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Abstract of the PhD dissertation 
 
The noble gases are among the most powerful geochemical tools in different geological 
settings. For this reason, they represent one of the most valuable tracers of geochemical 
processes whose variations can be straightforwardly ascribed to magmatic/crustal 
dynamics. In this dissertation, noble gas (He, Ne, Ar) geochemistry applied in both 
seismic and volcanic regions are presented.  
The PhD research has firstly been devoted to the test on the field of an auto-sampler for 
high-frequency collection of the water samples in order to be analysed for their dissolved 
noble gases. Then, I developed a lab-based methodology for the in-vacuum extraction of 
noble gases from waters collected in the copper tubes. The auto-sampler, named 
S.P.A.R.T.A.H. (Syringe Pump Apparatus for the Retrieval and Temporal Analysis of 
Helium), has been installed for a period of 2 months in a seismically active sector in the 
Umbria region (central Apennines, Italy), and collected fluids from a natural spring for 
the entire duration of the deployment with the aim of obtaining short-term noble gas data. 
The proper functioning and successful operation of the extraction system has been tested 
and verified in the Noble Gas Laboratory at the Istituto Nazionale di Geofisica e 
Vulcanologia (INGV) of Palermo.  
In second part of the PhD research, I focused my attention on the high-flux CO2–rich gas 
emissions localized in the central sector of the Apennines. The sampled gases have been 
analyzed for their chemical and isotopic composition (e.g., noble gases). Then, I 
developed a background geochemical model of fluid circulation and secondary chemical 
processes that occur during the transfer of fluid in the shallow crustal layers. Moreover I 
recognize a progressive northward decrease of the mantle-derived He degassing at 
regional scale along the Apennines. Furthermore, this study highlighted that the variable 
compositions of the gas manifestations discharged across the Umbria region can be best 
interpreted as a result of the combination of two different chemical processes which are 
not mutually exclusive: 1) a mixing between a magmatic end-member (VCVD) and a 
shallow-sedimentary sources, and 2) solubility-controlled fractionation mechanisms 
taking place upon interaction with shallow subsurface waters.  
Finally, the project has been also addressed to the investigation of noble gases in fluids of 
an active volcanic system, Grande Comore Island (Indian Ocean). The noble gases (He, 
Ne, Ar) from fluid inclusions in peridotite mantle xenoliths coupled to radiogenic 
components (Sr, Nd, Pb) have been analysed to resolve the mantle source feeding the 
volcanism. Here I recognized a MORB-type mantle reservoir. In particular, the 3He/4He 
isotope compositions (up to 7.3Ra) fall in a range that overlaps the MORB mantle 
signature and the SCLM. The 20Ne/22Ne, 21Ne/22Ne and 40Ar/36Ar isotope ratios plot 
along a mixing between air and a typical MORB-type reservoir. The Sr-Nd-Pb isotope 
systematics shows a mixing line between Depleted MORB and Enriched Mantle 
reservoirs, but for two samples whose higher Sr isotope signatures point towards an EM2 
source, showing isotopic similarities with carbonatite rocks from the East African Rift 
System and central-northern Madagascar alkaline rocks.  
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1. INTRODUCTION 
 

Deep-derived fluids are continuously released to the Earth’s atmosphere. The degassing 

of natural fluids occurring in both volcanically (e.g., Chiodini et al. 2007; Caracausi et al. 

2015; Di Muro et al. 2016; Aiuppa et al. 2019) and seismically-active regions (e.g., 

Caracausi and Paternoster, 2015; Buttitta et al. 2020; Frondini et al. 2018; Tamburello et 

al. 2018) has gained an increasingly interest over the past few decades in the framework 

of geochemical studies as they can substantially contribute to the present-day global 

carbon output through the discharge of significant amount of CO2 (e.g., Mörner and 

Etiope 2002; Chiodini et al. 2004; Aiuppa et al. 2010; Burton et al. 2013). The 

investigation of fluids emitted at regional scale is crucial for understanding challenging 

issues as the evolution of the atmosphere, the Earth’s interior as well as to seek for 

potential relationships between fluids degassing and volcanic activity and seismogenic 

processes, and the hazards that can be posed by such dangerous events.  

Natural fluids occur commonly in the form of gas manifestations (e.g., bubbling gas 

springs, mud volcanoes, soil degassing, mofettes, fumaroles…) as well as in gases 

dissolved in subsurface water bodies. Additionally, fluids are also brought up to the 

surface through magmatic phenomenon, and can be trapped in peridotitic xenoliths 

through which the intrinsic characteristics of the Earth’s interior and the processes 

affecting volatile transfer can be identified.  

Among the most powerful indicators of natural processes are the noble gases, which 

reveal important insights about the behaviour and transport of volatiles to the surface 

from deep levels within the Earth. The noble gases are a group of chemical elements with 

similar properties occupying the last column of the periodic table: they are helium (He), 

neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn). In particular, the 
3He/4He isotopic ratio is considered the most efficient geochemical tracer whose 

variations can be straightforwardly ascribed to magmatic/crustal dynamics and therefore 

is of primary importance in volcanic and seismic forecasting .  

The advantage of using noble gases in Geochemistry relies on their (a) chemical inertness 

and low reactivity due to their filled outer valence shell, (b) high mobility and 

incompatible nature in melts, (c) relatively low abundances in the solid Earth, and (d) 

large isotopic disparity between different terrestrial reservoirs (e.g., mantle, crust, and 

atmosphere). In recent years, the international geochemical community has become very 

sensitive to seeking new approaches, methodologies and laboratory equipments that can 
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help constraining the processes that modify the pristine chemical signatures of fluids in 

different geological systems (e.g., volcanoes, hydrothermal systems, seismic regions). 

The geochemical monitoring of fluids from active natural systems is aimed at recognizing 

any potential signals that can be directly correlated to geochemical changes due to 

volcanic and seismic activity. Evaluation of the geochemical signals carried by noble 

gases requires solid knowledge and awareness of natural systems and the development of 

accurate geochemical models.  

The importance of the use of noble gases in natural fluids emitted in volcanic and near-

fault areas has increased in the past 20 years. The majority, if not all, of the investigations 

devoted to volcanic and seismic forecasting has been focused on the use of noble gases as 

geochemical tracers of natural processes. Some examples are here presented. Following 

the 2001 eruption at Mt. Etna, Caracausi et al. 2003a reported synchronous variations of 

helium isotope ratio over five years of gas monitoring indicating pulses of ascending 

magma in the plumbing system, thus providing a powerful forecasting tool for incoming 

volcanic eruptions. Rizzo et al. 2006 identified signals of magma ascent preceding two 

distinct eruptive events at Mt. Etna during the 2002-2005 period by geochemical 

monitoring of both chemical composition and helium isotope ratio of peripheral gas 

emissions around the volcano and interpreted the geochemical signals on the basis of 

models proposed by Caracausi et al. 2003a-b. At Stromboli Island, a geochemical 

surveillance program since 2000s has demonstrated the consistency and reliability of 

fluid geochemistry data obtained during volcano monitoring with the purpose of 

identifying geochemical signals predictive of impending explosive events (Carapezza and 

Federico 2000; Capasso et al. 2005; Federico et al. 2008; Rizzo et al. 2009, 2015). Long-

term time series of chemical and isotopic composition of noble gases (He, Ne, Ar) have 

shown that impressive eruptions from volcanoes inactive for decades may be preceded by 

the increasing input of magmatic volatiles and changes in isotopic ratios as reported for 

Mt. Ontake in Japan (Sano et al. 2015). 

In seismic regions, the primary composition of natural gas emissions can be modified 

upon migration to the surface as a result of secondary chemical processes at shallow 

levels that can mask the pristine composition of the fluids creating misunderstanding in 

the evaluation of the contributions due to the different sources. The long-term 

geochemical monitoring allows to the identification of such processes in order to 

constrain any potential seismicity-induced anomalies of the emitted fluids. Therefore, the 

acquisition of the background level in seismic areas during quiescent periods is a 
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fundamental requirement to investigate the behaviour of geochemical anomalies as a 

consequence of seismogenic processes as well as to shed light on the possible relationship 

between crustal degassing, fluid flow-induced seismicity, tectonics and water-gas 

interaction at regional scale.  

Pure geochemical precursors of seismic activity are an as yet out-of-reach frontier in 

earthquake forecasting. However, geochemical changes or anomalies prior to seismicity 

have been historically recorded. For instance, Italiano et al. 2001, 2005 and 2009 

evidenced seismically-induced modifications of the helium isotope ratios and other 

geochemical parameters in natural fluids released in the central Apennines in Italy over 

long-lasting geochemical monitoring. The observed temporal variations in the 

geochemical features of the investigated fluids were attributed to stress-driven crustal 

deformations affecting bulk rock permeability occurring during seismogenesis. Chiodini 

et al. 2011 showed that the groundwaters circulating in two regional aquifers located in 

the epicentral area of the 2009 L’Aquila earthquakes in the Abruzzo region (central Italy) 

were affected by the influx of deeply derived, CO2-rich gases whose source was thought 

to be confined beneath the epicentral area of the earthquakes where high-pressure fluids 

were hypothesized on seismological grounds. The composition of the uprising gases was 

estimated by a gas-water-rock model that simulates the evolution of the groundwater 

composition disturbed by the input of a CO2-rich gas. In accordance with its geographical 

location in central Italy, the computed gas composition appeared to be progressively 

enriched in radiogenic components (4He and 40Ar) and in N2, from the peri-Tyrrhenian 

volcanic complexes in the west to the Apennines in the east, suggesting increasing 

residence time of radiogenic gases trapped at high pressure in the crust thus playing a 

major role in triggering Apennines earthquakes.  

The noble gases have also played an important role in answering to a breadth of 

challenging questions in rock geochemistry over the past decades (Allègre et al. 1983; 

Graham et al. 1992a; Pearson et al. 2003). Mafic mantle minerals in peridotite xenoliths, 

such as olivines and pyroxenes, have been widely investigated in terms of their noble gas 

inventory (Sumino et al. 2005; Correale et al. 2012; Rizzo et al. 2018 and reference 

therein) as they usually contain noble gases entrapped in fluid and/or melt inclusions. 

Geochemical investigation of fluid inclusions in ultramafic mantle xenoliths enclosed in 

volcanic products is crucial to constrain mantle heterogeneity at depth and/or to shed light 

on the additional chemical processes that control the pristine signature of the mantle 

source. The coupling of noble gas (He, Ne and Ar) to radiogenic components (i.e., Sr, 
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Nd, Pb) strongly contributes to the understanding of the mantle dynamics providing tools 

that can help to trace the mechanisms acting at modifying mantle materials that are 

brought up to the surface.  

This PhD Thesis furnishes a new additional piece of the puzzle to the comprehension of 

the origin and behavior of natural fluids both in seismically- (Umbria, Italy) and 

volcanically-active (Grand Comore Island, western Indian Ocean) settings by means 

mainly of noble gases and fluid geochemistry. This work can provide new elements for 

the geochemical monitoring in the study areas. 

The Umbria region, located in central Apennines (Italy) represents a natural laboratory 

for exploring the possible relationship between fluid circulation, degassing and regional-

scale seismicity for different reasons: 1) It is characterized by high seismicity rate and it 

can be considered one of the Earth’s most seismically active regions (e.g., Chiaraluce et 

al. 2007); 2) It is strongly affected, even in absence of seismicity, by widespread 

degassing of CO2 (e.g., Chiodini et al. 2004) and characterized by fluid over-pressure at 

depth (Miller et al. 2004); 3) Several investigations have highlighted how this sector of 

the Apennines is particularly sensitive to seismogenic-induced geochemical anomalies 

(Caracausi et al. 2005; Heinicke et al. 2000, 2011; Italiano et al. 2001, 2004, 2005, 2009; 

Barberio et al. 2017);  4) It is characterized by the presence of active faults (UFS=Umbria 

Fault System) and tectonically dominated by a regional NW-trending low-angle normal 

fault (dip 15°-25°) named Alto Tiberina Fault (ATF) with associated SW-dipping high-

angle antithetic structures; 5) It is monitored with multidisciplinary observing system. 

With the aim of investigating the seismogenic potential of the Alto Tiberina Fault, the 

area has been instrumented through the deployment of a near-fault observatory known as 

TABOO (The AltotiBerina near fault ObservatOry), a multidisciplinary research 

infrastructure managed by the Italian National Institute of Geophysics and Volcanology 

(INGV). The observatory consists of a dense geophysical network equipped with multi-

sensor stations (seismometers, GPS, geochemical and electromagnetic sensors) located in 

the central-northern Apennines (Chiaraluce et al. 2014a-b).  

On the other hand, the Indian Ocean has recently received significant interest in the 

scientific literature as far as concern the genesis and magmatic evolution of the Comorean 

archipelago and Le Reunion volcanism (Class et al. 2005 and references therein; Vlastelic 

and Pietruszka 2016). Here are located the two most active volcanoes in the southwest 

Indian Ocean: Piton de la Fournaise at La Réunion Island and Karthala on Grande Comore 

in the Comorian archipelago.!Karthala is a magnificent volcano and, although its eruptions 
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are less frequent than those of Piton de la Fournaise, it poses a serious threat to the 

population living close to its shores and around its flanks, as demonstrated by recent 

eruptions. Karthala, the youngest of the Comorian volcanoes, rises from the floor of the 

Mozambique Channel. Grande Comore rises as a volcanic doublet comprising the 

coalescing shields of La Grille and Karthala. There are, however, no historic eruptions 

from La Grille, whereas Karthala has erupted at least twenty times since records began in 

1857 and three of them occurred since 2000 producing damages to the villages at Gran 

Comore and led to the evacuation of people. This PhD investigation aims at obtaining 

important results that can contribute to the geochemical dataset of the Gran Comore 

volcanic system (La Grille-Karthala) to be useful for future geochemical monitoring  

!

In summary, the main objectives of this research are: 

• To highlight the pristine sources of natural gas emissions discharged in a seismically 

active region such as central Apennines and the role of the secondary chemical 

processes (e.g., mixing, fractionation due to gas-water interaction, etc.) in controlling 

their concentrations and isotopic signatures.  

• To try reducing the sampling window by acquiring high-frequency geochemical data 

on the field and explore the behavior of noble gases in the short-term (hourly to 

daily) timescales which would thus open up a new lines of research with 

considerable potential both in theoretical and monitoring terms. 

• To provide a strong contribution to the geochemical dataset of Gran Comore Island 

useful for future monitoring of an active, dangerous and very poorly-explored 

volcanic system characterized by large mantle heterogeneity as well as controversial 

and long-lasting debated origin.  

• To emphasize the importance of the combined use of noble gases (e.g., He, Ne, Ar), 

major volatiles (e.g., CO2, N2) and radiogenic components (e.g., Sr, Nd and Pb) 

which enables important assessments of the degassing history and geochemical 

evolution of the Earth’s interior. 
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2. STATE OF THE ART  
 
2.1 Geochemistry of crustal fluids  
 

The occurrence of natural degassing far from volcanic systems, such as the Earth’s 

regions affected by continental rifting and active tectonics, has been called to particular 

attention over the past few decades (e.g., Chiodini et al. 2000; Mörner and Etiope 2002; 

Bräuer et al. 2018). Carbon dioxide is one of the most abundant components in natural 

gases and large emissions of deep CO2-rich fluids are commonly reported worldwide in 

seismically- and tectonically-active regions (e.g., Chiodini et al. 2004; Italiano et al. 

2009; Tamburello et al. 2018; Caracausi and Sulli, 2019) as they can substantially 

contribute to the present-day global carbon output. Considerations about the escape of 

natural fluids in non-volcanic regions stem from the identification of their sources and 

from the mechanisms of gas transfer through the continental crust. The released gases are 

usually characterized by a mixture of CO2, CH4, N2, SO2, and noble gases (He, Ne, Ar) in 

different proportions. When approaching the surface along the main tectonic structures 

the uprising volatiles can interact with shallow aquifers and be sequestered for a certain 

amount of time, and then progressively released as a function of their relative solubilities. 

In this section particular emphasis has been devoted to noble gas geochemistry in crustal 

settings. Three are the main sources of noble gases within the continental crust: 

atmospheric, as they are introduced into the crust dissolved in groundwater, mantle, 

during episodes of magmatic activity, and, finally, by means of processes of radioactive 

decay in the crust (Fig.1). Additionally, interplanetary dust particles (IDPs), cosmic ray 

interaction with the crust and anthropogenic sources can also represent a significant 

contribution of noble gases in crustal materials. Early Earth’s processes, such as 

differentiation into mantle and continental crust, degassing and atmosphere loss, have 

resulted in the development of different reservoirs in which the chemistry of noble gases 

(their abundances and isotopic compositions) has been changed. Hence, fluids originating 

from these different sources will preserve noble gases with isotopically distinct 

signatures. Noble gases are then useful tools in the comprehension on the behaviour, 

transport and role of fluids in different geological environments given their low natural 

abundance and chemical inertness together with their isotopic fingerprint allowing 

contributions from different sources to be resolved and quantified. Therefore, a full 

understanding of the processes that control the abundances and isotopic signature of the 

noble gases in different crustal environments is strongly required.  
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Noble gas isotope ratios are sensitive parameters to trace processes of chemical 

fractionation (i.e., the relative partitioning of the isotopes between two natural systems). 

In multiple-sourced natural fluids a fractionation pattern can be recorded in only one 

component or in another or in both providing solid constrains about the timing of 

processes operating either before or after mixing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The present-day radiogenic production of 4He is governed by the �-decay of 235,238U and 
232Th and the crustal output produced in 1 g of rock per year is given by: 

 
4He atoms g-1 yr-1= (3.115x106 + 1.272x105) [U] + 7.710x105 [Th]…………Eq. (1), 

 

where [U] and [Th] are the concentrations of 235,238U, 232Th in weight fraction or parts-

per-million (ppm) (Ballentine and Burnard 2002). Crustal production of 3He is governed 

by thermal neutron capture by 6Li and other reactions described in Mamyrin and 

Tolstikhin 1984. For average crustal compositions, 3He produced within the crust yields 

orders of magnitude lower than 6Li and can, thus, be considered negligible. Neon isotopes 

(20,21,22Ne) are almost entirely produced in the crust by nucleogenic processes through 
17,18O, 19F, 22,23Na, 24,25Mg radioelements (Yatsevich and Honda 1997). Natural gases 

Fig. 1 – Schematic concept of a gas reservoir showing the different noble gas 
components in crustal fluids. Atmospheric noble gases (e.g., 20Ne and 36Ar) enter 
into the gas phase equilibrating with groundwater containing dissolved atmospheric 
noble gases. Radiogenic noble gases (e.g., 4He, 21Ne and 40Ar) are produced by 
radioactive decay of U, Th and K in the crust and are transferred into crustal fluids. 
Upward transfer of deep mantle-derived noble gases (e.g., 3He) may also be 
incorporated in crustal fluids. Image taken from Ballentine et al. 2002. 
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preserved an important record of Ne isotope data in regional crustal systems. 

Investigations of Ne isotopes in crustal gases showed 21Ne/22Ne ratios well below those 

observed in radioactive elements, suggesting preferential thermal release of 22Ne from 

minerals (Shukolyukov et al. 1973). Given that 21Ne/22Ne ratios are consistent with O/F 

ratios, the homogeneity of the 21Ne/22Ne production ratio in different crustal locations led 

Kennedy et al. 1990 to believe that the source of O/F ratios required a common mineral 

suite such as micas and amphiboles. The coupling of Ne to He isotopes provides a 

sensitive indicator of fractionation (Ballentine et al. 1991). Thus, fractionations of 
4He/21Ne ratios can be caused by preferential release of noble gases from mineral 

production sites, transport factors such as diffusion, or gas-water-oil phase partitioning 

(see 5.2 Section in Chapter I). 

Finally, radiogenic Argon, expressed as 40Ar*, is produced in the crust by decay of 40K, 

whose present-day production is calculated as 
40Ar atoms g-1 yr-1= 102.2 [K]…………….……………………Eq. (2), 

where [K] is the concentration of 40K, in weight fraction or parts-per-million (ppm) 

(Ballentine and Burnard 2002). Althought, 36Ar is also production in the crust its 

abundance is insignificant compared to the atmosphere-derived 36Ar introduced into the 

crust dissolved in groundwater and is usually considered negligible.  

