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Introduction

Finding ways to explain, predict, and replicate behavioural patterns of the
agents of a complex system has been the focus of scholars and policy makers in
many areas of science and society, for example, biology, economics, engineering
and sociology, to cite some of them. Due to the volume, velocity and variety
of the data collected and managed by the increasingly powerful and capable
IT technologies, there is a growing need to develop efficient mathematical and
statistical methods to deal with the challenges arising from the complexity of
real systems in the era of Big Data.

Ranging from biological molecules to economic and financial systems, across
multiple scales, complex systems involve agents whose multiple micro-level in-
teractions yield a macro-level behavior in a non-linear fashion.

In the last few decades, scientists have started to study complex systems
by resorting to complex networks. The advantage of using complex networks
is that they allow analysts or researchers to abstract the complexity that char-
acterises real complex systems making very few assumptions on the type of
interactions among their components. Moreover, networks provide a holistic
approach to the comprehension of complex systems by focusing on the study
of the system as a whole rather than on its separate parts.

The increasing complexity of societies suggests that there will be a growing
need for the understanding of real complex systems. The insights of com-
plex systems research and its methodologies may become pervasive in guiding
research and policy decisions across disciplines. Indeed, national and inter-
national policies should be informed by the science of complex systems to
undertake decisions with global effects.

In this thesis I will develop multivariate statistical and network methods for
the study of complex systems. In particular, I will focus my analysis on the
study of bipartite complex networks and their applications to (i) economics to
understand the contagion effect between sovereign and financial institutions,
(ii) to insurance surveillance to uncover fraudsters and (iii) to social science to
study the effect of the politics of REF on research excellence of universities in
the UK.

1



2 Introduction

In what follows, I will discuss the content of each chapter in more detail by
giving the reader a useful description of the context specific to each study.

Complex Systems and Complex Networks (Chapter 1)
In this chapter, I will introduce complex systems and I will highlight the

differences between complexity and complicatedness in real life phenomena. A
fundamental tool for my analysis is given by bipartite networks. I will give a
mathematical definition of bipartite graphs and their main properties. Finally,
I will introduce statistically validated networks, that are used to remove the
intrinsic noise contained in the data, while putting in the foreground the sys-
tematic patterns of the observed network.

Emergent phenomena in bipartite complex systems with a double
heterogeneity (Chapter 2)

Complex bipartite systems are studied in many application fields such as
biology, physics, economics, and social sciences, and they can suitably be de-
scribed as bipartite networks. Examples of bipartite networks are: criminals-
crimes, actors-movies, people-accidents, authors-universities, General Practi-
tioners (GP)-hospitals, etc. In general, when dealing with bipartite networks,
we are interested in measuring the similarity between subject-nodes, given
their linkage structure with the item-nodes. Although binary Pearson’s corre-
lation coefficient has proved effective to investigate the similarity structure of
some real-world bipartite networks, when both node sides of the network are
characterized by heterogeneity (high variability in the degree distributions),
the sample covariance and correlation coefficients are biased.

In this chapter, I will introduce a weighted covariance and correlation es-
timator and show results that improve upon traditional similarity measures,
when double-heterogeneity affects bipartite networks in real systems.

SVN to detect fraudsters’ communities in the Italian car insurance
sector (Chapter 3)

Accident claims are an example of heterogeneous and multidimensional data
as they include—not being exhaustive—coded identity of all the subjects di-
rectly involved in an accident, such as, drivers, passengers, car owners, wit-
nesses, and pedestrians; professionals, such as, doctors, lawyers, car repairs, as
well as details about injuries, fatalities, requested amount, property damage,
place and time of the accident, and all about the vehicles involved. Fraud
is a social phenomenon and fraudsters often act in collaboration with players
having different roles. Supervised methods, although they add value to the
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analysis, show two main drawbacks: first, their calibration is based on a set
of known frauds which are very difficult to obtain, and that are a very small
sample with respect to the total claims. Second, they miss a peculiar feature
of frauds in motor insurance, i.e., the existence of “criminal infrastructures”,
which also encompass the professional profiles operating in this field.

