ2, . . . , D

ST
K−1 = ζK−1

)
= 1− P

(
N(BζK \BζK−1

) = 0
)

= 1− exp{−αdλ(ζdK − ζdK−1)},

and

fDST
K

(
ζK |DST

1 = ζ1, D
ST
2 = ζ2, . . . , D

ST
K−1 = ζK−1

)
= dαdλζ

d−1
K exp{−αdλ(ζdK − ζdK−1)}.

Therefore, the joint probability density function of ζ1, ζ2, . . . , ζK is defined as

fDST
1 ,DST

2 ,...,DST
K

(ζ1, ζ2, . . . , ζK) = fDST
1

(ζ1)× fDST
2

(
ζ2|DST

1 = ζ1
)
× · · ·

× fDST
K

(
ζK |DST

1 = ζ1, D
ST
2 = ζ2, . . . , D

ST
K−1 = ζK−1

)
= dαdλζ

d−1
1 exp{−αdλζd1} × dαdλζd−12 exp{−αdλ(ζd2 − ζd1 )} × · · ·

× dαdλζd−1K exp{−αdλ(ζdK − ζdK−1)},

and therefore we have that

fDST
1 ,DST

2 ,...,DST
K

(ζ1, ζ2, . . . , ζK) = (dαdλ)K
K∏
i=1

ζd−1i exp{−αdλζdK}.

Consequently, the probability density function of ζK can be obtained by integrating the joint

probability density function with respect to ζ1, ζ2, . . . , ζK−1 as

fDST
K

(ζK) =

ζK−1∫
0

· · ·
ζ2∫
0

ζ1∫
0

fDST
1 ,DST

2 ,...,DST
K

(ζ1, ζ2, . . . , ζK)
K−1∏
j=1

dζj

= (dαdλ)K exp{−αdλζdK}
ζK−1∫
0

· · ·
ζ2∫
0

ζ1∫
0

K∏
i=1

ζd−1i

K−1∏
i=j

dζj.

Additionally, using mathematical induction it is straightforward to proof that

ζK−1∫
0

· · ·
ζ2∫
0

ζ1∫
0

K∏
i=1

ζhi

K−1∏
i=j

dζj =
ζ
(h+1)K−1
K

(h+ 1)K−1(K − 1)!
, (4)

for some h ∈ N.
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Then, using (4) for h = d− 1 we get

fDST
K

(ζK) = (dαdλ)K exp{−αdλζdK}
ζK−1∫
0

· · ·
ζ2∫
0

ζ1∫
0

K∏
i=1

ζd−1i

K−1∏
i=j

dζj

= (dαdλ)K exp{−αdλζdK}
ζdK−1K

dK−1(K − 1)!

=
d(αdλ)K exp{−αdλζdK}ζdK−1K

(K − 1)!

=
d(αdλ)K exp{−αdλζdK}ζdK−1K

Γ(K)
,

where Γ(·) denotes the Gamma function and doing the change of variable y = ζd we obtain

fDST
K

(
y1/d

)
=
dαKd λ

KyK−1/d exp{−αdλy}
Γ(K)

× y1/d−1

d
=

(αdλ)KyK−1 exp{−αdλy}
Γ(K)

,

which corresponds to a transformed Gamma random variable,
(
DST
K

)d ∼ Γ (K,αdλ). Then, DST
K

follows an inverse Gamma distribution, namely

DST
K ∼ Γ1/d (K,αdλ) . (5)

In particular, the close form of the probability distribution function for the K-th nearest-

neighbour Euclidean distance, under a homogeneous spatio-temporal Poisson process is given by

DSTE
K ∼ Γ1/d

(
K,

πd/2λ

Γ (d/2 + 1) ρ

)
(6)

and that for the K-th nearest-neighbour maximum distance is

DSTM
K ∼ Γ1/d

(
K,

2dλ

ρ

)
. (7)