Combining the term for He radiogenic production (Eq. 1) with that for the Ar (Eq. 2), the 

total crustal He/Ar production ratio can be obtained as follows (Ballentine & Burnard 

2002):  
4He/40Ar* = {(3.115x106 + 1.272x105) [235,238U] + 7.710x105 [232Th]} / 102.2 [40K]  

Eq. (3) 

Considering the average concentrations of U, Th and K, the present-day 4He/40Ar 

production ratio gives values of 3.09, 5.79 and 6.0 for the lower, middle and upper crust, 

respectively, with a weighted mean of 5.7. 4He/40Ar ratios are used to unravel processes 

of fractionation during thermal release from their respective mineral sites and transport 

related to fractionation (Ballentine et al. 1994; Mamyrin and Tolstikhin 1984). The 

variability of 4He/40Ar* ratios in crustal gases and their deviations from the production 

ratio could also be explained by preferential release of He and Ar. The process of crustal 

degassing is characterized by the escape from the mineral in which the noble gases are 

trapped or produced and their transport to the surface from the respective site of 
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production. The transfer of radiogenic gases through structural pathways in the 

continental crust requires necessarily a driving force, which can result either in a 

concentration gradient diffusion or a pressure gradient advective fluid flow (Ballentine 

and Burnard 2002). The mechanism of diffusion out of crustal minerals plays an 

important role in the loss of noble gases at mineral scale based on gas diffusivity in 

minerals and is usually related to other release factors such as rock fracturing. However, 

the efficiency of release of He and Ar is also strongly dependant on the thermal 

conditions (Ballentine et al. 1994). When crustal minerals are held at thermal regimes 

below the He closure temperature any rare gases will diffuse out of the mineral grains, 

while above the Ar closure temperature the 4He/40Ar* ratio will remain close to the 

crustal production ratio. On the other hand, elevated 4He/40Ar* ratios are associated to 

diffusive release from minerals held at a intermediate temperature between the He and Ar 

closure temperatures where most of the He atoms in the rocks will be liberated compared 

to a minor fraction of those of the Ar (Elliot et al. 1993; O’Nions and Ballentine 1993; 

Ballentine et al. 1994). Previous experimental studies have shown that rare gases (e.g., 

He and Ar) can be released from rocks under compression (Scholz et al. 1973; Honda et 

al. 1982) and their fluxes in the crust are governed by rock fracturing (Torgersen and 

O’Donnell 1991). According to these authors, the degassing of volatiles from compressed 

rocks is strongly dependant to the degree of dilatancy, which can be attributed to the 

creation of new exposed surface areas due to micro-cracking which would permit the 

escape of atoms of rare gases away from crustal minerals. Moreover, these experimental 

investigations have also reported the existence of a differential release of He and Ar from 

rocks. Contrary to Ar, whose degassing depends on parameters other than dilatancy such 

as compression conditions and rock type, He is continuously released from rock under 

compression until fracturing. This suggests that, in accordance with Caracausi and 

Paternoster 2015, the development of seismogenic processes (i.e., earthquakes) could 

favour the releasing of He rather than Ar. Therefore, in a high-seismicity and tectonically 

active region such the Central Apennines in Italy there could be a relatively high potential 

to promote the mobility of helium accumulated in crustal levels. 
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2.2 Mantle Geochemistry   
 
2.2.1 Noble Gas Isotopes as Geochemical Tracers 
 
Owing to their volatile nature, noble gases have a strong tendency to enter gas or melt 

phase, thus giving them the exclusivity of being precious tracers for the origin and 

transport of fluids. Indeed, the noble gases have played an overwhelming role as 

geochemical tools to a breadth of challenging issues in fluid and rock geochemistry over 

the past few decades to place constrains on the evolution and structure of the Earth as 

well as the degassing history of the mantle (Allègre et al. 1983; Marty et al. 1989; Hilton 

and Porcelli 2003; Moreira 2013). The study of noble gas isotopes in mantle-derived 

materials (lavas, peridotite xenoliths, fluids…) is crucial to understanding the chemical 

heterogeneity of the Earth’s mantle. In this respect, mid-ocean ridge basalts (MORBs) 

and ocean island basalts (OIBs) provide important examples to acquire an accurate 

snapshot of the Earth’s interior as they may either contain high volatile contents or trap 

melt/fluids within magmatic phenocrysts. Detectable variations in the isotopic 

composition of noble gases are strictly associated to geochemical processes governing the 

distribution of the main Earth’s heat-producing nuclides (Table 1).   

 
Table 1 – List of parent nuclides of noble gases (from Graham 2002; Porcelli et al. 2002). The tracer ratios treated in this PhD Thesis are 

shown in red. 

Parent 
nuclide 

Daughter 
nuclide 

Half-life Tracer ratio Comments 

3H 3He 12.26 yr  Continously produced in the atm 
238U 4He 4.46 Gyr 3He/4He  
238U 136,134Xe  136,134Xe/130Xe Spontaneous fission 
235U 4He 704 Ma 3He/4He  

232Th 4He 14 Gyr 3He/4He  
232Th 136Xe  136Xe/130Xe No significant production in Earth 

40K 40Ar 1.25 Gyr 40Ar/36Ar  
244Pu 136Xe 80 Ma 136,134Xe/130Xe Extinct radioactivity 

129I 129Xe 16 Ma 129Xe/130Xe Extinct radioactivity 
18O 21Ne  21Ne/22Ne Nucleogenic reaction from U and Th decay 

24Mg 21Ne  21Ne/22Ne Nucleogenic reaction from U and Th decay 
 

One of the most striking findings is that the high 3He/4He ratios, together with 20Ne/22Ne 

and 21Ne/22Ne ratios approaching solar values, found in mantle-derived products from 

ocean islands and mid-ocean ridges suggests that primordial volatiles are still outgassing 

from the innermost regions of the Earth. To date, the use of the He-Ne isotope 

systematics is the present-day solidest geochemical proof that portions of the mantle have 

remained rather undegassed over geologic time. High 40Ar/36Ar and 129Xe/130Xe ratios 



! 22!

(the latter is not treated in this PhD Thesis) in mid-ocean basalts also furnish important 

constrains on ancient volatile loss. Planetary outgassing, starting from formation of the 

Earth’s ocean and atmosphere to depletion through magma generation to plate tectonic-

driven recycling, leads to a wide range of parent/daughter ratios in the mantle budgets of 

noble gas inventory. Earth’s mantle contains both primordial (e.g., 3He, 20Ne, 36Ar, 130Xe) 

and radiogenic isotopes (4He, 40Ar, 129Xe, 136Xe) but in different proportions. MORBs and 

OIBs show different isotopic ratios of these noble gases.  

 

2.2.1.1 Helium 

In the context of understanding mantle heterogeneity, analyses of helium isotopes have 

been carried out more than any other noble gas specie. Helium isotope measurements in 

mid-ridge and island basalts have provided some of the most important geochemical 

insights on mantle reservoirs. Helium is a reliable geochemical tracer for discriminating 

the crustal and mantle components due to the different origin of its two isotopes (3He has 

a primordial origin, whereas 4He is produced in the crust by radioactive α-decay of 
235,238U and 232Th; Ballentine & Burnard 2002). The primary source of 3He is degassing 

from Earth’s interior and its presence in mantle-derived materials indicates that the Earth 

is still releasing volatiles that were once entrapped during accretion more than 4500 Ma 

ago. Understanding helium isotope variations along mid-ocean ridges and oceanic islands 

is essential in the context of mantle convection-driven mixing and partial melt generation 

in the upper mantle. The observed dichotomy in terms of 3He/4He ratio between MORBs 

and OIBs is taken as evidence for the existence of two distinct mantle source reservoirs. 

Several compilations of helium isotope data have been produced with the general 

agreement that MORBs show a relatively narrow range of 3He/4He (mean= 8±1 Ra), 

while OIBs display a much higher variability (up to 40 Ra; Fig. 2). This remarkable 

disparity has led to assume that the sources of MORBs and OIBs must have remained 

isolated enough for a significant time interval in Earth’s history to retain isotopic 

differences in their respective 3He/4He ratios. The highest magmatic helium isotope ratios 

are found at ocean island localities such as Hawaii, Iceland, Galápagos, Samoa, Réunion,  
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and Juan Fernandez (Fig. 2). The existence of such high 3He/4He values is coherent with 

the presence of mantle plume upwellings from deep remote regions in the Earth’s mantle, 

and, thereby, less degassed, being characterized by higher time-integrated 3He/(U+Th) 

ratio compared to the upper mantle MORB sources. However, in addition to OIB with 

helium isotope ratios far greater than MORB range, there is also a subcategory of OIB 

with 3He/4He ratios lower than MORB, such as the islands of Azores (Moreira et al. 

1999) St. Helena, Gough and Tristan da Cunha (Graham et al. 1992b) and Grand Comore 

(Class et al. 2005), with their helium values ranging between 5 and 8 Ra. These are the 

so-called “low-3He” hotspot islands, which tend to have also extreme radiogenic isotope 

characteristics (Zindler and Hart 1986). Indeed, these islands show a strong effect on their 

Sr and Pb isotope compositions along with low He isotope ratios, in accordance with the 

hypothesis of plume-lithosphere interaction. For instance, the association between lower 
3He/4He ratios with more radiogenic 206Pb/204Pb in the Azores was interpreted by Moreira 

et al. 1999 as He isotope heterogeneity within mantle plume. This low 3He/4He signature 

at these regions may suggest addition of radiogenic contribution from crustal material 

recycled back into the mantle, although its origin is hotly debated.  

 

 

Fig. 2– Helium isotope ratios, expressed as R/Ra, in OIB lavas 
against the age of the lithosphere (from Graham 2002). 
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2.2.1.2 Neon 

Measurements of Ne isotopic composition of mantle-derived rocks has been considered 

to be challenging compared to that of helium since low abundance of Ne in the mantle 

and its ubiquitous presence in the atmosphere making air contamination a potential 

analytical drawback. Furthermore, corrections during mass spectrometer analysis for 

isobaric inferences on masses 20 and 22 due to doubly-charged interfering species (e.g., 
40Ar++ and 44CO2

++) have always to be determined. So far, the most accurate Ne isotope 

measurements are performed by stepwise release of gas (as for Ar and Xe isotopes) by 

incremental crushing or by incremental heating under vacuum. Isotopic determination of 

Ne since late 1970s (Craig and Lupton 1976; Honda et al. 1987; Sarda et al. 1988) 

demonstrated that 20Ne/22Ne and 21Ne/22Ne ratios in mantle-derived rocks are far greater 

than Earth’s atmosphere, with 20Ne/22Ne ratios approaching solar-like values, suggesting 

strong Ne fractionation from its terrestrial primitive composition (Porcelli and Pepin 

2000). In general, Ne isotopes in mantle-derived materials have a relative large 

compositional range. However, MORBs and OIBs show substantial differences in their 

Ne isotope composition (e.g., Sarda et al. 1988; Moreira and Allegre 1998; Graham 2002; 

Mukhopadhyay 2012). In the Ne three isotopes diagram, MORBs samples fall along a 

mixing between the air value (20Ne/22Ne= 9.8 and 21Ne/22Ne = 0.029) and an end-member 

enriched in both 20Ne/22Ne and 21Ne/22Ne. On the other hand, OIBs (such as Hawaii, Le 

Reunion and Iceland) show steeper arrays (Fig. 3). These trends reveal that the OIB 

mantle source, at least for these volcanic systems, have less nucleogenic Ne, hence lower 
21Ne/22Ne than for the MORB mantle sources.  

Fig. 3 - The Ne three-isotope diagram (20Ne/22Ne vs. 
21Ne/22Ne). Data sources are MORB - Sarda et al. 
(1988, 2000), Hiyagon et al. (1992), Moreira et al. 
(1995, 1996, 1998), Moreira and Allègre (2002), 
Niedermann et al. (1997), Niedermann and Bach 
(1998), Shaw et al. (2001); OIB - Sarda et al. (1988), 
Poreda and Farley (1992), Staudacher et al. (1990), 
Hiyagon et al. (1992), Honda et al. (1991, 1993a-b), 
Valbracht et al. (1996, 1997), Dixon et al. (2000), 
Barfod et al. (1999), Trieloff et al. (2000), Moreira et 
al. (2001) and Hanyu et al. (2001). The extrapolated 
21Ne/22Ne ratio, corresponding to solar 20Ne/22Ne at 
each locality, is 0.035 for Iceland, 0.039 for Loihi, 
0.043 for Réunion, 0.053 for Kerguelen and 0.075 for 
MORB. Image taken from Graham 2002. 
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Moreover, the strong enrichment in MORB samples in 20Ne/22Ne ratio with respect to air 

value can be attributed by the existence of a solar neon component with 20Ne/22Ne > 13 

entrapped in the mantle since accretion (alike for primordial helium), suggesting that OIB 

source reservoirs have experienced lower degree of primitive (solar) volatile loss over 

geological time. The systematic divergence between MORBs and OIBs in their Ne 

isotope signatures results from differences in the dilution of the nucleogenic 21Ne by 

primordial Ne, as very minor amount of 21Ne can significantly alter the 21Ne/22Ne ratio in 

the mantle because of its scarse abundance. Furthermore, it is worth saying that the 

production nucleogenic 21Ne in the mantle is strongly related to radiogenic 4He 

(expressed as �-particles), as the most important pathways for 21Ne, namely referred as 

Wetherill reactions (Wetherill 1954), require that neutrons and U-Th-derived α-particles 

to collide with target atoms of 18O and 24Mg. 

 

2.2.1.3 Argon 

Argon has three isotopes: 36Ar, 38Ar, and 40Ar. The former two isotopes are primordial and 

are not produced within Earth, while 40Ar is radiogenically produced by decay of 40K with 

a relatively short half-life (1.25 Gyr) compared to the age of the Earth and, thus, 

providing solid constraints on the formation of the atmosphere, Earth’s degassing and 

isotopic evolution of the mantle. As seen for Ne, measurements of Ar isotopes can be 

analytically difficult due to contamination by air component. The Earth’s atmosphere has 

a 40Ar/36Ar ratio of 298 (Lee et al. 2006) and all other terrestrial material show higher 

values, thus 40Ar/36Ar ratios are to be considered the results of mixing between 

atmospheric Ar and a radiogenic component. The 40Ar/36Ar ratio of the mantle shows a 

variable range and this variability is due to time-integrated variations in K/Ar ratios. 

MORBs display 40Ar/36Ar ratios as high as 40.000 (Fig. 4). The highest values have been 

measured in popping rocks (Burnard et al. 1997) and mid-ocean glassy basalts (Marty 

and Humbert 1997; Sarda et al. 2000). High ratios have bee also found at ocean islands 

such as in xenoliths from Samoa (22.000; Farley et al. 1994), in olivine phenocrysts from 

Juan Fernandez (8000; Farley and Craig 1994) and basalt glasses from Loihi Seamount 

off the coast of the Hawaii Island (8300; Trieloff et al. 2000). According to Burnard et al. 

1998, the origin of the high 40Ar/36Ar ratios in xenoliths is unknown, probably because 
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fluid inclusions may have been strongly suffered episodes of metasomatic overprints in 

the upper mantle. Any systematic correlation has been observed between argon and 

helium isotope ratios on MORB samples. The 40Ar/36Ar  ratios in MORB are usually 

widely distributed over 2 orders of magnitude compared to a relatively constant 3He/4He 

isotope trend. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interestingly, a correlation between Ar and Ne can be observed in Fig. XXX, where for 

the case of popping rocks the highest 40Ar/36Ar  ratios are associated with the highest 
20Ne/22Ne  ratios, evidencing the lowest degree of atmospheric contribution for this types 

of rocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – 40Ar/36Ar vs. 20Ne/22Ne. Data sources are given in the 
caption to Fig. 3. Image taken from Graham 2002. 
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2.2.2 Radiogenic Isotopes as proxies for understanding mantle dynamics 
 
Geochemistry of igneous rocks is based on three main lines of investigation:  

1) Major element chemistry. A chemical element is expressed as “major” when it 

represents an essential constituent of the rock-forming minerals, such as Mg, Fe, Ca, Na, 

O, Al. On the basis of major-element composition of an igneous rock, a mantle source 

can be defined as Fertile (a source that has never or very slightly suffered partial melting) 

or Depleted (a residual source after extraction of partial melts).  

2) Trace element chemistry. A chemical element is defined as “trace” when its 

concentration is very low and does not represent a mineral constituent. On the basis of 

their partitioning coefficient, trace elements can be compatible or incompatible with the 

solid or liquid phase, respectively. Thus, a mantle source can be defined either Depleted 

or Enriched in trace element contents. 

3) Radiogenic isotope geochemistry. 

Radiogenic isotope geochemistry is considered a powerful tool to study the chemistry, 

history and evolution of Earth’s mantle reservoirs over geological time.  

Amongst the long-lived radioactive parent-daughter isotope lines (Table 2), the most 

commonly used in mantle geochemistry are Rb-Sr, Sm-Nd, and U-Th-Pb systematics. 

 
Table 2 – List of long-lived radionuclides (from Hofmann 2003). The tracer ratios treated in this PhD Thesis are shown in red. 

Parent nuclide Daughter nuclide Half life (yr) Tracer ratio 
87Rb 87Sr 48.8 x 109 87Sr/86Sr 

147Sm 143Nd 106 x 109 143Nd/144Nd 
176Lu 176Hf 35.7 x 109 176Hf/177Hf 
187Re 187Os 45.6 x 109 187Os/188Os 

40K 40Ar 1.25 x 109 40Ar/36Ar 
232Th 208Pb 14.01 x 109 208Pb/204Pb 
238U 206Pb 4.46 x 109 206Pb/204Pb 
235U 207Pb 0.74 x 109 207Pb/204Pb 

 

Rubidium is an alkali metal with two naturally occurring isotopes, 85Rb and 87Rb, whose 

abundances are 73% and 27%, respectively. 87Rb is radioactive, and decays to the stable 

isotope 87Sr by β decay. During partial melting of a typical four-phase upper-mantle 

assemblage (olivine, clinopyroxene, orthopyroxene, spinel/garnet/plagioclase), both Rb 

and Sr behave as incompatible elements but Rb is more incompatible than Sr. Therefore, 

a partial melt will evolve with higher Rb/Sr ratio than the original source, whereas a 

residual mantle will evolve with lower Rb/Sr ratio than the original source. Whatever the 
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type of mantle source, 87Sr increases continously as 87Rb constantly decays. The temporal 

evolution of a suite of hypothetical geological systems is illustrated in the isochron 

diagram in Fig. 5.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us assume three co-magmatic systems (two minerals and one whole-rock) having the 

same 87Sr/86Sr ratio at the time of the solidification of the rock and different 87Rb/86Sr 

ratios. After each system has turned into a closed system at t=0 (e.g., fast-cooling 

crystallization after a volcanic eruption), the relative isotopic compositions will change 

with time and the slope of the isochron will become steeper as 87Rb decay decreases the 
87Rb/86Sr ratio and increases 87Sr/86Sr ratio. Hence, the isotope value 87Sr/86Sr in a system 

is a function of the time-integrated parent-daughter Rb/Sr ratio. The 87Sr/86Sr ratio of the 

Earth is continously increasing since its formation. The present-day average terrestrial Sr-

isotope composition is defined as Bulk Silicate Earth (BSE) and is equal to 0.70445. 

Values higher than this estimate indicate derivation from sources with higher 87Rb/86Sr 

(i.e., enriched sources), while values lower than BSE indicate derivation from sources 

with lower 87Rb/86Sr (i.e., depleted sources) (Fig. 6). 

