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ABSTRACT

This dissertation examines three distinct issues using microeconometric tech-
niques. The first two chapters fall in the realm of discrete choice models and try to
make allowance for limited attention. The third chapter focuses on firm behavior
and investigates the impact of ownership concentration on productivity.

Chapter 1 predominantly builds on the consideration capacity model in Dar-
danoni, Manzini, Mariotti and Tyson (2019). In the attempt to behavioralize
rational choice theory, their model identifies the distribution of cognitive charac-
teristics in a population of agents who are observed choosing repeatedly from a
single menu. By exploiting algebraic arguments, we first generalize the identifi-
cation result. Then, we propose an Expectation-Maximization algorithm which
is able to recover the distribution of individuals’ cognitive characteristics in a
non-parametric framework. The algorithm is applied to both simulated and real
market data. The first application is meant to show that model primitives can
be estimated with a high degree of accuracy. In the second one, instead, it is
shown that a substantial fraction of individuals is either low or moderate atten-
tive thereby contradicting full rationality which would require subjects to pay

attention to all the alternatives of a given menu.
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Chapter 2 resorts to a parametric setup and investigates asset allocation choices
in defined contribution plans of a sample of U.S. workers. We propose a multino-
mial logit model in which the choice of a given financial instrument is preceded by
a probabilistic consideration set formation process. Our results show that failing
to recognize the relevance of limited attention can induce misleading evaluation of
the effects of demographic and job-specific characteristics on the process through
which workers decide how to allocate their contributions.

Chapter 3 analyzes the relationship between ownership structure and firm per-
formance using total factor productivity (TFP) to measure firm value. Adopting
a structural approach a la Olley and Pakes (1996), we proposes a semi-parametric
model which controls for firms” unobserved heterogeneity and for the endogeneity
of not only input factors but also of a relevant corporate governance variable,
namely ownership concentration. The method is applied to Italian manufactur-
ing data coming from the ORBIS dataset which are enriched with information
on ownership provided by the Italian Securities Commission (CONSOB). Results
highlight the presence of a non-monotonic relation between productivity and the
degree of ownership concentration (an inverted U-shaped relationship). We argue
that our findings depend on the interplay between the monitoring dimension and

shareholder conflict dimension associated with ownership concentration.
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Non-parametric estimation of a

consideration capacity model

1.1 INTRODUCTION

Revealed preference theory has proved extremely influential in economics and has

been applied to several fields. As pioneered by Samuelson (1938), such theory
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holds that a given alternative a is revealed to be preferred to another alternative
b if and only if a is chosen when b is also available. This argument rests upon
the implicit assumption that, when choosing, a decision maker (henceforth, DM)
takes into consideration each and every feasible alternative. Assuming that DMs
have (potentially) unlimited capability of evaluating and comparing alternatives is
hard to justify in both market and experimental settings. As a consequence, stan-
dard revealed preference theory is unable to reconcile frequently observed choice
reversals with a rational utility-maximizing behavior. Following Luce (1959), let
p(a,{a,b,c}) be the probability distribution that alternative a is chosen when the
menu consists of alternatives a, b and c¢. Choice reversal would emerge when-
ever p(a, {a,b,c}) > p(b,{a,b,c}) and p(b,{a,b}) > p(a,{a,b}). Choice reversals
are incompatible with standard Random Utility Maximization and clearly contra-
dicts Luce rule which postulates that the probability of choosing a over b depends
on the relative utility of a compared to that of b. Hence, in standard revealed
preference theory choice reversal would be inevitably classified as irrational be-
havior. This would be the case also for the popular multinomial logit model by
McFadden (1973) where agents maximize their random utility which is made of a
deterministic component and an additive error term following a standard Gumbel
distribution. While making the model easily tractable, such a specification of the
error term is unable to make allowance for the fact that agents typically consider
just a (strict) subset of the full menu of available alternatives. Limited attention
qualifies as a typical source of choice error. A DM who prefers a over b might

well choose b even if her menu contains a simply because she is unaware that a



is also available. As argued by Aumann (2005), this behavior is still consistent
with (bounded) rationality. When making online search, for instance, a DM is
likely to consider just the results provided by the first couple of web pages which
do not necessarily include her most preferred alternative. Then, she maximizes
her preference by choosing her best alternative among the ones she pays attention
to. Most of the recent literature about nonstandard models of choice behavior
conceptualizes the act of choice as a two-step process. In the first stage, cognitive
limitations induce the DM to intentionally or unintentionally filters some alterna-
tives out of the full menu so as to construct her own consideration set'. Then, in
the second stage, the DM maximizes a binary preference relation as in standard
models of choice behavior. In order to avoid overload of her cognitive capacity, a
DM might apply different heuristics.

In Rubinstein and Salant (2006), for example, consideration set formation is
sensitive to the order of presentation and/or to the frequency of appearance of
a given alternative. That is to say that a DM pays attention to the first say N
elements of a certain list and/or to the N elements which are more intensively
advertised. Manzini and Mariotti (2007) propose a model in which a DM se-
quentially creates a shortlist of alternatives that are undominated according to
some asymmetric binary relation and finally chooses among the alternatives which
withstand that filtration process. The basic version of their model contemplates
two rationales (i.e. two preference relations): the first one identifies a shortlist

of candidates from which the second rationale identifies the final choice. To give

IThe notion originated in the marketing literature to represent the subset of alternatives that
succeed in the competition for consumers’ attention (see, Wright and Barbour (1977))



an example, think of an employer who is looking for an employee with a specific
skill. The employer will first discard all candidates who do not posses that skill
and then select the candidate to be hired. The so called "all or nothing” behavior
documented by Gourville and Soman (2005), can be thought of as a combination
of the two models above. Under such a framework, a DM considers the top N
alternatives according to several rankings. When buying a new washing machine,
for example, one may consider only the five cheapest and most energy-efficient
machines in the market.

Notice that all the models described thus far depicts the process of forming a
consideration set as a deterministic rule. In doing so, they implicitly assume that
a DM is aware of all available alternatives and intentionally eliminates several of
them when forming her consideration set. As a result, they are not applicable to
situations where limited attention arises in the form of unawareness of some alter-
natives which may well stem from limited cognitive capacity. More importantly,
they make it impossible to pin down attention and preferences by only observing
choice data.

The two limitations outlined above are overcome by Manzini and Mariotti
(2014) (henceforth, MM) where the composition of the consideration set is made
stochastic. That is to say that a DM considers each alternative a with a certain
probability y(a), the so-called attention parameter. Given a menu A, assume a
DM has a strict preference ordering > on it e let v be a map v : X — (0, 1), with

X being a non-empty finite set of alternatives. Then, the random choice rule p, ,



defined by MM is such that

prola, A) =) T] 1=~ (1.1)

beA:b=a

for A in the domain of menus and for all @ in A. Rule (1.1) implies that the
preference relation a > b is (uniquely) revealed by p(b, A\ a) > p(b, A). That is to
say that if removing a increases the probability of choosing b, then a must have a
better rank than b.

MM and much of the other recent advancements in the theory of preference anal-
ysis with limited attention share the drawback of being extremely "data hungry”.
That is to say that identification of primitives, namely attention and preference,
is achieved by assuming that a DM is observed choosing from a large number
of different overlapping menus. In Masatlioglu et al. (2012), for instance, a DM
is required to choose among all possible menus drawn from a universal set of
alternatives. Variability of menus, while achievable in experimental settings, is
often unlikely to be encountered in a market context where either a DM chooses
infrequently or the menu is slow to change, or both.

The model in Dardanoni et al. (2019), which is the focus of our estimation tech-
nique, allows to identify the distribution of cognitive characteristics in a popula-
tion of DMs when observing only aggregate choice behavior from a single menu.
In their general framework, a DM is assigned a specific cognitive type which is
meant to capture the cardinality of her information set and thus represents the

maximum number of alternatives that a DM can actively evaluate at any given



time. Contrary to previous literature, this model enjoys a high degree of empirical
feasibility given that it does not require any variability in the menu of alternatives
and identification of primitives (namely, preferences and cognitive heterogeneity)
is achieved even when agents are observed choosing from a single, fixed menu.
By exploiting algebraic arguments and results from the literature on latent-class
models, the present work generalizes the statistical non-parametric identifiability
of the model in Dardanoni et al. (2019) and proposes an estimation strategy which
is applied to both simulated and market data.

The rest of this chapter is organized as follows. Section 1.2 gives an overview
of the main discrete choice models incorporating limited attention that have been
elaborated by recent literature. In Section 1.3, we introduce the consideration
capacity model in Dardanoni et al. (2019). Section 1.4 lays out our generic iden-
tification result. Section 1.5 discusses our estimation strategy and validates it

through simulations and an application to real data. Section 1.6 concludes.

1.2 LIMITED ATTENTION MODELS

Consideration set models generalize standard discrete choice models by relaxing
the assumption that agents take into consideration each feasible alternative. The
marketing literature contemplates several models which specify a probability that
single options or subsets of them are considered by DMs. In these models, choice
sets are latent meaning that they cannot be defined with certainty on the basis

of observational data. Following Manski (1977), such models assign to the choice



problem the following probabilistic specification:

P(j)= Y PR(IC)P(CIX), (1.2)

CeX(j)
where :
o Pi(j) is the probability of individual ¢ choosing alternative 7j;

o X(j) is the set of all possible choice sets containing alternative j;

P;(§]C) is the probability of individual ¢ choosing j given that her choice

set is C;
e P;(C|X) is the probability of C' being the choice set of individual i.

The main challenge when trying to implement (1.2) is the proliferation of possible
choices sets C' as the number of alternatives grows. Hauser and Wernerfelt (1990),
for example, describe a sequential process in which a DM includes an additional
brand to her consideration set if the expected incremental utility of choosing from
a richer set at each consumption occasion exceeds the incremental cost arising
from searching and evaluating a new brand. Ben-Akiva and Boccara (1995) for-
mulate a constraint-based approach to choice set formation which postulates that
individuals exclude from further consideration available alternatives not meeting
some given criteria.

Accumulated empirical literature typically relies on cross-sectional dataset where

a given sample of individuals is observed choosing among several alternatives in



just one occasion. The most challenging task in estimating consideration set mod-
els is to show the identifiability of the parameters of interest, namely attention
and preference parameters. Identifiability can naturally be obtained by using aux-
iliary data (typically, survey data) on what products are and are not considered
by consumers (e.g., Draganska and Klapper (2011) and Honka and Chintagunta
(2017)).

Goeree (2008), instead, develops a model of limited information for the market
of Personal Computers where advertising determines the set of products entering a
DM’s consideration set. Thus, identification rests on the questionable assumption
that advertising impacts attention but does not exercise any influence on con-
sumers’ utility. Other examples of models where similar exclusion restrictions are
imposed in order to achieve identification can be found in airport choice (Basar
and Bhat (2004)), retail electricity choice (Hortagsu et al. (2017)) and health
insurance plan switching (Heiss et al. (2013)).

Abaluck and Adams (2017) prove that preference and attention parameters can
be retrieved by just exploiting results from economic theory without any need
for exclusion restrictions. In their model, all observables are allowed to have
an impact on both attention and utility. In a model of limited attention, in
fact, the so-called Slustky symmetry, i.e. the symmetry of the matrix of cross-
derivatives of choice probabilities with respect to characteristics of rival goods, is
expected to hold only when conditioning on a specific choice set. When looking at
unconditional probabilities (i.e. market shares) such a symmetry is showed to be

violated and these deviations can be fruitfully exploited to constructively identify



consideration probabilities. In proving identification of the model parameters,
Abaluck and Adams (2017) do not make any parametric assumption even though
they recognize that nonparametric estimation would be extremely data demanding
in terms of markets and individuals and, as such, some parametric structure would
need to be imposed especially when the number of alternatives is high.

The model in Dardanoni et al. (2019) adds to previous literature on limited
attention in that it is not primarily concerned with modelling the probability
of a given alternative being considered but rather focuses on the distribution of
cognitive characteristics. Indeed, consideration capacity is modelled in the form
of the cognitive burden that a DM is able to bear as proxied by the number of
different alternatives that she is able or willing to include in her consideration
set.2 Moreover, recent empirical models on limited attention typically require the
existence of a default option® while the model in Dardanoni et al. (2019) can
easily accommodate situations where such a default does not exist.? Empirical
feasibility is further increased by the fact that identification of the distribution
of cognitive characteristics is obtained prior to any econometric specification and,
contrarily to other contributions (e.g., Abaluck and Adams (2017), Barseghyan
et al. (2019)), without any need for variation in the observable characteristics of

available alternatives.

2Dardanoni et al. (2019) show that their consideration capacity model encompasses as a
special case the consideration probability model in Manzini and Mariotti (2014).

3The default option is assigned to a DM when she does not select any of the available
alternatives.

4This is usually the case when dealing with market data at the individual level (e.g., scanner
data) which contains only information on what individuals actively choose.



1.3 THE CONSIDERATION CAPACITY MODEL

This section is intended to give a pedagogical overview of the model in Dardanoni
et al. (2019). In order to stress on the applicability of the model to market data we
do not contemplate a default option throughout the exposition. The generalization

with a default option can be found in Dardanoni et al. (2019).

1.3.1 HOMOGENEOUS PREFERENCES

Assuming the standard framework of discrete choice models, let X be the finite
universal set of alternatives and A any non-empty menu such that A C X. X is
required to be collectively exhaustive while alternatives in A are mutually exclu-
sive. This means that, when facing A , a DM chooses exactly one of the alternative
in A. The number of possible consideration sets (i.e. menus) grows exponentially
with the cardinality of X and is equal to (21 —1).

In order to model cognitive heterogeneity, each DM is assigned a cognitive type
v eI ={1,2,..]X|}, drawn independently from a distribution F. Since our
interest is in modelling cognitive capacity, we assume that when 1 < v < |X|, a
DM is equally likely to consider each A C X such that |A| = . When v > | X]|,
instead, we can be sure that a DM’s consideration set coincides with the full set
of available alternatives X. For the time being, assume that all decision makers
share the same linear preference order = on X,> which without loss of generality
is assumed to be of the form 1 > 2 > ... > n. This preference relation allows us to

sort alternatives from the most preferred to the least preferred one for every menu

5We will relax this assumption later by introducing preference heterogeneity.
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A C X, such that the kth best option occupies the kth position. Then, a menu
A is ordered according to A = {14,24, ..., k4, ..., |A|}, while the ordered universal
set reads as X = {1,2,...,k,....,|X|}. Letting |X| = n > 2.° the assumption of

common preference implies that type-conditional choice frequencies are given by:

ok if v >,
py(k) = (n_l) V2 (13)
CH/() 1<y <n

For v > n,” the consideration set coincides with X and the maximization of >
leads full attentive DMs to always choose option & = 1 (i.e. the most preferred
alternative in X).

For 1 < v < n, DMs select option k£ whenever no other option [ preferred
to k (i.e. | < k) is available. That is to say that, among all the possible (:)
candidate sets of cardinality v, k£ is chosen whenever it is undominated by any
other alternative which occurs (::’f) of the times. Note that forv >n —k+1, k
is never chosen since a DM has enough consideration capacity to always include
alternatives better than k£ in her consideration set. The probabilistic nature of

the population cognitive characteristics allows us to write aggregate shares (or,

equivalently, unconditional choice frequencies) as

pwwzij(éfﬂw. (1.4)

The proportion in the population of type « individuals is represented by 7 () and

5The case | X| = 1 is clearly of no interest.
"Notice that v > n is observationally indistinguishable from v = n in this model.

11



is given by the following probability masses:

F(1) if y=1,
()= F(y)—F(y—-1) ifl<y<n, (1.5)
1-F(y-1) if v>n.

Proposition 1 (Dardanoni et al., 2019, p. 11) Under homogeneous tastes, the
preference relation > is fully revealed by aggregate choice data, i.e. p(k) > p(k+1),
with 1 <k < n.

Exploiting (1.4), one obtains

(")

mn—k+1) (). 1.6
@) (7) (1.6)

p(k) —p(k+1) = WJF

n—k
2

The difference in (1.6) is always non-negative being the sum of non-negative

n—k+1

S—o  m(y) > 0 implies that p(k) > p(k + 1) always

terms. Moreover, allowing >
holds true. Indeed, the two addends in (1.6) are evocative of the effects which are
at work when we take one step up in the preference scale established by . The
first addend in (1.6) says that for v = n—k+1, only alternative k has a (possibly)
positive probability of being chosen. As for the second addend, we have that k
is never chosen less frequently than option k£ + 1 for 2 < v < n — k. This is so
because, being k£ > k + 1, at any level of cognitive capacity between 2 and n — k
the number of alternatives inferior to k always exceeds the number of alternatives

inferior to k + 1. Finally note that it is enough to assume that 7(2) > 0 for the

preference relation to be strictly revealed by aggregate choice frequencies. Indeed,

12



(1.6) implies that if 7(2) > 0 then p(1) > p(2) > ... > p(n) is always satisfied.
Unconditional frequencies in (1.4) are linear functions of the probability masses

7(7y) and can be conveniently expressed in matrix form as

p(1) . . L (= (1)
pk)| = |= G of [x(7)] (1.7)

p(n)] |1 0 0| [7(n)_
—— - -~ o N——
P C ™

where the generic «-th column of C represents the vector of choice frequencies

conditional on being of type 7.
Proposition 2 (Dardanoni et al., 2019, pp. 17-18) Under homogeneous tastes,
probability masses (w(7))—, specifying the distribution of cognitive capacity among

the population are uniquely identified by aggregate choice frequencies (p(k))7_;.

The matrix C is always invertible being an upper anti-triangular matrix with
nonzero entries on the main anti-diagonal. C~! turns to be a lower anti-triangular

matrix with generic entry C_l(%k) given by :

) (1) —(n=k) (71 if k>n—-,
EVEIOE) ke
0 otherwise.

Hence, we can always retrieve 7 from w = C~'p and its generic element 7(v)

13



reads as

= (1) 3 oo (170, (19

k=n—vy+1

1.3.2 HETEROGENEOUS BUT KNOWN PREFERENCES

The previous section assumes that all DMs share the same preference relation
which, without loss of generality, is assumed to be of the form 1 > 2 > ... > n.
Here we relax this assumption by allowing preference heterogeneity. That is to
say that, given a universal set of alternatives X with cardinality |X| = n, each
DM chooses by maximizing one of the possible n! preference orderings. Given
X ={1,2,...,n}, let us define ¢ : X — {1,2,...,n} as the map that associates
each option in X with its preference rank. Each of the possible ()} | rankings
can be conveniently expressed by means of a suitable n x n permutation matrix
P(h). For instance, let n = 3 and let po = (2,1,3) (i.e. 2 > 1 > 3). The unique

permutation matrix associated to (s is

010
P2)=11 0 0. (1.10)

where each k-th column has a one in position [ if po(l) = k.

Each map ¢;, implies a unique matrix of type-conditional choice frequencies C,

14



which turns to be given by
C,=P(h)C. (1.11)

Thus, letting 75, be the (known) frequency with which ranking ¢, appears in

the population, unconditional choice frequencies in (1.7) can be rewritten as

= |2 mCh| 7 (1.12)

In order to identify the distribution of cognitive types 7 from aggregate choice
shares, matrix C needs to be non-singular. Since C is always invertible, non-
singularity of C® amounts to non-singularity of B = CC~! = " mP(h).? The
latter is a doubly stochastic matrix!® being a convex combination of permutation

matrices.!! Matrix B is clearly not invertible for every 7. Assuming, for instance,

8C generalizes C to the case of heterogeneous preferences. As for C, the generic element ¢;;
of C is the frequency with which alternative ¢ is chosen conditional on being of type j.

9Note that B can be seen as a sort of “average” permutation matrix. Its generice element
b;j equals ), on(i)=j Th which corresponds to the frequency with which alternative i is ranked
in position j.