Given the values of DST
K from a homogeneous rate Poisson process, the maximum likelihood

estimate (MLE) of the rate of the process is given by

λ̂ =
K

αd
∑N

i=1 γ
n
i

where the γi are the observations of DST
K and N is the sample size.
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4 Mixture Modelling

As in Byers and Raftery (1998) and Mateu et al. (2007), we assume to have two types of pro-

cesses to be classified, and model the K-th nearest-neighbour distances through a mixture of the

corresponding K-th nearest-neighbour distances coming from the clutter and feature, which are

two superimposed spatio-temporal Possion processes. We then suppose that the distribution of

the DST
K is roughly a mixture of distributions

DST
K ∼ qΓ1/d (K,αdλ1) + (1− q) Γ1/d (K,αdλ2) (8)

where λ1 and λ2 are the intensities of the two homogeneous spatio-temporal Poisson point processes

(clutter and feature) and q is the constant which characterises the postulated distribution of the

DST
K . The corresponding parameters associated to this mixture are estimated using an expectation-

maximisation (EM) algorithm, where in the expectation step we use the close form provided by

an inverse Gamma distribution. Each data point has an observation γi of DST
K and an unknown

δi, where δi = 1 if this point belongs to the feature, and δi = 0 otherwise.

The expectation step (E step) of the algorithm consists of

E
(
δ̂
(z+1)
i

)
=

p̂(z)fDST
K

(
γi; λ̂

(z)
1

)
p̂(z)fDST

K

(
γi; λ̂

(z)
1

)
+ (1− p̂(z)) fDST

K

(
γi; λ̂

(z)
2

)
and the maximisation step (M step) consists of

λ̂
(z+1)
1 =

K
∑N

i=1 δ̂
(z+1)
i

αd
∑N

i=1 γ
d
i δ̂

(z+1)
i

, λ̂
(z+1)
2 =

K
∑N

i=1

(
1− δ̂(z+1)

i

)
αd
∑N

i=1 γ
d
i

(
1− δ̂(z+1)

i

) ,
and

q(z+1) =

∑N
i=1 δ̂

(z+1)
i

N
.

Following Byers and Raftery (1998) the simplest test criterion is to classify according to the

component of the mixture under which the observed DST
K has higher density. In our analysis, the

entropy-type measure of separation S =
∑n

i=1 δilog(δi), where δi is the probability that the i− th

point is in the first component of the mixture, is used to select the value of K (Byers and Raftery,

1998).
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5 Simulation study

A simulation study is carried out to assess the performance of the proposed methodology in terms

of detection of features in a spatio-temporal setting. The spatio-temporal classification procedure

proposed in this paper is compared with the method based on the spatial K-th nearest-neighbour

distance in Byers and Raftery (1998), named Mspatial, as if we ignore time. The spatio-temporal

window is set as W × T = [0, 1]2 × [0, 50], where the time range is greater than the spatial one

to have a different scale than the spatial window. In the spatio-temporal window, the clutters

and features are simulated from two different processes, for a wide range of scenarios. In all of

them, the clutter points are taken from a spatio-temporal homogeneous Poisson process with size

nc = {400, 1000}. Moreover, the shape and the number of features (clusters) change.

The number of feature points for each cluster is nfc = {200, 400}, so the total number of

feature points (nf = nfc × ncluster) changes according to the number of clusters (ncluster).

Figure 1 shows various simulated point patterns for nc = 400 clutter points and a number of

feature points per cluster of nfc = 200, for several shapes of the clusters. In particular, Figure 1a

shows space-time feature points in a single ellipsoid, while we have three ellipsoids in Figure 1b.

Figure 1c shows feature points defined only in space for three hotspots, while Figure 1d represents

only temporal features based on two time layers.