Samarium and neodymium belong to the rare-earth elements (REE) group. Sm has seven 

naturally occurring isotopes, of which only three are radioactive (147Sm, 148Sm and 
149Sm). Among these, the half-life of 147Sm is short enough to generate measurable 

differences in the abundance of the daughter isotope 143Nd produced by α decay. In a 

classic mantle assemblage, both Sm and Nd are very incompatible element. As seen in 

Fig. 5 – Rb-Sr isochron diagram for a suite of co-magmatic 
igneous materials. The conceptual model of isochron diagram 
was invented by Nicolaysen 1961. Acronyms cpx and pl stand for 
clinopyroxene and plagioclase, respectively. 
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the Rb-Sr isotope system, the parent isotope (Rb) is more incompatible than the daughter 

isotope (Sr), but in the case of Sm-Nd isotope system the parent isotope (Sm) is less 

incompatible than the daughter isotope (Nd). Therefore, a residual mantle will have a 

time-integrated Sm/Nd ratio higher than the original primitive source as well as higher 

than a partial melt derived from that source. The average composition of the Earth in 

terms of 143Nd/144Nd is given by the ChUR (Chondritic Uniform Reservoir) estimate, 

which is equal to 0.51264. As seen for Sr-isotope systematics, values higher than ChUR 

are considered depleted, whereas values lower than ChUR are enriched (Fig. 6). 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Several petrological and geochemical studies carried out on oceanic basalts over the past 

decades have allowed for the identification of distinct reservoirs in the Earth’s mantle 

(Zindler and Hart 1986; Hofmann 1997). At least three different end-members have been 

identified so that the geochemical characteristics of ocean basalts can be somehow 

explained by the mixing of these components. The first fundamental end-member of 

mantle composition is the DMM (Depleted Morb Mantle), which is considered the 

supposed source of the basalts erupted at plate boundaries along mid-ocean ridges, of 

which the process of extraction of partial melt have lead to its distinct depleted nature. 

Typical 87Sr/86Sr ratios of DMM range from 0.702 to 0.704 (i.e., lower than BSE), while 
143Nd/144Nd ratios range from 0.5134 to 0.5128 (i.e., higher than ChUR). Depleted mantle 

regions that have interacted with crust-derived lithologies are named Enriched in terms of 

Sr-Nd isotope systematic, thus the second end-member of mantle compositions is 

Fig. 6 - 87Sr/86Sr vs.143Nd/144Nd showing the Depleted and Enriched Quadrants 
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represented by Enriched Mantle (EM) components. These are usually divided into two 

types (EMI and EMII), which show geochemical affinities with continental/oceanic crust 

and sediment, and, hence, the recycling of crustal material through subduction has been 

inferred as the main process in the evolution of these reservoirs. Recycling of crustal 

lithologies has the typical effect to raise 87Sr/86Sr and lower 143Nd/144Nd of the 

contaminated mantle source.  

Finally, the U-Th-Pb is also an important isotope system since there are three different 

decay chains producing isotopes of Pb (Table 2). 206Pb and 207Pb are usually known as 

“Uranogenic Pb” because they derive from the decay of U isotopes (238U and 235U, 

respectively), while 208Pb is called “Thorogenic Pb” since it derives from 232Th. The three 

Pb daughter isotopes are commonly normalized to the stable isotope 204Pb. As seen for 

Rb-Sr and Sm-Nd systematics, Pb isotope ratios of an igneous rock is dependent of the 

amount of the parent isotope. The ratio 238U/204Pb is also known as µ, hence, rocks with 

high 206Pb/204Pb ratios (up to 21-22) are called High-µ (HIMU). This is because these 

types of rocks imply derivation from mantle sources with high 238U/204Pb ratio since 206Pb 

derives from 238U. Despite several mid-ocean ridge and ocean island basalts (MORB and 

OIB) contain quite variable and overlapping ranges of radiogenic Pb, suggesting the 

presence of a widespread HIMU-type source component, the most radiogenic Pb isotopes 

values, which require necessarily high U/Pb and Th/Pb ratios in their relative sources, are 

found in OIB. As such, these have been labeled as HIMU-type OIB (Hofmann 1997 and 

reference therein). Recently, Stracke et al. 2005 have suggested that the highly radiogenic 

Pb isotope signatures in MORB and OIB originate from melting of two distinct sources: 

1) the HIMU component, which occurs in a limited number of oceanic localities, the 

Cook-Austral islands in the South Pacific Ocean and St. Helena in the Atlantic Ocean; 2) 
a component, different than HIMU, characterized by slightly less radiogenic Pb but 

notably more radiogenic Sr isotope signatures and closely resembling the isotopic 

composition of the mantle component termed FOZO (i.e., FOcal Zone) postulated by 

Hart et al. 1992). The FOZO component is defined as an isotopically distinct, more 

common and ubiquitous end-member in the MORB and OIB sources. Stracke 2012 used 

the term PREMA (i.e., PREvalent MAntle; Zindler and Hart 1986) instead of FOZO 

referring to a range of isotope composition that extends to the end of the global MORB 

isotopic array (Fig. 7). It is worth pointing out that these end-member compositions (e.g. 

EMI, EMII, HIMU, PREMA-FOZO) cannot be considered as distinct or separate 

reservoirs in the Earth’s mantle but could rather represent heterogeneous regions that 
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might have inherited their distinctive isotope signatures due to relatively long-lasting 

periods of metasomatic processes (e.g. recycling of crustal materials). Indeed, a “mantle 

component” or “mantle domain” can be defined as a part of the mantle that is isotopically 

distinct from other parts of the mantle, regardless about its size, physical properties, 

mineralogy, genetic origin, or location in the mantle. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 - Isotopic variability in global mid ocean ridge (MORB) and ocean island basalts (OIB). a) 
207Pb/204Pb vs. 206Pb/204Pb; b) 208Pb/204Pb vs. 206Pb/204Pb; c) 87Sr/86Sr vs. 143Nd/144Nd. The range of 
compositions indicated for “PREMA” (“FOZO”) is approximate and may extend to both more 
depleted and enriched compositions. The data compilation is provided in the supplementary 
materials (Supplementary Table 1) given in Stracke 2012.  
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1. INTRODUCTION  

It is well know in the literature that noble gases are among the most powerful source 

tracers of natural processes, and, for this reason, useful and valuable tools in the 

framework of in geochemical monitoring of active volcanic systems.  In particular, the 
3He/4He isotopic ratio is considered the most efficient geochemical tracer whose 

variations can be straightforwardly ascribed to magmatic/crustal dynamics and therefore 

is of primary importance in volcanic and seismic forecasting. The most critical aspect of 

the geochemical monitoring in volcanic and near-fault areas is to acquire continuous data 

recording. However, the larger limit is the lack of methodologies and field-based 

instrumentations allowing the acquisition of high frequency data, which would strongly 

contribute to a multidisciplinary approach to the understanding of seismic and volcanic 

systems. At present day, it is not possible to measure noble gas isotopes directly on the 

field, and only a few data per month can be achieved through discrete sampling.  
A new laboratory-based method for total in-vacuum extraction of noble gases dissolved 

in water (mainly He, Ne and Ar) sampled with copper tubes has been developed at the 

Istituto Nazionale di Geofisica e Vulcanologia (Sezione di Palermo). The application of 

this new approach would allow for the acquisition of geochemical data at hourly and 

daily frequency, enabling future evaluation of natural dynamics in the short term and 

direct comparison of these measurements with geophysical and geodetic parameters. 

However, if the relationships between isotopic variations of helium and natural dynamics 

are known to medium-long time scales, little or nothing is known about the behavior of 

noble gases in the short-term timescales (day-to-day). The ability to obtain high-

frequency data (thus reducing the sampling window) would thus open up a new field of 

study with considerable potential both in speculative-theoretical and monitoring terms. 
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2. TECHNICAL FEATURES OF THE EXTRACTION SYSTEM  

The development of a new extraction system for noble gases dissolved in water samples 

collected in copper samplers stems from the need to optimize a method already in use in 

the Noble Gas Laboratory at the INGV of Palermo. So far, the extraction of noble gases 

was achieved by introducing the copper tubes in 30-cm long flexible metal hoses 

connected to the Ultra-High Vacuum (UHV) line of the Mass Spectrometer (Fig. 1). 

Althought this approach offers simplicity of execution, it can give rise to some technical 

issues at the same time. In order to extract the noble gases from water, the copper tube 

(which is pre-cut with pipe-cutter prior to introduction) is manually broken by bending 

repeatedly the UHV flexible. This can, in the long run, damage the flexible itself thus 

compromising the vacuum operations (Fig. 2).  

 

 
 

The idea of manufacturing a new in-vacuum extraction system for noble gases arose by 

observing the different types of Cu-tube cutting systems (from automated to manual 

systems) commonly used in the industrial sector in copper pipe cutting operations.  
!
!

The object of our study is inspired by an instrument usually employed for engraving and 

cutting round tubes made of light alloy and copper. It consists of a manual tool that uses 

Fig. 1 – Flexibles connected to the UHV line 
of the Mass Spectrometer  

Fig. 2 – Example of damaged flexible  
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the combination of two motions to make a sharp and complete cut across the entire 

circumference of the tube. 

The tube has a circular cross-section and is laid on two parallel-axis rollers so that it can 

rotate on itself without changing its position. At the same time, a rotating and sharpened 

disc exerts pressure transversely to the axis of the tube. The combination of these two 

motions, in relation to the properties of the material to be cut, allows to produce a clear 

separation of the tube into two parts.  

 

The most important aspect to be developed is to place the cutting system into a vacuum 

chamber in order to connect it directly to the pumping system. The realization of this 

system requires a preliminary design phase (Fig. 3) related to both the construction 

geometry and the choice of materials to be used. 

 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!

 

The extraction system consists of a main cylinder-shape body and other secondary 

components (Fig. 4). The body has been obtained by turning and milling a AISI 316 L 

stainless steel cylinder and it is composed of two grooves placed 90° degrees to each 

other and arranged transversally to its axis. These grooves house the component 

characterized by the rotating cutting disk on one side and a circular inspection window on 

the other, which allows cutting operations to be monitored. Both sections are made of 316 

L stainless steel and equipped with O-rings capable of ensuring vacuum tightness.  

 

Fig. 3 – 3D design of the extraction system 
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The assemblage of the different components is made by means of a TIG welding 

procedure, consisting of an electric arc with an infusible tungsten electrode and inert gas 

(Argon) used as shielding gas to create a controlled atmosphere. The cylindrical central 

body houses the rotating support which allows to fix the copper tube in order to imparting 

rotation by exerting force on small knobs. The component that holds the copper tube tight 

is removable so as to facilitate the assembly, cleaning and disassembly operations and it 

is equipped with vacuum O-rings too (Fig. 3 a-b-c-d). In the botton part of the system, a 

two-way connection made with PN flanges is connected to the vacuum pumpings of the 

line and to a glass bulb that serves to collect the detached copper segment and thus to 

verify the successful of the operation (Fig. 3 abcd).  Finally, the cutting system is 

mounted on a special steel support that allows it to be connected to the analytical bench. 

 

 

 

 

 

Fig. 4a-b – Components of the extraction system 

a! b!
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3. SAMPLING SYSTEM AND PRE-ANALYSIS PROTOCOL  

The sampling system is represented by the commercially available automatic sampler 

called S.P.A.R.T.A.H. (Syringe Pump Apparatus for the Retrieval and Temporal 

Analysis of Helium; Barry et al. 2009) consisting of a syringe-pump device equipped 

with high-power stepper motor that is connected to a 1.65mm-diameter copper tube that 

directly captures the fluids of a well or thermal spring by preserving them from 

atmospheric contamination (Fig.5 a-b).  

The application of this equipment allows for the continuous record of fluids in both 

volcanic and seismically active areas with the aim to acquire high-frequency, short-term 

data of noble gases at hourly to daily frequency. Fluid samples are continously and 

smoothly drawn into the Cu tubings for periods up to 6 months in a single deployment 

and are time-stamped by user-defined pumping setup parameters. The syringe-pump unit 

is capable of withdrawal rates ranging from 0.0001 ml/h up to 220 ml/min. Thus, all 

potential geochemical anomalies, regardless of duration, can be captured, and matched 

against the timing of external transient natural events such as volcanic eruptions or 

earthquakes.  

 

 

 

 

 

 

 

Fig. 5 – a) SPARTAH model PHD 4400 Hpsi manufactured by Harvard Apparatus (see Barry et al. 2009) b) 
Example of SPARTAH installation 

a! b!
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The determination of the isotopic signature and concentrations of noble gases in natural 

waters involves several crucial steps from sampling to laboratory analysis. As noble gases 

are highly volatile it is extremely critical to avoid any gas exchange between the 

atmosphere and water during sampling, transport and storage. A laboratory protocol for 

the extraction and purification of noble gases dissolved in water has been developed at 

the Instituto Nazionale di Geofisica e Vulcanologia of Palermo.  

After return to the laboratory, the copper tube containing the sampled fluid is segmented 

and numbered into defined intervals by means of clamps (Fig. 6a). Each interval 

represents a single water sample. Then, the external tips of the copper segments are 

sealed by hot-welding (Fig. 6b) in order to avoid water leakage inside the extraction line 

during the vacuum operations. Once the tube exits are welded, the clamps can be 

removed. Successively, the copper tubes are pre-cut with a pipe-cutter before being 

washed with acetone and weighted and then introduced into the extraction system. The 

weighing of the sample is performed both before and after the isotopic analyses as it is 

strictly necessary to know the amount of water stored in the copper segment in order to 

calculate the abundances of the dissolved noble gases in relation to the volume of the 

sampled fluid. 

 

 

 

 

 

a!

Fig. 6 - Images showing the steps for sample preparation. a) clamping and sample numbering and b) hot 
welding of the copper tubes 

b!
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4. DESCRITPION OF THE EXTRACTION AND PURIFICATION LINES 

 

4.1  Extraction line 
 

The extraction line aims to extract the gaseous phase dissolved in the water sample stored 

in the copper tube. It consists of the aforementioned glass bulb acting as cryiogenic trap 

and connected to the cutting system by custom-made isolation valves. During the 

extraction phase, the line is kept at high- or ultra-high-vacuum (P<10-5 mbar). 

This vacuum is maintained through a primary (rotary) pumping system necessary to 

create the first vacuum phase from atmospheric pressure after loading the system with a 

new sample, and another pumping system consisting of both a diaphragm pump and a 

turbomolecular pump needed to reach pressures required for the extraction process (<10-3 

mbar). The extraction line is equipped with accurate diaphragm vacuum gauge that 

allows both to control the vacuum of the line and to monitor the gas extraction phase 

from the water. This step is crucial to verify that the loaded copper tube containing the 

water from which the gases are to be extracted has been well sealed and that the gas 

phase is completely extracted, thus avoiding any chemical and/or isotopic fractionation. 

Once the complete isolation of the pumping system has been verified, the copper tube is 

cut in two parts through the rotating cutting disk and a 15-20 minute time interval is 

required for the total extraction of the dissolved gas phase and the re-equilibration in the 

extraction line. At this point, the glass bulb is immersed in liquid nitrogen (-196 ° C) for 

15 minutes in order to condense all the water vapor and any possible CO2, CH4 

component present in the gaseous mixture. Then, the extraction system is connected to 

the second segment of the line in which there is an additional steel trap immersed in 

liquid nitrogen to remove any residual water vapor and condensable gases. After a further 

additional 10-15 minutes, it is necessary to ensure that the total pressure of the gas 

extracted from the water is compatible with the volume of water sample as well as the 

expected pressure P of the dissolved gas phase. At this point, the extracted gas can be 

expanded into the noble gas purification line for the removal of the residual gaseous 

species. 
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4.2       Purification line  

The purification line, which is connected to the extraction line by means of metal valves, 

aims at eliminating from the gas mixture all those unwanted species that can hamper the 

analysis of noble gases. It is composed of: 

 

a) a vacuum gauge in the range 10-3 - 10-10 mbar that permits to monitor the vacuum 

in the entire line. Under normal conditions, the line runs generally at a pressure of 10-

9 mbar, which is essential for evaluating the cleaning conditions of the line and 

excluding any type of contamination. 

 

b) Three GP50-type getters pumps running simultaneously and operating for selective 

adsorption through a particular Zr-Al alloy which has a different reactivity as a 

function of temperature. Specifically, the first getters pump runs at temperatures 

around 300-350°C to remove all the reactive species (N2, O2, CO2, CH4 and H2O), 

whereas the other two are held at room temperature to adsorb H2 as well as to 

minimize the release of H2 from the steel of the purificaton line. 

 

c) Two activated charcoal traps held in liquid nitrogen boiling temperature (T = -196 

° C) to adsorb the Ar and separate it from He and Ne. 

 

d) a turbo-molecular pump and an ion pumping system to restore UHV conditions. 

 

e) a pipette at known volume for the introduction of the standard sample that is 

contained in a special UHV-flanged cylinder. 

 

g) an activated-charcoal cryogenic trap (cold head) kept cooled through a He 

compressor up to temperatures of -263°C. At this temperature, the activated charcoal 

is capable to adsorb Ne and He. The cryogenic trap is equipped with a resistance and 

a thermo regulator that allows the release of He (T = -223 ° C) and Ne (T = -183 ° C) 

separately.  

 

Once the gas has been extracted from the copper tube, it is introduced into the 

purification line as follows: 
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1) In the first step, the activated charcoal traps are isolated from the rest of the line for 

about 15 minutes. The sample is then subjected only to the action of the getters held 

at different temperatures. In a 10-15 minute time interval, all reactive species are 

adsorbed except the noble gases. 

2) In the second step, the activated charcoal traps are immersed in liquid nitrogen for 

10-15 minutes in order to condense all the noble gases, except He and Ne. Ultimately, 

the purified gas fraction made of residual He and Ne are adsorbed in the cryogenic 

trap at -263 ° C and then separated from each other for isotopic analysis. He is 

measured by Helix SFT-GVI mass spectrometer which allows the simultaneous 

measurement of 3He and 4He, while 20Ne is analysed by Helix MC plus-Thermo 

Scientific mass spectrometer. 

However, it should be noted that in the case of water-dissolved gas samples, the 

isotopic measurements of 21Ne and 22Ne are not carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 56!

5. FIELD DEPLOYMENT AND RESULTS 
 

The SPARTAH apparatus has been installed for periods of 2 months (October-November 

2017) at Parrano, sited in the Umbria Apennines (central Italy; Fig 7a). The Parrano 

thermal spring is located in the western side of the tectonic discontinuity of the Tiber 

Valley characterized by Pliocene calcareous-siliceous marls that uncomformably overlie 

a succession of low-permeability marine Miocene turbidite sandstone and marls. The 

spring of Parrano discharges thermal waters (26.5 °C) with an outflow rate of 10 l/s.  

The SPARTAH has been placed in a drainage gallery (Fig. 7b) carved in the so-called 

Devil’s Den that opens up in the steep walls of a calcareous gorge. Thermal waters were 

sampled by introducing a 15m-long copper coil directly into a borehole to a depth of 3 

meters from the wellhead, using a withdrawal-pumping rate at 0.02 cm3/h. 

Successful operation and proper functioning of the SPARTAH device has been verified 

following instrument retrieval after field installation.! The device has successfully 

sampled well fluids for the entire duration of the deployments with no hiatus existing in 

the time record.  

 

 

 

 

 

 

 

Fig. 7 - a) Geographical location of Parrano in Umbra region; b) SPARTAH installation in the drainage 
gallery 

Wellhead Parrano 

a! b!
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The 3He/4He ratios of the thermal waters, collected both with copper tubes and glass 

bottles, range from 0.028 up to 0.092 Ra (where Ra is the He isotopic ratio in atmosphere 

equal to 1.4 x 10-6; Table 1) thus showing a characteristic radiogenic (crustal-derived) 

isotope signature. These values are notably indistinguishable to those measured in glass 

bottles as previously reported for this Apennine sector (Italiano et al. 2009).  

The 4He/20Ne ratios range from 6.9 to 18.6, with He and Ne concentrations in the range of 

1.6 - 3.8 x 10-3 cc/L STP and 1.1 - 4.3 x 10-4 cc/L STP, respectively. 

The results show that Rc/Ra values (mean= 0.068) display some isotopic fluctuations 

over the entire deployment period characterized by two negative peaks beyond 2σ 

uncertainty (Fig. 8). Moreover, He and Ne concentrations remain constant over their 

respective average values (Fig. 9). These results must be considered preliminary. 

 

 

 

 

 

 

Fig. 8 – Comparison of time series of the helium isotope ratios (as Rc/Ra) of thermal waters 
sampled at Parrano with both glass bottles and copper tubes  
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Table 1. Analytical results of the extraction system .3He/4He ratios are expressed as Rc/Ra units, where Rc/Ra is the R/Ra value corrected 
for atmospheric contamination (Ra is the atmospheric ratio (equal to 1.4 x10-6 [Ozima and Podosek, 2002]). He and Ne concentrations are 
expressed in ccSTP/l x10-3 and ccSTP/l x10-4. The 4He and 20Ne signals expressed in Volt and fAmp, respectively. 
(P= Parrano; G= Glass bottles). 
 