In this chapter I will describe the development of an investigation system
based on the application of bipartite networks to highlight the relationships
between subjects and accidents or vehicles and accidents. This is a general ap-
proach that allows us to include the whole spectrum of actors around a claim:
from the drivers to the legal professionals. Starting from the dense complex
network, we will construct statistically validated networks to prune the connec-
tions that score a low likelihood level with respect to random chance. In this
step only structures with very strong ties will appear, thus signalling potential
group of fraudsters. I will also formalize the filtering rules through probability
models and test specific methods to assess the existence of communities for
very large networks and propose new alert metrics of suspicious structures. I
will apply the above methodology to a real database—the Antifraud Integrated
Archive (AIA)—and compare results to out-of-sample fraud scams assessed by
the judicial authorities.

Impact Evaluation of the REF in the UK (Chapter 4)
The REF is the main UK government policy on public research in the last

30 years. It aims at promoting and rewarding research excellence through
competition for limited resources. Despite the national interest and the severe
criticisms about the effectiveness of the Research Assessment Exercise (RAE),
very little has been done to assess its impact on research excellence outcomes.
In this chapter I will exploit the publication and affiliation data contained in
the Scopus database to empirically evaluate the impact of the REF on the
research productivity of universities in terms of both quantity and quality of
published scientific articles. To do so, I will rely on the Synthetic Control
Method (SCM) [2, 3], which uses a time series of the outcome of the treated
UK universities prior to the intervention and creates a counterfactual set of
outcomes against which compare the outcomes of the treated group after the
intervention. We take as a control the US academic system due to its strong
ties with the UK one, such as their common language and the research pro-
ductivity that is financially incentivised. I will compute both individual and
ATT for each of the years amid the REF implementations of 2008 and 2014,
eventually computing an overall ATT for the whole period as well.



4 Introduction

Spillover effects analysis in the Credit Default Swap (CDS) Market
(Chapter 5)

Sovereigns are exposed to bank risk and, at the same time, banks are ex-
posed to sovereign risk. During the euro-area sovereign debt crisis, this two-
way risk exposure generated a “vicious circle”, also known as the “doom loop”
[66]. At a point when government bonds were considered risky assets, euro-
area banks faced with both balance sheet and reputational risks, making it
hard to compete with their non-euro area counterparts, forcing to tight their
exposure to sovereign credit risk, thus igniting the most disruptive financial
crisis has ever jeopardized the Euro currency system.

Over the years the failure of financial institutions has led to fears of system
failure from domino effects of one failed entity bringing down others. Indeed,
this way of thinking has given rise to concepts such as financial contagion and
entities too interconnected to fail, and since then the interests have moved from
the study of mechanisms of single entities towards the point where the inter-
action between entities has become crucial and more important than a single
mechanism on its own. Financial distress and the consequences of risk propa-
gation will depend on both the magnitude of external shocks and the position
of hit entities in the system. The study of negative externalities cannot be
done by using a perspective based on individuals but, rather, using a holistic
approach to the problem, analysing the entire financial system as a whole.

This chapter is devoted to the application of SVN for the study of risk con-
tagion among financial institutions such as banks and sovereigns in the CDS
market. I will compare up-to-date econometric methods, that serve for the pur-
pose of computing spillover effects based on regularized Vector AutoRegression
(VAR) models, and forecast variance error decomposition. I will show that
SVNs provide robust insights on how contagion transmits between sovereigns
and financial institutions. I will also show that traditional approaches to com-
pute the spillover effect can benefit when used in companion with SVNs.
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Chapter 1

Complex Systems and Networks

1.1 Complex Systems

Most of the things happening around us are the result of a process of some
kind: biological, e.g. when off-springs form from an organism, or when genetic
characteristics of organisms change to allow the adaptation in the environments
they may live in; physical or chemical, e.g. when a solid matter turns into
liquid and then gas state, or the way to which planets and galaxies move in
the universe; organizational, e.g. when individuals in a company specialize
in specific tasks to optimize productivity and efficiency. Each one of these
examples represents a system, made of elements with some degree of complexity
that interact with each other, and that shows an evolution over time and space.
Searching on the web, one can find the following definitions of system: “a set
of things working together as parts of a mechanism or an interconnecting
network; a complex whole”, and, “a set of principles or procedures according
to which something is done; an organized scheme or method”. Of course,
the way systems work are not random, at all. Moreover, the behaviour of
any system strictly depends on the way its elements interacts with each other
and also on the conditions of the outer environment they are involved in.
Few examples of systems are: societies, cities, companies, markets, biological
systems, financial markets, etc. A crucial property that is shared by all of
these systems is complexity. The main assumption behind the idea of complex
systems is that although their behaviours may seem random, they actually are
governed by laws that determine specific patterns of evolution. Indeed, the
seemingly chaotic behaviour does not lead to a total absence of order, but it
mainly refers to an ordered disorder [138]. One can find many definitions of
“complex system”, but, as many complexity scientists point out, none of these
represents a concise definition that manages to properly state what a complex
system actually is, since they may depend on the context to be studied.
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1.1.1 Complex versus complicated systems