The mixture model formulation depends on the type of distance DST and the corresponding

K-th spatio-temporal nearest-neighbour distance. The two spatio-temporal distances defined in

Section 2 are compared, namely the Euclidean (DSTE) and the Maxima (DSTM ) distances. We

report results for K = {5, 10} and ρ = {0.02, 0.5, 1}. Parameter ρ rescales the temporal distance,

such that the weight of the temporal term changes accordingly. When ρ = 1 and DST = DSTE ,

the methodology is equal to Mspatial in three dimensions (Byers and Raftery, 1998). Instead,

when ρ = 0.02, it corresponds to simulate the points in the unit cube. For each scenario, 100

point patterns are simulated as described above. Given a point pattern, each point is classified

into feature or clutter on the basis of the mixture model formulation and the (EM) estimation

algorithm detailed in Section 4.

The evaluation and comparison of the classification procedures with respect to the different

settings are done in terms of the true positive rate (TPR, that is the proportion of feature points

that are correctly identified as such), the false positive rate (FPR, that is the proportion of clutter
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points that are wrongly identified as such) and the accuracy (the proportion of corrected classified

points) (Stehman, 1997). For the features in space and time (e.g. Figure 1a and Figure 1b), the

results are shown in Table 1 and Table 2, respectively; for the spatial clusters (e.g. Figure 1c), the

results come in Table 3, and for the features in time, such as the example in Figure 1d, the results

are shown in Table 4. When the clusters are in space-time (with both one and three features in the

window, see Table 1 and Table 2), our method always outperforms Mspatial, in terms of TPR, FPR

and accuracy. Decreasing the value of ρ, so making closer the unit measurements of the space and

time dimensions, the TPR, the specificity (1-FPR) and accuracy increase. Comparing the two

types of distances, there are no remarkable differences; indeed the slightly worse performance of

the spatio-temporal K-nearest-neighbour based on the weighted maxima distance (DSTM ) seems

to be due to chance.

TABLE 1 HERE

TABLE 2 HERE

TABLE 3 HERE

TABLE 4 HERE

In the presence of hot-spots (Table 3), the performance of our proposed method, in terms of the

calculated rates, improves as ρ reduces. However, since the feature points are homogeneous in

time, the method Mspatial outperforms the proposed procedure. Anyway, the two methods

become comparable as ρ decreases. Conversely, when the features are just in time (Table 4), as

expected, Mspatial does not detect feature points and all the rates are around 50%. Moreover, in
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this case, the method performance decreases as ρ decreases, since the features are homogeneous

in space and the time component has a lower weight, see (1). In general, we observe that

changing the value of K (from 5 to 10) the overall performance is comparable. Moreover, as

expected, increasing the number of clutter points in W × T (nc = 1000), the results are in

general slightly worse than the cases with nc = 400.

6 Application to seismic data

In this section, the proposed method is applied to seismic data. Since earthquakes can be viewed

as a spatio-temporal pattern, the identification of clustered earthquakes provides key information

on seismic dynamics. Well-studied statistical models are based on the idea that the seismicity

can be considered as the sum of “background” earthquakes (caused by tectonic loading) and

“triggered” earthquakes (caused by stress transfer), that tend to cluster in sequence close in time

and space. For example, the epidemic type aftershock sequence (ETAS) model (Ogata, 1988) is

based on this idea.

A cluster of earthquakes is formed by the main event of each sequence, its foreshocks and its

aftershocks, that could occur before and after the mainshock, respectively. Background events

are spontaneous earthquakes that do not trigger a sequence of aftershocks and because of this

characteristic, space-time features of principal earthquakes (main and isolated events) are close

to those of a Poisson process that is stationary in time, since the probability of occurrence of

future events is constant in time irrespectively of the past activity, even if it is inhomogeneous in

space. Therefore, the seismogenic features controlling the kind of seismic release of background

and clustered seismicity are not similar (Adelfio et al., 2006), and to describe the seismicity of an

area in space, time and magnitude domains, sometimes it is useful to study separately the

features of independent events and triggered ones. For instance, to estimate parameters of

phenomenological laws useful for the description of seismicity, a reasonable definition of

“earthquake cluster” is required. Furthermore, the prediction of the occurrence of large

earthquakes (related to the assessment of seismic risk in space and time) is complicated by the

presence of clusters of aftershocks, that are superimposed to the background seismicity,

according to some (unknown) mixing parameter, and shade its principal characteristics (Adelfio

and Chiodi, 2015). For these purposes the preliminary subdivision of a seismic catalogue in
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background seismicity (represented by isolated events, that do not trigger any further event) and

clustered events, is many times required. At this regard, the proposed method based on the EM

algorithm allows the identification of these two main components, such that the background

seismicity is related to the long-term analysis, and the triggered one for sequence identification.

