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Ocean acidification (OA) may have varied effects on fish eco-physiological

responses. Most OA studies have been carried out in laboratory conditions

without considering the in situ pCO2/pH variability documented for

many marine coastal ecosystems. Using a standard otolith ageing

technique, we assessed how in situ ocean acidification (ambient, versus

end-of-century CO2 levels) can affect somatic and otolith growth, and

their relationship in a coastal fish. Somatic and otolith growth rates of

juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediter-

ranean CO2 seep increased at the high-pCO2 site. Also, we detected that

slower-growing individuals living at ambient pCO2 levels tend to have

larger otoliths at the same somatic length (i.e. higher relative size of oto-

liths to fish body length) than faster-growing conspecifics living under

high pCO2 conditions, with this being attributable to the so-called

‘growth effect’. Our findings suggest the possibility of contrasting OA

effects on fish fitness, with higher somatic growth rate and possibly

higher survival associated with smaller relative size of otoliths that

could impair fish auditory and vestibular sensitivity.
1. Introduction
Ocean acidification (OA) is the ongoing decline of ocean pH owing to absorption

of the increasing atmospheric CO2 [1]. OA represents a major threat to marine

ecosystems by impacting calcification, growth and survival of many organisms

[2,3], and ultimately leading to changes in marine communities, including

biodiversity loss [2,4].

Although fish actively regulate ionic concentrations in their body compart-

ments [5], eco-physiological studies have reported varied OA effects in some

species (see [4] for a recent review). For instance, otoliths are critical elements

of the fish inner ear and vestibular system, and several studies have documen-

ted increased otolith size associated with elevated pCO2 exposure. A smaller

number of studies have shown increased somatic growth rate under elevated

CO2 [4]. Indeed, otolith sizes increase with body length and some evidence

suggested that slower-growing fish tend to have larger otoliths than faster-

growing conspecifics at the same somatic length (namely the ‘growth effect’)

[6,7]. However, experimental evidence on such relation under OA conditions

is presently scant (but see [8]).

In addition to this, most of the studies conducted so far were carried out in

controlled laboratory conditions (but see [9–11]) and did not include the pCO2
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variability that fish may experience in coastal marine ecosystems

(but see [12,13]), nor other potential OA-induced differences (e.g.

food availability).

Here we attempt to address this potential drawback by

assessing how elevated CO2 conditions experienced in situ
can affect somatic and otolith growth, and their relationship,

for the ocellated wrasse Symphodus ocellatus living off a

natural vent under different pH/CO2 conditions.
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Figure 1. Violin plots of (a) somatic growth rate and (b) otolith growth rate
of individuals collected in ambient and high-pCO2 sites, for pre- and post-
settlement phases. The outline of each plot represents the probability density
of the variable, and embeds a box plot. Blue and red dots and bars within
the boxplots represent means+ 1 s.e. for ambient and high-pCO2 sites,
respectively. Letters indicate statistically significant differences according to
a t-test ( p , 0.05).
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2. Material and methods
(a) Study area, fish collection and otolith analysis
This study was carried out in Levante Bay at Vulcano Island

(Aeolian Archipelago, Northeastern Sicily, Italy) where natu-

ral submerged CO2 emissions create a pCO2/pH gradient

(see electronic supplementary material for details). During

27– 30 July 2013, 50 and 59 juveniles Symphodus ocellatus
were collected at 1–2 m depth using a hand net at ambient

( pCO2: 428+ 47 matm; electronic supplementary material,

table S1) and high ( pCO2: 752+ 221 matm; electronic sup-

plementary material, table S1) pCO2 sites, respectively.

Juveniles, which are strongly site-attached [14], ranged in

age from 18 to 42 days post-settlement [11]. All individuals

were gently euthanized by an overdose of clove oils dissolved

into seawater to minimize suffering. Fish were left in the

anaesthetic solution for at least five minutes following the ces-

sation of opercular movement. Individuals were measured

to estimate their total length (TL, to the nearest 0.1 mm)

using a Vernier caliper.

For each juvenile, the two lapillar otoliths were removed and

one was processed to determine the total number of daily rings

as described in [15,16] (see electronic supplementary material

for details). Single otoliths from a total of 99 individuals were

retained for subsequent analyses (i.e. 55 from ambient-pCO2

site and 44 from high-pCO2 site).

For each individual we back-calculated spawning and

settlement dates, and measured otolith radius (to estimate fish

TL at settlement) and the area of the pre- and post-settlement

otolith portion (to estimate otolith growth). Measurements of

otoliths’ area were obtained using the software Image Pro Plus.

We estimated somatic growth rate and otolith growth rate of

each individual both before and after the settlement (see

electronic supplementary material for details).
(b) Data analyses
Variability in frequency distributions of spawning and settle-

ment dates of fish sampled in the two sites was tested using

a two-sample Kolmogorov–Smirnov test. To detect the poten-

tial effect of OA on somatic and otolith growth rates, we

used two 2-way Permanova and adopted a before-after-

control-impact (BACI) design, where the settlement is

considered the onset of exposure to local pCO2 associated

with the seep (impact) for the group of individuals settling in

the high-pCO2 site (see electronic supplementary material

for details).