Sample Rc/Ra He cc/L  Ne cc/L  He/Ne 4He signal  20Ne signal  

P1 0.067 3.03 4.38 6.91 13.005 509.453 

P2 0.060 2.48 2.85 9.96 12.428 337.541 

P3 0.038 3.52 2.52 14.01 15.745 304.177 

P4 0.069 2.74 1.90 14.37 12.231 230.345 

P5 0.071 3.14 2.04 15.44 13.781 241.588 

P6 0.092 1.59 1.56 10.17 7.239 192.681 

P7 0.064 2.34 2.02 11.62 11.083 257.993 

P8 0.055 2.55 2.14 11.92 11.824 268.389 

P9 0.028 1.78 1.82 9.77 8.423 233.371 

P10 0.070 2.21 1.47 15.03 9.668 174.094 

P11 0.064 3.88 3.42 11.35 17.409 413.374 

P12 0.081 2.02 1.33 15.18 9.568 170.585 

P13 0.081 1.97 1.30 15.14 8.820 157.610 

P14 0.064 2.57 1.38 18.63 11.930 173.307 

P15 0.068 2.53 1.85 13.66 11.088 219.688 

P16 0.090 1.67 1.16 14.36 7.756 146.100 

P17 0.087 1.73 1.50 11.53 7.736 181.482 

G1 0.064 - - - - - 

G2 0.065 - - - - - 

Mean 0.067 2.48 x 10-3 2.04 x 10-4 12.88 11.16 247.75 

Stdev 0.016 6.64 x 10-4 8.46 x 10-5 2.84 2.86 97.42 
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The site of Parrano has been selected since it is well recognized in scientific literature as 

well as the chemistry of these waters is very sensitive to geochemical perturbations due to 

the regional seismicity. Additionally, this site is very well equipped (e.g. power supply), 

because it is located in a thermal bath, furnishing the proper condition for long-lasting 

application in the field. The thermal waters have periodically been sampled and analyzed 

for validating the reliability and results obtained by the application of the SPARTAH 

apparatus.  

 

 

 

 

 

 

 

 

Fig. 9 – Time series of He and Ne abundances 
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1. INTRODUCTION 
 

Much attention has been devoted in the past few decades on the natural degassing 

occurring far from volcanic systems, such as the Earth’s regions affected by continental 

rifting and active tectonics (i.e., Barnes et al. 1978; Irwin and Barnes 1980; Chiodini et 

al. 2000; Kämpf et al. 2013; Bräuer et al. 2013, 2018). Indeed, seismically- and 

tectonically-active regions are today worldwide renowned for being sites of extensive 

emissions of deep fluids (i.e., Chiodini et al., 2004; Italiano et al. 2009; Caracausi and 

Paternoster 2015; Brune et al. 2017; Tamburello et al. 2018) as they can substantially 

contribute to the present-day global carbon output through the degassing of significant 

amount of CO2 to the atmosphere. It is well documented that tectonic discontinuities act 

as preferential channels for deep fluids within continental crust from levels at depth (e.g., 

Kennedy et al. 1997, Kennedy and Van Soest 2007; Caracausi et al. 2013, 2015) as well 

as from the seismogenic zone in the crust (Chiodini et al. 2004; Di Luccio et al. 2018).  

The capability of modern Earth science to combine in multidisciplinary approach 

geological, geochemical and geophysical observations is of great importance to expand 

our scientific knowledge on the relationship between fluid circulation, crustal degassing 

and seismicity at regional scale. Understanding the fluid-fault coupling process is 

therefore crucial as high-pressure fluids could play a significant role in controlling the 

nucleation and recurrence of earthquake ruptures due to pore-pressure variations in 

faulting strength (Sibson, 2000). Moreover, it has been proposed that the coseismic 

release of crustal-trapped over-pressurized fluids may represent one of the main 

triggering mechanisms of the aftershocks of large earthquakes (Miller et al. 2004). In a 

study of central-southern Apennines, Chiodini et al. (2004) discussed a relation between 

carbon dioxide degassing and seismogenesis in Italy. These authors observed a 

remarkably drop in CO2 flux coincident with a narrow band where the seismicity is 

mostly concentrated, and have concluded that Apennines earthquakes are induced by 

over-pressurized CO2 reservoirs due to the accumulation of gas trapped in the crust. 

Furthermore, on the basis of an examination of a large mainshock and aftershock data set 

Di Luccio et al. (2010) and Chiarabba et al. (2018) have argued that high fluid pressure 

within the crustal rocks may have facilitated the reactivation of pre-existing faults, and 

thus playing a critical role in the triggering of large ruptures associated with the 2009 

L’Aquila and 2016-2017 Amatrice-Norcia seismic sequences, respectively. The 

occurrence of seismogenic processes can affect the release of volatiles over a seismic area 

and may cause either modification in the fluid phase as a consequence of changes in the 
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physical parameters (e.g., permeability, changes in the water table and groundwater 

circulation etc.) [Petitta et al. 2018, and reference therein] or variations in the gas flow-

rate (e.g., Heinicke et al. 2006) and in the chemical and isotopic composition of the 

dissolved gases (e.g., Italiano et al. 2004, 2005). However, the primary composition of 

uprising volatiles can also be modified upon migration to the surface as a result of 

secondary chemical processes at shallow levels (e.g., mixing processes, fractionation 

mechanisms due to gas-water interaction, mineral precipitation, etc.). Hence, the spatio-

temporal variations of the physical-chemical conditions may modify the gas chemistry 

furnishing powerful tools to recognize the earthquake-related signals that fluids transport 

to the surface. In this respect, the long-term geochemical monitoring allows to the 

identification of such processes and is of crucial importance to constrain any potential 

seismicity-induced anomalies of the emitted fluids. Therefore, the acquisition of the 

background level in a seismic area during quiescent periods is a fundamental 

requirement to investigate the behaviour of geochemical anomalies as a consequence of 

the development of seismogenic processes and recognize the geochemical variations due 

to the seismogenetic processes. In fact, this approach allows creating models that are 

fundamental for deciphering and interpreting geochemical variations in the fluids 

discharged in seismic regions.  

Here we report the investigation of the chemical and isotopic (helium and carbon) 

compositions of gases emitted from high fluxes gaseous manifestations in central 

Apennines (Italy). This area represents a natural laboratory for exploring the possible 

relationship between fluid circulation, degassing and regional-scale seismicity for 

different reasons:  

a) The Umbria Apennine is one of the Earth’s most seismically active regions and 

characterized by high seismicity rate (e.g., Castello et al. 2005; Chiaraluce et al. 

2007)  

b) It is strongly affected, even in absence of seismicity, by widespread degassing of 

CO2 (e.g., Chiodini et al. 2004) and characterized by fluid over-pressure at depth 

(Miller et al. 2004); the existence of deep high-pressure processes is evidenced by 

over-pressurized CO2 reservoirs encountered at about 85% of lithostatic load 

within two deep boreholes drilled in the study area at Pieve S. Stefano and San 

Donato sites at depths of 3.7 km and 4.8 km, respectively (Bicocchi et al. 2013);  

c) Several investigations have highlighted how this sector of the Apennines is 

particularly sensitive to seismogenic-induced geochemical anomalies (Caracausi 
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et al. 2005; Heinicke et al. 2000, 2011; Italiano et al. 2001, 2004, 2005, 2009; 

Quattrocchi et al. 2000; Barberio et al. 2017);  

d)  It is characterized by the presence of active faults. The Umbria Apennine is 

affected by a ≈ 100km-long alignment of NW-SE- and NE-SW-trending active 

normal fault (UFS=Umbria Fault System; Collettini & Barchi 2004), where the 

strongest historical and instrumental earthquakes have occurred (Boschi et al. 

1997, 1998). The interpretation of the deep seismic reflection profiles from 

CROP03-NVR (Crosta Profonda Project Near Vertical Reflection [Pialli et al., 

1998; Mirabella et al. 2011]) has shown the existence of an active extensional 

fault system dominated by a regional NW-trending low-angle normal fault (dip 

15°-25°) named Alto Tiberina Fault (ATF) with associated SW-dipping high-

angle antithetic structures (e.g. the Gubbio fault) [Boncio et al. 1998; Pucci et al. 

2003; Chiaraluce et al. 2007];  

e) It is monitored with multidisciplinary observing system. With the aim of 

investigating the seismogenic potential of the Alto Tiberina Fault, the area has 

been instrumented through the deployment of a near-fault observatory known as 

TABOO (The AltotiBerina near fault ObservatOry), a multidisciplinary research 

infrastructure managed by the Italian National Institute of Geophysics and 

Volcanology (INGV). The observatory consists of a dense geophysical network 

equipped with multi-sensor stations (seismometers, GPS, geochemical and 

electromagnetic sensors) located in the central-northern Apennines (Chiaraluce et 

al. 2014a-b).  

 

This study highlights the pristine sources of the emitted fluids and how the secondary 

chemical processes control their composition. The main goal of this investigation is to 

emphasize the physicochemical processes governing the concentrations and isotope 

signature of natural emissions in seismic regions. Moreover, this study represents the first 

ever hydro-geochemical model of water-gas interaction developed in a seismic region 

aimed at unraveling the relationships between crustal degassing, fluid flow-induced 

seismicity, tectonics and water-gas interaction at regional scale.  
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2. THE STUDY AREA 
 
2.1 Geological and hydrogeological background 
 
The Apennines represents the accretionary prism resulted from the collision between the 

westward –directed Adriatic micro-plate and the European continental margin (Alvarez, 

1972; Buiter et al. 1998; Doglioni et al. 1999). The Umbria region is geologically part of 

the Umbria-Marche Apennines (UMA) fold-and-thrust orogenic belt. The present-day 

geo-structural setting of the area is characterized by two main sectors resulted from the 

coeval superposition of two major tectonic phases. The external eastern sector (Adriatic 

domain) is marked by compressional structures (arc-shaped folds and thrusts) of Early 

Miocene-Early Pliocene age, while the internal western sector (Tyrrhenian domain) is 

affected by extensional tectonics characterized by several Pliocene-Quaternary graben 

and half-graben systems bounded by NW-SE trending normal faults (Lavecchia et al. 

1994; Collettini and Barchi 2002, 2004). The study area is located in a transitional zone 

between the outer compressional Adriatic domain and the inner Tyrrhenian domain where 

extensional tectonic and crustal thinning processes are still active.  

The stratigraphy and lithological units of the studied area consists, from the bottom to the 

top, of an Hercynian crystalline basement made of phyllitic rocks of Carboniferous age 

topped by Permian to Middle Triassic clastic and meta-sedimentary rocks of the 

Verrucano Group (Barchi et al. 2012). Then, the Upper Triassic dolomitic-evaporitic 

sequences and a lower Liassic platform limestone (the Calcare Massiccio formation) are 

overlain by a calcareous and marly multilayer of pelagic origin (Upper Lias-Eocene). 

Finally, the sedimentary column culminates with Neogene synorogenic deposists 

represented by the flyschic/turbiditic sequence of the Marnoso-Arenacea Formation 

attributable to the Oligocene to Upper Pliocene age (Ponziani et al. 1995; Barchi et al. 

2012). 

Hydrogeological investigations in central Italy have been extensively reported by 

numerous authors (Mastrolillo et al. 2009 and reference therein). The hydrogeology of 

the study area is largely reflected by the geological evolution of the central Apennines 

and is essentially characterized by two different systems of aquifer separated by 

aquicludes consisting mainly of marly and clayey layers. Specifically, a lower aquifer 

system, hosted by Jurassic-Lower Miocene limestone complexes of the carbonate 

lithological units and Triassic-Lower Liassic dolomitic and evaporitic complexes (the 

latter also known as the Burano anhydrites), and a multiple shallower aquifer systems 
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hosted by Pliocene-Quaternary deposits represented by marly and arenaceous-flysh 

sequences, volcanic rocks, alluvional terrains and travertine (Boni et al. 1986). 

 
 

 
 
 
 
2.2 Seismic activity in the Umbria region 
!
Seismic activity is generally clustered in the northernmost sector of the study area. The 

seismicity does not occur across the arc-shaped fold structures resulted from the 

Neogenic compressional phase but concentrates along a NW-SE-trending 20-30-km wide 

zone (Chiaraluce et al. 2004; Chiarabba et al. 2005). At least, five major seismic events 

have affected the area during the past three decades (Fig. 2). The first worth-mentioning 

seismic event is represented by the 1984 Gubbio-Valfabbrica seismic sequence with a 

Mw 5.6 mainshock located at a depth of 7 km and aftershock distributed on SW-dipping 

rupture planes (Haessler et al. 1988; Collettini et al. 2003). Then, a relatively long period 

of seismic quiescence was interrupted by the long-lasting 1997-1998 Umbria-Marche 

multiple shock seismic crisis characterized by five main earthquakes with magnitude 

larger than 4.0 and a cascade of thousands of minor shocks (Amato et al. 1998). The 

Fig. 1 – Topographical map of central Italy showing the geographical locations of the degassing 
manifestations sampled for this work (red circles) with the main tectonic features (Barchi et al. 2012). 
The peri-Tyrrhenian volcanic districts of Mt.Amiata, Vulsini and Vicano-Cimino (VCVD), located in 
close proximity of the Umbria region, are also reported. 
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seismic sequence started on May 12th 1997 with the Mw 4.5 Massa Martana mainshock 

(Di Luccio et al. 1998; Di Giovanbattista & Tyupkin 2000). From September 26th 1997 to 

March 26th 1998, a series of strong earthquakes (Mw 5.7, 6.0 and 5.6) occurred in the 

vicinity of the Colfiorito village (Amato et al. 1998; Barba and Basili 2000; Cello et al. 

2000). After a decrease in the seismic activity, another earthquake hit the area on April-

May 1998 with the Mw 5.1 Gualdo Tadino mainshock (Ciaccio et al. 2005). The most 

recent seismic events recorded in the Umbria Apennine and surroundings Italian regions 

are the two strong earthquakes that struck the town of Norcia on 26th (Mw 5.9) and 30th 

October 2016 (Mw 6.5), respectively, that followed the Mw 6.0 Accumoli and 

Campotosto earthquakes occurred on 24th August in the Abruzzo region. These events 

occurred seven years after the 6th April 2009 Mw 6.3 L’Aquila earthquake (Bindi et al. 

2009). The Mw 6.5 Norcia mainshock was the largest recorded seismic event in Italy 

since the 1980 Mw 6.9 Irpinia earthquake in southern Apennines (Bernard and Zollo 

1989). 

 
 

Fig. 2 – Geographical location of the studied gas emissions with repsect to the spatial distribution of 
seismicity in central Apennines in the period 1997-2019. Web source: http://cnt.rm.ingv.it   
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3. METHODOLOGY  
 
3.1 Sampling and analytical methods  
 

Fig. 1 shows the location of the six selected high flux gas manifestations sampled for this 

study together with the main structural features of the investigated area. The gas 

emissions are distributed across the whole Umbria region. The northernmost sampling 

locations (namely, Umbertide, Uppiano and Nogna) fall along the Tiber river Valley (Fig. 

3a-b) within the framework of the interdisciplinary research network of TABOO (The 

AltotiBerina near fault ObservatOry; Chiaraluce et al. 2014b), while the southernmost 

sampling sites (Montecastello di Vibio and Montecchie) are sited close to the Vicano-

Cimino Volcanic District (VCVD) located in the northern sector of Latium region (Figure 

x). A total number of six samplings for each degassing site were performed over a quiet 

seismic period between July 2017 to September 2018, which allowed us to acquire the 

baseline data for chemical and isotopic composition of the gases that characterize the 

investigated area. This activity is part of the geochemical monitoring performed 

periodically by the Instituto Nazionale di Geofisica e Vulcanologia (INGV - Sezione di 

Palermo) for seismic surveillance in the Umbria region. The samplings sites (Fig. 4) are 

here summarized as follows:  

The Fungaia gas emission is sited near the village of Pieve S. Stefano located in Tuscany 

region in close proximity to the border with Umbria. The Umbertide gas vent is sited 20 

km north off Perugia town along the Tiber river Valley. It derives from an old drilling for 

hydrocarbon exploration up to a depth of about 5 km. The venting gas is located in an 

elongate depression within Pliocene-Quaternary deposits and it is considered the 

strongest CO2 gas manifestation of the Umbria region with a flow rate of around 3 m3/s. 

The Uppiano bubbling pool is located within Miocene-Pliocene sediments in the 

province of the town of Città di Castello. The Nogna is a water-well managed by the 

Umbria Acque s.p.a. sited 15 km nort-west of the town of Gubbio. It is geologically 

placed between the external front of the Tuscan Nappe and the east-verging UMA 

(Barchi et al. 2012). The Montecastello di Vibio gas emission (hereafter referred as 

M.Vibio) is located within Miocene-Pliocene sediments and characterized by a CO2 flow 

rate of about 1 m3/s. The Montecchie gas manifestation is characterized by several 

aligned rainwater-filled pools featured with diffuse gas bubbling. 
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Fig. 3 – a) Geostructural map showing the norternmost samples within the TABOO area, outcroppings terrains, 
main thrust and normal fault systems, and trace of the geological cross-sections (from Mirabella et al. 2011). 
b) S1 geological cross-section (S2, S3, S4 and S5 cross-sections can be found in Mirabella et al. 2011) 

a 

b 
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The venting gases were collected by using a funnel, whose size changed depending on the 

site conditions. The sampling system adopted for collecting the gaseous manifestations 

consists of three different components (a funnel, a sampler and a syringe) connected by 

silicone tubes through a three-way pyrex valve (Fig. 5). The choice of employing a 

funnel is given by the fact that it is able to channel the released gas towards a water-filled 

container. The free gases were sampled following a cleaning procedure which allows to 

purge the glass bottle of air. The released gas is conveyed to the silicon tube through the 

funnel. The gas is slowly withdrawn by the syringe and then pushed hardly to the glass 

sampler for several times producing water bubbling in the container (the induced 

bubbling serves to test out the effective functioning of the sampling system).  

Fig. 4 – The six gaseous manifestations sampled for this work. A) Fungaia; B) Uppiano; C) Umbertide; 
D) Nogna; E) Montecastello di Vibio; F) Montecchie 
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!

The gas samples have been collected in high flux gas emission and this allows reducing 

air contamination during the sampling procedures. All the analyses have been performed 

in the laboratories of the INGV-Palermo in two weeks from the sampling. The 

concentrations of CO2, CH4, O2 and N2 were analysed by an Agilent 7890B gas 

chromatograph with Ar as carrier and equipped with a 4-m Carbosieve S II and PoraPlot–

U columns. A TCD detector was used to measure the concentrations of He, O2, N2 and 

CO2 and a FID detector for CO and CH4. The analytical errors were 10% for He and 5% 

for O2, N2, CO, CH4 and CO2. The carbon isotopic composition of CO2 (δ13CCO2) was 

determined using a Thermo Delta XP IRMS coupled with a Thermo Scientific™ 

TRACE™ Ultra Gas Chromatograph, e a 30 m Q-plot column (i.e. of 0.32 mm). The 

resulting δ13CCO2 values are expressed in ‰ notation with respect to the international V-

PDB (Vienna Pee Dee Belemnite) standard and analytical uncertainties of ±0.15‰.  
3He, 4He and 20Ne and the 4He/20Ne ratios were determined by separately admitting He 

and Ne into a split flight tube mass spectrometer (GVI-Helix SFT, for He analysis) and 

into a multi-collector mass spectrometer (Thermo-Helix MC plus, for Ne analysis), after 

purification procedures. The reproducibility was <0.1% for 4He and 20Ne. However, the 

estimation of He and Ne concentration is within 10% uncertainty respect to GC 

measurements. 

 

 

Fig.  5 – Schematic illustration showing the sampling system used for collecting the gaseous 
manifestations.  
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4. RESULTS  

!
4.1 Chemical composition of the gases 
 
The chemical composition of the collected gases is reported in Table 1. Carbon dioxide is 

overall the main component in all of the gas manifestations (78-97 vol.%; Fig. 6a), 

except for the site of Nogna that is CH4-dominated (>90 vol. %, table 1).  

Helium and nitrogen (hereafter He and N2 respectively) concentrations are significantly 

variable (from 6.9 to 494 ppm and from1.2 to 20.8 vol%, respectively; Table 1 and Fig. 

6b). The highest He and N2 contents are found at the site of Uppiano, where they are one 

order of magnitude higher than the other gas emissions (Fig. 6a-b). 