Our goal is to detect spatio-temporal features (clusters) of earthquakes that occurred in central

Italy and California. Choosing a spatial window around high seismic areas, we identified

catalogue subsets where clearly a sequence of earthquakes occurred in a specific time period.

The details of the spatial area, maximum depth, minimum magnitude and time period are

reported in Table 5. In the centre of Italy, the study area is located near L’Aquila city, that was

hit by a strong earthquake in April 4th, 2009. The earthquake was felt throughout central Italy,

causing 308 deaths, making this one of the strongest earthquakes to hit Italy since the 1980

Irpinia earthquake. A total of 449 earthquakes with a magnitude greater than 3 were recorded in

the selected area (see Figure 2). On the other hand, the subset of the earthquake catalogue in

California refers to a study area located between -120–115 N and 32-36 E, near the Landers

town, where in June 25th, 1992 an event with magnitude 7.3 occurred, causing severe damage to

the area directly surrounding the epicenter. A total number of 804 were observed with

magnitude at least 3.5 from 1968 to 2012 (see Figure 4).

TABLE 5 HERE

Here, the clutter and feature points are identified using the spatio-temporal Euclidean weighted

distance (DSTE) since in the simulation study it is shown to perform better than the

spatio-temporal maximum weighted distance. For each spatio-temporal catalogue, the value of ρ

is set as the ratio between the maximum spatial distance over the maximum temporal distance

observed between the events, such that ρitaly = 0.092 and ρcalifornia = 0.042. In Figures 3a

and 5a, the entropy measure for each value of K for the two datasets is reported. For the Italy

subset, we selected the value of K = 12 since after this value, the entropy measure can be

considered constant. Instead, for the California catalogue, the distance to the 25-th

nearest-neighbour is used in the EM classification method. The histograms of the selected K-th

nearest-neighbour distances based on the Euclidean weighted distance show bi-modality (see
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Figure 3b and Figure 5b) indicating that the mixture modelling approach is realistic. The results

applying the EM classification procedure are reported in Figure 3c and Figure 5c, where we can

see that the feature points are clearly identified. The total number of clutter and feature points

were nc = 183 and nf = 266, respectively for the Italy data. Instead, for the California data,

nc = 477= and nf = 327 and three spatio-temporal features are identified.

In Table 6, we report the number of clutter (n0) and feature points (n1) obtained with the

proposed classification method based on the K-th nearest-neighbour method with DSTE , for the

estimated ρ in the two datasets. Additionally, we also report the number of points not properly

identified using the spatial method of Byers and Raftery (1998), neglecting time. In particular,

on the basis of the estimated classification, n1−0 is the number of feature points ‘wrongly’

classified as clutters, and n0−1 is the number of clutter points ‘wrongly’ classified as features. For

both the datasets n0−1 is higher than n1−0. However, for the Italian catalogue the

misclassification is less evident than the Californian one. Indeed, the California earthquakes

present a more complex structure than L’Aquila data, with multiple features and strong clusters

in time and, therefore, neglecting the time dimension, clustered points are easily mixed up with

the background events, confirming the utility of our proposed method in space-time for this kind

of application.