10A doubly stochastic matrix (also called bistochastic) is a square matrix 4 = (a;;) of non-
negative real numbers, each of whose rows and columns sums to 1, i.e.

Do =) ai =1
@ J
" The Birkhoff-von Neumann theorem states that the set of n x n doubly stochastic matrices

15



(T)nt | = %, we obtain a singular B matrix with all entries equal to % However,
standard results in measure theory legitimate us to conclude that matrix B is

generically invertible.

Proposition 3 (Dardanoni et al., 2019, p. 25) Under known preference hetero-

n

geneity, probability masses (m(7))"

_, are uniquely identified by aggregate choice

frequencies (p(k))}_, for almost all 7.

To support last proposition, note that det(B) can be seen as a real-valued
polynomial function f(7) on a Euclidean space, with 7 € [0,1]". This func-
tion is either identically zero or nonzero almost everywhere (see, e.g., Caron and
Traynor (2005)). It suffices to resort to the case of homogeneous preferences (i.e.
7, = 1land 7y =0 for all A’ € {1,2,...,n!}\h) for obtaining invertibility of B (or,
equivalently, det(B) # 0). Being f(7) = det(B) non identically zero,'? this de-
terminant is different from zero almost everywhere and we achieve non-singularity

of B for almost all T.
1.3.3 HETEROGENEOUS AND UNKNOWN PREFERENCES: THE NEED FOR A
DYNAMICAL MODEL

The assumption of known taste distribution is mostly innocuous in contexts where

the researcher can separately elicit individual preferences.'® However it is hard to

forms a convex polytope whose vertices are the n X n permutation matrices.
12That is to say that the zero set of the polynomial has a Lebesgue measure equal to zero.
BThink, for instance, of a lab experiment where the researcher can ”constraint” inattention
by adopting some mechanism that forces DMs to become aware of all available alternatives.
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justify in most experimental and market settings where it is precisely the inter-
play between (limited) attention and preferences to determine individual choice
behavior. The ultimate goal, here, is to retrieve in a non-parametric fashion both
preferences and cognitive types distributions from aggregate shares alone. How-
ever, the following example clarifies that aggregate shares from a single choice

occasion are clearly insufficient to identify model primitives.

Example 1. Let n = 3 and ¢} be of the form:

;

p1=(1,2,3),

p2 = (1,3,2),

e3=(2,1,3),

P =(2,3,1),

es = (3,1,2),

| P6 = (3,2,1).

Then, (1.12) becomes:

. % %(71 + 1) + %(7'3 +74) (i +m7)| |7(1)
p= [Z P(h)| Cm = % %(7'3 +75) + %(Tl +7) (t3+75)| [7(2)
" 3 2m+T)+i(+Ts) (ut76)| |7(3)
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(1.13) is an underdetermined system in which separately identifying 7 and = is
clearly hopeless. Indeed, the elements of 7w completely exhaust the two degrees of

freedom! provided by aggregate shares p.

1.4 NON-PARAMETRIC IDENTIFIABILITY OF THE MULTI-OCCASION CONSIDER-

ATION CAPACITY MODEL

In order to gain some knowledge on both 7 and &, we need to abandon the single-
occasion framework adopted thus far and let individuals choose across multiple
occasions. As in standard dynamic discrete probability models, we assume the
analyst has access to a random sample of individuals, each of them choosing ex-
actly one option from the universe of available alternatives on several occasions.
Throughout the paper, we mantain the assumption that the distribution of cog-
nitive types F' is fixed across occasions. Our typical dependent variable is given
by the joint distribution of choices over time. Indexing occasions by i = {1, ..., I'}
and letting X = {1,..., k,...,n}'® represent the universe of available alternatives,

the tensor of (joint) aggregate choice frequencies turns to be given by

p = (p(k1 - k1)1, (1.14)

with (p(ky---kr))7_; being the joint probability of choosing option k; on each

occasion 7. Thus, p is in all respect equivalent to the realization of a multino-

'4In both 7 and p, one element is residually determined since they need to sum up to one.

5 For ease of exposition, we assume that the cardinality of X and the alternatives in it remain
constant across occasions i. Note that none of these assumptions is vital to our identification
result and can be easily relaxed.
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mial random variable'® which is completely specified by a unique distribution of
cognitive characteristics F' and a "trial-specific” distribution of tastes 7;, with
t=1,...,1. Hence, random vectors 7; are assumed independent across choice oc-
casions. Moreover, they determine (joint) aggregate choice frequencies conditional
on being of a given type v, i.e. py = (p,(k1---kr))}_, while observed shares p

arise as

p= /prdFZ > m(1)ps, (1.15)

where last equality is due to the discreteness of F. Each 7; gives rise to an
occasion-specific "average” permutation matrix B; = Z':l 7.nP(h) and its as-
sociated matrix of conditional frequencies (A}z = B,;C. The assumption of inde-
pendence of T; across occasions propagates to 61 and allows us to rewrite (1.15)

as

=t (1.16)
= ZT‘-(V) ®Z'I=l a’ie’ya

=1

16Being X constant across occasions, this random variable has dimension n’.
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where the column vector e, has a 1 in the ~-th position and 0’s elsewhere.!”

Letting ®L,Cye, = P,, (1.16) becomes
p=> (P, (1.17)
y=1

with P, being a I-order tensor with n x --+ x n = n' entries. From (1.17), we
can interpret p as the distribution of a finite mixture of finite measure prod-
ucts, with a known number of components n = 7_%axn}7. The 7(7) term rep-
resents the probability that a draw from the popul’;éion is in the ~-th class.
P, = p, = (py(k1---k1))}_,, instead, gives the joint distribution of the ran-
dom variables ki, --- ,k; conditional on being of type . Conditioning on the
type, the I observable variables ki,---,k; are independent. However, since
types are not observable, independence breaks down in the unconditional dis-
tribution p.'® Let |k;| be the cardinality of k;. Following Allman et al. (2009),
we refer to the model in (1.17) as the n-class, I-feature model with state space
{1,...,|k1]} x -~ x {1,...,]k/|} and denote it by M (n;|ki|,...,|ks|). Note
that the assumption of the menu X being fixed across occasions implies that

|k;| = n for each i = 1,..., 1.1 Let us identify the parameter space of the model

1"Note that ®f:16ie7 performs column-wise Kronecker product between all y-th columns of
the C; matrices, i = {1,...,I}.

8Hence, one-dimensional marginalizations of p describing the I variables k; are generally not
independent.

9Each variable k; takes exactly one value in {1,...,n}.
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M (n; |k, ..., |kr]) with a subset © of [0, 1]F with

1
L=mn-1)+n-1)) (k-1
im1 (1.18)

=(n—1)+(n—1)7I,

being the number of free parameters. The first addend in (1.18) is the number
of free parameters in 7. The second addend is the number of free parameters
determining the matrices 61-, for i = {1,...,I}, whose columns span tensors
P,, fory={1,...,n}. Each C, has (n—1)? free parameters since it is a n x n left
stochastic (i.e. columns add up to 1) matrix and all elements on the first column
(namely, choice frequencies conditional on being of type 1) are, by construction,

all equal to % Moreover, the parametrization map for M (n; |k1|, ..., |kr|) is
W, k) 2 © — [0, 1]Hf=1 kil =10, 1]"1. (1.19)

In order to show strict identifiability of parameters governing finite mixture
models of the form given in (1.17), we make use of the following lemma which
extends Lemma 1 in Dardanoni et al. (2019). Our lemma rests upon Theorem
3 in Sidiropoulos and Bro (2000) which generalizes to [-order tensors (I > 3)
the result of Kruskal’s theorem (see, Kruskal (1977)) on the uniqueness of the

decomposition of a 3-dimensional array.
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Lemma 1 Consider the I-order tensor

T=>) ®_,Me (1.20)
j=1
spanned by a collection of matrices (M;)/_, each of them being of dimension

m; x n. Let kyp, be the Kruskal-rank®® of M;. Then, provided that

1
> hm, =204 (I-1), (1.21)
1=1

matrices (M;)!_, are unique up to permutation and scaling of columns. That is

to say that, for any collection of matrices (M;)’_, such that T = >y ®_, Me;,
there exists a collection of three scaling (invertible) diagonal matrices (Dg,, Dg,, Ds,)
and a permutation matrix P such that M; = Mka‘g‘zﬁP, with (Sp,)>_, being a suit-
able tripartition of the set {1,...,I}, i € S, and Dg,Dg,Dg, = I,,. Setting, for
instance, I = 4 and imposing irreducibility?* of T in (1.20), let us assume without
loss of generality that Ky, > km, > ks > kmy,. Then, Theorem 3 in Sidiropoulos

and Bro (2000) shows that (1.20) can be equivalently expressed as

S.
T=>) &3 _¢Nge;, (1.22)

J=1

WGiven A € RIXF rp = rank(A) = r iff it contains at least a collection of r linearly
independent columns, and this fails for 7 + 1 columns. ka (the Kruskal-rank of A) = r iff
every r columns are linearly independent, and this fails for at least one set of r + 1 columns
(ka <ra <min(l, F) for all A).

2! Irreducibility of T means that the generic element of the 4-way array implied by T cannot
be expressed using fewer than I = 4 components. Irreducibility is trivially satisfied if kpg, > 1
for each 1.
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with Ng, = My, Ng, = M, and Ng, = M3 ® M4.?> Moreover, (1.22) implies
a tripartition of {1,2,3,4} of the form S; = {1}, Sy = {2} and S5 = {3,4}. If
irreducibility holds true, one can recursively apply the reasoning above in order
to obtain a trilinear representation as the one in (1.22) of any I-order tensor with
I > 4. Kruskal’s result guarantees the uniqueness of matrices <N5p)§2251 up to
permutation and scaling of columns. Then, applying Theorem 3 in Rhodes (2010),

we can re-express (1.22) as

T=Y ®9_Ngej, (1.23)

=1

with ng = Ng, Dg, P. Under drreducibility of T, uniqueness of (N5p>gf;: s, implies
uniqueness of (M;)!_, (see, Sidiropoulos and Bro (2000)). Appropriately using
Ds, and P, we can retrieve <ﬁl>f:1 as M; = MiDL';?P for i € S,. Indeed, in the
case of I = 4 depicted above, we have ﬁl = M;Dg, P and ﬁg = M;Dg, P since
S1 = {1}, Sy = {2} and |S,| = |5:] = 1. As for M; and M,, instead, we have

Ng, = Ng,Dg,P
= (M3 ® M,)Dg, P (1.24)

1 1
= (M;Dg, P © M,Dg P),

—~ 1 — 1
which implies My = M3DZ P and M, = M,DZ P.

220 is the Khatri-Rao product, i.e. the column-wise Kronecker product, between M3 and
My. Thus, Ng, has dimension (mgmy) X n.
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Lemma 1 is immediately applicable to our multi-occasion consideration capacity
model M (n;|k1], ..., |kr]). Writing D(7r) for the diagonal matrix with entries
m = (m(7))5=;, we can impose M, = alD(ﬂ') and M; = C; for each i > 2. Then,

using (1.20), we can equivalently express (1.16) as

p=> ®_,Me;. (1.25)

J=1

Provided 7 > 0, (M;)L_, are all n x n invertible?® matrices and condition (1.21)

becomes?*

In>2n+(I-1), (1.26)

Proposition 4. If I > 3, then M, = (AJlD(ﬂ') and M; = C; with i = {2,...,1}
are unique up to permutation and scaling of columns.

Let us restate (1.26) as

1
I1>2 . 1.27
> 24+ — (1.27)

The case n = 1 is clearly of no interest. For n > 2, ﬁ < 1 and thus I > 3 suffices

to guarantee the applicability of Lemma 1 to the model M (n;|k1|,. .., |k;])-

Proposition 5 In the consideration capacity model with unknown preference

heterogeneity M (n; |k1l, ..., |kr]), if w > 0 and I > 3 then for almost all taste

23Since, by Proposition 3, (60{21 are invertlible for almost all distribution of (7;)/_,.
247f A € R™*™ ig invertible, then ko = ra = n.
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distributions (7;)__, matrices M; = C;D(m) and M; = C; with i = {2, ..., I} are

uniquely determined by the joint choice shares p =(p(ky ... kr))7_;.

Proof. Lemma 1 legitimates us to rewrite (1.25) as

pP= Z ®fz1ﬁieg’7

J=1

with

and

1

To be compatible with our model, (C;)._; must be left-stochastic.
T

multiplying (1.30) by 17 = [2?21 e]} we get

_1

IS P

T _ 1T
1" =1 DSp/:Z'GSp/ )

or ,equivalently,
TpT T T %
1'P'=1" =1 DS/:iESp/‘

IS /1

(1.28)

(1.29)

(1.30)

Thus, pre-

(1.31)

(1.32)

For (1.32) to hold true, it must be Dy”. .o =1, = Ds ,ies,, for all S, not

including alternative 1. Thus, assuming without loss of generality 1 € S; we have,

by Lemma 1, Dg,Dg,Dg, = I,, which implies Dg, = I,, being Dg, = Dg, = L,.
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Then, recalling that C; = B,C, (1.30) can be rewritten as
C, = C,P = B,CP = B,C". (1.33)

For 61 to be compatible with the model M (n; |k1|,...,|kr|), C* must be upper-
triangular. Since C* is obtained by permuting the columns of C, which is also
upper-triangular, the only possible permutation is the one brought about by
P = 1,. Uniqueness of (M;)!_; shown above implies that “average” permuta-
tion matrices (B;)!_; and the distribution of cognitive characteristics specified by
7 are also uniquely determined. That is to say that a panel dataset contain-
ing observed individual choices over time suffices in order to obtain the tensor of
aggregate choice frequencies p and to uniquely infer from it some proxy of the
distribution of tastes (namely, matrices (B;)._;) along with the distribution of

cognitive characteristics 7.

1.5 ESTIMATION STRATEGY

In statistical terms, the model described thus far is a clear instance a latent
variable model. Following Bartolucci et al. (2012), latent variable models can
be defined as models which rely on specific assumptions on the conditional dis-
tribution of the response variables, given one or more variables which are not
directly observable (latent variables). Latent variable models typically relies on
the assumption of local independence, according to which response variables are

independent conditioning on the latent variables. Moreover, the following two
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components can usually be disentangled:

o measurement model: it specifies the conditional distribution of the response

variables given the latent variables;

o latent model: it specifies the (unconditional) distribution of the latent vari-

ables.

With reference to a random unit drawn from the population of interest, let
Ky, ..., K; denote a collection of categorical random variables each of them having
support K; € {1,...,n}, fori ={1,...,I}. Let K = (K ... K;) be the multino-
mial random variable with I trials and [[_, | K;| = n' mutually exclusive possible
outcomes. Aggregate choice frequencies p defined in (1.14) can be held equivalent
to the probability mass function fx (k) = f(K = k), with k = (k;...k;) being a
realization of K. Moreover, let I' be a latent categorical random variable with sup-
port I' € {1,...,n}. Then, the latent model is given by the a priori distribution
of I" which reads as fr(y) = f(I' = «), with v being a realization of I'. The mea-
surement model, instead, corresponds to the conditional distribution of K given I'
whose probability mass function is given by fxr(k|y) = f(K = k|I' = ). Finally,

the manifest distribution of K is governed by the probability mass function

Fre(k) = frr (k) fr(y), (1.34)

where the summation is taken over all possible realizations of I'.

With reference to the multi-occasion consideration capacity model
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M (3 |, .

and

,|krl), we have

fr(y)=7(y), ~v=A{1,...,n},

fK|I‘(kh> =P,

= ®i[:161-e7, v=A1,...,n},

I
A
2z

~
2

(1.35)

(1.36)

(1.37)

Note that second equality in (1.36) is a clear manifestation of the assump-

tion of local independence. Indeed, the ~-th column of the generic matrix C;

is equivalent to the conditional distribution fr,r(ki|y) = f(K; = k[T’ = v) of

the generic categorical K; variable defined above. Thus, the joint distribution of

(Ky...K;)|I' = K|I" obtains as the product of (conditional) marginals, i.e.

I
T (kly) = H frir(kil7y).
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1.5.1 EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Originally derived by Baum et al. (1970) in the context of hidden Markov models
and later extended and formalized by Dempster et al. (1977), EM algorithm? is
definitely the most used tool for estimating latent variable models. It consists of
a derivative-free iterative method which is able to provide maximum-likelihood or
maximum a posteriori estimates of parameters in statistical models depending on
unobserved latent variables.

Drawing a sample of S independent subjects, let k* = (k{...k$)? denote the
observed response configuration of a subject s = {1,..., S} who is asked to choose
one of the alternatives of a menu X = {1,...,n} on a number of occasions I.

In our non-parametric framework where no individual covariates are accounted

25 A complete overview of this method can be found in Watanabe and Yamaguchi (2003) and
in McLachlan and Krishnan (2008).

26k* can be thought as a column-vector of dimension |X|! with a 1 in the position implied
by the (individual) joint response (kj...k7) and O elsewhere. |X]| is the number of available
alternatives and I the number of occasions. Let, for instance, I = 3 and |X| = 3. Then, if s
chooses alternative 2 on occasion 1, alternative 3 on occasion 2 and alternative 3 on occasion 3,
we have

ki =

o = O

0 0
k3= 10|, k=10
1 1

and k° is uniquely determined by k° = ki ® k5 ® k3.
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for, (1.37) gives rise to the following model log-likelihood

S
((0) = logp,
=1 (1.39)

S
= logfx(k*;0),
s=1

with @ belonging to the parameter space © defined above. Let I(-) be the indicator

function that equals 1 if the argument is true and 0 otherwise and define

Sp=> Ik =k). (1.40)

S}, is the frequency with which response configuration k is observed in the sample.

Then, (1.39) can be more conveniently expressed as
(6) = Silogfx(k; 0). (1.41)
k

The advantage of using (1.41) instead of (1.39) rests upon the fact, as the sample
size grows larger, ever more subjects are likely to exhibit the very same response
configuration. The function /(@) is usually called the incomplete-data log-likelihood
since it totally neglects the missing data problem from which our latent variable
model suffers. For a maximization routine to be immediately applicable, we would
need to know not only the response configuration k£* but also the realization +*

of the latent variable I' for each subject s in the sample. Observing the pairs
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(k*,~®) for s = {1,...,S} would allow us to construct the so-called complete-data

log-likelihood which is given by

ZlngKF %77 0). (1.42)

Being fx,r(k,v) = fxpr(kly)fr(y), (1.42) rewrites as

S
= > log (Fxir (k17 0)fe (7'56)
S? S (1.43)

= “logfrir(k*|y*;0) + > logfr(v";0).
s=1 s=1

In the same spirit of simplification as the one deployed for obtaining (1.41), let us
define

S S
= Zl(ys =7,k*=%k) and b, = Zl(ys = ). (1.44)
s=1 s=1

The term b, is the number of subjects in the sample with latent variable equal
to v while az, is the number of those having both latent variable equal to v and
response configuration equal to k. Using (1.44), the complete-data log-likelihood

becomes

Zzamlogfmp kly; @ +Zb log fr(7; 8), (1.45)

where ), and ) , are taken over all possible realizations of K and I, respectively.