People usually tend to erroneously interchange the adjective complex with the
term complicated to describe a system. Indeed, there is a subtle difference
between the notion of complex system and that of complicated system.
In general, a complicated system is pretty much related to the notion of re-
ductionism, meaning that one can analyse and model the dynamics occurring
within the system by considering all its parts one at a time and separately one
from each other. They are viewed to have a large number of components that
behave in a well-understood way leading to the resulting effect. Think of a
clock as an example [170]: it has many heterogeneous components that have
to work together as a network structure. Although clocks may be complicated
systems, they cannot be considered complex, since a clock does not adapt to
external conditions. Indeed, the requirement for a clock to work depends es-
sentially on the fully functionality of each of its components, seen separately
and individually: if just one of the components breaks down, then all the sys-
tem won’t work anymore.
In a complex system, by contrast, all individual parts are linked together, and
their relations may change over time, adapting to both internal and exter-
nal changes due to different scenarios of the outer environment. Moreover,
the connections between the elements of a complex system are typically non-
linear, that implies that there is not a linear sequence of causes and effects in
its behaviour [170]. Therefore, a crucial point when distinguishing a complex
system from a complicated system regards the predictability of the system it-
self. In principle, as hard to understand as a complicated system can be, one
can always know with certainty all the mechanism effects characterising the
system. On the contrary, a complex system can be only predictable to some
extent, and the level of uncertainty depends on many aspects characterising its
complexity. Unlike complicated systems, the main property that characterizes
complex systems is the presence of emergent phenomena, that take place at
the macro level of the system and are very difficult to predict and to discern
at small scales.
Nevertheless, a system could be really complex even if its elements are rather
simple, e.g. the group of ants: while the behaviour of a single ant is assumed
to be rather simple, when we consider the ants together as a whole entity, then
their behaviour will result in a variety of interesting phenomena, such as for-
aging for food, bringing it to the anthill and leaving their pheromones on the
route, so that other ants can follow the trail and find the food [52]. In a complex
system even interactions of quite simple components can generate bewildering
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behaviors [193]. Even if a complex system is locally really unordered, when
observed into a higher level, it will exhibit ordered and structured patterns. In
general, while the elements of a system behave according to their preferences,
expectations and needs, their joint interactions could make the whole system
have unexpected properties at the meso- and macro-level that are not directly
known and induced by the single components. As Dekker once argued [52], “In
a complex system, each component is ignorant of the behaviour of the system
as a whole. This is a very important point. If each component “knew” what
effects its actions had on the entire rest of the system, then all of the system’s
complexity would have to be present in that component. It isn’t. This is the
whole point of complexity and systems theory. Single elements do not contain
all the complexity of the system. If they did, then reductionism could work
as an analytic strategy: we could explain the whole simply by looking at the
part”.
When we ask ourselves “How does a cell phone work?”, a mechanistic thinker,
analysing the single components of the telephone’s hardware, would reply that
the device functioning is due to its internal mechanisms that give the possi-
bility to make phone calls, take pictures, browse the internet, listen to music
and so on, without focusing on the internal and external effects due to the
other systems in its surroundings. Each functionality of the mobile phone
corresponds to single components designed to make the device suitable for a
specific activity. The reply of a system thinker, who uses a holistic approach
to study a system, will be radically different and it will concern the multiple
emergent phenomena related to mobile phone production at different levels
and its implications to other systems. Starting from Coltan–a mineral used to
improve the cell phone battery performances– Dekker explains how the system
thinker will analyse the social, economic and environmental implications of
Coltan extraction in Congo: such as the exploitation of miners that manually
extract the mineral, the civil war to control the territories of extractions, the
killing of gorillas in order to sell their meat to miners and rebels etc.