TABLE 6 HERE

7 Conclusions

In this paper, we have presented a classification method for identifying regions with higher point

densities (features) in a spatio-temporal context extending the procedure of Byers and Raftery

(1998) that is based on the spatial K-th nearest-neighbour distance. We use the weighted

spatio-temporal distance where the temporal term is scaled to account for the space-time

coupling, proving that both the Euclidean and maximum distances with a weight in the

temporal coordinate follow an Inverse Gamma distribution under the homogeneous Poisson

assumption. Based on these results, a mixture model formulation for the K-th nearest-neighbour
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distance of clutter and feature points is considered to perform a binary classification using an

iterative EM algorithm. With a simulation study, where several cluster structures are designed

(i.e. cluster in space and time, only hotspots in space and only features in time), the proposed

methodology is compared with the spatial and spatio-temporal version of Byers and Raftery

(1998), where in the spatio-temporal version the time is not scaled. The comparison is done in

terms of the true positive rate, the false positive rate and the accuracy. In general, when

weighting the temporal component in the distance measure, the results of the classification

improve. In comparison to the spatial method, the performances change according to the type of

cluster structure. In particular, when there are one or more features in space and time and only

in time, our methodology outperforms the other one. As an example of application, in contexts

where this methodology can provide interesting contributions, we try to identify background and

triggered seismicity in well-known earthquake sequences occurred both in Italy and California,

where the different local seismogenetic characteristics provide different clustering structure of

data. The proposed approach performs well in both situations, also comparing with the other

existing approaches.

However, this kind of methodology can not be used to identify different clusters, but to classify

points as noise or feature points. Moreover, the value of K for the K-th nearest-neighbour must

be specified by the user, but can be selected using the entropy measure. Another limit to point

out is that our method is based on the assumption that the feature process follows a Poisson

process superimposed on a noise process and that the intensity of each cluster is constant, that

for big spatio-temporal windows could be a restrictive assumption. Thus, for future work, it

would be interesting to improve the results refining the Poisson assumption by allowing for local

regularities and interactions in the feature points.
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(d)

Figure 1: Simulated scenarios with nc = 400 clutter points from a homogeneous Poisson point process in a spatio-

temporal window [0, 1]2 × [0, 50]. In Figure 1a, nf = 200 feature points are simulated in a centred ellipsoid with

semi-axis a = 0.2, b = 0.15 and c = 3.2 with volume 0.41. In Figure 1b, there are three ellipsoids (nclusters = 3)

with semi-axis a = 0.2, b = 0.15 and c = 3.5 with volume 0.43, each with nfc = 200 points, and nf = 600.

In Figure 1c, there are three cylindrical hotspots (nclusters = 3) with radius 0.05, nfc = 200 and nf = 600. In

Figure 1d, there are nclusters = 2 in time each one with 200 points and nf = 400.
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Figure 2: 2D and 3D-plots of the earthquakes in the neighbourhood of L’Aquila, Italy.
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Figure 3: (3a) Entropy measure changing the K-th value of the K-th nearest-neighbour using

DSTE . (3b) Histogram of the DSTE distance to the 12-th nearest-neighbour. (3c) Detected feature

and clutter points with ρitaly in DSTE .
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Figure 4: 2D and 3D-plots of the earthquake near Landers city, California.
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(c)

Figure 5: (5a) Entropy measure changing the K-th value of the K-th nearest-neighbour using

DSTE . (5b) Histogram of the DSTE distance to the 25-th nearest-neighbour. (5c) Detected feature

and clutter points with ρcalifornia in DSTE .
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Table 1: Results in terms of true positive rate (first row), false positive rate (second row) and accuracy (third

row) in percentage over 100 simulated point patterns when the spatio-temporal cluster is an ellipsoid. An example

is the point pattern in Figure 1a with nc = {400} and nfc = {200}. The total number of clutter points is

nc = {400, 1000}. nfc = {200, 400} indicates the number of points for each feature, K is the K-th nearest-

neighbour distance (K = {5, 10}) and ρ = {1, 0.5, 0.02} is the weight for the temporal term in the spatio-temporal

distance. DSTE and DSTM refer to different types of space-time distances. Mspatial indicates the results obtained

with the spatial method of Byers and Raftery (1998), neglecting time.