From the perspective of the EM algorithm, maximization of ¢(0) is achieved by
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iteratively performing the following two steps until some convergence criteria?”’

are met:

« Expectation (E) step. It amounts to compute the expectation of £*(8)
with respect to the conditional distribution of I' given K and the current

At
values of the parameters 6 , namely

EF|K,9 ZZ I|Kk,8° [ary 1ngK|F(k?|% +ZEI‘\K0 [b,] log fr(7; @)
il

= Zzamlogfmr k|v; 6) + Zb log fr(7; 6),

(1.46)

with a, and lA)ﬂ, given by

. s1. At
ak’}’ ZI F\KB (P)/ ‘kae)

and (1.47)

5 At
Z F|K0 |k70)7

~t
respectively. The function fF\ gt (Vk,8°) specifies the a posteriori distri-
bution of the latent variable which is obtained conditioning on a certain

At
response configuration k£ and a set of parameters @ . At each iteration t,

~t A~
ZTLetting ¢ be the number of iteration and 8 = (6%)L_| the vector of parameter estimates
t41 At
obtained at iteration t, convergence is typically assumed to be achieved if £(6 ) —£(0) < 1e=6

and maxy, [§1T1 — g ] < 1e76
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Bayes’ theorem allows us to recover this probability mass function as

Frpo (bl ) fr g (718)
frig (K16)

Frce (11 6°) = (1.48)

N At At
where fK|ét(k’0 ) = Z»y fK‘Rét(kh/?O )fp|ét(’7’0 )
For each iteration-specific parameters ét, (1.48) provides an allocation rule

according to which each subject is assigned to a certain latent variable con-

figuration.

In the framework of the consideration capacity model M (n; |kq|, ..., |k1]),
let § = (7t vec((éﬁ)le) be the vector of parameters at iteration ¢ and write
¢t (r, ¢) for the generic (r, ¢) element of matrix C!. Then, applying (1.48), the
posterior probability of belonging to a certain latent class v given response

At
configuration k = (k... k;) and current parameters 6 reads as

(T, ¢t (k7)) m(+16")

w(y|k, 6" = __
! S (T, (ko ))(216)

(1.49)

Maximization (M) step. In this step, parameters are updated by max-
imizing the expectation computed in (1.46) with respect to the "true” pa-

= : : A1
rameters @ = (m,vec({(C;)!_;). Thus, next-iteration parameters 8  are
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obtained as

At41 .
= argmax EL ke [07(0)]

s.t.
'1TB§+1 17 (1.50)

Bf'1=1, i={1,...,1}

Bt >0,

\

where Bit! = (AJEHC*1 and 0,, is the nxn zero matrix. Constraints in (1.50)
effectively impose the requirement of bistochasticity on the matrices B
and guarantee that the estimated measurement model belongs to the same
model space as the one of M (n;|ky],...,|kr|) at each and every iteration.
Note that the first constraint in (1.50) is redundant being always satisfied.

Indeed, we have
17BI+ = 1Ta§+1c—1 =17c ' =17, (1.51)

where the second equality is due to (AT;H being left-stochastic while last
equality is a consequence of the fact that the inverse of a left-stochastic
matrix (namely, C™!) has again the property that the sum of the columns

add up to 1. Substituting for the expression of B{*!, the second constraint
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reads as

Bl =CiH'lc 1 =C | |, (1.52)

Last equality in (1.52) arises since, by construction, all rows of C™! sum up
to zero except for the first one which sums up to n. Hence, (1.52) shows
that the second constraint is in all respect equivalent to imposing all the
terms on the first column of matrices 65“ equal to %, that is to say that
all alternatives in the menu are chosen with the very same probabilities

(namely, %) by type-1 individuals. Finally, vectorizing Bt gives

vee(BH1) = vee(CHIC™) = ((CH)T @ I, )vec(CHY). (1.53)

(1.53) allows us to more conveniently formulate last constraint in (1.50) as

a system of linear inequalities in the parameters to be estimated, namely
(C™HT @ L,)vec(CHY) > 0, (1.54)

with 0 = vec(0,) being the zero column vector of length n x n.
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1.5.2 SIMULATIONS

The simulation reported here assumes individuals choosing among 5 mutually
exclusive alternatives (i.e. X = {1,2,3,4,5}) on 3 occasions. After fixing the
"true” distribution of cognitive characteristics 7, we generate 100 samples of S =
10,000 subjects and draw the cognitive type v* of each subject s independently
from 7r. For each occasion 7, we generate a random vector 7; of dimension 5!
specifying the probability of each of the possible ()3, rankings. Then, for each
sample, we make S independent draws from each distribution 7; so as to assign
every individual in the sample with a specific preference ordering at each choice
occasion. Once attention and preference have been assigned, choices are retrieved
by independently drawing from the following occasion-specific vector of individual

choice probabilities
p; = P(h7)Ceys, (1.55)

where h? identifies the preference ordering of subject s at occasion ¢ drawn from ;.
Drawing from p$, we obtain individual choice at each occasion (namely, k)?® and
the response variable, that is the tensor of (joint) aggregate choices, is obtained

as

led

Y =) @bk (1.56)
s=1

Z81n these simulations, & is a column-vector of length | X| = 5 with a 1 in the position implied
by the individual choice at occasion ¢ and 0 elsewhere.
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Table 1.1: Simulations: ~-types distribution

(1) 72 7@B) w4 ()

true value 0415 2033 .4067  .2228 1257
estimated value .0399 .2035 .3809 .2248 .1509
bias -.0016 .0002 -.0258 .0019 .0252
RMSE 0042 0172 .0491 .0295 .0463

Table 1.1 reports the EM average estimates of the parameters governing the
distribution of cognitive characteristics along with their associated bias and root
mean squared error. Table 1.2, instead, compares the true matrices of type-
conditional probabilities with the average of the ones obtained through the EM
algorithm. For both the predicted latent and measurement models, estimates are
substantially close to the true values. Note that, in generating the sample, we
achieve the highest possible degree of variability in our data. This is so since
individual choices are not obtained drawing directly from type-conditional prob-
abilities but are constructed from (1.55) which depends on the specific preference
ordering ¢(h{) attached to individual s at occasion i. In applications involving
real data, instead, it is likely the case that the true distribution of preferences
T, is rather sparse, meaning that many of the possible preference orderings never

appear in the population.
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Table 1.2: Simulations: type-conditional choice probabilities

[.200
200
200
200

.200

[.200
200
200
200

200

[.200
200
200
200

200

true (i=1)

191
022
379
112
296

102
.010
.H48
037
303

014
011
702
.048
226

true (i=2)

273
204
.048
116
398

.260
118
065
.020
D37

173
021
083
.006
716

true (i=3)

101
.002
301
398
199

.002
.001
302
.596
.099

.001
.001
204
795
.000

017
012
.843
.060
.068

.000]
001
104
.000
896

.000]
.000
.007
993
.000
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[.200
200
200
200

.200

[.200
200
200
200

200

[.200
200
200
.200

.200

estimated (i=1)

194
.024
374
112
298

105
011
D37
.040
307

018
.010
.694
.046
232

estimated (i=2)

272
200
.051
116
361

.266
118
.064
021
531

180
.030
082
.005
703

estimated (i=3)

101
.003
301
.396
199

.004
.001
305
590
102

.001
.001
212
7182
.005

.013]
011
845
.055
.077]

.016]
.006
.099
.003
876

.001]
.000
.024
972
.003




1.5.3 AN APPLICATION TO MARKET DATA: ERIM DATASET ON SUGAR

The ERIM dataset?® contains data collected by the now-defunct ERIM division of
A.C. Nielsen on panels of households in two midsized cities in the U.S.. Informa-
tion is available on the purchases of households in a number of product categories
along with household demographic information. In this application we focus on
sugar purchases. Among available categories, sugar is, in our opinion, the one with
the highest degree of substitutability between brands and, as such, qualifies as an
ideal candidate for the extrapolation of households’ attention capacity in our fully
non-parametric framework. ERIM data on sugar collects daily scanner data from
42 supermarkets for the period between the 5-th week of 1985 and the 23-rd week
of 1987. In this application we select the supermarket with the highest number
of transactions and consider only the 8 most chosen sugar brands which represent
more than 75% of the market. Next we identify 3 different shop occasions by
aggregating successive weeks over which the very same prices and display activity
prevail for the 8 brands under consideration. Then, we further refine our dataset
by only considering households who are observed choosing on all the 3 occasions
defined above. Doing so, we are able to identify 225 households and construct
the tensor of (joint) aggregate choices which has 8 = 512 entries. As expected,
this tensor turns to be quite sparse having 416 zero entries. The (relative) market
shares for the 8 products in our 3-occasion sub-samples are reported in Table 1.3.

Table 1.4 shows that the distribution of y-types is essentially tri-modal with

29Full documentation of this dataset is available at:
https://www.chicagobooth.edu/research/kilts /datasets/erim
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Table 1.3: ERIM data: Market shares

1 2 3 4 5 6 7 8

i=1 .089 .084 .089 .044 .449 .004 .107 .133
i=2 .102 .098 .107 .058 .404 .040 .080 .111
i=3 .093 .053 .084 .044 471 .027 .089 .138

around 16% of the individuals having a low attention capacity (y = 2), around
38% having a moderate attention capacity (v = 5) and around 46% being full at-
tentive (7 > 8). Standard errors in Table 1.4 are computed by using the observed
information matrix, denoted by I(8). Following Bartolucci et al. (2012), I(0) is
obtained as minus the numerical derivative of the score vector s(€). The score vec-
tor s(@), in turn, is obtained as the numerical first derivative of the complete-data
log-likelihood ¢*(0), evaluated at @ equal to the value of the estimated param-
eter vector 6. Finally, standard errors are computed as the square root of the
corresponding diagonal element of I(é)*l.

Table 1.5, instead, reports estimated type-conditional choice probabilities. Note
that, as we move rightward over the columns of the matrices in Table 1.5, predicted
probability mass functions tend to get more concentrated around the alternative
that has the highest market share in all the 3 occasions (namely, alternative 5).
Clearly, this is a consequence of the fact that, as consideration capacity increases,

individuals become more likely to choose what they actually prefer.
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Table 1.4: ERIM data: ~-types distribution

m(1) w(2) 7@3) w(4) =) w(6) =(7) =(8)

etimated value .000 .161 .000 .000 .381 .000 .000 .458
s.e. .005 .017 .005 .007 .057 .005 .005 .040

1.6 CONCLUSION

Relaxing the strong assumption that subjects take into consideration all the op-
tions available to them before choosing is a common feature of discrete choice
models with limited attention. In such models, identification has typically been
achieved either by relying on additional information on what alternatives are
actually considered by individuals or by assuming that some variables impact at-
tention or utility but not both. One exception in this respect is represented by
Abaluck and Adams (2017) who constructively identify consideration set probabil-
ities from the asymmetries in the matrix of cross-derivatives of choice probabilities
with respect to the characteristics of rival goods. As argued by the same authors,
however, their model is likely to get particularly data "hungry” when estimated in
a non-parametric setup since it requires to observe a large number of individuals
and exogenous variation in the characteristics of rival goods (typically, the price).

The model in Dardanoni et al. (2019) complements the literature to date given
that it links directly cognitive heterogeneity to observed (aggregate) choices. To
our knowledge, their model is the only one in which the distribution of cognitive

characteristics can be determined per se without requiring variation in alternative-
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Table 1.5: ERIM data: type-conditional choice probabilities

125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125

160
143
.005
.090
235
.093
190
.084

170
110
170
104
128
.076
134
108

102
136
140
.057
128
074
198
165

estimated (i=1)
184
018
012
.009
514
.008
147
109

186
107
007
.039
334
.042
207
077

197
057
.009
013
426
014
189
.093

.146
.000
014
.010
.602
.010
.093
124

estimated (i=2)
217
032
174

213
065
176
075
193
.052
.146
.080

229
037
A71
.066
257
.045
133
.063

.069.

321
032
103
051

A77
.038
193
078
385
.020
.066
043

estimated (i=3)
131
105
.026
025
319
.007
189
197

128
115
104
023
192
023
227
187

138
101
.059
.022
256
.007
221
198

42

107
123
013
.030
383
.008
139
.196

.085
.000
.016
.012
.694
.012
.040
141

110
.045
225
.090
449
013
.028
.040

.067
143
.016
.035
447
.010
.080
202

0007
000
019
014
793
013
000
161

.010]
164
018
.040
Hl1
011
021
225

015]
.051
257
102
514
.015
.000
.046




and/or individual-specific characteristics.

On a theoretical ground, this paper extends the identification of the model in
Dardanoni et al. (2019) to the generic case where subjects are observed choos-
ing in more than three occasions. From an empirical standpoint, it develops an
estimation strategy that rests on an Expectation-Maximization algorithm where
suitable (linear) constraints are imposed. This methodology, we believe, is flex-
ible enough to be adapted to a parametric context which explicitly models the
interaction between cognitive and taste heterogeneity and allows to isolate the
(possibly different) effects that some given regressors have on utility and atten-
tion. In such a context, one could easily extend standard normative analysis and
evaluate, for instance, the welfare gain that individuals might experience if they
were full attentive.

The implicit assumption that all consideration sets with the same cardinality
are equally likely is the one that future research should try to relax in order to

generalize the model in Dardanoni et al. (2019) and incorporate saliency effects.
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Asset Allocation in Defined Contribution

Plans with Limited Attention

2.1 INTRODUCTION

Defined-contribution plans (henceforth, DCPs), and in particular the 401(k) scheme

introduced in US in the late 1970s, brought about a significant alteration in the
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relationship between private employers and their workers as far as retirement
savings are concerned. Before the approval of the Employee Retirement Income
Security Act of 1974 (ERISA), defined-benefit plans (henceforth, DBPs) were
commonplace among U.S. private businesses’ employees. Under a DBP, employ-
ers typically provide workers with financial security in retirement via a pension.
Thus, the employer is responsible for all investment decisions regarding financial
assets allocated for retirement income. In addition, DBPs usually make employ-
ers responsible for certain guarantees regarding minimum income distributions
through the use of annuities (e.g., guaranteed lifetime income representing a cer-
tain percentage of the last years salary of employment). Under such a scheme,
employees worried neither about how their retirement savings were invested nor if
the returns generated by those investments were sufficient to provide for adequate
retirement income.

The adoption of the 401(k) and other defined-contribution schemes fundamen-
tally modified the employer-employee relationship, given that investment manage-
ment decisions are transferred from companies to individual workers, who further-
more find themselves without the guarantees associated with a DBP pension. The
employees have become not only responsible for their own investment account al-
locations, but also for investment performance and for managing the disbursement
of income upon retirement.

The trend of switching from DBPs to DCPs over the past three decades has
been remarkable. In 2013 only 2% of private-sector employees enjoyed a com-

pany directed defined-benefit pension plan for their retirement security, while in
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1979 that number amounted to around 62%. According to the US Department of
Labor, by 2009 more than two-thirds of all employees relied entirely on a DCP.!
Nowadays, the majority of private-sector workers no longer relies on their employer
for making decisions concerning their retirement income security; rather, employ-
ees are left to voluntarily contribute to their own retirement savings and make
their own decisions as to how those contributions are invested. The transition
outlined above has raised relevant questions as to what drives workers’ decision
process concerning their saving contributions which will determine income upon
retirement.

Analyzing the structure of 401(k) plans, previous literature has extensively
documented the importance of defaults and their non-negligible impact on saving
behavior. Choi et al. (2002) assess the impact of several 401(k) plan features, such
as automatic enrollment, employer matching provisions and investment options
on saving behavior documenting a strong employees tendency to follow a path of
least resistance. That is to say that workers tend to stick to the defaults of their
401(k) plan. By exploiting the switch from automatic non-enrollment to automatic
enrollment in 401(k) plan made by some companies, the authors find evidence
that automatic enrollment substantially increases the 401(k) participation rate
of newly hired workers and this effect is the largest for those individuals least
likely to participate in the first place: namely younger employees, lower-paid
employees, Blacks and Hispanics. With regards to the contribution rate and asset

allocation, Choi et al. (2002) also show that employees tend to passively accept the

https:/ /www.dol.gov /sites/default /files/ebsa/researchers /statistics /retirement-
bulletins/historicaltables.pdf
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defaults offered by their plan’s sponsor. Thus, many workers end up contributing
either an excessively high or low fraction of their income and investing in assets
which may well be not adequate to their risk attitude. Additionally, the event
studies conducted by these authors give some insights on the relevance of one
more common feature of 401(k) plans, that is employer match. Employer match
implies that for each dollar contributed by the employee to the plan, the employer
contributes a matching amount up to a certain threshold (e.g., 50 percent of the
employee contribution up to 6 percent of compensation). Partially contradicting
previous literature (e.g., Papke and Poterba (1995)), Choi et al. (2002) find that
varying the match threshold has no significant effect on 401(k) participation but
it does impact contribution rates. Indeed, match threshold exercises an anchoring
effect on the decision of which contribution rate to select with many participants
clustering at the threshold.

As far as risk diversification is concerned, Thaler and Benartzi (2001) suggest
that naive strategies for diversifying across investment options cause many in-
vestors to allocate part of their contributions to employer stock simply because
it is available in the 401(k) menu. Benartzi (2001), VanDerhei et al. (2010) and
Brown et al. (2006) find that discretionary contributions to employer stock are
higher in firms where the employer directs matching contributions into employer
stock than in firms where employer stock is simply available as another investment
option. Investing too much in employer stocks does not represent a sensible strat-
egy given that the value of employer stocks are likely to be positively correlated

with employees’ labour income. All in all, a growing body of literature finds that
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401(k) savings outcomes are strongly affected by the features of the plan, even
when those features do not explicitly restrict employee choices.
In this chapter we depart from previous literature since we use a rich cross-
sectional dataset and analyze investing decisions under the lenses of a multi-
nomial model which accounts for limited attention. To our knowledge, Sunden
and Surette (1998) is the only paper using discrete choice modeling techniques
in the context of allocation choices within DCPs. Sunden and Surette (1998)
are primarily concerned with the evaluation of gender differences in investment
decisions. Here, instead, we link the decision process to several individual and job-
specific characteristics that have been found to shape asset allocation by previous
literature. Taking limited attention into account essentially amounts to assume
that individuals do not necessarily consider all available options when making
their choices. This lack of attention may be the consequence, for instance, of
search cost or of bounded rationality. Thus, our model specifies a probabilistic
consideration set formation process for each of the possible subsets of options.?
The rest of this chapter is organized as follows. Section 2.2 describes the survey
used to construct the cross-sectional dataset to which our model is applied. Section
2.3 presents the model whose (local) identifiability is shown in Appendix A. Sec-
tion 2.4 discusses the empirical results and highlights the relevance of (in)attention
by comparing the estimates of our model with the ones of a standard multinomial

logit model. Section 2.5 concludes.

2This approach has been extensively applied in the marketing literature (see, e.g., Shocker
et al. (1991)) and has also gained popularity in both theoretical (see, e.g., Manzini and Mariotti
(2014)) and applied economics (see, e.g., Goeree (2008) and Abaluck and Adams (2017)).
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2.2 DATA

The empirical analysis performed here relies on the Survey of Income and Program
Participation (henceforth, SIPP) conducted by the United States Census Bureau.
SIPP collects data related to various types of income, labor force participation,
social program participation and eligibility, and general demographic character-
istics to measure the effectiveness of existing federal, state, and local programs.
The survey is articulated in topical modules run on a yearly basis and containing
specific questions on socio-economic issues. The source of data employed here is
the Retirement and Pension Plan Coverage module run in 2012 which contains
individual-level information on pension plan contribution, asset allocation and
demographic characteristics.

To make our data suitable for the implementation of a multinomial logit model,
we restrict our attention to those individuals who decide to allocate all their
contributions in just one asset category. Perhaps surprisingly, this sample (5729
units) represents the very large majority of individuals who report to be completely
free to determine how to allocate the money invested in their DCPs (8671 units).

The dependent variable of interest is represented by the asset category chosen
while the explanatory variables refer to demographic and job-specific character-
istics. In order to establish some comparisons with the results accumulated in
previous literature, we adopt as explanatory variables® age, gender (= 1 if male),
the percentage of salary contributed by the worker, a dummy variable for univer-

sity education and a further dummy coding the presence of employer matching

3The two continuous variables, namely age and percentage contribution, are standardized.
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contribution.