1.1.2 Emergent properties of complex adaptive systems

Suppose you are driving your car and along the path you are told that a spe-
cific street has been closed for some reason. This new piece of information
will affect the behaviour of drivers that received it. These changes in the be-
haviours and interactions of people might have a systemic effect resulting in
traffic congestion [111]. “Most people most of the time act iteratively in terms
of local information, knowing almost nothing about the global connections or
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implications of what they are doing. However, these local actions do not re-
main simply local since they are captured, represented, marketed, circulated
and generalized elsewhere [. . . ]. The consequences for the global level are non-
linear, large-scale, unpredictable and partially ungovernable. Small causes at
certain places produce massive consequences elsewhere” [186].
In order to predict the behaviour of a complex system, complexity scientists
have to find a way to extract the systematic pattern suggested by the system
over time and space. It’s worth to note that the system and its components
will behave according to the information which flows within the system as well
as to the state conditions of the outer environment. Also, it is possible to dis-
tinguish the system from the environment that surrounds it, allowing one to
infer how the system responds to the external inputs–its adaptation behaviour
and resilience–without knowing all its internal self-organizing rules.
An important property of most complex systems is that they can be viewed as
having a hierarchical structure [170], where every layer of the system produces
outputs that influence the way other layers work. Nevertheless, single elements
will interact without knowing the effects that they could bring to the whole
system. Moreover, a complex system is resilient, meaning that when a local
shock takes place and a specific critical point is reached towards a new phase
transition, it may progressively modify its behaviours, independently of the
components at lower levels, showing self-organized criticality [17]. This aspect
is not observed in complicated systems. It is in these phase transitions that the
system shows emergent phenomena, new behaviours that can’t be described as
just the sum of the effects of individual components and that could reveal in
multiple ways. A trivial example that gives the idea of emergent phenomenon
is the formation of the so-called Mexican Wave, occurred for the first time
during the 1986 FIFA World Cup held in Mexico, and for which spectators
in a stadium stand and then sit in groups until every section in the stadium
has participated in turn. The local coordination of individuals will eventually
form a macro behaviour of the whole, where the crowd will look like a rolling
ocean wave when seen from a distance. Moreover, complex systems could be
very sensible to small perturbation: a small perturbation in a system could
potentially cause a catastrophic modification in the future dynamics of the
system (this assumption has been demonstrated by [125], and is known as the
“butterfly effects”, where only the flapping of a butterfly could be determinant
for the formation of a tornado).
So, there is a difference between complexity and emergence of a complex sys-
tem: complexity refers to the set of properties that characterize both the inner
and outer environment of a system and all potential final actions it can take un-
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der certain future scenarios. Instead, emergence refers to the actual behaviours
or actions eventually undertaken by the system. Some systems may exhibit a
sort of quite stable behaviour “followed by a sudden shift to disequilibrium or
to another, quite different equilibrium” [170]. The sensitivity of a system to
initial conditions, which can lead to a ripple effect, is, for example, at the root
of the sociological analysis of the transformations in modern societies, and in
particular relating globalization, that introduced new perceptions of risk and
vulnerability–e.g. the consequences of nuclear disasters, the spread of diseases
and terroristic attacks–[21], the “glocalization” concept–that highlights the in-
terplay between local interactions and global effects–[163], or climate change
perception and collective action [128, 174].
It is possible to investigate the “mechanisms that create and sustain com-
plexity” of real complex systems using an empirical approach. Unfortunately,
in many cases, an unsupervised and direct inspection of all the interactions
among elements of a system is impossible to do. Wolfram [197], with his
principle of computational irreducibility, states that it is impossible to predict
what a complex system will do, except by going through as many steps in the
computation as the evolution of the system itself. This is why it’s much more
efficient to describe a complex system as a phenomenon in its own right, rather
than regarding its individual components. Complex behaviour features can be
captured with models that have simple underlying structures. This certainly
makes research much easier, but this resistance to simplification is also a fun-
damental feature of complex systems.