The sites of M.Vibio and Montecchie both display the highest CO2 contents (94-97 

vol.%) among the sampled gases, paralleled by the lowest He concentrations (6.9-12.9 

ppm). The Fungaia and Umbertide gas emissions show CO2 contents ranging from 90 to 

94 vol.% and intermediate He concentrations between 31.8 and 45.5 ppm. Finally, Nogna 

shows He contents (35-62 ppm) quite comparable to those found at Fungaia and 

Umbertide sites.  

Argon contents are variable and range between 9.5 to 866 ppm. Oxygen is extremely low 

(0.002-0.6 vol. The low Ar and O2 concentrations in all the analyzed gases indicated that 

these gases are affected by low air contamination. 

 

 

Fig. 6. Chemical composition of the Umbrian gas emissions. a) CO2-N2-O2 triangular plot highlights 
that all the samples fall along the CO2-N2 side of the diagram. Nogna samples (light brown squares) 
fall in the N2 corner due to the fact that this gas manifestation is dominated by CH4. b) Ternary 
diagram showing the relative abundance of N2, Ar and He. The compositions of air and air-saturated 
water (ASW) at 25°C are plotted for reference as black circles.  
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!

Table 1. Chemical composition of the gases sampled in Umbria. CO2, CH4, N2 and O2 concentrations expressed in vol %,: He, Ne, Ar in ppm. 
n.d.= not determined 
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Sample Date CO2 CH4 N2 O2    He   Ne Ar 
 

Fungaia         

1 19/07/17 94.07 0.1869 5.03 0.034 32.64 0.054 28.64 
2 27/09/17 93.72 0.1870 5.23 0.042 32.59 0.09 n.d. 
3 22/11/17 93.20 0.1870 5.16 0.004 32.41 0.016 n.d. 
4 19/12/17 93.16 0.1882 5.11 n.d. 33.04 0.008 15.89 
5 18/02/18 93.11 0.2016 5.42 0.073 32.99 0.008 16.97 
6 29/09/18 92.80 0.1835 5.17 0.052 31.82 0.094 39.87 

Mean  93.34 0.19 5.19 0.04 32.58 0.05 25.34 
Stdev  0.46 0.01 0.13 0.03 0.44 0.04 11.27 

 
Umbertide         

1 19/07/17 91.02 0.2280 6.97 0.695 40.48 0.05 34.58 
2 27/09/17 91.28 0.2284 7.46 0.160 45.50 0.08 n.d. 
3 22/11/17 90.94 0.2280 6.88 0.013 40.77 0.011 n.d. 
4 19/12/17 90.93 0.2340 7.04 0.008 44.23 0.023 31.35 
5 18/02/18 90.96 0.2269 6.88 0.023 37.92 0.015 43.08 
6 28/09/18 91.13 0.2236 6.67 0.018 37.89 0.035 38.17 

Mean  91.04 0.23 6.98 0.15 41.13 0.04 36.80 
Stdev  0.14 0.003 0.26 0.27 3.15 0.03 5.03 

 
Uppiano         

1 19/07/17 82.36 4.38 20.86 0.045 335.62 0.183 208.79 
2 27/09/17 82.63 4.38 11.83 0.036 324.51 0.122 n.d. 
3 22/11/17 82.68 4.36 12.07 0.100 324.88 0.15 n.d. 
4 19/12/17 80.99 4.61 11.97 n.d. 494.02 0.133 218.77 
5 18/02/18 78.09 4.97 14.82 0.270 385.32 0.429 373.07 
6 29/09/18 80.00 4.67 12.78 0.088 348.29 1.193 760.53 

Mean  81.13 4.56 14.06 0.11 368.77 0.37 390.29 
Stdev  1.83 0.24 3.51 0.09 65.37 0.42 258.03 

         
Nogna         

1 18/07/17 0.49 93.44 7.2 0.024 62.87 0.389 760.11 
2 27/09/17 0.23 91.99 7.43 0.200 n.d. n.d. n.d. 
3 22/11/17 0.31 91.76 6.81 0.006 n.d. n.d. n.d. 
4 19/12/17 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
5 16/02/18 0.33 90.63 7.45 0.140 35.57 0.346 696.51 
6 27/09/18 0.23 91.5 6.93 0.062 39.50 0.329 866.82 

Mean  0.32 91.86 7.16 0.09 45.98 0.35 774.48 
Stdev  0.11 1.02 0.29 0.08 14.76 0.03 86.06 

         
M. Vibio         

1 19/07/17 96.81 0.2381 1.23 0.048 11.46 0.026 25.22 
2 27/09/17 97.68 0.2375 1.26 0.027 11.63 0.021 n.d. 
3 22/11/17 95.89 0.2481 1.28 0.033 11.47 0.017 n.d. 
4 20/12/17 95.83 0.2482 1.24 0.002 11.91 0.005 11.20 
5 18/02/18 94.96 0.2397 1.28 0.039 11.74 0.013 n.d. 
6 29/09/18 96.45 0.2397 1.23 0.033 11.32 0.018 26.09 

Mean  96.27 0.24 1.25 0.03 11.59 0.02 20.88 
Stdev  0.93 0.005 0.02 0.02 0.21 0.04 8.36 

         
Montecchie         

1 20/07/17 95.86 0.2638 2.07 0.032 8.15 0.045 38.69 
2 27/09/17 96.80 0.2651 2.17 0.018 8.42 0.014 n.d. 
3 22/11/17 94.76 0.2638 2.12 0.005 8.16 0.037 n.d. 
4 19/12/17 95.30 0.2639 2.12 0.007 8.18 0.014 19.37 
5 18/02/18 95.24 0.2606 2.05 0.005 7.83 0.009 9.54 
6 29/09/18 95.68 0.2540 1.99 n.d. 6.95 0.018 29.90 

Mean  95.61 0.26 2.09 0.013 7.95 0.02 19.60 
Stdev  0.70 0.004 0.06 0.011 0.52 0.01 12.66 
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Table 2. Isotopic composition of the gases sampled in Umbria. Carbon isotope ratios (13C/12C) are expressed as δ‰ units vs. V-PDB. All 
the measured 3He/4He ratios are expressed as R/Ra units and normalized to the atmospheric ratio (Ra= 1.38 �10-6 [Ozima and Podosek, 
2002]). Rc/Ra is the R/Ra value corrected for atmospheric contamination. n.d.= not determined 
!
!
!

Sample Date δ 13C-CO2 R/Ra Rc/Ra 40Ar/36Ar 20Ne/36Ar 
 

Fungaia 
      

1 19/07/17 -4.8 0.026 0.026 350.9 0.67 
2 27/09/17 -4.9 0.030 0.026 n.d. n.d. 
3 22/11/17 -4.6 0.025 0.025 n.d. n.d. 
4 19/12/17 -4.4 0.020 0.023 387.4 0.20 
5 18/02/18 -4.9 0.020 0.020 371.4 0.18 
6 29/09/18 -4.3 0.020 0.021 337.9 0.80 

Mean  -4.6 0.023    0.023 365.60 0.46 
Stdev  0.3 0.004    0.002 21.85 0.31 

       
Umbertide       

1 19/07/17 -3.8 0.023 0.022 339.8 0.49 
2 27/09/17 -3.9 0.024 0.024 n.d. n.d. 
3 22/11/17 -3.6 0.025 0.025 n.d. n.d. 
4 19/12/17 -3.7 0.020 0.022 342.9 0.25 
5 18/02/18 -3.9 0.020 0.022 320.4 0.11 
6 28/09/18 -3.6 0.020 0.016 347.0 0.33 

Mean  -3.7 0.022    0.021 337.55 0.30 
Stdev  0.1 0.002    0.003 14.31 0.16 

       
Uppiano       

1 19/07/17 -3.4 0.020 0.019 352.1 0.31 
2 27/09/17 -2.9 0.023 0.023 n.d. n.d. 
3 22/11/17 -3.2 0.026 0.026 n.d. n.d. 
4 19/12/17 -3.4 0.020 0.017 351.0 0.21 
5 18/02/18 -3.2 0.020 0.020 328.5 0.38 
6 29/09/18 n.d. 0.020 0.017 310.6 0.49 

Mean  -3.2 0.02    0.02    335.61       0.35 
Stdev  0.2 0.002    0.003    19.87       0.12 

       
Nogna       

1 18/07/17 -12.1 0.015 0.013    299.19     0.15 
2 27/09/17 -14.3 n.d. n.d.    n.d.     n.d. 
3 22/11/17 -9.7 n.d. n.d.    n.d.     n.d. 
4 19/12/17 n.d. n.d. n.d.    n.d.     n.d. 
5 16/02/18 n.d. 0.02 0.014   299.07     0.15 
6 27/09/18 -12.9 n.d. n.d.   306.62     0.12 

Mean  -12.3 0.017 0.013   301.63     0.14 
Stdev  1.9 0.003 0.0007   4.32    0.02 

       
M. Vibio       

1 19/07/17 n.d. 0.120 0.124 311.9 0.32 
2 27/09/17 -1.30 0.110 0.110 n.d. n.d. 
3 22/11/17 -0.90 0.130 0.134 n.d. n.d. 
4 20/12/17 -0.67 0.110 0.112 349.8 0.16 
5 18/02/18 -1.10 0.120 0.122 n.d. n.d. 
6 29/09/18 -0.91 0.110 0.106 325.2 0.23 

Mean  -1.0 0.116     0.118    328.98       0.24 
Stdev  0.2 0.008     0.01    19.23       0.08 

       
Montecchie       

1 20/07/17 -1.05 0.636 0.635 308.1 0.36 
2 27/09/17 -1.1 0.653 0.643 n.d. n.d. 
3 22/11/17 -1.0 0.695 0.693 n.d. n.d. 
4 19/12/17 -0.6 0.660 0.657 320.2 0.23 
5 18/02/18 -0.8 0.690 0.687 325.5 0.33 
6 29/09/18 -0.74 0.620 0.623 310.2 0.19 

Mean  -0.9 0.659 0.658 316.05 0.28 
Stdev  0.2 0.029 0.027 8.23 0.07 

!
!
!
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4.2 Helium Isotopes  
 
He is a reliable geochemical tracer for discriminating the crustal and mantle components 

in the gas sources due to the different origin of its two isotopes (3He has a primordial 

origin, whereas 4He is produced in the crust by radioactive α-decay of 235,238U and 232Th 

[Ballentine & Burnard 2002]). The sampled fluids have 3He/4He ratios from 0.01 to 0.69 

Ra (Table 2) with corresponding He/Ne ratios in the range of 102-4130 (Table 1). These 
4He/20Ne ratios are much higher than the same ratio in atmosphere (He/Ne= 0.318; Ozima 

& Podosek 2002) supporting that atmospheric He component in the sampled fluids is 

negligible. A progressive decrease in terms of 3He/4He values is observed from south to 

north in the Umbria region. The 3He/4He ratios in the fluids collected in the northern 

sector of the study area are in a narrow range  (0.01-0.02 Ra) that coincides with the He 

isotopic ratios in crustal fluids dominated by radiogenic 4He due to U and Th decay in the 

crust (Ballentine and Burnard 2002). In contrast higher 3He/4He ratios (0.11-0.69 Ra) 

have been measured in the fluids emitted in the southern sector of the investigated area 

and they show a slight presence of the primordial mantle 3He.  

These data indicate a geographical variability of the He isotopic signature in the 

outgassing volatiles and also the occurring of a mantle-derived component in the fluids 

Emitted at the Vi and Mo sites.  

It is worthy of note that the He isotopic signature at Mo site fits with the ratio in the fluids 

from the Roman Co-magmatic Province (RCP) (e.g., Martelli et al. 2004; Cinti et al., 

2014), whose gas emissions are in 30 km.  

Furthermore, it is possible to compute the percentage of the different He sources by using 

three components mixing equations and both the 3He/4He and 4He/20Ne ratios of the 

crustal, mantle and atmospheric end members. Assuming a Sub-Continental Lithospheric 

Mantle (SCLM) with a 3He/4He ratio of 6.32 ± 0.39 Ra (Gautheron et al. 2005), the 

mantle contribution affecting the M.Vibio (0.11-0.13 Ra) and Montecchie (0.62-0.69 Ra) 

gases range from 1.8% to 10.2%, respectively. The 3He/4He values, uncorrected for 

atmospheric contamination, are reported versus 4He/20Ne ratios in Fig.7 together with the 

helium isotope composition of gas discharges emitted from different volcanic districts 

located alongside the peri-Tyrrhenian margin of the Italian peninsula extending from 

southern Tuscany to the Campanian region. 
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4.3 Argon Isotopes  
 
The Ar isotope composition is reported in Table 2. The 40Ar/36Ar ratios show a small 

range from values close to atmosphere (298.56 ± 0.31; Lee et al. 2006) up to 40Ar/36Ar = 

387. As the inventory of Ar in the atmosphere is dominated by 36Ar, the correlation 

between 40Ar/36Ar versus the reciprocal of 1/36Ar was used to assess the presence of 

trends of air contribution in the collected gas samples. Higher values of 40Ar/36Ar vs. 

1/36Ar indicate an addition of crustal-derived 40Ar and lower atmospheric contribution, 

while lower values reflect higher air contamination and lower production of radiogenic 
40Ar. By and large, three apparent trends can be observed in the studied gas emissions 

(Fig. 8a). The first trend is defined by Uppiano and Nogna samples, the second is defined 

by Fungaia and Umbertide sites, and finally the third is given by M.Vibio and 

Montecchie gases. For a given 40Ar/36Ar ratio, a slightly higher atmospheric Ar 

 Fig. 7 - R/Ra vs. 4He/20Ne ratios of the Umbria gas emissions reported with those from the Italian 
volcanic provinces. The data define a northward decrease of 3He/4He values. The dashed lines show 
different mixing trends with various addition of a mantle component. Furthermore, as far as concern 
Umbertide and Montecastello di Vibio gases, 3He/4He values are in good agreement with those reported 
by Italiano et al. (2009). Vicano-Cimino Volcanic District (VCVD; Cinti et al. 2014); Amiata Mt. 
(Minissale 2004); Vulsini includes data from Latera and Torre Alfina (Minissale 2004); Sabatini 
Volcanic District (SVD; Cinti et al. 2017); Alban Hills (AH; Carapezza & Tarchini 2007; Minissale 
2004); Campanian Province includes data from Phlegrean Fields (Vaselli et al. 2011) and Ischia Island 
(Inguaggiato et al. 2000). The volcanic sectors of Vulsini, Vicano-Cimino, Sabatini and Alban Hills are 
reported in the literature under the name of Roman Co-magmatic Province (RCP; Martelli 2004). 
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contribution is generally observed in the northernmost samples (Fungaia, Umbertide, 

Uppiano and Nogna) compared to those collected in the southern sector of the region 

(M.Vibio and Montecchie). The closest 40Ar/36Ar ratios to the air value were measured in 

the Nogna gases, where also the lowest 4He/20Ne were found. On the contrary, the highest 
40Ar/36Ar ratios are found at the site of Fungaia suggesting the presence of crustal-derived 

Ar. For this reason we used the helium isotopes as a discriminating tool in order to 

constrain the excess of Ar in the northernmost gas samples (Fig. 8b). 

 

!

 
 
 
 

Fig. 8 – (a) 40Ar/36Ar versus 1/36Ar and (b) binary plot that correlates the argon isotope ratio 40Ar/36Ar 
with the helium isotope ratio 3He/4He reported as Rc/Ra (Prinzhofer 2013). The air value is shown as 
black circle. 
!
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4.4 Carbon Isotopes 
 
The isotope signature of carbon ranges from -14.3 to -0.6‰ for δ13C-CO2 vs. V-PDB 

(Table 2). We observe that the δ13CCO2 of the sampled gases tends to be more negative 

from south to north along with a gradual enrichment of the less soluble volatiles (He and 

N2) with respect to CO2 abundance. Accordingly, the highest (i.e., the less negative) δ13C 

values (-0.6 to -1.3‰), related to the 3He-rich compositions and highest CO2 contents, are 

found in the gas emissions collected in the southern sector of the region (M.Vibio and 

Montecchie). Conversely, the lowest (i.e., the more negative) δ13C values (-2.9 to -

14.3‰), associated to crustal-type 3He/4He signature and lower CO2 abundance, are 

found in the gas emissions sampled in the northern sector of the study area (Fungaia, 

Umbertide, Uppiano and Nogna). Plotting δ13C-CO2 vs. CO2 vol.% (Fig. 9) reveals that 

the sampled gases (expect for the CH4-dominated emission of Nogna) fall within an area 

covering the whole range of sedimentary carbon (Hoefs 2015). This area is defined by a 

mixing between a magmatic end-member and a shallow sedimentary component. Due to 

the geographical vicinity to the gas samples collected in southern Umbria, the Vicano-

Cimino Volcanic District (see Fig.1) has been chosen as being the representative non-

fractionated magmatic gas end-member. 
!

The theoretical mixing lines between the magmatic end-member (VCVD) and the 

shallow sources are calculated from the following equation: 

 

(λCO2δ
13C)mix = x(λCO2δ

13C)sed + (1− x)(λCO2δ
13C)deep    Eq. (1) 

 

The mixing line between the VCVD end-member and air component is computed from 

the following equation: 

 

(λCO2δ
13C)mix = x(λCO2δ

13C)air + (1− x)(λCO2δ
13C)deep    Eq. (2) 

 

where λ and δ13C indicate the fractions and carbon isotope composition of CO2 in the 

mixture (mix) and in the sedimentary organic (sed) and magmatic end-member (deep) 

components; and x depicts the fraction of soil CO2 in the mixture (ranging from 0 to 1). 

As shown in the binary plot, the collected gas samples fit with the theoretical mixing 

curves defined by the range of sedimentary carbon (δ13C ranging from -40 to -15‰ 

[Hoefs 2015]). However, a quite scattering distribution of the data points is observed in 
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Fungaia and Umbertide gas samples, suggesting the presence of additional processes 

other than mixing involving the uprising CO2–rich gas phase. Finally, Nogna samples are 

distributed within and close a mixing area defined by an atmospheric component and two 

different CO2 concentrations (1% and 10%). 

 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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!

 

Fig. 9 - δ13C vs CO2 vol.% binary plot. Inset zoom shows the variation of δ13C from south to north 
Umbria. The mixing line between the VCVD end-member and air component is shown for reference and 
calculated from Eq.2. 
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5. DISCUSSION 
 
5.1 Chemical processes affecting the gas composition 
 
The occurrence of secondary chemical processes involved upon ascent toward the surface 

may lead to modifications of the pristine chemical and isotopic composition of deep 

rising gases (Capasso et al. 1997; Federico et al. 2002; Caracausi et al. 2003).  

 
Either mixing processes involving two or more gas sources or solubility-controlled 

fractionation mechanisms due to water-gas interaction can be invoked in order to explain 

the observed variability of the chemistry of the collected gases. The identification and 

investigation of chemical processes able to affect the gas geochemistry of the studied gas 

emissions can be achievable by coupling the elemental abundances of the main 

components (i.e., He, N2) to carbon stable isotopes (δ13C-CO2). As seen in Fig. 9, a 

mixing between a magmatic end-member and a sedimentary gas source is considered to 

explain the northward negativization of the δ13C-CO2 of the gas emissions characterizing 

the Umbria region. However, from Fig. 10a-b it is evident a chemical trend showing that 

the gas samples with the highest He and N2 contents are associated to the lowest CO2 

abundance suggesting the occurrence of processes that would cause a CO2 removal due to 

partial dissolution in water. This is particularly seen at the Uppiano degassing site. Any 

proposed chemical model accounting for the geochemistry of the collected gases has to 

be consistent with the chemical composition of the Uppiano gas samples which show 

enhanced He and N2 contents (up to 494 ppm and 20.8 vol.%, respectively) and CO2 

depletion (< 80 vol. %) compared to the other degassing sites. 

 

Fig. 11a-b reveals that the gas emissions fall along either mixing or fractionation curves 

suggesting that the chemistry of the gaseous manifestations in the Umbria region can be 

best explained by a combination of two different processes: a mixing between the deep 

magmatic end-member (VCVD) and a shallow component (model 1) or chemical 

fractionation due to partial dissolution in water (model 2).  