2.3 MODEL

In our setting individuals face a decision among six mutually exclusive asset
classes. The choice set is considered to be unordered since our data provides
no information on alternative-specific characteristics. Having information on the
risk-return profile of the asset classes, for instance, would have allowed us not only
to establish a precise ranking in terms of asset riskiness but also to incorporate our
model in a mixed logit framework where both individual and alternative-specific
features affect a subject’s decision. Unordered-choice models can be motivated by
a random utility model where the i-th individual who faces a menu X = {0, 1, .., J}

of alternatives derives from choice j utility
Uiy = ﬁ;Xz' + €ij- (2.1)

x; is a vector of individual-specific characteristics while ¢;; is an i.i.d. error term
following a type 1 extreme value distribution. If j is chosen by individual ¢, then
we assume that U;; is the maximum among the J utilities. Hence, the statistical

model is driven by the probability of choosing alternative j, which is
Prob(U;; > Uy,) for all other k # j (2.2)

In our setting, the menu of available alternatives and individual regressors are

respectively given by:
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1. Investment: 0 = money market funds and other liquid investments, 1 =
government securities, 2 = diversified stock and bond funds, 3 = corporate

bonds and bond funds, 4 = stock funds, 5 = employer company stock.

2. X;: constant, age, gender, college education, employer matching contribu-

tion, employee % contribution.

Given that errors are i.i.d. and follow a type 1 extreme value distribution,

allocation probabilities have the following multinomial logit specification:

eBjxi

MNL [ -
pi X)) E
> kex ePrxi

jexX (2.3)
Adopting the convenient normalization 3, = 0, probabilities can be rewritten

as

Bix;
. e .
pMNE (G X) = T jeX and By,=0 (2.4)
1+Zkex\k¢o€ R

The multinomial logit model implicitly assumes that individuals consider all
available options when choosing. Consideration set models generalize standard
discrete choice models by relaxing the assumption of individuals considering all
goods. These models specify a probability that each subset of options is consid-

ered (Manski (1977)) so that the choice problem typically assumes the following
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probabilistic specification:

where :
o Pi(j) is the probability of individual ¢ choosing alternative 7j;

o X(j) is the set of all possible choice sets containing alternative j;

P;(§]C) is the probability of individual ¢ choosing j given that her choice

set is C;
e P;(C|X) is the probability of C' being the choice set of individual i.

Consideration sets might arise, for instance, due to bounded rationality (e.g.,
Treisman and Gelade (1980)), search costs (e.g., Caplin et al. (2018)), or because
consumers face (unobserved) constraints on what options can be chosen (e.g.,
Gaynor et al. (2016)). As an extension of the standard multinomial logit described
in (2.4), we develop a limited attention model which includes a probabilistic choice
set generation in the first stage followed by the choice of financial instrument
from a given choice set. This extended model formulation assumes that workers
can choose any of the available asset categories though not all of them may be

considered by each individual. Under such a model individual utility writes as

Uy = ﬁ;xi + Kij + €5, (2.5)
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where

0, with probability A
Kij -

K, with probability (1 — A;j).

K represents a sufficiently large negative shock affecting utility. A;; represents
the probability that alternative j is considered by individual ¢ and is assumed to
be standard logistically distributed:

e’Y;Wi

14 ™

where w; is a column vector of observed attributes of individual i (including a
constant) and ~; is a corresponding column vector of coefficients to be estimated
(these coefficients provide the impact of attributes on the consideration probability
of alternative 7). In the empirical analysis performed here w; includes exactly the
same variables as x;, that is to say w; = x;. As an exclusion restriction, we impose
the first element of each «;, namely the coefficient of the constant term, to be
equal across j.*

The overall probability of a choice set C' for individual ¢ may then be written

as:

pi(C) =[] Au J[ (1 —Aw) (2.7)

jec l¢c

4The first element of 7, is imposed equal across all alternatives so as to retrieve a sort
of 7average attention” which is common to all financial instruments regardless of individual
characteristics. We show in Appendix A that such a restriction considerably facilitates parameter
identification.
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The choice of financial instrument from a given choice set can be written, using

a multinomial logit formulation, as:

ﬁ/'xz' .
————, if jeC
pinL(] ‘ C) — ZkECe k=

0, if jé¢cC.

Dardanoni et al. (2017) show that when K — —oo the limiting unconditional

probability of choosing alternative j can be written as follows:

pi (G 1 B,yixi) = @™ ([ X)+ > plC)p}™NH( | ©) (2.8)
§£C:jeC

where X and () represent the full and the empty choice set, respectively. The

empty set represents the event in which all the alternatives suffer from the adverse

utility shock K. In this last instance, individuals are assumed choosing from the

full menu X (i.e. pMNE (5| 0) = pMNE (5] X)).

7 A

2.3.1 ESTIMATION

Let d; = (dij>§?:0 denote the response vector for subject i, with d;; = 1 if subject
7 selects alternative j. Our dataset is a sample of i.i.d. observations of individual
choices and characteristics, namely (d;,x;)?™°, with x; determining both atten-

tion probabilities and utilities. The model log-likelihood is given by the sum of
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individual contributions and reads as

5729 5

W(B,v) =D dijlog (p: (7 | B,vixi)) - (2.9)

i=1 j=0

Parameter estimates are obtained by numerically maximizing (2.9) and associated
standard errors are computed taking the square root of the diagonal of the negative

inverse Hessian of the log-likelihood.

2.3.2 IDENTIFICATION

Let ¥ = [B, T'] denote the parameter space of our limited attention model. Fol-
lowing Lewbel (2018), the model is said to be point identified® if no distinct
pairs of parameters ¢ = [3,~] and P = [B,’y] in ¥ are observationally equiv-
alent. That is to say that no pairs ¥ and 1,~b in ¥ exist such that ¢ # 1,~b and
pi (G B,v:xi) = pi(j | B,7;%;) for all i and j. Under suitable assumptions,
the non-sigularity of the theoretical information matrix is a necessary and suffi-
cient condition for point identification. Unfortunately, this principle cannot be
exploited here since the complex structure of our model makes the information
matrix analytically intractable.

In the context of limited attention model, point identification may be easily
obtained by using auxiliary data (typically, survey data) on what alternatives are
and are not taken into consideration by individuals (e.g., Draganska and Klapper

(2011) and Honka and Chintagunta (2016)). Goeree (2008), instead, develops

5Depending on context, global identification or frequentist identification are often encountered
as synonyms for point identification.
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a model of limited attention where identification achieves through an exclusion
restriction. In her model, advertising determines the set of alternatives entering
a subject’s consideration set but is constrained to exercise no impact on subject’s
utility. Abaluck and Adams (2017) show that utility and consideration set prob-
abilities can be separately identified without excluding variables from attention
or utility or relying on auxiliary data. Their identification proof constructively
recovers consideration probabilities from asymmetries in the responsiveness of
choice probabilities to characteristics of rival goods. The central insight of their
proof is that changes in consideration probabilities can be expressed as a function
of observable differences in cross-derivatives and market shares. Unfortunately,
their argument cannot be applied in the context of our model since regressors vary
across individuals but not across alternatives and, as such, cross-derivatives do not
exist. Finally, Dardanoni et al. (2019) prove in a non-parametric framework that
the distribution of tastes and attention probabilities can be separately elicited as
long as the model is made dynamic, that is to say that individuals are repeatedly
observed choosing. Again, their identification strategy cannot be exploited here
due to the cross-sectional nature of our dataset.

As an alternative to point identification, we explore local identifiability of our
model. For given true parameters 1), local identification of 1, means that there
exists a neighborhood of 1), such that no ¢ € ¥ exists in this neighborhood that is
different from ), and observationally equivalent to 1, (see, e.g., Lewbel (2018)).°

Hence, let us impose the reduced-form parameters of our model to be equal to

6Local identification everywhere in W is clearly a necessary but not sufficient condition for
point identification.
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the choice probabilities defined in (2.8). For given parameters ¥9 = [Bo ~ol, the
mapping in (2.8) generates the corresponding reduced-form parameters m, such

that (suppressing the dependence on i for convenience)

m; =p(j | Bo,vo;x), 1<j< (2.10)

As emphasized by Skrondal and Rabe-Hesketh (2004), 4o is (locally) identified
if and only if ¥ = [Bo o] is the unique solution of the system of equations in

(2.10). Using standard results of calculus, identification of g is then guaranteed

J
j=1

if the Jacobian of the mappings (p (j | Bo,Yo;X))7_; is full (column) rank. In Ap-
pendix A we provide an application of the Jacobian method for local identification
of our model.

Finally, we verify empirical identification” which is based on the estimated infor-
mation matrix. Following Skrondal and Rabe-Hesketh (2004), if the information
matrix computed at the maximum likelihood estimates V,Ab is non-singular, the
model is empirically identified. In our application, the estimated information ma-
trix is found to be full rank and its condition number® is around 35, 000. Denoting
with K the number of regressors used in our application, our model contemplates

(KJ)+[(K—1)(J+1)+1] = 61 free parameters. The first addend is the number

of free utility parameters while the second one is the number of free attention pa-

"As argued by Skrondal and Rabe-Hesketh (2004), empirical identification is a useful com-
plement to "theoretical” identification since it verifies identification where it matters, namely at
estimated parameters.

8That is, the ratio between the maximum and the minimum singular values of a matrix.
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rameters. Hence, our (61 x 61) covariance matrix 3 obtained from the estimated

information matrix can be conveniently rewritten as

3. = diag(o)Rdiag(o), (2.11)

where o is the vector of standard deviations, diag(-) the diagonal matrix with
its argument on the main diagonal and R the correlation matrix. The extreme

eigenvalues of 3 respectively satisfy

Amax(2) < Anax(diag(o)diag(o)) Amax(R) = max JfAmax(R), (2.12)

7

and

Amin(Z) > Amin (diag(o)diag(o)) Amin (R) = min o2 Apin (R). (2.13)

)

From the two inequalities above, the following upper bound for the condition

number of covariance matrix X, denoted x(X), can be derived

max; 07 Amax (R)

< = .
R(Z) < M min; 02 Apin(R)

(2.14)

In our application M is found to be of the order of 10% and this further reassures
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us on the local identifiability of our model.

2.4 RESULTS

2.4.1 MNL MODEL

Table 2.1 reports the maximum likelihood estimates of the parameters of the
multinomial logit model presented above. The baseline category is represented by
money market funds and other liquid investments and the corresponding param-
eters which affect utility are imposed to be zero.

First and foremost, we observe a substantial heterogeneity across categories with
regard to their responsiveness to selected regressors. Age, for instance, is found to
exercise a significant and negative effect on the probability of preferring the two
riskiest alternatives, namely stock funds and employer company stock, over the
baseline. Such a finding is consistent with previous literature concerning life-cycle
investing models (e.g., Bodie et al. (1992)). Indeed, younger workers enjoy higher
flexibility to modify their labor supply and, as such, can offset more easily the
changes in the value of their risky financial assets by changing the amount they
work. Thus, if younger workers have more opportunity to alter their labor supply
than older workers, the share of assets held as risky equity should decline with
age.

As far as gender is concerned, our estimates confirm established results on gen-
der differences in risk aversion (e.g., Sunden and Surette (1998)). Male workers
appear to be more likely to opt for (risky) stock funds than their female counter-

parts, coeteriis paribus. As a result, higher women risk aversion could translate
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into large differences in the accumulation of financial wealth for retirement.

Focusing on the choice of investing in employer company stock, Choi et al.
(2005) document a substantial ineffectiveness of education in reducing employer
stock holdings. In our model education is coded as a dummy taking value one
if the individual holds a bachelor or a higher degree. In contrast to Choi et al.
(2005), we observe a significant effect of college education in attenuating the bias
for directing contributions toward employer company stock.

The presence of an employer match has a significant and positive impact on
the probability of choosing the three riskiest alternatives, namely employer stock,
stock funds and diversified stock and bond funds. The effect is particularly acute
with reference to employer stock which may signal the need to extend to DCPs
the restrictions currently imposed by ERISA on the maximum amount (namely,
10% of total assets) that DBPs can invest in the stock of the employer.

Finally, the percentage of salary contributed does not seem to play a relevant
role in shaping investment decisions even though it exercises a mild positive effect

in favoring diversification strategies.

2.4.2 LIMITED ATTENTION MODEL

Maximum likelihood estimates of the parameters of the limited attention model
are reported in the rightmost columns of Table 2.1. Notice that attention param-
eters often exhibit opposite sign with respect to their utility counterparts. That
is to say that individual and job-specific characteristics may have different impact

on attention and preferences and, as such, subjects may well not pay attention
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to their preferred alternatives. Male workers, for instance, tend to disregard cor-
porate bonds and bond funds even though being male has a positive effect on
the utility arising from this asset category. College education, instead, makes
investors more likely to consider bonds while having a negative impact on utility.
As for stock funds, workers who contribute more tend to derive higher utility form
this kind of financial assets but at the same time they are less likely to include
them in their consideration set.

Estimates of the 3 coefficients obtained under the limited attention model where
consideration sets are taken into account are not immediately interpretable given
that they interact with the attention parameters ~ in a non-linear fashion. Thus,
in order to evaluate the impact of each regressor on the probability of choosing
one of the six alternatives we refer to the average marginal effects reported in
Table 2.2. The marginal effects computed under the limited attention model tend
not to be very different from the ones obtained under the standard multinomial
logit model.

For example, a one standard deviation increase in age makes the probability of
choosing stock funds 1.34% lower under the multinomial model while this reduc-
tion amounts to 1.18% under the limited attention model. Similarly, a decrease
in risk exposure is associated with an increase in age as suggested by the marginal
effect of this variable on the probability of choosing diversified stock and bond
funds under both model formulations.

Furthermore, we still document gender difference in risk aversion given that,

under both models, male workers’ probability of opting for stock funds is around
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2.15% higher than the one of their female counterparts, coeteriis paribus.

Coming to education, holding a bachelor or a higher degree appears to be pow-
erful in preventing workers from allocating their contributions in their employer
stocks even under the limited attention specification (the negative impact on the
probability of investing in employer stocks is around 2.5% under both models).
The same holds true for the presence of an employer match which still produces
an increase of 1.48% on the probability of choosing employer stocks.

All in all, the two models do not imply considerable differences in terms of
marginal effects. This result may appear puzzling but it is likely to be caused
by two competing forces which can be disentangled under the limited attention
model. On the one side, limited attention reduces financial instruments compar-
isons while, on the other side, it exacerbates the utility/disutility arising from
some regressors. In fact, some of the ratios of the utility parameters obtained
under the limited attention model over the corresponding ones estimated in the
plain multinomial logit model are of an extremely high/low magnitude. Thus, set-
ting consideration effects aside, the two models are likely to generate significantly
different preference orderings and this justifies the implementation of a further

counterfactual specification discussed below.

2.4.3 COUNTERFACTUAL ANALYSIS

To isolate the effects of limited attention, we also compute marginal effects under
a counterfactual specification in which we let each «; — oo (i.e. we resort to a

standard multinomial framework where each alternative is considered with proba-
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bility 1 by the decision maker) while adopting the utility parameters 3; obtained
from the maximization of the log-likelihood function in (2.9). In a sense, this
extension can be held equivalent to a fictitious policy measure which can make
workers fully attentive by providing them with appropriate information. These
full attention hypothetical probabilities represent a counterfactual which allows
us to elicit only the “taste” components from the utility specified in (2.5).

Counterfactual marginal effects are reported in the third column of Table 2.2
and deserve some comments. First and foremost, we document a striking increase
in the absolute value of marginal effects across all alternatives but employer com-
pany stock. Additionally, some effects exhibit opposite signs with respect to
previous estimates.

A one standard deviation increase in age, for example, makes workers 8.08%
more likely to choose corporate bonds and bond funds while decreasing their prob-
ability of investing in diversified stock and bond funds by 11.92%. Such behavior
is consistent with the life-cycle investing model which postulates a decrease in risk
exposure as age increases.

Moreover, the gender difference in risk aversion claimed above is not supported
here where males are found to be 9.14% less likely than females to choose stock
funds. Thus, female may just be less likely to include stocks in their consideration
sets.

Additionally, employee percentage contribution tuns out to be a very impor-
tant driver of investment decision under the full attention specification. Reason-

ably enough, workers who contribute more tend to invest more aggressively by
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decreasing their exposure to money market funds and other liquid investments
while chasing higher returns through both stock funds and diversified funds.
Focusing on employer stock, the marginal effects are particularly instructive.
Indeed, no more significant positive impact of the matching contribution emerges:
the limited attention model is able to account for a kind of endogeneity issue in
that matching contributions are usually directed toward employer stock by default
(at least partially). This fact is captured by the positive impact of employer
matching at the consideration stage which becomes negligible at the choice stage.
As a result, a laissez-faire policy on the maximum amount that can be invested
in employer stocks seems to be justified. Finally, a word of caution is necessary
with respect to the effect of college education on the choice of asset categories.
Under full attention, education becomes virtually irrelevant in its ability to make
investors aware of the riskiness of employer stocks which may signal the urgency

for campaigns promoting financial literacy.