K = 5 K = 10

nc nfc ρ DSTE DSTM Mspatial DSTE DSTM Mspatial

400 200 1 97.96 97.39 96.82 97.14 96.38 97.81

3.07 3.42 11.95 4.35 5.14 9.56

97.27 96.85 90.98 96.15 95.36 92.89

0.5 99.14 98.82 - 98.53 97.88 -

2.08 2.29 - 2.78 3.04 -

98.33 98.08 - 97.66 97.27 -

0.02 99.86 99.82 - 99.96 99.92 -

1.38 1.44 - 1.69 1.74 -

99.03 98.98 - 98.86 98.81 -

400 1 99.27 99.00 97.85 98.57 98.11 98.86

2.12 2.32 9.35 2.93 3.30 9.10

98.58 98.34 94.25 97.82 97.41 94.88

0.5 99.70 99.60 - 99.43 99.13 -

1.58 1.67 - 2.04 2.21 -

99.06 98.97 - 98.70 98.46 -

0.02 99.96 99.95 - 100.00 100.00 -

1.22 1.25 - 1.44 1.50 -

99.37 99.35 - 99.28 99.25 -

1000 200 1 97.87 97.42 95.75 97.00 96.37 96.04

3.67 4.10 29.14 3.65 4.67 16.86

96.59 96.16 75.01 96.46 95.50 85.29

0.5 98.82 98.60 - 98.35 97.92 -

2.62 2.74 - 2.46 2.71 -

97.62 97.49 - 97.68 97.40 -

0.02 99.70 99.60 - 99.84 99.78 -

1.66 1.81 - 1.57 1.64 -

98.57 98.42 - 98.66 98.60 -

400 1 99.00 98.67 96.92 98.38 97.82 97.10

2.20 2.30 14.32 2.66 2.92 9.53

98.14 97.98 88.89 97.64 97.29 92.37

0.5 99.50 99.36 - 99.22 98.99 -

1.68 1.75 - 1.98 2.09 -

98.65 98.57 - 98.37 98.22 -

0.02 99.90 99.85 - 99.98 99.95 -

1.22 1.25 - 1.40 1.44 -

99.10 99.06 - 98.99 98.96 -
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Table 2: Results in terms of true positive rate (first row), false positive rate (second row) and accuracy (third

row) in percentage over 100 simulated point patterns when the spatio-temporal feature points are three ellipsoids.

An example is the point pattern in Figure 1b with nc = {400} and nfc = {200}. The total number of clutter

points is nc = {400, 1000}. nfc = {200, 400} indicates the number of points for each feature, K is the K-th nearest-

neighbour distance (K = {5, 10}) and ρ = {1, 0.5, 0.02} is the weight for the temporal term in the spatio-temporal

distance. DSTE and DSTM refer to different types of space-time distances. Mspatial indicates the results obtained

with the spatial method of Byers and Raftery (1998), neglecting time.