 

 
!
!
!
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!
!
!
!
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The He/CO2 and N2/CO2 ratios (3.08E-06 and 1.74E-02 average values, respectively 

[Minissale et al. 1997; Minissale 2004]) and the δ13C-CO2 isotopic composition (δ13C-

CO2 = -0.51‰ average value, [Minissale et al. 1997; Minissale 2004]) from the Vicano-

Cimino Volcanic District have been chosen as being the representative non-fractionated 

gas end-member values. The δ13C of gaseous CO2 increases with decreasing of He/CO2 

and N2/CO2 in the gas phase, approaching that of the carbon isotopic composition of the 

deep magmatic end-member. Indeed, M.Vibio and Montecchie are considered to be the 

gas samples that have experienced the least CO2 loss with respect to the magmatic end-

member. The mixing lines between the VCVD end-member and the shallow-sedimentary 

gas sources are calculated from the following equations for He and N2 respectively: 

 

 

(λCO2δ
13C)mix = x(λCO2δ

13C)sed + (1− x)(λCO2δ
13C)deep     Eq. (3) 

 

λCO2( He /CO2 )mix = x(λCO2He /CO2 )soil + (1− x)(λCO2He /CO2 )deep     Eq. (4) 

 

λCO2( N2 /CO2 )mix = x(λCO2N2 /CO2 )soil + (1− x)(λCO2N2 /CO2 )deep     Eq. (5) 

 

Fig. 10 – (a) He-CO2 and (b) N2-CO2 binary plots showing an enrichment of He and N2 in the gas samples 
observed along with a decrease in CO2 contents. 
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where λ and δ13C indicate the fractions and carbon isotope composition of CO2 in the 

mixture (mix) and in the sedimentary organic (sed) and magmatic end-member (deep) 

components; and x depicts the fraction of soil CO2 in the mixture (ranging from 0 to 1). 

 

 

Fig. 11 – (a) He/CO2 and (b) N2/CO2 molar ratios vs. δ13C(CO2)g in the Umbria gas 
manifestations. The theoretical mixing curves (black dashed curves) between the 
magmatic end-member (defined by the Vicano-Cimino Volcanic District (Minissale 
et al. 1997; Minissale 2004) and three shallow-sedimentary components (δ13C(CO2)g 
= -25‰, and CCO2 = 10%, 2%, and 0.01%) are shown. The mixing lines are 
computed from Eq.3,4,5. The theoretical Rayleigh-type fractionation lines (coulored 
dashed lines) computed from Eq.9,10,11,12 are reported along with pH and 
temperature values used in the calculations (Table 3).  
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The total dissolved inorganic carbon (TDIC) and concentrations of dissolved carbon 

species (H2CO3, HCO3
- and CO3

2-) were computed by using the following equations:  

 

    Eq. (6)    and           Eq. (7) 

 

where K1 and K2 define the first and the second dissociation constants of carbonic acid 

(equal to  4.47x10-7 and 4.69x10-11 at 25°C, respectively), and {H+}=pH. The abundances 

of the dissolved carbon species (H2CO3, CO3
2-, HCO3

-) are expressed in mg/L. The total 

fractionation factor 103 ln aTDC–CO2g (the fractionation factor A-B is equal to the 

difference between the isotopic composition of the species A and B; Hoefs 2015) is 

computed by summing up the enrichment factors (ε) of each dissolved carbon species 

with respect to CO2g, weighted for their relative abundances and divided by the total 

dissolved inorganic carbon (TDIC), as follows: 

  

 Eq. (8) 

 

 

Due to the different Henry’s solubility constants in water of He (KHe = 141048 atm mol-1) 

and N2 (KN2=78545 atm mol-1) compared to CO2 (KCO2= 1217 atm mol-1) at 20°C 

(Capasso and Inguaggiato 1998), a gradual enrichment of the less soluble volatile species 

(i.e., He and N2) is expected to occur in the residual gas phase as gaseous CO2 dissolves 

progressively in water. A Rayleigh-type condensation process needs to be considered in 

order to explain the chemical changes experienced by the gas phase upon interaction with 

water according to the following equations:  

!!!

Eq.!(9)!!!!!! Eq.!(10)!

!!!!!!

Eq.!(11)!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq.(12)!

 

where F represents the fraction of residual gas after partial dissolution in water (ranging 

from 0 to 1); (He/CO2)i and (He/CO2)r are the molar ratios in the initial and residual gas 

phase for each F value considered, respectively; KCO2/KHe and KCO2/KN2 are the ratios of 
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Henry’s solubility constants for CO2, He and N2, respectively; δ13CCO2i and δ13CCO2r stand 

for the initial and residual carbon isotopic composition of CO2. The Rayleigh 

fractionation theoretical curves were computed by combining Eqs. (9) and (10) for He 

and CO2, and Eqs. (11) and (12) for N2 and CO2; α depicts the fractionation factor 

between dissolved carbon species and gaseous CO2 for different pH and T=20°︎ C (Table 

3).  
!
!
!
!
!

Table) 3.! Fractionation! (α)! and! enrichment! (ε)! factors! are! reported! together! with! pH! and! temperature! values! used! in! the!
calculations!(see!text).!TDC=!total!dissolved!carbon;!T=!temperature!in!degrees!Celsius!!
!
!
!

 

 

Furthermore, a fractionation process at pH 5 departing from the end-member Fungaia 

must be invoked to explain the enrichment in He and N2 at the Uppiano degassing site 

 

It is worth noting that, although these values (Vibio and Montecchie) are very close to 

those that characterize the gas emissions from the geothermal field of the Vicano-Cimino 

Volcanic District (δ13C ~ -0.5 ‰ average value; Minissale et al. 1997, 2004), the 

Vesuvius volcano (δ13C ~ 0 ‰ average value; Chiodini et al. 2001), as well as the largest 

non-volcanic degassing area of Mefite d’Ansanto in the southern Apennines (δ13C ~ 0.4 

‰; Chiodini et al. 2010), they are not consistent with those reported for mantle CO2 

typically showing δ13C of about -5 ‰ (Hoefs 2015). These findings suggest a different 

end-member value than generally accepted for magmatic δ13C-CO2 in this area. 
!

!
!
!
!
!
!
!
!
!
!
!

αTDC–CO2g ε TDC–CO2g pH T°C 

0.99946 -0.54 5 20 
1.00044 0.44 5.6 20 
1.00177 1.77 6 20 
1.00622 6.22 7 20 
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5.2 He-Ne-Ar relationships 
 
The atmosphere-derived contamination trends in Fig.8a have been observed in a number 

of crustal fluid studies (Ballentine et al. 1991; Ballentine & O’Nions 1994; Battani et al. 

2000; Wen et al. 2017) and may arise either from air component which had previously 

dissolved in groundwater or entrained as formation water during sediment deposition. 

The 20Ne/36Ar ratios in the gas samples are variable (Fig.12) and show values 

intermediate between air-equilibrated water (20Ne/36Arasw= 0.12-0.19; Weiss 1970, 1971) 

and air (20Ne/36Arair= 0.52), although two gas samples from Fungaia have values higher 

than atmosphere (0.67 and 0.80, respectively). Notwithstanding, any possibility of the 

samples being contaminated by air either during sampling in the field or laboratory 

analysis or by air trapped in sediments can be ruled out as the measured 4He/20Ne ratios 

are far greater than air (see Table 1). Highly fractionated 20Ne/36Ar ratios (> 1-1.5), 

usually associated with low 36Ar concentrations, have also been reported by previous 

investigations on natural gases (Ballentine et al. 1991; Battani et al. 2000) and waters 

(Castro et al. 1998) in continental environments. According to Bosch and Mazor (1988) 

and Ballentine et al. 1991, partitioning of Ne and Ar into the gas phase, assuming a 

single-stage equilibration model, may result in highly fractionated values with elevated 

Ne/Ar ratios when a very small gas-water volume ratio is considered. These enhanced 
20Ne/36Ar ratios may even extend to values up to 0.6, which is very close to the highest 

values measured in the Umbrian gases. In such a case, this consideration can also be 

applied to Rayleigh fractionation of a simple gas-water system.  

 

 

!
!
!
!
!
!
!
!
!
!
!
!
 

Fig. 12 – 40Ar/36Ar versus 20Ne/36Ar in the Umbrian gases. 
Dotted band defines the ASW domain for temperature range 
from 0° to 25°C according to Weiss (1970, 1971). The air line for 
Ar isotope ratio is also reported in the diagram. 
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Thus, following Ballentine et al. 1991, the 4He/40Ar* and 20Ne/36Ar isotope ratios of the 

gas samples have been normalised to predicted end-member values to obtain a 

fractionation factor F with the aim to assess the relative magnitude of fractionation 

between differently-sourced rare gas components. The fractionation factor F serves to 

quantify the extent of deviation for both rare gas isotope pairs (crustal and atmosphere-

derived) with respect to reference expected ratios. Therefore, any deviations from the 

end-member ratio must reflect the chemical-physical processes that the studied gaseous 

manifestations have undergone in the system. For reasons of clarity, 40Ar* refers to the 

radiogenic component of 40Ar which is calculated by: 

!!!!Eq. (13), 

where 36Ar and  40Ar/36Ar are respectively the concentration and ratio in parts-per-million 

measured in the sample and 298.56 is the value of the 40Ar/36Ar ratio in the atmosphere. 

In Fig.13, F(4He/40Ar*)rad and F(20Ne/36Ar)asw values for Umbrian gases are plotted 

together with the values of gas samples from the Pakistan Indus Basin and the Pannonian 

Basin (in order to highlight any possible differences between our study area and other 

well-studied sedimentary basins on Earth.  

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

40Ar*= 36Ar
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− 298.56
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Fig. 13 – The extent of fractionation of the rare gas components defined by the 
fractionation factors F(4He/40Ar*)rad and F(20Ne/36Ar)asw obtained by dividing the 
measured ratios by reference end-member values. The figure shows a comparison 
between gases sampled in the Umbria region with those collected in two other 
different crustal environments such as the Pakistan Indus Basin (Battani et al. 
2000) and the Pannonian Basin (Ballentine et al. 1991). Dashed lines labelled Line 
1 and Line 2 show that when F=1 any elemental deviation from the reference ratio 
has occurred, while Line 3 represents the trend of equal fractionation.  
!
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!
Ballentine et al. 1991 and Battani et al. 2000 report the 20Ne/36Ar ratios being divided to 

the reference value of 0.192 for the 20Ne/36Ar ratio of air-saturated water at 25°C (Ozima 

and Podosek 2002) and the 4He/40Ar* values to the present-day average radiogenic 

production ratio for crustal rocks of 4.9.  

Unlike the end-member values used for the Pannonian and Pakistan Indus Basins, the 
20Ne/36Ar and 4He/40Ar* ratios of the Umbrian gas samples have been normalized to the 

values of Nogna, respectively 0.15 and 4.28. The gas manifestation of Nogna has been 

chosen as reference site due to the fact that it is the only location among the sampled gas 

emissions that contains water in the borehole and characterized both by very little 

bubbling and high water/gas ratio.  

In general, the Pannonian Basin gas samples fall on a linear array showing a markedly 

co-variation in terms of magnitude of fractionation for both isotope pairs. Ballentine et al. 

1991 argue that the observed coherent covariance suggest that the crustal- and 

atmosphere-derived rare gases must have been mixed before fractionation processes had 

occurred. On the contrary, the Pakistan Indus Basin exhibits an overall much larger 

dispersion of the data points characterized by a first group of samples showing a general 

coherent trend of fractionation for both 4He/40Ar* and 20Ne/36Ar ratios, followed by 

second group with Ne/Ar being far more fractionated than He/Ar. Battani et al. 2000 

conclude that these data could represent aged geological system which have undergone 

fractionation of their 4He/40Ar* and 20Ne/36Ar ratios, suggesting the presence of a multi-

step process where gas phase had contact with air-equilibrated water, which, in turn, had 

previously been in contact with oil in geological past times.  

As far as concern the Umbrian gases, we observe that, for a given 4He/40Ar* ratio, the gas 

samples collected in winter months fall around the line of equal fractionation (Line 3) 

while the gas collected in summertime show 20Ne/36Ar ratios more fractionated. This 

could be due to the fact that during summer periods the gas phase mixes with water that 

had already been fractionated. 
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In contrast to atmosphere-derived gases, crustally-produced radiogenic noble gases can 

also be resolved as their concentrations are proportional to the abundances of U, Th and 

K radioelements in the crust. Specifically, aside from Ne isotopes whose crustal 

production is entirely controlled by nucleogenic processes, the present-day radiogenic 
4He is governed by the α-decay 235,238U and 232Th, while 40Ar is produced from 40K by 

electron capture.  

In order to investigate the contribution of He and Ar produced in the crust have been 

calculated for each gas sample. The present-day 4He crustal output produced in 1 g of 

rock per year is given by:  

 
4He atoms g-1 yr-1= (3.115x106 + 1.272x105) [U] + 7.710x105 [Th]         Eq. (14), 

 
 

On the other hand, the 40Ar crustal production can be expressed as  
 

40Ar atoms g-1 yr-1= 102.2 [K]      Eq. (15), 
 

 

where [U], [Th] and [K] are the concentrations of 235,238U, 232Th and 40K in weight 

fraction or parts-per-million (ppm). 

Thus, combining the term for He radiogenic production (Eq. 14) with that for the Ar (Eq. 

15), the total crustal production ratio can be obtained as follows (Ballentine & Burnard 

2002):  

4He/40Ar* = {(3.115x106 + 1.272x105) [235,238U] + 7.710x105 [232Th]} / 102.2 [40K]  

Eq. (16)  

 

Table 4 - Reservoir, lithology and average values of U, Th K2O (expressed in ppm) from Boraso (2008) and Coltorti et al (2011) 

 

Reservoir Lithology  U Th K2O 4Hr/40Ar* (This study) 
Sedimentary cover Limestone, marly 

limestone, evaporates, 
mudstones 

 1.68 1.86 42000 16.03 

Italian Upper Crust Amphibolite, micaschist, 
phyllite, granite, marble 

 1.54 7.9 19700 5.51 

Italian Lower Crust Gabbro, diorite, granulite  0.3 3.53 12000 3.01 
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The calculated 4He/40Ar* ratios, ranging from values as low as 1.26 up to as high as 

14.21, indicate that the Umbrian gas samples fall within a band between a typical Italian 

continental crust and the sedimentary cover (Fig. 14). The lithologies of the reservoir 

together with the average values of U, Th and K2O used for the calculation are listed in 

Table 4. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 – Binary diagram showing 4He/40Ar* vs. 20Ne/36Ar 
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CONCLUSIONS  
 
The geochemical investigation of gaseous emissions discharged in a seismic region can 

provide useful insights on the interaction processes of uprising volatiles with subsurface 

waters encountered during their ascent to the surface. The variable compositions of the 

gaseous manifestations emitted across the Umbria region can be best interpreted as a 

result of the combination of two different chemical processes which are not mutually 

exclusive: 1) a mixing between a magmatic end-member (VCVD) and a shallow-

sedimentary sources, and 2) solubility-controlled fractionation mechanisms taking place 

upon interaction with shallow subsurface waters.  

I have proposed a geochemical model of fluid circulation and secondary chemical 

processes (i.e., mixing and gas-water interaction) developed in a earthquake-prone area 

acting under quiescence condition of high intensity seismic activity that could serve as 

baseline for future geochemical monitoring of a vulnerable and high-risk area as the 

central Apennines. 

Hence, the investigation of natural gas emissions in seismic areas under quiescence 

conditions is essential to: 

 

1. Define a background model of fluid circulation and of the control of secondary 

chemical processes on gas geochemistry at shallow levels and their relationship 

with the seismo-tectonic setting of the area; 

2. To evaluate the extent of potential geochemical changes that could be correlated 

to the acquired baseline dataset for seismic surveillance. 

 

This approach could be useful to interpreting future geochemical variations in the fluids 

that move across the crust transferring to the surface some messages about the 

relationship between fluids and rock deformation. 
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1. INTRODUCTION  

 

The western Indian Ocean has recently received significant interest in the scientific 

literature as far as concern late Cenozoic to present Comorean magmatism which have 

provided petrological and geochemical constraints to be placed on the genesis and 

magmatic evolution of the Comorean archipelago and Le Reunion volcanism (Class et al. 

2005 and references therein; Vlastelic and Pietruszka 2016). In fact, here are located the 

two most active volcanoes in the southwest Indian Ocean: Piton de la Fournaise at La 

Réunion Island and Karthala on Grande Comore in the Comorian archipelago.!Karthala is 

a magnificent volcano and, although its eruptions are less frequent than those of Piton de 

la Fournaise, it poses a serious threat to the population living close to its shores and around 

its flanks, as demonstrated by recent eruptions. Karthala, the youngest of the Comorian 

volcanoes, rises from the floor of the Mozambique Channel. Grande Comore rises as a 

volcanic doublet comprising the coalescing shields of La Grille and Karthala. There are, 

however, no historic eruptions from La Grille, whereas Karthala has erupted at least 

twenty times since records began in 1857 and three of them occurred since 2000 producing 

damages to the villages at Gran Comore and led to the evacuation of people.!

It is a matter of debate whether the origin of the Comoros Islands could have been resulted 

from either lithospheric migration above a relatively stationary plume-related hot spot 

(Emerick and Duncan 1982; Class et al. 1996), or passive response of lithospheric break-

up due to activation of a very slowly spreading ridge axis dissected by transform zones 

(Nougier et al. 1986; Courtillot et al. 2003).  

Here we report the first ever analyses of light noble gases (He, Ne and Ar) in fluid 

inclusions coupled to the radiogenic isotopes (Sr, Nd and Pb) of mineral separates from 

peridotite xenoliths collected at La Grille volcano. Previous studies (i.e., Class and 

Goldstein 1997; Class et al. 2005) report the He isotopes measurements in fluid 

inclusions of La Grille xenoliths minerals together with Sr-Nd-Pb isotopic data of whole-

rock samples. Moreover, investigation of Grand Comore rock lithotypes has been so far 

mainly focused on bulk samples and mineral separates from lavas, although petrological 

and geochemical data from clinopyroxenes and glasses of ultramafic mantle nodules from 

La Grille are reported in the literature (Coltorti et al. 1999).  

The investigation of peridotite mantle xenoliths enclosed in alkaline lavas can help to 

shed light on the mechanisms that can modify mantle materials. In particular, mafic 

phenocrysts in mantle xenoliths have attained important consideration in terms of their 
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isotope compositions as they can provide useful insights on the evolution of the mantle 

sources and constrain the effects of hypothetical metasomatizing agents. 

Several investigation have demonstrated that noble gases (He, Ne, and Ar) isotope 

systematics in fluid inclusions represent an useful tool for understanding the main the 

geochemical characteristics of the mantle (Gautheron and Moreira 2002; Gautheron et al. 

2005; Martelli et al. 2011, 2014; Correale et al. 2012, 2016; Day et al. 2015).  

Isotope geochemistry of fluid inclusions in ultramafic mantle xenoliths from La Grille has 

been performed with the goal to investigate the mantle heterogeneity and/or to trace 

additional chemical processes acting at modifying the pristine signature of the mantle 

source. Furthermore, these results can also contribute to the geochemical background of 

the Gran Comore volcanic system (La Grille-Karthala) being useful for future 

geochemical monitoring of an active, dangerous and very poorly-explored volcanic 

system. Indeed, it is well recognized in literature (more details in Chapter I) that the noble 

gases systematics, are powerful tools for the geochemical monitoring of active volcanic 

systems (e.g., Mt Etna, Italy; Mt Ontake and Mt Hakone, Japan; Kilauea, Hawaii). 

However it is fundamental to characterize the composition of the source to recognize and 

interpret geochemical variation due to the degassing processes occurring during the uprise 

of magmas in the volcanic plumbing systems.  
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Fig. 1 – a) The Comoros Archipelago; bathymetry from GEBCO (General Bathymetric Chart of the Oceans, http://www.gebco.net/; 
topography from SRTM  (Shuttle Radar Topography Mission, http://www2.jpl.nasa.gov/srtm/); isobaths every 200 m (Bachelery et al. 
2016); b) Volcanological map of Grand Comore Island (Bachelery and Coudray 1993; Morin 2012); c) Monogenic scoriaceous cones 
at the summit of La Grille volcano (Photo J. Morin); d) The Choungou-Chahale crater of Karthala volcano (Photo J. Morin) 
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2. THE STUDY AREA   

2.1 Geological setting 
 

The Comoros Archipelago is an age-progressive volcanic chain located in the northern 

part of the Mozambique Channel in the Western Indian Ocean between Madagascar and 

East Africa (Fig. 1a). It is composed of four islands: from west to east these are Grand 

Comore, Moheli, Anjouan and Mayotte followed by two, poorly known submarine 

volcanic banks (Geiser and Leven; Daniel et al. 1972). Geochronological data indicate 

that magmatic activity in Comoros archipelago was diachronous (Fig. 2). It supposedly 

started in Mayotte around 11 Ma ago, then in Mohéli and Anjouan 3.9 and 5 Ma ago, 

respectively, and finally in Grande Comore approximately 0.13 Ma ago (Emerick and 

Duncan 1982; Nougier et al. 1986; Debeuf 2004). No geochronological and geochemical 

data are currently available for the submarine sector of each volcanic island where oldest 

rocks may occur. This magmatism is coeval with other volcanic provinces around the 

Mozambique Channel, namely the East African Rift System and the central-northern 

Madagascar, whose magmatic periods are dated back since Upper Oligocene. 