2.5 CONCLUSION

Accumulated literature has almost exclusively analyzed the investing behavior in
DCPs by exploiting event studies (e.g., Choi et al. (2002)). The main exception
is represented by Sunden and Surette (1998) who develop a standard multinomial
logit model in order to detect gender differences in investment decisions. The
limited attention model described in this chapter relaxes the strong assumption
that agents consider all of the options available to them before making a choice. In

our model the act of choosing is conceptualized as a two-stage process. In the first
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stage individuals form their consideration set while in the second one they make
their final choice. Since individuals do not necessarily consider what they prefer,
failing to disentangle utility and attention may severely under- or overestimate
the impact of a worker’s characteristics on the probability of choosing a given
financial instrument that enters her consideration set. This is so despite the
fact that the unconditional choice probabilities implied by our limited attention
model do not differ considerably from the ones implied by its standard multinomial
counterpart. While remaining agnostic regarding the source of limited attention,
our model can be fruitfully exploited for the twofold purpose of anticipating what
financial instrument(s) a given worker is more likely to consider and, conditioning
on that, of gauging a better understanding of the asset class(es) which are likely
to provide her with higher utility. Note that we can serve this purpose by letting
the same individual characteristics have an impact on both attention and utility
and without relying on strong exclusion restrictions (see, e.g., Goeree (2008)).
Depending on data availability, the most natural extension of our model would
be to also include alternative-specific regressors such as the return and/or some
measures of risk of the financial asset chosen by each agent. Finally, if subjects in
our sample were observed choosing repeatedly, we could have established global
identifiability of our model by invoking recent results on the identification of cog-
nitive heterogeneity in the context of discrete choice models (see, e.g., Dardanoni

et al. (2019)).
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Table 2.1: Estimation Results

MNL Model with CS

Variable MNL Model Consideration Stage Choice Stage
Coefficients se Coefficients se Coefficients se
Reference Category: Money Market Funds and Other Investments - Count: 1310
constant — — 0.154 0.101 — —
age — — -0.206 0.093 — —
sex — — -0.389 0.234 — —
college education — — 0.210 0.231 — —
matching contribution -0.304 0.212
employee % contribution — — 0.556 0.105 — —
Category: Government Securities - Count: 198
constant -1.974 0.202 0.154 0.101 -5.987 2.012
age 0.063 0.077 1.436 0.439 -1.723 0.873
sex 0.022 0.153 5.191 2911 -3.968 1.412
college education -0.092 0.154 1.312 0.628 -0.167 1.086
matching contribution 0.141 0.191 -0.958 0.901 3.177 1.336
employee % contribution -0.035 0.089 -0.634 0.273 0.975 0.347
Category: Diversified Stock and Bond Funds - Count: 2839
constant 0.435 0.089 0.154 0.101 1.526 0.723
age 0.010 0.034 0.244 0.070 -0.627 0.326
sex 0.094 0.067 -0.107 0.205 -0.338 0.581
college education 0.034 0.067 0.086 0.159 0.222 0.498
matching contribution 0.341 0.084 0.866 0.634 -1.258 0.653
employee % contribution 0.079 0.037 -0.108 0.121 1.502 0.540
Category: Corporate Bonds or Bond Funds - Count: 81
constant -2.859 0.301 0.154 0.101 -5.277 2.069
age 0.111 0.116 -1.467 0.375 1.879 0.665
sex 0.202 0.231 -4.378 0.869 5.732 2.007
college education -0.156 0.233 2.085 0.610 -2.629 1.118
matching contribution 0.046 0.282 1.609 0.813 -1.921 1.786
employee % contribution 0.084 0.113 -0.399 0.213 1.842 0.600
Category: Stock Funds - Count: 1025
constant -0.584 0.114 0.154 0.101 -1.814 0.810
age -0.095 0.042 -0.223 0.160 -0.334 0.235
sex 0.211 0.084 0.470 0.552 -0.824 0.829
college education -0.142 0.085 0.633 0.320 -0.675 0.636
matching contribution 0.348 0.108 -0.645 0.549 1.891 0.806
employee % contribution -0.073 0.050 -0.608 0.162 1.804 0.468
Category: Employer Company Stock - Count: 276
constant -1.955 0.203 0.154 0.101 -4.424 1.592
age -0.232 0.067 -0.480 0.264 -0.728 0.800
sex 0.033 0.134 -0.824 0.425 -0.073 0.689
college education -0.593 0.141 -0.602 0.412 0.046 0.733
matching contribution 0.687 0.196 1.708 0.523 0.278 1.190
employee % contribution -0.121 0.088 1.568 0.481 -0.853 0.542
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Table 2.2: Average Marginal Effects

MNL Limited Attention Counterfactual

Money Market Funds and Other Investments

age 0.44% 0.39% 6.44%

sex -2.04% -1.96% 2.96%

college education 0.92% 1.38% 3.69%

matching contribution -6.45% -6.06% 16.07%
employee % contribution -0.46% -1.70% -27.39%
Government Securities

age 0.29% 0.28% -1.62%
sex -0.23% -0.09% -2.67%
college education -0.18% -0.22% -0.18%
matching contribution -0.43% -0.36% 1.57%

employee % contribution -0.19% -0.62% -0.15%
Diversified Stock and Bond Funds

age 1.44% 1.53% -11.92%
sex 0.23% -0.11% -5.26%
college education 3.71% 3.35% 12.27%
matching contribution 3.92% 3.76% -27.59%
employee % contribution  2.89% 3.89% 16.14%
Corporate Bonds or Bond Funds

age 0.18% 0.16% 8.08%

sex 0.16% 0.05% 13.98%
college education -0.16% -0.23% -8.68%
matching contribution -0.32% -0.64% -6.17%
employee % contribution 0.09% 0.04% 3.53%

Stock Funds

age -1.34% -1.18% -0.57%
sex 2.16% 2.15% -9.14%
college education -1.77% -1.80% -7.16%
matching contribution 1.51% 1.82% 15.53%
employee % contribution -1.65% -0.81% 9.37%

Employer Company Stock

age -1.01% -1.18% -0.41%
sex -0.28% -0.04% 0.13%

college education -2.52% -2.48% 0.06%

matching contribution 1.77% 1.48% 0.59%
employee % contribution -0.67% -0.80% -1.50%
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Productivity and Ownership

Concentration: A Structural Approach

3.1 INTRODUCTION

The following paper investigates of the relationship between shareholders’ owner-

ship structure and firm’s productivity. In the seminal model of Modigliani and
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Miller (1958), ownership is expected to exercise no impact on firm performance.
Recognizing the separation of ownership and control as a potential source of con-
flict of interest, however, traces back to Smith (1776). The seminal contribution
of Berle and Means (1776) suggests that the diffuseness of shareholdings should be
inversely related to firm performance. More recently, the principal-agent model
developed by Jensen and Meckling (1976) shows how the distribution of shares
between insiders and outsiders can exercise an impact on firm behavior. In par-
ticular, the agency costs related to the conflict of interests between managers and
outsider owners could be mitigated through increases in ownership concentra-
tion since a more concentrated ownership structure provides to large shareholders
greater incentives to engage in costly monitoring.

Even though the presence of blockholders is commonly considered as a con-
straint of managerial opportunism, blockholders’s interests are not necessarily
convergent and conflicts are likely to arise. Conflicts among blockholders, de-
noted as principal-principal problem, emerge because there exists private benefits
of control that are not enjoyed by non-controlling shareholders.

In sum, there are at two potential sources of conflict related to the distribution
of ownership that may affect firm value through their impact on the decision mak-
ing process: the relationship between managers and owners and the relationship
among owners. In the presence of financial constraints, requiring the participation
of multiple investors, the degree of ownership concentration can be an effective
internal corporate governance mechanism to align the incentives of owners and

managers towards the maximization of firm value. An increase in ownership con-
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centration can have a positive effect on firm value because of the monitoring role
that can be played by large investors to prevent managerial opportunism. But at
the same time, an increase in ownership concentration can be detrimental due to
the expropriation of minority shareholder by large shareholders.

The empirical evidence on the relationship between ownership concentration
and firm value is mixed and not conclusive. Some authors (e.g, Konijn et al.
(2011)) document a positive relationship between ownership concentration and
firm profitability while others (e.g., Laeven and Levine (2008) and Attig et al.
(2009)) hold that a high level of concentration negatively influences corporate
performance. Another stream of research points towards a non-monotonic rela-
tionship (e.g., Morck et al. (1988), De Miguel et al. (2004), Russino et al. (2019)).
Others do not find any significant relationship (Demsetz and Villalonga (2001)).

The disagreement in empirical research can be traced back to contextual and
methodological differences. The two dimensions related to the increase in owner-
ship concentration (the monitoring of managers and the potential conflict among
shareholders) make the analysis of the relationship between the degree of own-
ership concentration and firm value a complex empirical question. In countries,
or more generally environments, where ownership is widely dispersed, like the
U.S., the main source of conflict is managerial opportunism and we can expect
that ownership concentration will be positively related to firm value. However,
in settings where the fractional ownership of the largest shareholders is high, the
main problem is not the alignment of interests of the managers but the potential

expropriation of non-controlling shareholders. The effect of increasing ownership
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concentration on firm value will depend on its effect on the conflict of interests
among shareholders. In addition, institutional differences, such as the level of legal
protection offered to minority shareholders, and market conditions, such as the
functioning of the market for corporate control, will be important factors affecting
the empirical relationship between the ownership distribution and firm value.!
From the methodological point of view, three issues arise. The first concerns
the measurement of firm value. Previous literature has relied upon accounting
based measurements, such as return on assets, or market based measurements,
such as Tobin Q. The use of accounting or market based ratios as proxies of firm
performance has been criticized because they generally depend on accounting
practices and manipulations and, additionally, market value ratios are affected by
investors’ sentiment and financial market characteristics (Demsetz and Villalonga
(2001)). The second issue relates to the measurement of ownership concentration.
As stressed by Overland et al. (2012), diverse measures can capture different di-
mensions related to the distribution of ownership. For instance, measures like the
share of the largest block or the sum of the shares of a number of largest share-
holders is better suited to represent the dimension related to the monitoring of
managers, while measures representing the relative size of shareholders are more
appropriate to capture the conflicts of interests among shareholders. Finally, the
empirical analysis of the relationship between ownership concentration and firm
value is plagued by a serious problem of endogeneity because the ownership struc-

ture may depend on some variables (such us managerial ability) that are observed

!The ownership structure is an internal corporate governance mechanism that will be more
relevant in settings where alternative external governance mechanisms do not work.
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by firms when the distribution of ownership is chosen but are unobserved by the
econometrician. To overcome the biases arising from OLS estimation, previous
studies have mainly implemented alternative static econometric methods such as
Fixed Effects (FE) and Instrumental Variables (IV) estimation. As stressed by
Roberts and Whited (2013), both these approaches have very limited application:
FE can address the endogeneity problem only under the restrictive assumption
that the source of endogeneity is invariant over time, while IV method relies on
the identification of relevant and valid instruments (sources of truly exogenous
variation correlated with the endogenous regressors) that is extremely hard in the
corporate governance setting.

In this paper we study the relationship between ownership concentration and
firm value using a sample of Italian listed manufacturing firms. The novelty of
the paper can be summarized as follows. First, we use total factor productivity
(TFP) to measure firm value, a more primitive measure of firm performance that
is not affected by accounting procedures and stock market volatility. Second, we
use measures of concentration that consider the entire ownership distribution al-
lowing us to capture the interplay among shareholder and to shed light on the
shareholders’ conflict dimension. Additionally, we address the issue of the diver-
gence between the distribution of control power and the distribution of cash flow
rights. Finally, our choice of measuring firm performance in terms of productivity
allows us to adopt a structural approach a la Olley and Pakes (1996) to analyze
the relationship between ownership concentration and firm value. That is, we

exploit structural modelling to deal with the endogeneity problem. We specify a
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semi-parametric model which controls for firms’ unobserved heterogeneity and for
the endogeneity of input factors and variables representing the ownership struc-
ture. The big advantage of this approach is that the parameters of the structural
production function can be estimated without fully specifying the firm’s decision
making problem. The approach relies on timing assumptions about the inputs
choices and about the firms’ information sets at the time the inputs are chosen,
but does not requires the solution of the corresponding complex dynamic opti-

mization problem.

3.2 THE CONCEPT OF PRODUCTIVITY

In the attempt to unveil the role of ownership structure, previous literature has
relied upon financial measures of firm performance (accounting profit ratios such
as return on assets and return on equity or market value ratios such as Tobin
Q). The use of financial ratios as proxies of firm value has been criticized because
they generally depend on accounting practices and manipulations and, addition-
ally, market value ratios are affected by investors’ sentiment and financial market
characteristics (Demsetz and Villalonga (2001)).

In this paper instead of using a profitability ratio to proxy firm value we uti-
lize firm productivity, a more primitive measure of firm performance that is not
affected by accounting procedures and stock market volatility. Following Hul-
ten (2001), productivity gauges the efficiency by which inputs are turned into
outputs. A reliable index of efficiency needs to make allowance for, and attach

proper weight to, the contributions of all the inputs in the production process.
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Such an index is typically represented by Total Factor Productivity (TFP) which
is defined as the ratio of total output to the (weighted) sum of associated labor
and capital (factors) inputs. Thus, letting L; and K;; denote, respectively, labour

and capital input employed by firm ¢ in period ¢, TFP is given by

Yi

T K)’ (3-1)

Tit =

where Y;; denotes total output and f(L;, K;;) represents total input. From (3.1),

TFP emerges as the portion of output which is not explained by the amount of

inputs used. As a result, a higher level of 7;; is brought about, ceteris paribus, by
a more efficient and intense utilization of the inputs in the production process.

Letting Y;; become the dependent variable, (3.1) can be rearranged as

Yii = Titf(Lita Kit) (3 2)

= Y(Titf(Lita Kit))-
which corresponds to a standard neoclassical production function technology
where 7;; represents the Hicksian neutral shift parameter.

In particular, assuming Cobb-Douglas? technology, we obtain

2While imposing unit elasticity of substitution between inputs, Cobb-Douglas functions rep-
resent a valid first-order logarithmic approximation of more complicated specifications which
are often encountered in the literature. Maddala (1979), for instance, shows that Cobb-Douglas
function produces estimates which are substantially close to the ones obtained with several other
functions such as generalized Leontief, homogeneous translog, and homogeneous quadratic.
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Y (Tief (Lig, Kit)) = T LS K. (3.3)

Letting ap = In(7;;) and taking logharithms of (3.3), we obtain the following

estimating equation

Yie = g + iy + Bk + €4, (3.4)

where lower case letters denote logarithms, e.g., l;; = In(L;;), and €;; represents

an error term.

3.3 ENDOGENEITY ISSUE IN PRODUCTIVITY ESTIMATION

The most pervasive problem in productivity estimation studies, arguably, is en-
dogeneity which can loosely be defined as the presence of correlation between
the error term and covariates in a regression. Indeed, the error term can be as-
sumed to be made of some components which are known or predictable by the
firm when decisions are taken. Observed inputs are typically responsible for endo-
geneity in that they are chosen by the firm taking into account unobservable (to
the econometrician) components of production. As of our main regressor of inter-
est, if ownership concentration may affect firm performance through its impact
on business activities, it may well be the case that performance itself shapes to

some extent the contracting environment impacting ownership distribution among
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blockholders.

Traditional static solutions adopted by previous literature, Instrumental Vari-
able (IV) or Fixed Effects (FE) estimation, have not generally proved effective in
addressing the endogeneity issue.

The IV approach tries to exploit the exogenous variation of input shifters such
as input prices. However, input prices are often unavailable and, additionally,
using them to instrument inputs may well prove ineffective due to insufficient
variation. If firms use homogeneous inputs and operate in the same output and
input markets, we should not expect to find any significant cross-sectional varia-
tion in input prices. The introduction in the model of ownership related variables
makes the implementation of IV estimation much harder. Indeed, it is extremely
difficult to identify relevant valid instruments for variables related to the owner-
ship structure.

As for the FE, the underlying assumption of unobserved firm heterogeneity
being time-invariant seems too restrictive. Assuming that unobserved productiv-
ity varies just across firms and excluding within-firm time-series variation is not
held adequate to identify output elasticities of production factors and to drive
out the relationship between efficiency and ownership. Additionally, ownership
related variables are generally highly persistent and FE estimation will provide
poor estimates.

Actually, state-of-the-art techniques for productivity estimation can be traced
back to two alternative methodologies which are commonly referred to as the

“dynamic panel” approach and the “proxy variable” approach, respectively.
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Instead of exploiting the exogenous variability provided by some instruments,
both sets of techniques are concerned with modelling firm behavior by means of
appropriate assumptions. Such assumptions mainly concern the timing of input
choices and the information set that firms face when deciding on the utilization of
input factors. However, both approaches are not “fully” structural since they can
be implemented without analytically solving the complex dynamic optimization
problem faced by firms and, as such, parameters of interest can be estimated in a

semi-parametric setup.

3.3.1 DvynNaMic PANEL APPROACH

While being a quite general methodology that stems from the vast literature on
panel data models (see, e.g., Chamberlain (1982), Anderson and Hsiao (1982),
Arellano and Bond (1991)), Blundell and Bond (2000) provide an application of
this technique to production functions. They consider a Cobb-Douglas production

function of the form

Yir = i + Bl + v + (0 + Mg + vir),
Vig = pui—1 + €, |p] < 1, (3:5)
€it, Mt ~ MA(0),
where ; denotes year fixed effect and the error component within parentheses
is made of the following three terms:
e an unobserved firm-specific effect 7; which is allowed to be arbitrarily cor-
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related with inputs;

e a further innovation term m; which proxies for measurement error of the

inputs;?
o an autoregressive shock to productivity v;;.

In its original formulation, (3.5) is estimated under the timing assumption that
l;; and k;; are chosen by the firm before the realization of ¢;;. Nonetheless, input
factors are deemed endogeneous since they likely correlate with the predictable
part of the productivity shock v;,* that is pvy_;. Taking the p first-difference of
(3.5) gives

Yit — pYir—1 = aly — aply_1 + Bkiy — Bpki—1 + (v — pyie—1) (3.6)

+ (ni(1 = p) + miy — pmy—1 + €),

which allows to isolate the innovation in v; and get rid of the source of endo-
geneity that vy, potentially contains (i.e. pvj_1).
However, to eliminate the firm fixed effect n;; a further differencing is needed

(see, for instance, Arellano and Bond (1991)) which yields

3For the sake of exposition, we assume m;; to be orthogonal to inputs choices in all periods.
Ackerberg (2016), for instance, shows how this assumption can be easily relaxed.
4In addition to being correlated with the firm-fixed effect ;.

78



(it = pyir—1) — (Yir—1 — pyie—2) = [(lie — plie—1) — (L1 — plie—2)]
+ B [(kit — phir—1) = (kit—1 — pkir—2)]
+ [0 = pr-1) = (-1 — po2)] (3.7)
+ [(mie = pmiz—1) = (M1 — pmir—2)]

+ (€t — €it—1)-

Under the timing assumption that firm observes shocks up to €;;—1 when choos-
ing inputs in period ¢, the model in (3.7) can be estimated by exploiting the

following moment conditions

E[(miy — pmig—1) — (Mir—1 — pmir—a) + (€t — €it—1) | lit—1, kir—1] = 0. (3.8)

However, the model in (3.7) turns out to be particularly data demanding given
that microeconomic datasets usually contemplate a high number of individuals
(i.e. large N) observed over a relatively small period of time (i.e. small T"). Addi-
tionally, it is often found to produce imprecise estimates. In order to overcome the
two issues raised above, Blundell and Bond (2000) suggest to rely upon a further
stationarity assumption which constraints the way in which the firm fixed effect

7; correlates with inputs. They assume that

®Ackerberg (2016) shows how timing assumptions can be further strengthened so as to let
the productivity shock be orthogonal to inputs lagged more than just one period (e.g., kizyra
with A < —1).
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Eni | lie = li—1, kir — kir—1] = 0. (3.9)

Condition (3.9) can be interpreted as a stationarity assumption of the firm
operating environment. If (3.9) is imposed, that is if 7; is allowed to be correlated
with the levels of inputs but assumed orthogonal to variations of these inputs
between consecutive periods,® no need for second differencing arises and (3.6)

could directly be estimated.

3.3.2 PROXY VARIABLE APPROACH

The proxy variable approach stems from the seminal contribution of Olley and
Pakes (1996) and several methodological refinements have been proposed by,
among others, Levinsohn and Petrin (2003), Wooldridge (2009) and Ackerberg
et al. (2015). Assuming, as before, Cobb-Douglas technology, let (log of) produc-

tion be governed by

Vit = Bo + iy + Bl + wip + €5 (3.10)

Equation (3.10) contains the following error terms:

e w; is a shock to productivity that, while unknown to the econometrician, is

(at least partially) observable or predictable by the firm before deciding on

SNote that assumption (3.9) implicitly rules out the possibility for more productive firms
(namely, those with a high 7;) to grow faster than less productive firms. Obviously, this is hard
to justify for innovative and growing industries.
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inputs at time ¢;

e €;, instead, is a true error component which possibly originates from an
unpredictable productivity shock and/or serially correlated measurement

error in output.

In a manufacturing process, for instance, w; might represent the number of
defected items that the firm is able to foresee while €; would capture deviations
from the expected defect rate brought about by unpredictable changes in the
operating environment.

Arguably, w;; is the problematic innovation term since it likely correlates with
both l;; and k; making OLS estimates of a and /8 in (3.10) inconsistent. En-
dogeneity occurs since input choices by the firm are influenced by firm’s beliefs
about w;.

To overcome this endogeneity issue, Olley and Pakes (1996) propose a discrete
time model of firm behavior in which firms dynamically maximize the expected
discounted value of future cash flows. At each period ¢, a firm’s value function is

given by the following Bellman equation’

Vi(wy, k) = max {Cbt,sup me(wr, ki) — c(iy) + OE [Vigr (wisr, kit | It]} . (3.11)

1¢>0

where @, is the firm’s sell-off value, m;(wy, k) is the firm’s profit function, ¢(i;) is the
cost of investment ;, d is the firm’s discount rate and I; is the firm’s information

set at period t. Luckily, identification of output elasticities does not require to

"For ease of exposition we suppress the i subscript from (3.11).
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explicitly solve (3.11) and a two-stage estimation procedure can be deployed once

the following assumptions are imposed.

Assumption 1: w; follows a first-order Markov process and evolves according

to the distribution

p(wits1 | It) = p(wirsr | wir) (3.12)

which is known to the firm and stochastically increasing in wj;.