1.1.3 Cascade Phenomena and Herd behaviours

Cascade phenomena are really common in complex social and economic sys-
tems. They are the consequences that the actions of one or few elements have
on the collective response of an entire system. In particular, the actions of the
few are spread in a sequential fashion across the system. A positive feedback
refers to the influence of the elements of a system that, eventually, will cause
an emergent phenomenon to take place, breaking the current equilibrium of
the system itself. On the other hand, a negative feedback (or balancing feed-
back) is the ability of a system to contrast internal or external shocks in order
to maintain its equilibrium over time and space. An example of negative feed-
backs are the homeostatic processes of organisms, that enables various mea-
sures (e.g. body temperature, or blood sugar level) to be maintained within a
desired range.
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Instead, some examples of positive feedbacks are: the process leading to the
applause of an audience, for which just few people clapping their hands can
sequentially induce to the applause of the whole audience; also, the same logic
applies to the phenomenon of standing ovation; or again, suppose there are
two restaurants, say A and B, that are opposed along the two sides of a street
and a group of people has to choose either one. Moreover, assume that restau-
rant A is crowded while restaurant B is not. Even if the group of people
possess some private information about the good quality of the food served
in restaurant B, they will tend to follow the choices of people that arrived
before them, eventually going to restaurant A. Social scientists refer also to
information cascade that influence people’s behaviours, that dominate their
private beliefs and make them even act irrationally (e.g., against what they
think is optimal). A person can’t directly observe the outside information that
other people possess, but he or she makes inferences about this information
from what they do. A very similar but slightly different concept is the herd
behaviour, an uncoordinated behaviour of self-serving individuals. This type
of phenomenon is for example observed in flocks of migrating birds or people
that are in danger and panic following the way out from a building: their un-
coordinated but self-serving movements cause emergent phenomena to occur.
While informational cascades are more stable, herd behaviour is more easily
disrupted, since in the latter private information possessed by individuals is
not dominated by the behaviours of other individuals.

1.1.4 Non-stationarity of complex systems

The dynamics of real complex systems involve a certain degree of non-linearity
in the interactions between elements. Also, complex systems could involve
non-stationary processes in time and space domains. Since real-world sys-
tems evolve under transient conditions, the signals obtained from there tend
to exhibit very many forms of non-stationarity. Indeed, the non-linear and
non-stationary dynamics of the underlying processes pose a major challenge
for accurate forecasting of space and time series. Recently, a review of the
advancements made so far has been presented in [39].

1.1.5 Heterogeneity

Most real complex systems consist of elements that are very different from
each other, both qualitatively and quantitatively speaking. Let’s consider the
financial system as an example: the elements of the system can be single in-
dividuals, families, small, medium and large companies, or even sovereigns.
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Therefore, each element within the system will have a specific role with spe-
cific objectives, and a different importance for the stability of the system itself.
Many real complex systems are heterogeneous, where, from the viewpoint of
individual interactions, elements follow a power-law distribution and their net-
work representation is said to be scale-free [154, 155]. In a scale-free network
most of the elements show a low number of interactions while only a small
proportion of them does show many interactions. Eventually, the topological
structure of the network will not depend on its size, i.e. number of nodes in the
network. Modelling the source of heterogeneity of a system can be crucial to
draw accurate conclusions. Nevertheless, dealing with heterogeneity can often
be a challenging task.

1.1.6 Motifs in complex networks

The functional properties of complex networks may be highlighted by the so-
called motifs. A motif refers to a local and persistent structural pattern that
occurs across a network. Motifs may be useful to study the functioning of
a system as they may reflect a framework in which particular functions are
achieved efficiently. They attract much attention because they allow to un-
cover structural design principles of complex networks. Although their rela-
tive simplicity, motifs are challenging to discover. Many methods have been
proposed for motifs detection, under essentially two different paradigms such
as exact counting methods [139], [85] (computationally heavy) and sampling
methods [116] (faster but may be unreliable), pattern growth methods and so
on ([166], [194], [153], [42]), all of them relying on the frequency concepts of
sub-graphs and their statistical significance.