 

Fig. 2 – Age of the volcanism (black bars) in the Comoros archipelago and the 
sorrounding volcanic provinces. White bars account for the estimated volcanic activity 
for Mayotte, Moheli, Anjouan and Grand Comore based on calculations of the magma 
production rates. 1, 2 and 3 indicate the different magmatic periods developed at 
regional scale. Image taken from Michon 2016. 
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It is still poorly understood whether the volcanic activity in the Comoros Archipelago 

developed on either a continental or oceanic crust. The occurrence of xenoliths of 

sandstone and other continental rocks (e.g., granite and quartzarenite fragments; 

Lacroix 1922; Flower and Strong 1969) in lavas from all of four Comoros islands was 

used as evidence of a continental nature of the underlying crust. However, on the basis 

of magnetic data from Rabinowitz et al. 1983 and Coffin and Rabinowitz 1987, a Late 

Jurassic to Early Cretaceous oceanic crust (165-130 Ma), resulting from the N-S 

opening of the Somali Basin, is believed to lie beneath the Comoros Archipelago. The 

sedimentary enclaves could then represent crustal fragments resulting from erosion of 

continental units cropping out on the eastern or western coasts of Africa and 

Madagascar, respectively. Notwithstanding the nature of the crust, the Comoros 

Archipelago can be considered one of the most seismically active sector of the western 

Indian Ocean, whose volcanic edifices occur in a regional E-W seismic zone that link 

the northern tip of Madagascar in the east to the African coast in the west (Heidbach et 

al. 2008; Rindraharisaona et al. 2013; Franke et al. 2015).  

Grand Comore Island consists of two shield volcanoes, La Grille (1087m) located in 

the north and Karthala (2361m) in the south (Fig. 1b). La Grille volcano is 

characterized by eroded and weathered lava flows associated with a series of 

monogenic cinder cones (Fig. 1c) mainly located in the summit area and aligned along 

structural fissures (Bachelery and Coudray 1990), while Karthala is the second most 

active volcano of the Indian Ocean (Fig. 1d; after Piton de la Fournaise at the Reunion 

Island) with last volcanic activity recorded in January 2007 (web source: 

https://volcano.si.edu; Global Volcanism Program, Smithsonian Institution). Alkali 

basalts including oceanites (olivine-rich basalts) and ankaramites (pyroxene-rich 

basalts) are the most common lithotypes at Karthala volcano, while La Grille products 

are markedly more silica-undersaturated than those of Karthala, ranging from basanites 

to nephelinites (Strong 1972; Späth et al. 1996). Contrary to those of Karthala, lavas 

from La Grille often enclose xenolithic mantle nodules of ultramafic rocks resulting 

from phreatomagmatic maar-like eruptions (Bachelery and Coudray 1993).  

 

 

!
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3. SAMPLING AND ANALYTICAL METHODS 
 

Ultramafic mantle-derived xenoliths were collected on the north-eastern coast of Grand 

Comore during 2017-2018 field campaigns with the aim of characterizing and 

constraining the mantle source beneath La Grille volcano. Olivine, clinopyroxene and 

orthopyroxene (hereafter Ol, Cpx and Opx) crystals of 1-mm size-fraction were 

handpicked from crushed ultramafic xenoliths with binocular microscope for noble gas 

(He, Ne, and Ar) and radiogenic isotopes (Sr, Nd, and Pb) measurements. 

The selected minerals were cleaned with acetone to remove all the impurities and were 

loaded into a stainless-steel crusher capable of holding up to six samples simultaneously 

for noble gas analysis. Fluid inclusions were released by in-vacuum single-step crushing 

at about 200 bar. The released gases from the fluid inclusions were then cleaned in an 

ultra-high-vacuum (10-9-10-10 mbar) purification line and all the unwanted species in the 

gas mixture were removed, so at the end of the purification the only noble gases (He, 

Ne and Ar) are in the line and ready for the measurements. Ar is trapped in a cold finger 

by using the nitrogen liquid and He and Ne are trapped separately by using a cryogenic 

pump. Hence, Ar is released from the trap removing the liquid nitrogen and 

successively it has been measured for its isotopes by a multi-collector mass 

spectrometer Argus GVI (Thermofisher). Hence, He isotopes (3He and 4He), Ne isotopes 

(20Ne, 21Ne and 22Ne) were released in two times and were measured separately using 

two different split-flight-tube mass spectrometers (GVI-Helix STF Thermo Scientific). 

The concentration and isotope composition of He, Ne, and Ar in Ol, Cpx and Opx fluid 

inclusions were determined at the laboratories of INGV-Palermo (Italy). Helium isotope 

ratios are expressed in R/Ra units, where Ra is the 3He/4He ratio in air (1.4 x 10-6). The 

values of Ne-isotope ratios are corrected for isobaric interferences at m/z values of 20 

(40Ar2+) and 22 (44CO2+). Corrections are performed by measuring 20Ne, 21Ne, 22Ne, 
40Ar, and 44CO2 during the same analysis, and considering the previously determined 
40Ar2+ /40Ar+ and 44 CO2+/CO+ ratios on the same Helix SFT that run FI samples. For 

each analytical session we analyzed at least one standard of each of He, Ne, and Ar that 

had previously been purified from air and stored in tanks. The analytical uncertainty 

(1σ) values for the 3He/4 He, 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar were <0.94%, <0.07%, 

<0.3%, <0.05%, respectively. Typical blanks for He, Ne, and Ar were <10−15 , <10−16 , 
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and <10−14 mol, respectively. Further details about the sample preparation and 

analytical procedures are given in Martelli et al. 2014 and Rizzo et al. 2015. 

Radiogenic isotopes of Sr, Nd and Pb were determined only on clinopyroxene and 

orthopyroxene mineral phases as olivines contain abundances of these elements below 

detection limits. Two whole-rock samples have been also analyses to seek for potential 

differences with monomineralic fractions. The Cpx and Opx mineral separates were 

powdered in an agate mortar and pestle (or agate mill). After each pounding, the agate 

mill was scrubbed with a silicic sand (sable de Fontainebleau) to remove any residues, 

and then washed with distilled water and ethanol. Mineral and whole rock powders 

were dissolved for 72h on a hot plate at 120°C in a mixture of 1.5 ml HF and 1.5 ml 

HNO3. After evaporation, 3 ml of 6N HCL were added to the mineral residue at 120°C 

for 72h before evaporation to dryness, then digested samples were re-dissolved in 1 ml 

of HBr. Chemical separation was carried out on Teflon columns with exchange resin 

using a HBr-HCL-HNO3 exchange procedure. Sr, Nd and Pb isotope analyses of Cpx 

and Opx separates were performed at the Centre de Recherches Pétrographiques et 

Géochimiques (Nancy, France). Sr isotope ratios were measured with thermal-

ionization mass spectrometer (TIMS) Thermo Scientific Triton, whereas Pb and Nd 

isotope ratios were measured with multi-collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS) Thermo Scientific Neptune Plus.  

Sr and Nd isotope ratios were corrected for mass fractionation by normalizing to 
86Sr/88Sr = 0·11938 and 146Nd/144Nd = 0·74049. Over the course of this study, the NBS 

987 Sr standard gave a mean value of 87Sr/86Sr = 0·710256 ± 9 (2σm, n = 5) and the La 

Jolla Nd standard gave a mean value of 143Nd/144Nd = 0·512097 ± 6 (2σm, n = 10). 

NIST-981 Pb standard yielded average values of 206Pb/204Pb = 16.93 ± 0.0054, 
207Pb/204Pb = 15.48 ± 0.0074, 208Pb/204Pb = 36.66 ± 0.0083.  
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4. CLASSIFICATION AND PETROGRAPHY OF THE LA GRILLE    

MANTLE XENOLITHS 

According to the classification of Coltorti et al. 1999, La Grille xenoliths can be 

classified into three different groups on the basis on petrography, modal compositions 

and textures: one group of lherzolites (Lh Group) and two groups of weherlites (Wh1 

and Wh2 Groups). The only occurring aluminous phase is spinel. Any hydrous mineral 

(amphibole or phlogopite) was found in the La Grille xenoliths.  

Consistent with the definitions of Mercier and Nicholas (1975), two textures have been 

petrographically observed: protogranular and porphyroclastic, with some xenolithic 

samples showing transitional features between the two. Xenoliths belonging to the first 

textural group show olivine and orthopyroxene up to 2 mm in size with curvilinear 

grain boundaries, and small clinopyroxene (up to 0.6 mm) and spinel (up to 0.4 mm) 

crystals occurring interstitially or included within the orthopyroxene. Xenoliths 

belonging to the second textural group have large porphyroclasts of olivine and 

orthopyroxene with small neoblasts of olivine and clinopyroxene. Superimposed on 

both the protogranular and porphyroclastic textures, three pyrometamorphic textures 

have been recognized on the basis of size and relative proportions of the secondary 

minerals and glass (Coltorti et al. 1999):  

• Type A shows primary orthopyroxenes with clear evidence of destabilization and 

reaction processes, and irregular, fine-grained (<0·10–0·15 mm) rims on 

clinopyroxene, olivine, orthopyroxene, spinel and glass. Tiny crystals of olivine and 

clinopyroxene are forming at the expense of a large orthopyroxene. Glass-forming 

reactions may have occurred at the boundaries of, or within, the orthopyroxene.  

• Type B contains elongate, glassy patches with a secondary assemblage of 

clinopyroxene, olivine, and spinel. The clinopyroxene and olivine grains are larger 

(0.1–0.6 mm) than in Types A and C, and spinels are typically globular.  

• Type C displays secondary olivines, irregularly shaped spinels within glass, and tiny 

clinopyroxene aggregates (0·1–0·3 mm), aligned and oriented in optical continuity, 

suggesting growth at the expense of a primary phases as clinopyroxene.   

 

In Lh Group, large primary orthopyroxenes (0·5–1·0 mm) are homogeneous and 

contain exsolution lamellae. All clinopyroxenes are presumed to be secondary, as no 

petrographic evidence for primary clinopyroxene was found. Most of the spinels are 
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secondary phases associated with clinopyroxene and olivine in the recrystallized 

domains. In Wh1 Group, either veins or patches of clinopyroxene are always 

associated with olivine, glass and secondary spinel. In Wh2 Group, both primary and 

secondary olivines are present. Clinopyroxene is present only in the recrystallized areas 

and glassy patches.  

 
5. RESULTS  
 

Noble gas analyses are reported in Table 1. The 3He/4He ratio not corrected for air 

contamination (R/Ra) is 5.67-7.34 in Ol, 6.46-7.25 in Cpx, and 5.11-7.01 in Opx (Fig 

3a). The 4He/20Ne ratios are in the range 3-180 in Ol, 77-1855 in Cpx, and 9-601 in Opx 

(Fig 3a). The 40Ar/36Ar ratio is 310-1501 in Ol, 501-3161 in Cpx, and 568-7747 in Opx 

(Fig 3b). The 20Ne/22Ne and 21Ne/22Ne ratios are respectively 9.81-9.94 and 0.0291-

0.0314 in Ol, 9.80-10.38 and 0.0292-0.0345 in Cpx, and 9.89-10.36 and 0.0290-0.0347 

in Opx (Fig. 3b-c). All the measured 4He/20Ne ratios in the La Grille samples are 

higher, at least one order of magnitude, than the same ratio in atmosphere (0.318; 

Ozima & Podosek, 2002), so these samples suffer of low-He air contamination and the 

correction of the He isotopes are low and often negligible (Table1; Fig. 3a). The 
3He/4He ratio corrected for air contamination (expressed as Rc/Ra values) is 6.30-7.36 

in Ol, 6.48-7.25 in Cpx, and 5.27-7.02 in Opx (Table 1). Helium and neon 

concentrations (expressed as 10-9 cm3STP/g) are 8.15-325.46 and 1.20-6.07, 

respectively, in Ol, 7.12-860.16 and 0.09-7.66 in Cpx, and 7.01-963.20 and 0.31-15.28 

in Opx (Table 1). 

Sr, Nd and Pb isotope ratios for Cpx and Opx phenocrysts are given in Table 2. The 
87Sr/86Sr ratios vary between 0.703225 and 0.703480, and 0.703239 and 0.704260 in 

Cpx and Opx, respectively, while 143Nd/144Nd ratios range between 0.51281 and 

0.51285, and 0.51279 and 0.51286 in Cpx and Opx, respectively (Fig. 4a-b-c). The 
206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are 18.63-19 and 18.24-19.45, 15.62-

15.66 and 15.63-16.31, and 38.60-38.93 and 38.47-40.21 in Cpx and Opx, respectively 

(Fig. 4a-b-c). The two analysed whole-rock samples NDR17-9-WR1 and NDR17-9-

WR2 show nearly indistinguishable 87Sr/86Sr, 143Nd/144Nd and 206Pb/204Pb, 207Pb/204Pb 

and 208Pb/204Pb ratios (Table 2). 
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Table 1. He, Ne and Ar isotope ratios and abundance of mineral separates in La Grille xenoliths 

Sample Phase Weight 
(mg) 

3He/4He 
(R/Ra) 

3He/4He 
(Rc/Ra) 

[He] 
10-9cm3STP/g 

[Ne] 
10-9cm3STP/g 

40Ar/36Ar 
 

20Ne/22Ne 
 

21Ne/22Ne 
 

NDR17-1 Ol 436 6.94 6.96 180.38 1.46 551.40 9.82 0.0297 

NDR17-2 Ol 434 6.76 6.88 77.46 4.64 701.18 9.85 0.0294 

 Cpx  7.06 7.06 360.64 0.43 1114.17   

 Opx  7.01 7.01 227.19 0.57 1703.97 9.93 0.0302 

NDR17-3 Ol 636 6.57 6.60 168.15 2.57 984.07 9.84 0.0296 

 Cpx  6.88 6.89 242.12 0.43 1157.50   

 Opx  7.01 7.02 98.23 0.56 1627.45 9.89 0.0299 

NDR17-5 Ol  7.34 7.36 325.46 2.60 1501.54 9.82 0.0291 

 Cpx  7.03 7.06 624.96 7.66 501.39 9.80 0.0292 

 Opx  6.68 6.72 712.32 15.28    

NDR17-6 Ol 315 6.58 6.63 64.59 2.02 1416.17 9.90 0.0304 

 Cpx  6.55 6.56 31.02 0.14 2562.41   

 Opx  6.91 6.92 963.20 1.60 7747.47 10.36 0.0347 

NDR17-7 Ol 417 6.26 6.48 40.58 4.85 310.30   

 Cpx  6.99 7.00 68.25 0.27 1062.46 9.93 0.0312 

 Opx  6.82 6.83 688.31 2.51 1860.89 9.96 0.0299 

NDR17-8 Ol  5.67 6.3 17.11 6.07 392.19 9.81 0.0292 

NDR17-9 Ol 401 6.96 7.01 130.51 3.22 585.85 9.84 0.0296 

 Cpx  6.69 6.70 108.53 0.39 1608.11 9.92 0.0295 

 Opx  6.90 6.91 507.30 1.09 2378.55 9.94 0.0312 

NDR17-11 Ol 428 6.63 6.77 73.77 5.15 482.01 9.84 0.0294 

 Cpx  6.63 6.65 57.98 0.53 822.29   

 Opx  5.11 5.27 23.41 2.47 568.41 9.96 0.0290 

NDR17-12 Ol  6.34 6.41 33.66 1.20 341.27 9.84 0.0295 

 Cpx  7.25 7.25 860.16 0.46 3161.71 10.38 0.0345 

NDR17-13 Ol 424 7.01 7.06 128.36 3.57 1459.50 9.94 0.0314 

 Opx  6.57 6.60 185.66 2.47 625.57 9.95 0.0299 

NDR17-14 Ol 347 6.84 6.88 165.95 3.81 852.92 9.89 0.0294 

NDR17-16 Ol 321 6.62 6.98 8.15 1.48 400.86 9.83 0.0292 

 Cpx  6.46 6.48 7.12 0.09 1740.85 10.21 0.0314 

 Opx  6.24 6.32 7.01 0.31 1550.37 9.96 0.0293 
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The He-Ne-Ar isotope systematics of fluid inclusions in La Grille ultramafic nodules 

clearly indicates a mantle-type reservoir. The He isotopic signature of fluid inclusions 

in Ol, Cpx and Opx (up to 7.3Ra) is in good agreement with that from literature (Class 

et al. 2005; yellow-filled circles in Fig. 3a) and plot in a range that overlap the SCLM 

6.1± 0.9 (Sub Continental Lithospheric Mantle; Gautheron and Moreira 2002) and the 

MORB mantle signatures (8±1Ra; Graham, 2002). Moreover, the 3He/4He ratios of La 

Grille samples (Fig. 3a) are systematically higher than those measured in gases from 

crater fumaroles (Istituto Nazionale di Geofisica e Vulcanologia and Institute de 

Physique du Globe de Paris dataset; Caracausi et al. 2019), consistent with the 3He/4He 

ratios in fluid inclusions from minerals of the Karthala volcano lavas (Class et al., 

2005). The Ne and Ar isotopes in the volatiles trapped in the fluid inclusions of the La 

Grille xenoliths are well-solved respect to the atmospheric composition (Fig. 3b and 

c). In fact, the 21Ne/22Ne and 20Ne/22Ne ratios are higher than 9.86 and 0.029 (Graham, 

2002) and the 40Ar/36Ar and 38Ar/36Ar ratios are higher than 298.56 (± 0.31) and 

Fig. 3a-b-c – Results of the noble gas isotope analyses of fluid 
inclusions in olivine and pyroxene phenocrysts extracted from 
La Grille xenoliths - a) R/Ra vs 4He/20Ne; b) 20Ne/22Ne vs 
21Ne/22Ne; c) 40Ar/36Ar vs. 20Ne/22Ne.  
Isotopic compositions of Karthala fumaroles from Caracausi et 
al. 2019; Karthala and La Grille olivines from Class et al. 
2005; Popping Rocks, Cook-Austral-HIMU, and plume-type 
Iceland array are shown for comparison. MORB (Mid-Ocean 
Ridge-Basalt), SCLM (Sub-Continental Lithospheric Mantle) 
and air compositions are also reported. 
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0.1885 (± 0.0003) respectively (Lee et al. 2006) (Table 1 and Fig. 3b and c). Hence, 

the Ne and Ar isotopes furnish new elements to investigate the composition of the 

mantle feeding the magmatic activity at Gran Comore. In general, the neon isotopes 

measurements in mantle-derived fluids have a relative large composition. However, 

MORBs (Mid Oceanic Ridge Basalts) and OIBs (Oceanic Island Basalts) are 

systematically different in their Ne isotope composition (e.g., Sarda et al., 1988; 

Moreira and Allegre, 1998; Graham, 2002; Mukhopadhyay, 2012). In comparison to 

MORBs, some OIB show a much steeper correlation in the Ne three isotopes diagram 

(Fig. 3b), where samples from Hawaii, Le Reunion and Iceland show the steeper 

correlation (Fig. 3b). These trends reveal that the OIB mantle source, at least for these 

volcanic systems, have less nucleogenic Ne, hence lower 21Ne/22Ne than for the 

MORB mantle sources. These evidences coupled to 1) the lower He isotope ratios in 

the MORB–derived fluids than in the OIB-derived fluids (3He/4He up to ~ 50Ra) and 

2) the trace element-depletion of the MORB mantle sources respect to the OIB mantle 

sources indicate that the OIB mantle is less degassed than the upper MORB mantle. 