Assumption 2: Labour factor [; is non-dynamic in that it can freely be varied
by the firm and, as such, it does not impact the future stream of profits. Capital

k;:, instead, is a state variable since it accumulates according to

kit+1 = (1 - d)klt + iit, (313)

with d being the annual depreciation rate. Thus, capital is assumed to be dynamic
given that, according to (3.13), k;11 € I, or equivalently, it takes a whole period

for the firm to order, receive and install new capital.

Assumption 3: w; is the only scalar unobservable and impacts firm’s decision

on investment through

i = fi(kit, wit). (3.14)

This assumption implies that all firms in the industry face the very same conditions

as for the markets for inputs and output and, as such, no source of heterogeneity
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across firms other than w;; is allowed.

Assumption 4: f;(k;,w;) is monotonically increasing in w;.

Despite being stated as an assumption, it can be formally shown that, after
imposing Assumption 1, the solution to the dynamic programming problem in
(3.11) implies an optimal investment demand which is monotonically increasing
in wy. Intuitively, p(wy11 | wir) being stochastically increasing in w;; suggests that
firms with higher w;; enjoy higher expected marginal productivity of the fixed
input factor (namely, capital) and, as such, will engage in higher investment in
the future.

The immediate consequence of Assumptions 3-4 is the invertibility of the in-
vestment function. Thus, unobserved heterogeneity w;; can be made a function of

observable variables, that is

Wit = f{l(k?z‘t;iit)- (3.15)

Substituting (3.15) in the estimating equation (3.10) gives

Vit = Bo + adiy + Bk + f{l(kit, iit) + €. (3.16)

To explicitly derive f; (K, i), one would need to make several further assump-
tions on model primitives and solve (3.11). Olley and Pakes (1996), instead, sug-

gest to treat f; (ki 4;) non-parametrically and to estimate the following equation

Yir = aliy + ¢(kir, 1r) + €t (3.17)
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with ¢y(ki, i) being a non-parametric composite term such that ¢ (ki i) =

Bo + +Bki + [ kit ).
In the first stage, estimates @ and &Et(k‘it, ii¢) can be obtained by exploiting the

following moment condition
Elei | Lit) = Elyir — alie — de(kie, iit) | Ie) = 0. (3.18)
Then, from the markovian assumption we can let w;; evolve according to
wit = Blw | wig1] + & = g(wie—1) + &t (3.19)

with E[¢; | I;—1] = 0. Note that (3.19) is able to make allowance for a much more
general behavior of unobserved heterogeneity w;; than the AR(1) process typically
assumed in the dynamic panel literature (e.g., see (3.5)).

Using first-stage estimates & and ggt(k‘it, i) and being

Wit = ¢t(kit7 iit) — Bo — Bk, (320)

we can plug (3.19) into (3.10) and obtain the following second-stage estimating

equation

Yir = Bo + Qlie + Bkt + g(wir—1) + &t + €it

K (3.21)
= Bo+aly + Bkit + g (</5t—1(kit—1’ Git—1) — Bo — 5/%—1) + &t + €t
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From (3.21) the following second-stage moment condition derives

E&+ € | L] = E[%’t — Bo + alyy + Pk
(3.22)

+y9 <$t71(kitflaiitfl) — Bo — 5/%‘,71) | fitfl] =0,

which can be exploited to obtain estimates @) and B :

The two-stage procedure described above has been subject to several refine-
ments. Levinsohn and Petrin (2003), for instance, suggest to overcome the prob-
lem of lumpy investments® by using the demand for intermediate inputs (e.g.,
electricity and raw materials) to proxy for w;,.

Ackerberg et al. (2015), instead, question the non-dynamic nature of labour
and show that identification of output elasticity of labour (namely, «) in the first
stage is ensured under just a few specific data generating processes. In their
model, the investment function? in (3.15) is replaced by iy = fi (K, lit, wi¢) which
clearly prevents one from identifying « in the first stage. Thus, all parameters of
interest are retrieved from the second-stage moment condition.

Finally, Wooldridge (2009) proposes a GMM procedure in which first and
second-stage moment conditions (namely, equations (3.18) and (3.22)) are jointly
imposed within a suitable minimization routine in order to achieve higher effi-

ciency and easier standard error calculations.

8Firm’s investment is typically a large and infrequent episode (see, for instance, Doms and
Dunne (1998)). To make invertibility of investment possible, OP methodology forces to drop all
observations such that 7;; = 0.

9 Ackerberg et al. (2015) also show how their approach can be implemented when the demand
for intermediate inputs instead of investment is used to proxy for w;; as suggested by Levinsohn
and Petrin (2003).
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3.4 THE EFFECT OF OWNERSHIP STRUCTURE ON PRODUCTIVITY

Our model originates predominantly from the proxy variable approach. Departing
from much of previous literature where output is usually assumed to depend on
just labour and capital, we assume a 3—factor Cobb-Douglas production function

of the form

Yy = 1 LS K}y Mj), (3.23)

with M;; representing intermediate inputs. Since our interest lies in evaluating the
impact of ownership structure on firm’s productivity, we explicitly model 7;; as a
function of variables representing the distribution of ownership . More precisely,
we focus on measures of ownership concentration and let them exercise a non-

linear impact on (the log of) output. That is, we assume 7;; to be governed by
Ty = eC0THu it (3.24)

where Hy; is a (column) vector containing ownership-related variables'® and rele-
vant controls.

Thus, our estimating equation reads as

yir = g + H, 6 + aliy + Bk + yma + i, (3.25)

10Gince we posit ownership distribution to impact performance in a non-linear fashion,
throughout the analysis, we let H;; include proxies of ownership distribution and their square.
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where the error term 7;; is assumed to be equal to

Nit = Wit + Eit. (3.26)

wj; represents firm’s unobserved (to the econometrician) heterogeneity and is al-
lowed to be arbitrarily correlated with input factors and ownership variables. As
in Assumption 1, we assume it to evolve according to the first-order Markov pro-
cess specified in (3.19). €, instead, is a pure error component assumed orthogonal
to our explanatory variables.

We partly retain Assumption 2 in that we assume capital to evolve according
to the process specified in (3.13). As for labour and intermediate inputs, instead,
we follow Ackerberg et al. (2015) and assume that the demand for these inputs is
subject to some form of rigidity and, as such, none of them can be immediately
varied by the firm. In particular, the process specified in (3.13) implies that
capital at time ¢, namely k;, is chosen in period ¢ — 1 and, as such, it belongs to
the information set in period t — 1 (i.e. ki € I;_1). While being more “variable”
than capital, both labour and intermediate inputs in period ¢, namely [; and
m;, are allowed to have dynamic implications in that they are assumed to be
chosen in period ¢t — b with 0 < b < 1. That is to say that hiring and firing
costs along with the costs arising from the the modification of existing supply
agreements become part of the decision problem in (3.11) and turn to have an
impact on both current and future profits. While not being a proper input factor,
our econometric specification recognizes that ownership structure may well have

a possibly non-linear impact on a firm’s TFP. In dealing with ownership-related
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variables, we attach to them the same timing assumption used for the capital
input. Indeed, ownership structure is commonly agreed to be a highly persistent
firm characteristic, and in Italy its persistence appears to be even stronger than
usual (Bianchi and Bianco (2008)) due to the low stock market liquidity and to
the absence of a market for corporate control. By recognizing that ownership is as
slow as our fixed input factor to vary over time, we not only address the potential
endogeneity of the ownership structure but also make allowance for its highly
persistent nature. Note that the timing assumptions depicted above prevent us
from retrieving estimates of any of our parameters of interest from the first stage
of a standard procedure a la Olley and Pakes (1996).

We replace Assumption 3 with Assumption 3b.

Assmption 3b: w;; is the only scalar unobservable and impacts firm’s decision

on intermediate inputs through

My = ft(k’z‘t,wz’t)- (3-27)

Following Levinsohn and Petrin (2003), (3.27) lets intermediate inputs proxy for
unobserved heterogeneity. Hence, we depart from the original approach in Olley
and Pakes (1996) where investment is used to control for w;. Substituting invest-
ment with the demand for intermediate inputs has a clear data-driven advantage.
Due to the invertibility condition described below, a proxy variable is only valid
if it is strictly greater than zero. Firms in our data always report positive level

of intermediate inputs while the same does not hold true for investment that of-
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ten exhibits a lumpy behavior. Thus, if we had to use investment we should have
dropped a considerable amount of observations from our sample. A second advan-
tage of using intermediate inputs is related to the potential non-convex nature of
investment adjustment costs.!! As argued by Levinsohn and Petrin (2003), non-
convex adjustment costs may generate kinks in the investment function which are
likely to undermine the responsiveness of investment to productivity shocks. We
believe intermediate inputs to be less costly to adjust than investment and to
respond more fully to productivity shocks.

Finally, to guarantee invertibility of f;(-) we retain Assumption 4 and let f;(+) be
monotonically increasing in w;;. The necessity of imposing this last assumption
arises from the fact that we do not explicitly solve the dynamic programming

problem in (3.11).

3.4.1 A 2-STAGE ESTIMATION PROCEDURE

Estimating (3.25) without taking into account the potential endogeneity arising
from wy; is likely to produce biased estimates. In the spirit of Olley and Pakes
(1996), we develop the following 2—stage algorithm. Under w;; being the only
scalar unobservable and appelaing to the monotonicity of f;(-), we can invert

(3.27) and obtain

Wit = ftfl(kit, Mit). (3.28)

HEvidence of non-convex adjustment costs of investment is reported, for instance, in Doms

and Dunne (1998) and Attanasio et al. (2000)
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Plugging (3.28) into (3.25) gives us

yir = o + H, 0 + aly + Bk + ymu + ft_l(k‘z‘t, mit) + €. (3.29)

None of the parameters of interest can be estimated directly from (3.29). On
the one side, elasticities of capital and intermediate inputs turn to be collinear
with the non-parametric term f; " (ky, mi;), being £, ' (ki, mi;) unconstrained. On
the other side, the endogenous nature of labour and ownership-related variables
makes them potentially correlated with the predictable component of w;; which is
subsumed into f; (ki ma).

FIRST STAGE

Equation (3.29) can be rewritten in the form of the following semiparametric

partially linear regression

yir = H},0 + aliy + ik, mae) + €51, (3.30)

where the composite non-parametric term ¢y (k;, my) is given by

Git(kie, mir) = o + Bl + yma + ft_l(kih Mit), (3.31)

with f; " (ki ma) = wa.

For ease of exposition, let us impose z; = [k, my), xi = [ly, H,] and 8 =
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[, &), Then, we can rewrite (3.30) as

Vit = X;,0 + it (2it) + €41 (3.32)

Following Robinson (1988), we apply the conditional expectation operator

E[- | 2] to (3.32) so as to get

Elyt | za) = E[x},0 | 2it] + E[bi(2it) | 2it) + Eleir | 24t]
(3.33)

= E[xit | 2it]'0 + dit(zat),
where the last equality is due to €; being orthogonal to the set of input factors
Z;t.
Subtracting (3.33) from (3.32), we get rid of the non-parametric term and obtain
Yit — Elyit | 2it) = (Xie — E[Xit | 24))'0 + €31 (3.34)
which is equivalent to the double residual regression
€ = €6 + e, (3.35)

where

€ = Yir — LYt | 2at] (3.36)
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and
€ = (Xit — E[Xut | 2] (3.37)

are the conditional expectations errors from the regression of y;; on z; and of x;;
on z;, respectively.
This transformed equation immediately suggests an infeasible least square esti-

mator for @ of the form

= (Z - 6;;@?) (ZZG#?J (3.38)

In order to make the estimator in (3.38) feasible, we follow Robinson (1988) and
first estimate the conditional expectations of y; and x;; given z;; by Nadaraya—
Watson (henceforth, NW) regression where cross-validation is used for bandwidth

selection. Using these estimates, we obtain the regression residuals

-~ —

€ = Yir — Elyu | 2] (3.39)
and
€ = (xit — Elxit | 2i)) (3.40)
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which lead to the following feasible estimator for 6
R N T / N T
6 = (Z > esex ) (Z > e;;eft> : (3.41)
i=1 t;=1 i=1 t;=1

Finally, we turn to the non-parametric component ¢;;(z;;) which is estimated by

the following NW regression
Yit — X;té\ = ¢it<zit) + €it (342)

where again cross-validation is used for bandwidth selection.'? Retrieving g;ﬁ\l-t(zit)
from (3.42) allows us to deploy the second stage of our algorithm where all pa-

rameters of interest are finally estimated.
SECOND STAGE
In the second stage we are concerned with isolating the composite error term

it = wir + €. The assumed first-order markovianity of w;; allows us to write

fit = Wit — E[Wit | wit—l]
(3.43)

= Wit — g(wit—1>a

whose conditional expectation with respect to the information set at ¢ —1, namely

I; 1, equals zero.

12Ag pointed out by Robinson (1988), since 8 converges at a rate /2 which is faster than
a non-parametric rate, we can pretend € to be known and do non-parametric regression of
Yit — X6 on z;.
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As for the pure innovation €;, instead, we have

€it = Yit — X;tg - gbit(zit)' (344)

As a result, the moment condition to be exploited here is given by

Eléi+ € | 1] =

E[yit — Qg — Xéte — Bk — YMir—

(3.45)
g(¢z‘t—1(zit—1) — O — Bkit—l - Wnit—l) | ]t—l] =
=0,
where the argument of g(-) is due to
Wit—1 = ¢z‘t—1(Zz‘t—1) — O — ﬁkit—l — YMyit—1- (3-46)

By substituting into (3.46) for the first-stage estimate ggit_l(zit_l), condition in
(3.45) becomes

El& + e | L1-1] =
E[?/it — Qg — the — Bkiy — ym—
N (3.47)
g(¢it71(zit71) — Bki—1 — "Ymitfl) ’ [t71] =

=0.

Then, letting v;;—1 = [H},_{, li—1, kit, mir—1]" denote the full set of explanatory
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variables'® belonging to the information set at time ¢t — 1 (i.e. vy_y € Iy_1),

(3.47) allows us to derive the following criterion function

((&it, () + €0, (¥)) Vi, —1)* (3.48)

Q(¢)=Z i

i=1 t;=2

where

P =1[0,a,5,7] (3.49)

Finally, our parameters of interest are estimated as

" = argmin Q(v). (3.50)

Throughout the minimization of (1), we treat the deterministic component of
wi (namely, g(wy—1)) non-parametrically and estimate it by NW regression. In
particular, at each iteration of our minimization routine, we compute g(wy_1)
through a non-parametric regression of w;; 1 = ait,l(zit,l) — Bky_1 — ymy 1 on
Wi = ggit(zit) — Bk — ymy. This prevents us from obtaining an estimate of the
intercept . Given the unknown asymptotic distribution of the estimator in
(3.50), standard errors are computed using 1,000 bootstrapping replications.

To our knowledge, our econometric framework represents the first attempt

to incorporate variables related to corporate governance within a structural ap-

13Note that H;_; contains ownership-related variables recorded at time ¢ since we apply to
them the same timing assumptions adopted for capital.
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proach to productivity estimation. Moreover, the assumptions imposed allow us
to explicitly model unobserved firms heterogeneity which, thanks also to the non-
parametric tools employed, is let evolve according to a much more flexible process

than the one that standard dynamic panel techniques can accommodate.

3.5 DATASET & VARIABLES DESCRIPTION

The econometric model described above is applied to a sample of Italian listed
firms that operate in the manufacturing sector. We collect the financial data from
the ORBIS platform provided by Bureau Van Dijk. Such platform manages a
very rich dataset containing financial information on firms operating in different
industries across 230 countries and has extensively been used in previous stud-
ies (e.g., Tian and Twite (2011) and Bloom et al. (2010)). For what concerns
information on the firms’ ownership structure, instead, we resort to the public
dataset made available by the Ttalian Securities Commission (CONSOB).!* In-
deed, ITtalian law sets forth a disclosure requirement according to which anyone
holding more than k& = 2% of the voting rights'® in an Italian listed company
shall disclose her participation by notifying CONSOB and the issuer. Thus, the
CONSOB dataset provides historical information on the shareholders holding at
least k percent of the shares of a company for all companies listed on the national

stock exchange. In particular, for each direct blockholder the dataset reports over

Mnformation regarding ownership is available at:  http://www.consob.it/web/area-
pubblica/quotate

15Precisely, the threshold is k = 2% for firms with a market capitalization greater or equal
to 500 million euros, and k = 5% for small-mid capitalization firms. The threshold relative to
large capitalization firms has been raised to k = 3% in 2016.
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time the total participation and the percentage of shares that do not have voting
rights. Additionally, the dataset contains the participations (total percentage and
the fraction with no voting rights) of those who are at the top of the control chain
(called "Dichiaranti”). In our analysis we are interested in the ownership structure
as an internal corporate governance mechanism. Under this perspective the dis-
tribution of ownership shapes the formation of control and the incentives of those
who are in control. Accordingly, we use the data concerning the "Dichiaranti”
(ultimate owners) that provide a clearer picture about the distribution of control.

By matching the two sources of information mentioned above, we obtain an
unbalanced panel data sample of 116 firms and 673 firm-year observations from
1998-2015. Economic variables of interest are appropriately selected and modified
following Gal (2013) who describes how to construct firm-level total factor pro-
ductivity measures using ORBIS. Information about the distribution of ownership
among ultimate owners, instead, is used to construct measures of concentration

of votes, of cash-flow rights, and of controlling power.

3.5.1 ECONOMIC VARIABLES

Given the production function assumed in our econometric specification, we first
have to select a reasonable dependent variable that could proxy for total output.
In the productivity literature it is common to use a variable measuring revenues
to represent output, since a physical measure of output in terms of number of

units produced is normally unavailable. As suggested by Gal (2013), we use the
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ORBIS variable "Operating Turnover” as a measure of gross output.'6

Coming to input factors, we follow Gal (2013) and use the reported number of
full-time employees to measure labour (ORBIS variable “Employees”). Measuring
the labour input is problematic. One should have information on the number of
hours worked and on the different types and characteristics of employees. Un-
fortunately, the ORBIS database does not contain this information. The only
available variables related to labour input are the number of full-time employees
(that we use) and a variable representing the total cost of labour. However, as
noted by Gal (2013), the variable representing total labor costs has a smaller cov-
erage and may not properly reflect the quality and intensity of labor because is
directly influenced by the regulatory environment. We therefore choose to follow
Gal (2013) and use the ORBIS variable “Employees”.

Intermediate inputs, instead, are measured by using the value of material costs
(ORBIS variable “Material Costs”). In the ORBIS database intermediate inputs
are not differentiated across materials, energy and purchased services. As stressed
by Gal (2013) the unavailability of a richer set of variables measuring intermediate
inputs does not allow the estimation of a more detailed production function.

As for the capital stock, we calculate it by using the Perpetual Inventory

Method. According to this method, the capital stock K;; in firm i at time ¢

6Note that, if we had complied with much of previous studies and used value added as a
measure of production, we could have not gained any insights on the impact of intermediate
inputs on productivity (see, e.g., Foster et al. (2001)) since value added is, by definition, equal
to the difference between sales and intermediate inputs.
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is defined as

Ky =Kjy_1(1 —03) + L, (3.51)

where 9;; and [;; denote the depreciation rate and the level of investment, re-

spectively. To make (3.51) applicable, let us define the level of investment as

Iiy = KV — Ki', + DEPREY, (3.52)
where KBV and DEPREY denote the book value of fixed tangible assets and

depreciation. Both KZV and DEPREY are retrieved from the ORBIS dataset.

The depreciation rate, in turn, is given by

6w = DEPREY /KPY,. (3.53)

For the first year in which each firm is observed we impose K;g = K5". Then,
applying (3.51) after having recovered the level of investment and the depreciation
rate from (3.52) and (3.53), respectively, we construct the whole series of capital
stocks for each firm in our sample. In the ORBIS database, capital goods are
differentiated only to the extent of being tangible and intangible. There is no
specification regarding the type of the asset. We follow Gal (2013) suggestion of

using only data on total tangible fixed assets to avoid the difficulties in measuring
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and valuing intangibles which are poorly reported in ORBIS.