K = 5 K = 10

nc nfc ρ DSTE DSTM Mspatial DSTE DSTM Mspatial

400 200 1 97.72 97.06 96.24 96.16 95.10 97.80

8.82 9.66 26.89 11.89 13.74 26.42

95.11 94.37 86.99 92.94 91.57 88.12

0.5 98.97 98.60 - 98.03 97.46 -

6.64 7.12 - 8.33 9.03 -

96.73 96.31 - 95.49 94.87 -

0.02 99.83 99.80 - 99.96 99.91 -

4.80 4.97 - 5.72 5.89 -

97.98 97.89 - 97.69 97.59 -

400 1 99.08 98.77 97.75 98.31 97.74 98.78

7.50 8.00 26.00 9.72 10.82 26.43

97.43 97.08 91.81 96.30 95.60 92.48

0.5 99.62 99.46 - 99.26 98.95 -

5.81 6.13 - 7.26 7.80 -

98.26 98.06 - 97.63 97.27 -

0.02 99.96 99.94 - 100.00 99.99 -

4.46 4.60 - 5.28 5.36 -

98.86 98.81 - 98.68 98.66 -

1000 200 1 97.51 97.15 92.87 96.50 95.54 95.26

9.20 10.10 33.07 10.43 11.72 27.44

93.32 92.62 76.66 92.17 91.00 81.07

0.5 98.59 98.32 - 98.20 97.73 -

6.76 7.20 - 7.59 8.25 -

95.25 94.87 - 94.58 93.99 -

0.02 99.54 99.50 - 99.88 99.83 -

4.49 4.63 - 5.05 5.22 -

97.02 96.92 - 96.80 96.67 -

400 1 98.79 98.50 95.64 98.09 97.51 97.04

6.65 7.07 26.93 8.12 8.82 25.01

96.32 95.97 85.38 95.27 94.63 87.02

0.5 99.43 99.29 - 99.05 98.79 -

5.37 5.63 - 6.39 6.76 -

97.25 97.05 - 96.58 96.27 -

0.02 99.83 99.83 - 99.97 99.96 -

4.04 4.17 - 4.61 4.73 -

98.07 98.01 - 97.89 97.83 -
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Table 3: Results in terms of true positive rate (first row), false positive rate (second row) and accuracy (third

row) in percentage over 100 simulated point patterns when the feature points are in space only and there are three

hot spots. An example is the point pattern in Figure 1c with nc = {400} and nfc = {200}. The total number

of clutter points is nc = {400, 1000}. nfc = {200, 400} indicates the number of points for each feature, K is the

K-th nearest-neighbour distance (K = {5, 10}) and ρ = {1, 0.5, 0.02} is the weight for the temporal term in the

spatio-temporal distance. DSTE and DSTM refer to different types of space-time distances. Mspatial indicates the

results obtained with the spatial method of Byers and Raftery (1998), neglecting time.

K = 5 K = 10

nc nfc ρ DSTE DSTM Mspatial DSTM DSTM Mspatial

400 200 1 62.66 67.19 99.93 60.69 59.69 99.99

34.11 37.13 3.21 38.21 36.86 3.58

63.96 65.46 98.68 61.13 61.07 98.56

0.5 77.17 67.41 - 73.00 81.72 -

33.14 33.71 - 37.88 42.28 -

73.05 66.96 - 68.65 72.12 -

0.02 99.69 99.66 - 99.77 99.75 -

6.04 6.40 - 7.42 7.94 -

97.40 97.24 - 96.89 96.67 -

400 1 73.05 55.13 99.98 64.65 81.02 100.00

29.90 26.75 3.07 31.45 39.30 3.38

72.31 59.66 99.22 65.62 75.94 99.15

0.5 84.94 76.41 - 88.54 79.78 -

23.03 26.07 - 37.94 39.90 -

82.94 75.79 - 81.92 74.86 -

0.02 99.90 99.90 - 99.97 99.96 -

5.36 5.64 - 6.38 6.77 -

98.59 98.51 - 98.38 98.28 -

1000 200 1 72.37 69.46 99.60 70.38 73.87 99.95

41.28 42.20 3.02 43.75 42.97 3.22

63.84 62.17 97.96 61.55 63.35 97.97

0.5 80.67 75.40 - 84.34 81.00 -

36.55 38.83 - 46.19 45.84 -

69.91 66.51 - 65.26 64.23 -

0.02 99.11 99.06 - 99.62 99.56 -

5.57 5.91 - 6.34 6.87 -

96.18 95.95 - 95.90 95.54 -

400 1 78.97 69.97 99.91 75.86 80.32 100.00

33.96 34.90 2.87 39.05 41.83 3.08

73.10 67.75 98.65 69.08 70.25 98.60

0.5 87.80 83.04 - 93.09 89.40 -

23.95 28.59 - 42.31 47.53 -

82.46 77.76 - 77.00 72.61 -

0.02 99.70 99.69 - 99.89 99.88 -

4.73 4.95 - 5.57 5.89 -

97.69 97.58 - 97.41 97.25 -
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Table 4: Results in terms of true positive rate (first row), false positive rate (second row) and accuracy (third

row) in percentage over 100 simulated point patterns when the feature points are only in time and there are two

clusters. An example is the point pattern in Figure 1d with nc = {400} and nfc = {200}. The total number

of clutter points is nc = {400, 1000}. nfc = {200, 400} indicates the number of points for each feature, K is the

K-th nearest-neighbour distance (K = {5, 10}) and ρ = {1, 0.5, 0.02} is the weight for the temporal term in the

spatio-temporal distance. DSTE and DSTM refer to different types of space-time distances. Mspatial indicates the

results obtained with the spatial method of Byers and Raftery (1998), neglecting time.