These evidences support that OIB-volcanism is fed by deep mantle plume (e.g., 

Graham, 2002; Mukhopadhyay, 2012; Parai and Mukhopadhyay, 2015). The 20Ne/22Ne 

and 21Ne/22Ne ratios in the La Grille fluid inclusions are along the MORB line, being 

indistinguishable for the same ratios in MORB-derived volatiles (Fig. 3b) and it 

indicates that the mantle Ne source at La Grille is the Typical MORB-type.  
40Ar is generated by radioactive decay of 40K and it is commonly assumed that all 36Ar 

in MORB and OIB samples could be derived from air contamination (Graham, 2002). 

Hence on the basis of the Ar isotopes, it possible to assess the amount of mantle derived 

Ar present in a sample. Furthermore, the 40Ar/36Ar ratios is also variable due to time 

integrated variations in K/36Ar. MORBs show 40Ar/36Ar ratios that are up to 40.000. In 

contrast, the highest 40Ar/36Ar ratios at OIBs are in xenolithes from Samoa and the 

values are from 8000 to 21.500 (Farley et al., 1994; Trieloff et al., 2000). Ne and Ar 

isotope systematic are key-tools that highlight the difference between the OIB and 

MORB mantle sources, with the OIBs sources being less degassed. The 40Ar/36Ar ratios 

in the La Grille samples coupled to the 20Ne/22Ne in the same samples are always along 

the MORBs lines. Hence the He-Ne-Ar systematic in the fluid inclusion of the La Grille 

xenoliths highlight that the mantle in the region has MORB affinities. It is worthy-

noting that the 40Ar/36Ar and 20Ne/22Ne in the pyroxenes from La Grille are generally 

higher than the same ratios in the olivine from the same rocks. So, the petrology of 
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these products can help to understand these differences to provide new insight about the 

composition of the mantle at regional scale and the processes that can modify it.   !

 
                    
 
 

 
 
      Table 2. Sr, Nd, Pb isotope ratios of Cpx, Opx and whole rock from La Grille xenoliths 

Sample Phase Weight 
(mg) 

87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

NDR17-2 Opx 106 0.703457 0.512860 18.70272 15.81844 38.87053 

NDR17-3 Cpx 105 0.703366 b.d.l. 18.96369 15.63418 38.84940 

 Opx 112 0.703505 0.512860 19.45659 15.71536 38.95679 

NDR17-6 Cpx 113 0.703225 0.512865 18.88801 15.66725 38.60478 

NDR17-7 Cpx 119 0.703415 0.51283 18.63343 15.63393 38.72688 

 Opx 107 0.703495 0.51284 18.24854 15.63232 38.47741 

NDR17-9 Cpx 118 0.703449 0.51280 18.97451 15.63035 38.93015 

 Opx 101 0.703551 0.51279 18.52713 15.69310 38.59701 

NDR17-11 Cpx 109 0.703444 0.51281 18.87393 15.63196 38.81141 

 Opx 103 0.704260 0.51284 18.74541 15.63733 38.67977 

NDR17-13 Opx 103 0.704096 0.51284 19.38905 16.31723 40.21247 

NDR17-14 Cpx 106 0.703480 0.51285 19.00550 15.62991 38.93248 

 Opx 107 0.703239 0.51286 18.77215 15.63393 38.73309 

NDR17-9-WR1 Whole-rock 113 0.703426 0.51284 18.93276 15.61580 38.87953 

NDR17-9-WR1 Whole-rock 101 0.703452 0.51284 18.93285 15.61465 38.87726 
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An important objective of geochemistry is to unravel how the Earth developed from its 

primordial to its present-day state. In particular, radiogenic isotope geochemistry 

represents a unique tool since isotope ratios such as 87Sr/86Sr and 143Nd/144Nd are a 

function of the time at which both the differentiation processes and fractionation of Rb 

from Sr and Sm from Nd occurred, respectively. Isotope systematics play a powerful 

role in mantle investigations precisely because Earth’s mantle cannot be accessible for 

direct sampling so that much of the information about the geochemistry of the Earth’s 

mantle stems from studies of mantle-derived products such as lavas and ultramafic 

peridotite xenoliths which provide a snapshot of the compositions and heterogeneities 

of the different mantle reservoirs.  

a b 

Fig. 4 a-b-c-d – a-b) 87Sr/86Sr vs. 143Nd/144Nd and c-d) 208Pb/204Pb vs. 206Pb/204Pb binary diagrams of Cpx, Opx and 
Whole-rock of La Grille xenoliths. Karthala whole-rock lavas (green squares) from Class et al. 1998; La Grille whole-
rock lavas (red squares) from Class and Goldstein 1997 and Class et al. 1998; Moheli, Anjouan and Mayotte whole-
rock lavas (orange, black and white triangles, respectively) from GEOROC Database; Data of OIB lavas (Iceland, 
Hawaii, Canary, Galapagos, Austral-Cook, Mascarene Archipelago, Pitcairn and Samoa) from GEOROC Database. 
End-member values for DMM (Depleted Morb Mantle), HIMU (high-µ = 238U/204Pb ratio), EMI and EMII (Enriched 
Mantle) are taken from Stracke 2012 and reference therein. 

c d 
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Previous studies (e.g., Class et al., 1998) of the Sr-Nd-Pb isotopic relationships at Gran 

Comore show that the Karthala and La Grille sample suites have different isotopic 

compositions, demonstrating involvement of different sources in their formation (Fig. 

4a) and indicating mantle heterogeneity below Grand Comore Island. La Grille lavas 

show a very small isotopic variation, suggesting derivation from a common mantle 

source (87Sr/86Sr 0.70312–0.70332; 143Nd/144Nd 0.51284–0.51291; 206Pb/204Pb 19.1–

19.27; 208Pb/204Pb 38.89–39.15). The overall isotopic variation of La Grille lavas has 

been explained by mixing between a plume component and alkali low-degree melts of 

metasomatized oceanic lithospheric mantle (Class and Goldstein 1997; Class et al. 

1998), while Karthala alkali basalts are the result of mixing between plume-derived 

melts and high-degree melting of the metasomatized oceanic lithospheric mantle (Class 

et al. 1998). However, all the previous studies were based on measurements carried out 

on whole rocks samples.   

Here we present for the first time data of the Sr-Nd-Pb isotopes on the different 

minerals of the La Grille xenoliths (i.e., clinopyroxene and orthopyroxene; hereafter 

Cpx and Opx). Furthermore, we also analysed some whole-rock samples for Sr-Nd-Pb 

isotopes, and our results fit well with those from previous investigations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 121!

6.  DISCUSSION 

 
Overall, the Sr-Nd-Pb isotope signatures of Opx are more variable than Cpx (Fig. 4 a-b-

c-d). The Sr-Nd-Pb isotope compositions of Cpx and Opx phenocrysts from La Grille 

xenoliths show higher variability than La Grille bulk lavas (Fig. 4a-c). As a whole, Cpx 

and Opx samples have Sr-Nd isotopic ratios that fall along a mixing between DMM and 

EM1 reservoir, but for two Opx samples (NDR17-11 and NDR17-13) whose higher Sr 

isotope signatures point towards an EM2 source for a given Nd isotope ratio (Fig. 4a). 

All together, these data are in agreement with previous investigations, however the 

behaviour of the two Opx samples (NDR17-11 and NDR17-13) has to be explained. 

Class et al. 1998 point out that the small isotopic variation observed in La Grille lavas 

indicates a derivation from a common mantle source. In Sr-Nd binary diagrams for OIB 

lavas (Fig. 4b), Cpx and Opx of La Grille xenoliths straddle mostly between the fields 

of Canary, Austral-Cook and Pitcairn lavas, while the two Opx samples NDR17-11 and 

NDR17-13 have compositions that overlap with those of Mascarene Archipelago 

(which includes La Reunion and Mauritius islands) and the least Sr radiogenic values of 

Samoan lavas. As seen for Sr and Nd element pairs, Pb isotope compositions of Opx 

show higher variability than Cpx. Most of the mineral samples exhibit highly un-

radiogenic 208Pb/204Pb and 206Pb/204Pb ratios with respect to all Comoros lavas (Fig 4c), 

except for sample NDR17-13 (Opx) that shows the highest radiogenic Pb signature. The 

sample NDR17-3 (Opx) displays Pb isotope ratios close to those of La Grille whole-

rock lavas (Fig. 4c). The sample NDR17-11 (Opx) shows Sr-Pb decoupling with highly 

radiogenic 87Sr/86Sr (Fig. 4a) and unradiogenic Pb isotope ratios (Fig. 4c). Furthermore, 

the Sr-Nd-Pb compositions of two whole-rock samples (NDR17-9-WR1 and NDR17-9-

WR2) approach those of the Cpx (Fig. 4a-b-c-d). In Pb isotope diagrams for OIB lavas 

(Fig. 4d), Cpx and Opx of La Grille xenoliths fall in a wider range that overlaps the 

fields of Canary, Iceland, Austral-Cook and Pitcairn lavas, whereas the Opx sample 

NDR17-13 shows ratios pointing to EM2 reservoir.  

Helium isotope compositions of Ol, Cpx and Opx from La Grille xenoliths, with few 

exceptions, are similar to those of the olivines separated from La Grille lavas and cover 

a wide range of [He] contents (7-963 x10-9 cm3STP/g) at almost uniform 3He/4He ratios 

(Fig. 5). NDR17-8 (Ol) and NDR17-11 (Opx) have the lowest R/Ra ratios (5.67 and 

5.11, respectively. 
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Plotting helium vs. radiogenic isotopes (Fig. 6a-b) reveals that most of the La Grille 

xenoliths show variability lower than literature data, whereas the two Opx samples 

NDR17-13 and NDR17-11 display isotopic decoupling with NDR17-13 having R/Ra 

and 143Nd/144Nd ratios in the range of the other xenolithic samples but higher 87Sr/86Sr 

values, and NDR17-11 showing R/Ra and 87Sr/86Sr ratios pointing towards values 

close to Karthala and 143Nd/144Nd ratios indistinguishable from the other xenoliths.  

Fig. 5 – 3He/4He (R/Ra) vs [He] of crushed olivine, clinopyroxene 
and orthopyroxene phenocrysts. Where multiple analyses were 
carried out, the sample with the highest He concentration is shown. 
Red and green squares represent olivines separated from La Grille 
and Karthala lavas, respectively (Class et al. 2005). 

Fig. 6 a-b – 3He/4He (R/Ra) vs. (a) 87Sr/86Sr and (b) 143Nd/144Nd isotope ratios measured in 
orthopyroxene and clinopyroxene phenocrysts from La Grille xenoliths. Helium and Sr-Nd 
isotope data of La Grille (red squares) and Karthala (green squares) were measured in 
olivines and whole rock lavas, respectively (Class et al. 1997, 1998, 2005). 

a b 
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Fig. 7 shows clear evidence of contamination of NDR17-13 and NDR17-11 since their 

Sr-Nd isotopic compositions fall within and very close to the fields of Cenozoic alkaline 

rocks of central-northern Madagascar (Melluso e al. 2016 and reference therein) and of 

carbonatite rocks from East African Rift System (EARS), respectively. 

 
 
 
 
 
 
 
 

 
On the basis on petrological and geochemical constrains, Coltorti et al. (1999) bring 

evidence of a metasomatic episode in the oceanic mantle beneath La Grille volcano. 

They argue that the variable compositions of clinopyroxene phenocrysts and glasses 

extracted from spinel lherzolite and wehrlite xenoliths was due to an “ephemeral” 

alkali-rich carbonatitic metasomatizing agent with composition very close to those of 

natural carbonatites such as those found at Oldoinyo Lengai volcano. 

Fig. 7 -87Sr/86Sr vs.143Nd/144Nd of Cpx, Opx and whole-rock of La 
Grille xenoliths compared to EARS and Madagascar volcanic rocks. 
Karthala whole-rock lavas (green squares) from Class et al. 1998; La 
Grille whole-rock lavas (red squares) from Class and Goldstein 1997 
and Class et al. 1998; Moheli, Anjouan and Mayotte whole-rock lavas 
(orange, black and white triangles, respectively) EARS Carbonatite 
Rocks, EARS Cenozoic Alkaline Rocks, Madagascar Cenozoic 
Alkaline Rocks and Indian MORB from GEOROC Database; EARS 
rocks comprise Ethiopia, Kenya, Uganda, Tanzania and Malawi. 
Madagascar Cenozoic Alkaline rocks include volcanic products from 
Nosy Be, Itasy and Ankaratra. 
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Although NDR17-11, which has the highest Sr isotope composition along with a low 
3He/4He ratio (then strongly degassed), might have been possibly contaminated by a He-

rich metasomatizing melt more easily than the NDR17-13, which had originally a 

higher He content, it is unlikely that the supposed contaminant fluid was the volatiles 

associated to the an Oldoinyo Lengai-type carbonatitic melt since fumarolic fluids 

collected at Oldoinyo Lengai volcano have noble gases isotopic compositions 

indistinguishable from a mantle MORB reservoirs (Fischer et al. 2009). This could 

indicate that 1) the supposed metasomatizing agent responsible of the Opx variability 

may not be attributed to carbonatite-like compositions; 2) there could be a gas-magma 

decoupling with magma showing compositional values different from those of the 

emitted gases. Alternatively, if we try to discuss this Sr variability at regional scale, we 

observe isotopic similarities between the La Grille and the central-northern sector of 

Madagascar (Fig. 8) that may suggest rafts of lithospheric mantle, drifting behind 

during the southeastward separation of Madagascar from Africa, resulting in the 

opening of the Somali basin (Rabinowitz et al. 1983), might have affected mantle-

derived materials erupted at La Grille volcano in the Grand Comore Island. 

 

 

Fig. 8 – 87Sr/86Sr variation patterns showing comparison between Comoros 
archipelago and EARS Carbonatites and central-northern Madagascar alkaline 
rocks. Karthala whole-rock lavas from Class et al. 1998; La Grille Sr isotope ratios 
includes data of this study as well as of whole-rock lavas from Class and Goldstein 
1997 and Class et al. 1998; Moheli, Anjouan and Mayotte whole-rock lavas EARS 
Carbonatites and Madagascar Cenozoic Alkaline Rocks from GEOROC Database; 
EARS: East African Rift System. Yellow shaded area highlights the volcanic 
products showing 87Sr/86Sr ratios nearly identical with those of the two Opx samples 
NDR17-13 and NDR17-11 
    



! 125!

7. SUMMARY AND CONCLUSIONS 
 
 

The first ever measurements of the noble gas isotopes (He, Ne and Ar) in fluid 

inclusions combined to radiogenic isotopes (Sr, Nd and Pb) of olivine, clinopyroxene 

and orthopyroxene mineral separates from ultramafic peridotite xenoliths collected at 

La Grille volcano during 2017-2018 field campaigns were here presented with the 

purpose of constraining the mantle source beneath Grand Comore Island. Xenoliths are 

lherzolites, harzburgites, dunites and wehrlites with a protogranular to porphyroclastic 

texture, overprinted by Type A, B and C metasomatic reactions (Coltorti et al. 1999). 

Previous investigations of Grand Comore lithotypes were focused on bulk samples and 

mineral separates from lavas (i.e., Class et al. 1998; Class et al. 2005), while major and 

trace element data from clinopyroxenes and glasses from La Grille mantle xenoliths 

were reported in the literature by Coltorti et al. (1999). Previous geochemical 

investigations of Grand Comore lithotypes were focused on bulk samples and mineral 

separates from lavas, while major and trace element data from clinopyroxenes and 

glasses from La Grille xenoliths are reported in the literature.  

 

Sr-Nd-Pb isotope systematics in clinopyroxene and orthopyroxene phenocrysts displays 

higher variability than La Grille bulk lavas, with orthopyroxenes more variable than 

clinopyroxenes. The 86Sr/87Sr and 143Nd/144Nd ratios of these mantle minerals fall along 

a mixing line between Depleted MORB and Enriched Mantle reservoirs, but for two 

samples whose higher Sr isotope signatures point towards an EM2 source. They show 

isotopic similarities with carbonatite rocks from the East African Rift System and 

central-northern Madagascar Cenozoic alkaline rocks. Most of the mineral samples 

exhibit highly un-radiogenic Pb isotope ratios with respect to all Comoros lavas, but for 

one orthopyroxene sample that shows the highest radiogenic Pb signature. Additionally, 

the observed variability in terms of Sr-Nd-Pb isotope compositions might induce to 

think that the compositions of bulk mineral separates from ultramafic mantle nodules 

could somewhat represent average values of heterogeneous monomineralic populations.  

 

Noble gas isotopes in fluid inclusions of La Grille indicate a MORB-type mantle 

reservoir. In particular, the 3He/4He isotope compositions (up to 7.3Ra) fall in a range 

that overlaps the MORB mantle signature and the SCLM. These values are 
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systematically higher than those measured on crater fumaroles and fluid inclusions in 

olivine phenocrysts from Karthala lavas, indicating that Karthala volcano is still 

degassing volatiles with a He isotopic signature similar to those in volcanic products of 

the last eruption. The 20Ne/22Ne, 21Ne/22Ne and 40Ar/36Ar isotope ratios plot along a 

mixing between air and a typical MORB-type reservoir.  
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General conclusions of the PhD dissertation  
 
In this PhD dissertation, noble gases (He, Ne, Ar) were the main subjects of study. The 

objective was to provide new contributions to the comprehension of the origin and 

behavior of natural fluids both in active seismic and volcanic settings by means of 

noble gases. It has discussed: 1) The application of a field-based auto-sampler 

(SPARTAH) in a seismic region (Umbria region, Italy) to acquire high-frequency 

noble gas data and laboratory advances concerning the in-vacuum extraction of noble 

gases dissolved in thermal waters sampled with SPARTAH; 2) A model of fluid 

circulation and secondary processes in a seismic region (Umbria region, Italy), based 

on the combination of noble gases and major volatiles (e.g., CO2, N2) necessary for 

interpreting possible geochemical anomalies carried by uprising fluids across the crust 

and their relationship between rock deformation, fracturing and the stress field of the 

area; 3) First ever analyses of noble gases in fluid inclusions coupled to radiogenic 

isotopes (Sr, Nd and Pb) in olivine, clinopyroxene and orthopyroxene mineral 

separates from ultramafic mantle xenoliths from Grande Comore Island (Indian 

Ocean) performed with the goal to constrain mantle heterogeneity at depth and/or to 

trace potential chemical processes acting at modifying the pristine signature of the 

volatiles.  

The outcomes of this PhD research offer some broad perspectives that help raising 

some fundamental questions for future lines of investigation.  

As it is shown in Chapter II, SPARTAH apparatus has the potential to reinvigorate the 

approach to short-time series with implications for geochemical monitoring. A 

deployment of SPARTAH has been successfully tested in the field and showed the 

potentials of this type of equipments for capturing geochemical perturbations. Fluid 

samples were continously drawn into the copper tubings by means of a syringe-pump, 

although some logistic enhancements are needed in the future with the purpose of 

increase the on-field operative efficiency of the instrument. In order to improve the 

probability of recording pre-seismic anomalies, the field distribution of several 

SPARTAH devices must be extended. For this purpose, new sites of deployment are 

currently being sought for installation such as Iceland, Stromboli and Etna volcanoes 

as well as earthquake-prone areas with intense intercontinental seismicity such as 

eastern and southern China in order to determine short-term temporal patterns of noble 
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gases and, potentially, also other geochemical indicators. These sites can be considered 

potentially ideal localities for future deployments. The goal of these applications will 

be determining the respond of dissolved noble gases to any magmatic input and/or 

crustal perturbations.   

As far as concern Chapter III, further elaborations of background geochemical models 

are strongly required in both seismically- and volcanically-active regions and must be 

considered as solid pre-requisite aimed at the recognition and investigation of any 

potential pre-event signals that can be straightforwardly correlated to geochemical 

anomalies due to volcanic and seismic activity. 

From Chapter IV additional perspectives stem from the importance of coupling of 

noble gas (He, Ne, and Ar) to radiogenic components (Sr, Nd, and Pb) in fluid 

inclusions entrapped in primary mantle minerals that might carry to the surface the 

isotopic fingerprints of different geochemical reservoir disseminated in the Earth’s 

mantle. However, more Sr-Nd-Pb isotope analyses on mineral phenocrysts, bulk 

xenolith and host lavas are required in order to extend the Comoros geochemical 

dataset. These results contribute to highlight the geochemical features of Gran Comore 

volcanic system (La Grille-Karthala) and its relationships with the underlying mantle, 

providing useful tools for future geochemical monitoring of an active, dangerous and 

very poorly explored natural system. 
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