Excluding labour, all the input factors obtained thus far are expressed in thou-
sands of euros. In order to compare values over time, we need to adjust for price
changes and deflate these nominal variables through appropriate price indices.
The ORBIS database does not provide firm-level price indices, thus only industry
level deflators can be used. We use the 2-digit industry annual price deflators
from the OECD STAN database to convert operating turnover, material costs
and capital in real 2010 euros. The practice of measuring output using revenues
deflated with industry-level price deflators rather than firm-level prices (due to
data availability), has important implications. As underlined by Syverson (2011),
neglecting price variability across firms implies that the estimated productivity
will reflect more than just supply-side forces. In particular, within-industry price
differences will be embodied in output and productivity measures. In markets
where prices reflect idiosyncratic demand shifts, representing variation of firms’
market power, then the estimated TFP will capture both technical efficiency and
demand factors.

Finally, we log-transform all economic variables.!” Summary statistics for these

variables are reported in the first part of Table 3.1.

3.5.2 OWNERSHIP VARIABLES

The main information about ownership retrieved from CONSOB pertain to the

voting and non-voting shares held by the ultimate shareholders holding k& = 2% or

"From now on we let I, k,m to denote respectively the log-transformation of the production
inputs, that isl =In L,k = In K and m = In M. Correspondingly, y = InY".
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more of the voting capital. Using the information about the identified blockhold-
ers, we can immediately obtain two basic measures of ownership concentration
which are respectively given by the sum of the shares held by the blockholders of
a firm at a given time (see, e.g., De Miguel et al. (2004) and Laeven and Levine
(2008)) or by the number of blockholders themselves. While being simple, we rec-
ognize that these measures are prone to an erroneous representation of ownership
concentration (see, e.g., Overland et al. (2012)). Consider, for instance, the case
of a company with a majority blockholder (namely, a blockholder owning 50% or
more of the shares) and two minor blockholders holding 10% and 20%, respec-
tively. Then, an increase in the holding of either of the minority shareholders
would qualify as an increase in ownership concentration if we measure it through
the combined holding of blockholders while it effectively amounts to a decrease
in ownership concentration since it produces a less uneven distribution of owners’
stakes. To overcome the limitation outlined above, we rely on two additional mea-
sures of ownership concentration that take into account the interplay and relative
position of blockholders.

The first one is represented by the Herfindahl index of the blockholders’ partici-
pation. Thus, letting firm ¢ having J blockholders at a given time ¢, the Herfindahl

index of the blockholders’ shares is defined as
J
Hi = Z S?jt? (3.54)
j=1
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where s;;; denotes the share of the capital of firm ¢ held by blockholder j in
period t relative to the to the sum of the shares held by all blockholders. The
index defined in (3.54) ranges from % to 1. At the lower bound, the smallest
level of ownership concentration is achieved since all blockholders hold the very
same share of the capital. When a firm’s capital is entirely held by a single block-
holder, instead, H equals 1 and ownership concentration reaches its maximum.
Computing the Herfindahl index using the total participation of each blockholder
without distinguishing between voting and non-voting shares we obtain a measure
of cash-flow rights’ concentration (H Total), while the same index obtained using
only voting shares provides a measure of voting rights concentration (H Voting).
As noted by Hall and Tideman (1967), if some shares are shifted from a larger to
a smaller blockholder, a company will experience a decrease in the level of owner-
ship concentration and, in line with that, the Herfindhal index will be lower. Note
that, under such circumstances, the index detects a change in the concentration
level even if both the number of blockholders and the amount of shares that they
collectively hold remain constant.

Our second measure of ownership concentration builds upon a game theo-
retic measure of power, namely the Banzhaf index (henceforth, BI) introduced
in Banzhaf (1965). Identifying blockholders as the players of a yes-no voting
game, Bl measures the probability of individual players to be critical. A player is
said to be critical if, with her vote, she can turn a given coalition from "loosing”

to "winning”, would she decide to join it.'"® Letting a blockholder B; be a voter in

18 Another commonly used measure of power is the so-called Shapley index which focuses on
the probability of a player’s vote to be pivotal. A vote is defined as pivotal if, by casting it,
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a yes-no voting system, her total Banzhaf power, denoted by TBP(B;), is equal

to the number of coalitions C' satisying the following three conditions:
L4 Bj € C,

o ('is a winning coalition (i.e. the sum of the shares held by the blockholders
belonging to C' exceeds the majority requirement which is assumed equal to

50%),
o C' —{B,} is not a winning coalition.

Computing the Banzhaf index of each of the shareholders of a given firm would
require us to posses information on the shares held by each of them. Unfortunately,
the CONSOB dataset only reports the shares held by those possessing 2% or more
of the company and we classify them as blockholders. Let a firm have in total N
shareholders with J of them being blockholders with a stake higher or equal to
2% (obviously, J < N). Then, the amount of capital in the hands of the N — J
shareholders is equal to 1 — Syy,, with Ssy being the combined shares of the firm’s
blockholders. In modelling this 1 — Sy fraction of the voting capital on which we
do not have information, we assume it to be split in infinitesimal small parts among
an infinite numbers of residual shareholders. Doing so, we achieve an "oceanic”
representation of the voting game (see, e.g., Milnor and Shapley (1978)). Dubey

and Shapley (1979) show that the power indices for an oceanic game with J major

a player can turn a given coalition from ”loosing” to "winning”. Thus, the Shapley index of a
given player will be given by the number of times in which her vote is pivotal over the total
number of possible voting sequences (i.e. the factorial of the number of players). Analyzing
both the Shapley and the Banzhaf indeces of a sample of British companies, Leech (2002) finds
that the Banzhaf index reflects much better the variations in the power of shareholders between
companies.
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players (namely, blockholders) with combined shares equal to S* and a majority
requirement of ¢ = 50% are the same as for a finite game consisting only of the .J
major players and a modified majority requirement of ¢* = (50 — (1 — S*)/2)%.
Thus, using this lower majority requirement, we can finally compute the Banzhaf
power of every blockholder for each of the firm-year observations in our sample.
The index is obtained considering only the voting shares of each owner. The
computed Banzhaf power measures allow us to construct the normalized Banzhaf
power index, denoted by BPI(B;), of each blockholder B; which turns to be given
by

BPI(B;) = TBP(B;) (3.55)
" YL TBP(B,) |

By definition, the index defined in (3.55) ranges from 0 to 1 and is increasing
in the amount of voting power effectively held by a given blockholder. Once we
obtain the Banzhaf power indeces of all blockholders at each firm-year observation,
we use them to construct another measure of ownership concentration in terms of

control power as follows

Jit
HI S (BPI(By)), (3.56)

J=1

where we restored the dependence on i and ¢ and J;; represents the total number

of blockholders of firm ¢ in period t.
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Histograms in Figures 3.1 and 3.2 provide evidence of the substantially dif-
ferent distributions of concentration implied by H index respectively obtained
considering total participations and H®"#% In particular, when focusing on the
blockholders’ probability of being critical in a yes-no voting game the control
power tends to be much more concentrated since around 81% of our firm-year
observations clusters at a value of H" equal 1. That is to say that for all
these observations there is a single critical blockholder. The discrepancy between
H and H'#"f casts some doubts on the adequacy of shares per se to proxy for
relative blockholders’ power.

Finally, we introduce an index measuring the wedge between control rights and
cash-flow rights. Generally speaking, control rights refer to an owner’s ability to
influence the business activities, while the cash-flow rights refer to the portion of
the firm’s profits to which an owner is entitled. Cash-flow rights can be unam-
biguously measured using the total fraction of shares held by each shareholder.
More complex is the measure of control rights. One way is to equate control rights
with voting rights. Under this approach a wedge between control rights and cash-
flow rights may arise only by issuing classes of shares that differ in terms of their
relative proportion of voting rights and dividend payments or allowing an owner
to exercise control through a chain of other firms (pyramids). Alternatively, as
suggested by Edwards and Weichenrieder (2009) control rights can be measured
in terms of the ability of a shareholder to determine the outcome of a vote, given
the fraction of votes required to win and the overall distribution of voting rights.

The advantage of this approach is that control rights are more strictly related to
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Figure 3.1: Histogram of Total H
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the effective ability of owners to influence firm’s decisions and that it allows to
capture differences between control and cash-flow rights even when all shares have
the same voting rights and no owner exerts control through a pyramid. We follow
the approach of Edwards and Weichenrieder (2009) and we measure control rights

in terms of voting power. Precisely, we introduce C'R;; given by

2

H?)anzhaf — H,
CRZ‘t - u

— (3.57)
HHa
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Figure 3.2: Histogram of Hbenzhaf
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The ratio is a measure, for each firm and year, of the relative difference between
the concentration of power and the concentration of cash-flows due to the own-
ership structure. Note that for computing H we use both blockholders’ voting
and non-voting shares thereby capturing the distribution of cash flow rights. As
for H"mhef instead, we only rely on voting shares so as to get a more precise
representation of control rights. The ratio in (3.57) gauges the extent to which
the concentration of control rights deviates from the concentration of cash-flow

rights.
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In addition to the variables described above, we include in our analysis a dummy
variable, Majority;, which takes value 1 if the largest shareholder owns 50%
or more of a firm’s shares at a given time and zero otherwise. This dummy
variable should capture the differences arising between the case where control is
exercised unilaterally and the case where control is obtained forming a coalition
of shareholders. Since, a shareholder can have complete power on a firm even
without holding the majority of the shares, we build a second dummy, Control;,
equal to 1 if the H%"*"%f/ = 1 and 0 otherwise. While the previous dummy is based
on the identification of cases where one blockholder has formally the control of
the firm (de iure control), this second dummy, more generally, differentiate the
case where there exists one single blockholder having de facto control power over
the firm without specifying a quota (50%) for obtaining total control.

In the second and third part of Table 3.1 we report summary statistics for
ownership-related variables and the controls that we use in our empirical analysis.
In Table 3.2 we describe the composition of our sample with respect to the case
where there is a single shareholder having complete control of a company and cases
where control is shared among different shareholders. In Table 3.3 we report the
transition probabilities of the dummy variables detecting the existence of a single
controlling blockholder (both de iure and de facto).

The sample of Italian listed companies is characterized by a high degree of
ownership concentration. In about 62% of the total number of observation there
is a single controlling blockholder holding more than 50% of the company’s shares.

There are small differences in the statistics computed considering total shares and
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voting shares, suggesting that there is not a widespread use of dual-class shares.
On the contrary, in our sample, there is a substantial gap between concentration
of control power and concentration of voting rights. Strikingly, about 81% of the
sample observations correspond to cases where de facto a single blockoholder has
complete control over the firm. The ownership structure is highly persistent: as
Table 3.3 shows the probabilities of a change over time of the categorical variables
indicating whether there is a controlling blockholder are very low (the diagonal

elements of the transition probabilities matrices are greater than 93 percent).

3.6 RESULTS

The last column of Tables 3.4, 3.5, and 3.6 report the parameters estimated using
our econometric model where the ownership structure is respectively represented
by Hb"#hef [ Voting, and CR . The first and second columns respectively
report the corresponding OLS and Fixed Effects estimates. In the third column,
estimates are obtained by exploiting a standard first-difference GMM estimator
(see, e.g., Blundell and Bond (2000)). Throughout all the specifications, we control
for firm’s leverage (as proxied by the ratio between total long term liabilities and
total assets) and (the log of) firm’s age. Additionally, in all settings, we include
year fixed effects.!”

In order to implement the first-difference GMM estimator, we first adapt equa-
tion (3.6) to our framework. That is, we regress the log of gross output on its

lagged value and on the current and lagged values of the log of inputs, ownership-

9For ease of exposition, year fixed effects are not reported in the Tables with results.
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related variables and relevant controls. We construct suitable orthogonality con-
ditions extending the condition in (3.9) to all input factors, ownership-related
variables and leverage. Hence, our moment conditions require the error term to
be orthogonal only to variations of these variables between consecutive periods.
That is to say we allow for the lagged and current level of inputs, ownership
characteristics and leverage to be correlated with firm-fixed effect n; thereby ad-
dressing at least to some extent the potential endogeneity of these variables. As
for age and year fixed effects, instead, we hold them to be truly exogenous and,
as such, our moment conditions require the error term to be orthogonal to both
their current and lagged values.

Under our econometric model, leverage is again treated as an endogenous vari-
able. Thus, in order to allow it to correlate with unobserved heterogeneity wj;, we
minimize the criterion function in (3.48) by including the lagged value of leverage
into our vector of explanatory variables v;;_;. Moreover, the current levels of
age and year fixed effects are included in v;_1, since, being deterministic, these
variables can be assumed to belong to the information set in period ¢ — 1.

Coming to the interpretation of estimated input factors elasticities, we docu-
ment a decrease in the labour coefficient when comparing OLS estimates with any
of the other methods that explicitly address the endogeneity issue (e.g., in Table
3.6 its magnitude ranges between around 46 and 56 percent). This change con-
firms the positive OLS bias that we should expect in the presence of correlation
between labour usage and firm-specific differences in productivity.

The capital coefficient, in comparison with the OLS estimates, is lower under
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both the fixed effects and the first difference GMM estimators and higher in the
remaining case. For instance, in Table 3.6 our model predicts a level of capital
elasticity which exceeds the OLS estimate by around 120 per cent. This is in
line with the positive change documented in Olley and Pakes (1996) and several
others. As argued by Levinsohn and Petrin (2003), the OLS estimate on capital is
likely to be biased downwards if capital positively covaries with variable inputs but
correlates much more weakly than variable inputs with the productivity shock.

With the exception of the fixed effect estimator, all the other specifications do
not imply considerable differences in the estimated elasticity of intermediate in-
puts. Coherently with what we found for the other variable input, namely labour,
we document an attenuation of the expected positive OLS bias in all specifications
with the exception of the difference GMM one. However, the unrealistically low
value obtained under the fixed effects specification, in our opinion, suggests that
imposing unobserved heterogeneity to be constant over time is too restrictive.

In all specifications, we include both the measure of ownership concentration
and its square as explanatory variables to detect possible non-linearities. Exclud-
ing the fixed effects estimator, the remaining three models agree in the signs of the
effects that the different proxies of blockholders’ concentration and their square
have on firm productivity. They depict an inverted U-shaped relation between
the degree of ownership concentration and performance. However, such relation
is found to be significant only in our model which is the one that accounts for
a flexible time-varying process for firms’ heterogeneity. The difference GMM es-

timates exhibit the highest standard errors. This suggests that instrumenting a
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highly persistent variable, such as ownership concentration, using its variations
between consecutive periods is likely to produce poor estimates.

Focusing on the effect of increases of concentration of power, we find that higher
levels of concentration have a positive effect up to a threshold level, Hbtmzhaf* —
0.38, and a negative effect afterwards. In our sample about 15 percent of the
observations assumes values not greater than the threshold and the identified
turning point is much lower than the average value equal to 0.869. We detect a
similar behavior looking at the relationship between concentration of voting rights
and firm productivity. An increase in the level of concentration has a positive effect
up to a threshold level, H Voting = 0.49, and a negative effect afterwards. About
30 percent of the sample observations are below the estimated turning point.
The common pattern identified can be interpreted as a result of the interaction
between the monitoring dimension and the shareholder conflict dimension related
to increases of ownership concentration. Indeed, as power gets concentrated in
the hands of large shareholders, they find themselves more incentivized to invest
in acquiring information and in monitoring the activity of managers (see, e.g.,
Shleifer and Vishny (1986)). On the contrary, when the ownership structure is very
diffuse, a free-rider problem is likely to arise: no shareholder may have incentive
to engage in costly monitoring activities or to exercise her "voice”; this, in turn,
would lead to weak control on the part of shareholders on managers who may well
deviate from a profit-maximizing behavior (see, e.g., Grossman and Hart (1980)).
The increase in ownership concentration will have a positive effect up to the

point where the monitoring dimension prevails. But, as ownership concentration
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reaches a certain threshold giving additional power to large shareholders starts
being detrimental to firm productivity as a consequence of the shareholder conflict
dimension. Indeed, when the concentration of ownership is such to guarantee that
the largest shareholders have the incentives to be active blockholders and monitor
business activities, a further increase in concentration may be detrimental because
it exhacerbates the conflicts between controlling and non-controlling shareholders.
While controlling blockholders may be tempted to exercise their power for the
purpose of extracting private benefits of control rather than use it for engaging in
value enhancing activities for all shareholders, the existence of sufficiently large
non-controlling blockholders that put pressure on the controlling block can limit
their expropriation.

In our sample, characterized by high levels of ownership concentration, most
of the observations lie on the downward sloping part of the detected inverted
U-shaped relationship (respectively about 81 percent of the observations when
we measure ownership concentration in terms of power and about 70 when we
measure it in terms of voting rights). That is, as expected, in settings where the
ownership is highly concentrated the more prevalent dimension is the one related
to the conflict of interests among shareholders. Interestingly, comparing de facto
and de iure measure of ownership concentration, we find that the concentration of
control power is much higher than the concentration of voting rights and, accord-
ingly, the downward sloping part of the detected inverted U-shaped relationship
is more prominent when we measure ownership concentration in terms of power

(81 percent of the observations versus 70 percent).
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We find a similar pattern when we look at the relative difference between the
concentration of control power and the concentration of cash-flow rights measured
by CR;;. Our model identifies an inverted U-shaped relationship between C'R;; and
firm productivity. The turning point of C'R;; is about 0.36, higher than the average
value of this ratio for the firms in our sample (namely, 0.25). Marginal effects are
positive for roughly 68% of our firm-year observations. In the remaining 32% of
the sample, where C'R;; exceeds its predicted optimal level, marginal effects are
negative. Figure 3.3 scatters the predicted marginal effects of the concentration
ratio C'R;; on the log of production for the firms in our sample. Marginal effects

are given by

0Blys | CRal _5 |y
O0CRy (3.58)

= .890 — 2.482C' Ry,

where 5A1 and 5; denote the estimated coefficients of C'R;; and its square, respec-
tively. To verify if, in our sample, an inverted U shaped relationship between firm
productivity and C'R;; exists, we compute the marginal effects at the minimum
and at the maximum of C'R;;. These marginal effects respectively amount to 1.88
and —0.88. In order to check their significance, we compute their standard errors
as follows

Var <8E[yit | C R

= Var(6,) + 4CRLVar(6s) + 4CRyCov(dy,03).  (3.59)
9C Ry

Evaluating (3.59) at CR;; = min(CRy;) and at CR;; = max(CRy;), standard
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errors are respectively equal to around 0.06 and 0.17. As a result, marginal effects
at the extremes are both found to be significantly different from zero at all usual
significance levels.?"

The detected non-monotonic relationship between C'R;; and firm productiv-
ity, as in the previously discussed cases of concentration of power and of voting
rights, may be explained as the result of the interplay between the monitoring
dimension and the shareholder conflict dimension. Indeed, CR;; is a measure of
the wedge between the concentration of control power and the concentration of
cash-flow rights. Cash-flow rights shape the shareholders incentives to intervene
and monitor business activities. Additionally, they determine the alignment of
controlling shareholders to the interests of non-controlling shareholders. Control
power reflects the actual possibility of shareholders to influence business activities.

When CR;; is negative, the ownership distribution is such that concentration of
control power is lower than the concentration of cash-flow rights. This certainly
happen when when firms issue non-voting shares. In such cases an increase of
CR;; will have a positive effect since it will produce a better alignment between
the incentives to intervene and the power to do it.