Two factors are considered: life stage (two levels: pre- and

post-settlement) and site (two levels: ambient- and high-pCO2).

Therefore, OA effects can be detected as an interaction between

stage and site. Pairwise tests (i.e. t-tests) were run on significant

interaction.

We also investigated the effect of OA (i.e. during post-

settlement phase) on the relationship between otolith and

somatic growth by using an analysis of covariance (ANCOVA)

on post-settlement otolith growth and considering post-

settlement somatic growth as a covariate to account for the
influence of fish TL on otolith area. Covariate-adjusted means

were derived using the emmeans package in R.
3. Results
In situ pCO2 levels continuously measured at the two sites

revealed that juveniles from the high-pCO2 site experienced

wider daily CO2 fluctuation (min and max CO2 concen-

trations: 429 matm and 1407 matm, respectively) than

juveniles from the ambient-pCO2 site (min and max CO2 con-

centrations: 333 matm and 530 matm, respectively) (see

electronic supplementary material, table S1). Life stage and

site significantly interacted in their effect on somatic growth

(pseudo-F: 7.7747, p ¼ 0.0066, see electronic supplementary

material, table S2 for further details), with pairwise-tests

revealing no difference between the two sites for the pre-

settlement phase. Conversely, a significant difference in

somatic growth between the two sites was observed for the

post-settlement phase, with the group average growth rate

19.47% greater in the high-pCO2 site (figure 1a). A similar
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pattern was observed for otolith growth rate, with a signifi-

cant interaction between site and life stage (pseudo-F:

9.4736, p ¼ 0.0030, see electronic supplementary material,

table S3 for further details), and a greater average growth

occurring at high-pCO2 site during post-settlement, with a

11% difference between the two sites (figure 1b).

Otolith growth was linearly related to somatic growth for

the post-settlement phase (ANCOVA, pseudo-F: 583.26, p ¼
0.0001). Despite a lower slope at the high-pCO2 site (figure 2),

no significant interaction between somatic growth and site

was detected (pseudo-F: 2.262, p ¼ 0.14). A significant varia-

bility in otolith growth between the 2 sites was detected

(pseudo-F: 6.598, p ¼ 0.012) and ANCOVA adjusted means

showed that post-settlement otolith growth (normalized for

post-settlement somatic growth) is 4.43% higher in ambient

than in high-pCO2 site (figure 2).

40

10 2015
post-settlement somatic growth (mm)

Figure 2. Relationship between post-settlement otolith growth and post-
settlement somatic growth of juveniles collected at a high-pCO2 and ambi-
ent-pCO2 sites. Bands around regressions are the 95% confidence intervals.
Insert: post-settlement otolith areas (ANCOVA-adjusted mean+ 1 s.e.) of
juveniles from the high- and ambient-pCO2 sites.
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4. Discussion
Our study highlights that in situ exposure to high pCO2 levels

is related to higher somatic and otolith growth rates of

Symphodus ocellatus juveniles. This finding supports previous

evidence mostly arising from laboratory studies carried out

under stable pCO2 conditions [4]. We explain the increased

somatic growth under OA conditions by two non-mutually

exclusive mechanisms: (i) the increased energetic costs to

restore homeostatic balance stimulating appetite and

increased foraging activity [17]; and (ii) the increased pro-

duction of growth hormone as a response to environmental

stress [11].

Increase in otolith size with OA has been generally attrib-

uted to a series of acid–base regulation processes between

fish plasma and the endolymph surrounding the otoliths,

with this finally increasing the aragonite saturation state of

the endolymph and otolith growth rates [18,19].

We show that individuals exposed to high-pCO2 levels, in

addition to displaying higher somatic growth rate, exhibit

smaller otoliths at equal body length than individuals

exposed to ambient-pCO2 concentrations. In other words,

faster somatic growth leads to smaller relative otolith size.

This evidence is in agreement with the so-called ‘growth

effect’, indicating that slower-growing individuals tend to

have larger otoliths than faster-growing conspecifics at the

same somatic length [6,7]. To the best of our knowledge,

this is the first evidence of this process related to OA

impact. No conclusive and detailed information exists about

the mechanisms inducing the growth effect. However, it

has been postulated that an uncoupling (i.e. loss of propor-

tionality) between somatic and otolith growth occurs

because somatic growth tends to be more variable and

more susceptible to external factors than otolith growth [20].

It has been hypothesized that the relative size of otoliths

to fish body length could affect fish auditory and vestibular

sensitivity, and the higher the relative size the higher the sen-

sitivity [19]. Based on previous hypotheses, we speculate

that OA could affect the auditory response of fish, then

impairing hearing, navigation and balance [21].

However, given that our results are based on two sites

(high- and ambient-pCO2) that, despite being only 500 m

apart, could also differ in other environmental and biological

features (e.g. food availability, competition, predation),

alternative explanations could not be ruled out conclusively.
Additional research would be thus required to elucidate the

underlying process(es).

In conclusion, our study suggests the possibility of two

potentially contrasting OA effects on fish ecological fitness:

higher somatic growth rate can increase survival, as bigger

individuals are generally more efficient in avoiding predators

[20], while the smaller relative size of otoliths could impair

fishes’ auditory response, with potentially detrimental

impacts on their survival [21].
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