K = 5 K = 10

nc nfc ρ DSTE DSTM Mspatial DSTE DSTM Mspatial

400 200 1 95.00 95.16 54.15 97.59 98.15 61.50

30.07 31.12 54.70 26.70 28.09 61.45

82.46 82.02 49.72 85.45 85.03 50.03

0.5 94.36 94.26 - 95.92 95.74 -

28.57 29.02 - 25.12 25.75 -

82.89 82.62 - 85.40 84.99 -

0.02 89.64 89.28 - 89.83 88.12 -

38.73 41.41 - 43.51 47.02 -

75.46 73.94 - 73.16 70.55 -

400 1 97.84 97.75 54.13 99.03 99.13 60.44

24.56 24.64 54.05 22.16 22.69 60.04

90.38 90.29 51.40 91.96 91.86 53.62

0.5 97.52 97.34 - 98.45 98.36 -

23.62 23.71 - 22.09 22.44 -

90.47 90.32 - 91.60 91.43 -

0.02 95.62 95.62 - 95.43 94.88 -

34.80 37.34 - 38.55 42.30 -

85.48 84.63 - 84.11 82.49 -

1000 200 1 89.07 88.78 53.12 91.24 90.84 58.24

40.91 40.88 53.49 35.37 35.73 58.18

67.66 67.60 48.40 72.23 71.86 46.51

0.5 89.28 89.50 - 91.45 90.97 -

39.98 40.86 - 35.39 35.91 -

68.38 67.82 - 72.28 71.77 -

0.02 84.86 85.02 - 88.51 87.96 -

44.25 46.16 - 48.60 51.23 -

64.07 62.75 - 62.00 59.96 -

400 1 94.27 94.19 53.24 95.59 95.50 56.69

30.81 31.20 53.23 25.39 25.96 56.43

80.34 80.08 49.65 83.94 83.58 49.40

0.5 94.26 94.14 - 95.37 95.09 -

29.41 30.01 - 24.71 25.07 -

81.11 80.72 - 84.21 83.89 -

0.02 91.67 91.70 - 93.39 93.24 -

36.46 38.52 - 38.13 40.97 -

76.04 74.91 - 75.88 74.23 -
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∆x ∆y h∗ ∆t m0 n max Km max days

(a) L’Aquila (Italy) 12 - 14.5 41 - 43.5 30 2005 - 2013 3 449 286 3100

(b) Landers (California) -120 - -115 32 - 36 95 1968 - 2012 3.5 804 658 7870

Table 5: Main information of the Italy (a) and California (b) catalogue subsets in terms of longitude

(∆x), latitude (∆y), and time ranges (∆t). The minimum magnitude value is m0, the maximum

value for the depth is h∗ and the corresponding number of selected events is n. It is also shown

the maximum distance in kilometres and days between the events, and the value of the weight ρ

used in the Euclidean distance.

DSTE Mspatial

ρ̂ n0 n1 n0−1 n1−0

Italy 0.092 186 (41.43%) 263 (58.57%) 43 (9.57%) 4 (0.89%)

California 0.042 477 (59.33%) 327 (40.67%) 176 (21.89%) 18 (2.23%)

Table 6: Number of clutter (n0) and feature points (n1) obtained with the classification method

based on the K-th nearest-neighbour method with the weighted DSTE . In the third and fourth

columns, we show the classification obtained with the spatial method of Byers and Raftery (1998),

neglecting time.
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