CR;; will be equal to zero in all cases where there is a single majority block-
holder. An increase of C'R;;, corresponding to situations where H Total de-
creases, will have a positive effect because the presence of additional blockholders
monitoring the majority blockholder will have a positive alignment effect. In

general, whenever there exists one blockholder having complete power over the

20In unreported analysis, we verify that the same also holds true for both H®"*h%f and
H Voting.
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firm (H"*h/ = 1) and the level of concentration of cash-flows is very high
(CR; < 0.36), an increase in the relative difference between control concentra-
tion and cash-flow rights concentration has a positive effect. Indeed, in all the
previous cases, there exists one blockholder having the power to control man-
agers to avoid self-interested behavior. A less concentrated ownership structure
with non-controlling blockholders big enough to have the incentives to engage in
costly monitoring of the controlling blockholder will reduce the conflict of interests
among shareholders.

When the wedge between concentration of power and concentration of cash flows
exceeds the estimated threshold (CR; > 0.36), a further increase of C'R;; has a
negative effect on firm productivity. In all these cases, the ownership distribution
is such that there is a substantial divergence between control power and cash-
flow rights. For instance, that happens in all the cases where there is de facto one
single controlling shareholder but the distribution of cash-flows is highly dispersed.
These are situations where the conflict of interests among shareholders is the most
relevant issue. An increase in the divergence between control power and cash-flow
rights will be detrimental because will exacerbate the incentives of the controlling
blockholder to expropriate non-controlling shareholders. This result is in line with
the findings of Maury and Pajuste (2005). They find that the ratio of voting rights
to cash flow rights of the largest shareholder has a significant negative effect on
firm value measured as Tobin QQ. They argue that the increase of the divergence
between voting rights and cash flow rights produces an entrenchment effect: the

largest shareholder has more incentives to extract private benefits not shared by
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all shareholders.

Our analysis shows that the relationship between control rights and cash-flow
rights is more complex. There are some important methodological differences that
allow us to discover the described non-monotonic relationship. First, we define
control in terms of power overcoming the restrictive definition of control rights
as voting rights. Second, we look at the overall distribution of control rights and
cash-flow rights. Thus, our measure of divergence between control and cash-flow
rights considers all blockholders and not only the largest shareholder.

The effect related to the presence of a single blockholder having complete con-
trol of the firm, measured by the dummy variable Control, is not statistically
significant even though the magnitude of this effect varies considerably among
the proposed estimators. The effect of firm’s leverage on production tends to be
positive and is found to be statistically significant under the fixed effects and
the difference GMM estimators. With the exception of the fixed effect estimator,
firm’s age is found to have a negative effect on productivity even though such

effect tends to be statistically insignificant.

3.6.1 ROBUSTNESS CHECKS

In unreported regressions, we repeat our analysis by using both the sum of shares
collectively held by blockholders and the number of blockholders as measures of
ownership concentration. While retrieving similar input elasticities, in neither of
these instances we obtain evidence of a significant impact of ownership character-

istics on firm’s performance. All in all, our results confirm that the distribution
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of controlling power among relevant shareholders is a complex phenomenon which
is hard to be appropriately represented by simple measures that merely rely ei-
ther on the number of blockholders or on the sum of their relative shares. In
particular, these simple measures cannot capture the differential impact related
to the monitoring and shareholder conflict dimension associated to increases in
ownership concentration.

Finally we verify one of the main assumption on which our model relies. As
suggested by Levinsohn and Petrin (2003), we informally verify that our estimates
are consistent with the assumption of intermediate inputs being stochastically
increasing in the level of unobserved heterogeneity w;;. To this end, we compute

the predicted level of w;, implied by our estimates®' which reads as

D = du(za) — Bk — Fmay (3.60)

and plot it against the corresponding level of intermediate inputs and capital.
Figure 3.4 shows that predicted productivity shocks are empirically consistent
with our model in that they tend to increase in the usage of intermediate inputs,

holding the capital level constant.

3.7 CONCLUSION

In this paper we shed some light on the impact of ownership concentration on

firm performance using a sample of Italian listed manufacturing firms. Previous

21'We use the estimated parameters reported in Table 3.3 but results do not differ considerably
when using estimates in Tables 3.4 and 3.5.
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literature on this topic has relied upon financial measures of firm performance
(accounting profit ratios such as return on assets and return on equity or market
value ratios such as Tobin Q), which are affected by accounting practices and
investors’ sentiment (Gedajlovic and Shapiro (1998), Maury and Pajuste (2005),
Laeven and Levine (2008) and Konijn et al. (2011), Russino et al. (2019), to cite
a few). In this paper we measure firm performance in terms of productivity.

To our knowledge, this is the first study relating ownership structure to firm
productivity using structural approach techniques. Our choice of measuring firm
performance in terms of productivity allows us to analyze the relationship between
ownership concentration and firm value within a structural framework explicitly
developed to deal with endogeneity issues. We extend the “proxy variable” ap-
proach introduced by Olley and Pakes (1996) to incorporate corporate governance
variables representing the ownership structure. Our econometric setting allows to
control for unobserved firm heterogeneity and for the endogeneity of both inputs
and blockholders’ ownership concentration.

Focusing on measures of ownership concentration that depend on the distri-
bution of ownership among all blockholders and reflect both the distribution of
control and the distribution of cash-flow rights, we show how the allocation of
ownership affects managerial opportunism and the conflict of interests among
blockholders.

We find that the relationship between ownership concentration and firm produc-
tivity is non-monotonic and assumes an inverted U-shaped form. We argue that

our findings arise from the interaction between the monitoring dimension and the
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shareholder conflict dimension related to increases in ownership concentration. At
low values of ownership concentration, an increase in concentration has a positive
effect driven by the related improvement in the shareholders’ incentives to engage
in costly monitoring of managers. After a threshold level of concentration a further
increase in ownership concentration will be detrimental because it exacerbates the
conflict of interests between controlling and non-controlling shareholders.

Due to data constraints, we remain silent about the heterogeneity across block-
holder types. Distinguishing, for instance, between institutional and family share-
holders could provide a more comprehensive representation of shareholding struc-
ture. Such an extension might be easily incorporated within our model by future
research. On a methodological ground, we are mainly concerned with addressing
the endogeneity issue. Future research might try to explicitly account for two

other relevant sources of bias, namely sample selection and measurement error.
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Table 3.1: Summary statistics

Mean Std. Dev. Min Max
Economic variables:
y 12.601 1.682 8.040 18.258
1 6.993  1.581 1.099 11.305
k 11.313 2.121 2.708 18.236
m 11.482 1.943 4.736 17.657
Ouwnership variables:
SumSH Total .669 172 113 1
SumSH Voting .657 .168 A13 1
Number blockholders 3.996  2.218 1 12
H Total .628 .253 130 1
H Voting .645 257 130 1
Hbanzhaf 869 279 127 1
CR .255 .208 -.400 .713
Controls:
leverage 1561 128 0 750
In(age) 3.586  .876 0 5.094

N = 673, Number of firms = 116. All economic variables are in logs.

Table 3.2: Sample composition

0

1

Majority 37.59 % 62.41%
Control  18.87%  81.13%

N = 673, Number of firms = 116.

Table 3.3: Transition Probabilities

Majority 0 1

0 96.57%  3.43%
1 3.49% 96.51%
Control 0 1

0 93.40 % 6.60%
1 0.90% 99.10%

N = 673, Number of firms = 116.
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Table 3.4: Parameter Estimates: H ben#haf

OLS FE Diff-GMM Our Model

Constant 3.011
(.493)
p .816
(.152)
Economic variables:
1 .296 132 .169 126
(.052)  (.054) (.083) (.014)
k .165 .090 .056 .348
(.059)  (.062) (.061) (.009)
m 482 282 547 428
(.048)  (.068)  (.144) (.010)
Ouwnership variables:
Hbanzhaf 341 1.106  .830 883
(1.492) (1.024) (1.609) (.087)
(Hbanzhaf)2 -.204 -.810 -.647 -1.161
(1.528) (1.269) (2.002) (.063)
Control .069 -.016 .098 328
(.391)  (.650)  (1.005) (.140)
Controls:
leverage 235 496 928 422
(.381)  (.221)  (.409) (.552)
age -.073 .099 -.008 -.070
(.045)  (.121)  (.030) (.098)
Observations 673
Number of firms 116

Standard errors are reported in parentheses. OLS, FE and Diff-GMM standard errors are
robust with clustering at the firm level. Under our model, standard errors are obtained
through bootstrapping. All estimators control for year fixed effects.

122



Table 3.5: Parameter Estimates: H Voting

OLS FE Dift-GMM Our Model

Constant 3.154
(.434)
p .813
(.156)
Economic variables:
1 .295 131 161 139
(.051) (.054) (.085) (.013)
k .165 .090 .094 .358
(.056) (.057) (.071) (.006)
m 478 282 .489 437
(.048) (.068) (.138) (.008)
Ouwnership variables:
H Voting .193 =302 .378 1.016
(.939) (.671) (1.219) (.078)
(H Voting)? 110 .249 -.397 -1.044
(.738) (.535) (.969) (.066)
Control -.027  -.009 .075 270
(.101) (.114) (.234) (.369)
Controls:
leverage 275 491 857 .892
(.371) (.217) (.389) (1.821)
age -.077  .095 -.006 -.022
(.045) (.125) (.028) (.147)
Observations 673
Number of firms 116

Standard errors are reported in parentheses. OLS, FE and Diff-GMM standard errors are
robust with clustering at the firm level. Under our model, standard errors are obtained
through bootstrapping. All estimators control for year fixed effects.
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Table 3.6: Parameter Estimates: CR

OLS FE Dift-GMM Our Model

Constant 3.154
(.382)
p .815
(.155)
Economic variables:
1 .297 131 .160 130
(.051) (.054) (.078) (.014)
k 164 .087 .084 .368
(.060) (.060) (.075) (.010)
m .480 283 .516 439
(.048) (.067) (.133) (.012)
Ouwnership variables:
CR .035 -.006  .479 .890
(.315) (.393) (.555) (.095)
CR? -.591 117 -.555 -1.241
(.337) (.475) (.932) (.065)
Control 137 -.022 .082 -117
(.108) (.098) (.192) (.215)
Controls:
leverage 307 495 .885 357
(.378) (.214) (.392) (.558)
age -.080 .105 -.008 -.024
(.045) (.123) (.028) (.081)
Observations 673
Number of firms 116

Standard errors are reported in parentheses. OLS, FE and Diff-GMM standard errors are
robust with clustering at the firm level. Under our model, standard errors are obtained
through bootstrapping. All estimators control for year fixed effects.
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Figure 3.3: Marginal effect of CR;; on the log of total output
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Figure 3.4: Omega as a Function of Capital and Intermediate Inputs

0 capital

126



Appendix to Chapter 2

A.1 LocAL IDENTIFIABILITY

Suppose there are J+1 options (i.e. 5 =0,1,...,J) so that there are 277! = T'+1

consideration sets. For each subject ¢, choice probabilities
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(2

P£C:5eC
can be stacked in the vector
Di (1 | @’Y;Xz‘)
Pi = |p; (| B,vixi) | = PiNi, (A1)
| Di (J | 57’73Xz’)_

say, where

o p;isaJ x 1 vector with j-th element equal to p; (j | 3,7;x:);
o Ajisa (T+1)x1 vector with elements equal to [p; (@), p; (C1), ..., pi (Cr)];

o P;isa Jx (T+ 1) matrix whose (j, s) entry is given by P;(j, s) = pMVE(j |
Cy).

Suppose we parametrize A; = A;(y; X;) as a function of a real valued matrix ~
of attention parameters and a (K X 1) vector x; of individual regressors (including
a constant term), and P; = P;(8;x;) as a function of a real valued matrix 8 of
utility parameters and the same individual covariates x;.

B and - respectively read as
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ﬁz{o B, ... 5J} (A.2)

and

v o ) "

and are both of dimension (K x (J+1)). Notice that the number of free utility
parameters equals (K x .J) because of the normalization 3, = 0. As for -, instead,
we have ((K — 1) x J) free parameters since we are imposing the first element of
v, equal for any j =0,1,...,J.

Letting ¥ = [B =], probabilities in (A.1) rewrite as

Pi(V:x;) = Pi(8; %) A\ (7 %) (A4)

Definition 1 A model is said to be locally identifiable if, for any ¥, = [B, Yo,

the set of ¥ = [B ~| for which p;(¥;x;) = pi(1y;x;) satisty ||9p — || > 0 for

some 0 > 0.

Local identifiability of the model is guaranteed if p;(1;x;) is injective in a neigh-

bourhood of 7». The inverse function theorem states that this condition is satisfied
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when the Jacobian matrix of (A.4) is full rank.

A.1.1 ANALYTICAL DERIVATION OF THE JACOBIAN MATRIX

The most basic scenario of interest where our model could be applied contemplates
3 mutually exclusive alternatives (i.e. j = 0,1,2) and a single regressor plus a
constant (i.e. K = 2 and x; = [1 x;]' for each ). In this simplified framework,

utility and attention parameters are respectively given by:

0 B B
B= {0 By 52} - 1 : (A.5)
O ﬁlz ﬁ2x
and
Y Y Y
V= [’70 Y1 '72} - ' (A-6)
Yoz Viz Voz

Thus, for each subject i, the Jacobian matrix of (A.4) is given by

J()i =
8pi(1|ﬁ;'>’§xi) api(l\ﬁ;'y;xz') Gpi(llﬁ;'y;Xi) 8pi(1|5;‘7;x1') 8pi(1\ﬁ;‘7;xz') (A.7)
0B, 9B, T 0, 0y
8p¢(2|[3;'7;x1') Bpi(Z\,@;'y;xz') 6’pi(2lﬁ;‘7;xz~) 8p¢(2lﬂ;'y;xz') Bpi(2\,8;'y;xz')
0B, 0By v v, 074
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The entries of each row of (A.7) turn out to be a linear combination of logit
and multinomial logit derivatives. In particular, differentiating (A.1) with respect

to free utility and attention parameters, we have:

Opi (j | B, Xz’)

=pi(J]B,v;xi) — (Pi(@) (hWNL (| X>)2+

0B,
(A.8)
> (€ (pNEG | C)) )
0£C:5eC
pi U [ B,vixi) apz‘ U 1B, 7ixi)
5. = o5, , (A.9)

Opild 1 BYiX) _ gy nE (5 | ) pHNE (1| X) -

OBk (A.10)
> plCp™NEG | O™k | ©),
0#£C:j5,keC
Opi (U | Bovixi) _ Opi(7 | B yixi) (A.11)
OBralki C 0By

Opi (J I(fy,%xl _ (Z vm> (@)p"™ (5 ] X)
l

( Al 23)) — ZM%’%)) pi( O™ (7 1 C),
@;éc jeC \meC n¢C
(A.12)
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Op; (J | 5,’)’;Xz‘>

= o [~ Ay ) (DY (G| X) +

87j$
(A.13)
Y. (= Az Cp™NG | O]
0£C:5eC
8pi (] | /67'7;Xi) =1, [—A(')’k'wi))pz‘(@)pf”NL (,] | X) +
a7kx|k7éj
(A.14)

> (k€ O) = M) (Cp™ (i | )
P#C:jeC
The formulae above immediately extend to the generic case where there are
more than 3 alternatives and the number of explanatory variables exceeds 2. For
each of the 5729 subjects in our sample, the individual Jacobian in (A.7) is given

by a matrix of dimension

J x ( EJ + (K—l)(£+1)+1j ) (A.15)

# of free utility parameters

# of free attention parameters

with J =5 and K = 6, respectively.
To check local identifiability, we first concatenate vertically all the individual

Jacobian matrices and obtain
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J() = : : (A.16)
J<¢)5729

Then, we evaluate (A.16) at the maximum likelihood estimates 17) = [B ] re-
ported in Table 1.1 and we find it to be full-column rank. Moreover, its condition
number! is around 322 and this allows us to conclude, with considerable confi-
dence, that the model is locally identified at least with respect to the explanatory
variables in our dataset and estimated parameters. While still using the regressors
in our data, we conduct an additional check by evaluating (A.16) at parameter
values which are randomly sampled from a multivariate Normal distribution with
variance equal to I, 2, 31 and 41, respectively. For each distribution, we run
1,000 simulations. The Jacobian is never found to be rank deficient and condition

numbers? are always below 107 (see, Figure A.1).

A.1.2 FURTHER SIMULATIONS

Adopting the simplest possible specification described above, we first run 20, 000
simulations in which we assume 4 individuals choosing among 3 available options
and let both utility and attention be driven by a single independent variable (plus

a constant term). Parameters in (A.5)-(A.6) along with the individual covariate

!That is, the ratio between the maximum and the minimum singular values of the Jacobian.

2If on a sufficiently large set of parameter points, the condition number is never higher than
10'°, we can be confident that the model is locally identified with probability close to one (see,
Forcina (2008)).
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Figure A.1: Condition Numbers: Actual Data
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x; are all drawn from a standard normal distribution.

The 8 parameters in (A.5)-(A.6) determine 2 "free” probabilities for each indi-
vidual given that the probability of choosing alternative 0 is residually determined.
Thus, for each of the 4 simulated subjects, we apply the formulae in (A.8)-(A.14)
and compute individual Jacobian matrices J(1));.

By vertically concatenating individual Jacobian matrices, at each simulation,
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we obtain a square 8 x 8 Jacobian of the form

(A.17)

Constraining the number of individuals allows us to identify rank deficiency which
would signal local non identifiability of the model. In all the simulations the
Jacobian is found to be full rank. Furthermore, the condition number exceeds 10°
in just 6 instances.

Then, in order to assess the usefulness of imposing the first element of ~;
equal across 7 we run 20,000 further simulations of two different models. The
first model corresponds to the one in (2.8) while in the second one we allow the
attention parameters of the constant term to vary across alternatives. For the
first specification parameters are the same as in (A.5)-(A.6) while for the second

one they are given by:

G0 8 B e
0 ﬂlz ﬁ2x
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y = Yoo Y1 V2 (A.19)

Yozr Yiz Yoz

Under this unrestricted specification, we assume 5 individuals choosing among
3 alternatives so as to get a 10 x 10 Jacobian matrix at each simulation.

Under both models the Jacobian is always found to be full rank. However, the
condition number of the Jacobian is higher than 10* in just 7 instances under the
first specification while this threshold is exceeded in 2745 cases under the second
one (see, Figure A.2 ).

Figure A.2: Condition Numbers: 3 Alternatives & 2 Regressors

o "free" attention constant
o "fixed" attention constant

To provide further support to our identification result, we run 4 sets of 20,000

further simulations in which data is generated so as to mimic the SIPP dataset.
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In particular we assume 6 options and 5 regressors® (including the constant term).
The size of the parameter vector is equal to 50 in the case where the attention
constant is assumed equal for all alternatives while is equal to 55 if this constant is
let vary across options. In the same fashion as before, we constraint the number of
simulated individuals to be equal to 10 in the restricted specification while being
equal to 11 in the unrestricted one.

The four subplots of Figure A.3 scatter the condition numbers of the Jacobian
computed as in (A.17) at each simulation when parameters are randomly drawn
from a Normal distribution with variance equal to I, 21, 31 and 41, respectively. In

Figure A.3: Condition Numbers: 6 Alternatives & 5 Regressors

10 10
6210 N©,1) 610 N(©,21)

O “free” attention constant O “free" attention constant
O *fixed" attention constant O “fixed attention constant

o

6100 N(O,3) 10'° N(0,41)

o o

© O free" attention constant
o o | O ‘fixed attention constant

the case where a common average attention is imposed across alternatives (namely,

our model), the condition number never exceeds 10° while, in the unrestricted

3Regressors are drawn from a standard normal.
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specification, this threshold is exceeded in 663 instances when parameters are
drawn from N(0,7) and in almost half of the simulations (9,334 over 20,000
simulations) when parameters come from N(0,471).

All in all, we can conclude that imposing a common “average attention” con-

siderably facilitates parameters identification.
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