Many efforts have been made to analyse the data coming from complex
systems, several of them focusing on cross-correlation between elements. This
approach presents some drawbacks: i) it needs large statistics, in most cases
requiring the assumption of quasi-stationarity of the process underlying the
system; ii) it superimposes the model of dynamics [48]; iii) it disregards non-
linear correlations (a way of taking into account non-linear correlations by es-
timating the mutual information has been proposed by Kraskov et al. (2004)
[119]). An effective approach that manages to abstract complex systems and
that relaxes the aforementioned assumptions is given by complex network the-
ory, that started to attract complexity scientists, in particular following the
two papers by Paul Erdős and Alfréd Rényi in 1959 [64] and by Mark Gra-
novetter in 1973 [84], whose works marked the beginning of the application of
network theories to the study of complex systems. Resorting to complex net-
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works allows one to represent the interactions among the elements of a system
without specifying the nature of their relationships, that can be either linear or
non-linear, symmetric (correlation) or asymmetric (causality). A clear intro-
duction and an exhaustive review of the major concepts and results achieved
in the study of the structure and dynamics of complex networks can be found
in [28, 124, 148, 126]. Eventually, networks give a flexible way to study the
structures and dynamics of complex systems’ phenomena with a holistic ap-
proach, and, because of these aspects, it is continuously engaging the interest
of many scientists working on very different application fields.

1.2 Bipartite Complex Networks

Complex phenomena can be described through the relationships shared by
their actors. A bipartite network is a useful tool to represent interactions oc-
curring among the entities of a system involving two different groups of nodes.
In Fig. 1.1 we display a bipartite network where the entities of the system
are partitioned in two sets, U and S, and the relation between two any nodes
of each set is reproduced through a link connecting the two nodes. There is
an extensive literature on (bipartite) network methodology and its application
to the analysis of social systems. An illustrative, but not exhaustive, list of
papers includes: movies and actors [192, 18, 173], authors and scientific pa-
pers [90, 19, 152], email accounts and emails [134], mobile phones and phone
calls [155], the criminal-crime relationship to assess generalist vs specialist be-
haviour in crime [184], the GOTCHA! system which is based on a bipartite
graph relating companies and resources [187]. In graph theory, a bipartite net-
work is a graph with two disjoint set of nodes. We provide in the next section
the basic notation and definitions we will use throughout the paper.

We denote by G(V,E) a graph where V is the set of vertices and E is the set
of edges connecting any couple of vertexes vi, vj ∈ V , where i, j = 1, 2, . . . , |V |
and (vi, vj) ∈ E. The neighborhood of a vertex vi ∈ V is the sub-graph of G
composed of the vertexes vj ∈ V and the edges (vi, vj) ∈ E. We denote by
N(vi) the neighborhood of vi and by deg(vi) the degree of vi, i.e., the number
of edges incident to the vertex vi. Here, we assume the graph is undirected.
If we deal with directed graph, then a distinction between in-degree and out-
degree must be done. Moreover, If there are no loops, deg(vi) coincides with
the number of vertexes of N(vi), excluding vi itself.

A bipartite graph is characterized by two sets U, S ⊂ V , such that V = U∪S
and U ∩ S = ∅; moreover, ∀i = 1, 2, . . . , |U | and ∀i = 1, 2, . . . , |S| the edge
(ui, sj) ∈ E cannot have both vertex in the same set. We usually denote by
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Figure 1.1: Bipartite network

G(U, S,E) a bipartite graph and we can represent it by a |U | × |S| matrix
known as bi-adjacency matrix A, where the element aij is one when there is
an edge from vertex ui to vertex sj, and zero otherwise,

(A)ij =

{
1, if (ui, sj) ∈ E
0, otherwise.

(1.1)

The properties of bipartite networks are typically investigated by analyzing
the so-called one-mode network or co-occurrence network. This is a new graph
in which there is a link between two vertices of the set U if they share one or
more vertices of the set S. Analogously, elements of the set S can be “projected”
onto the set U , thus producing a new unipartite network.

1.2.1 Projected networks

The one-mode network is a weighted network, where the weight of a link is
set according to a specific weighing function l : U × U → R. Formally, given
the bipartite graph G(U, S,E), the one-mode graph of U with respect to S is
the weighted graph denoted by P(U, F ), where U is the set of vertexes and
F is the set of edges. Likewise, we can project the bipartite network with
respect to set S, constructing the one-mode graph of S with respect to U . For
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Figure 1.2: One-mode network

any i, j = 1, 2, . . . |U | and i 6= j, a link (ui, uj) is set and included in F , if
l(ui, uj) > ξ, where ξ ∈ R.

The simplest weighing function assigns to each element of the matrix W a
value corresponding to the number of co-occurrences between ui and uj, i.e.,
l(ui, uj) = |N(ui) ∩N(uj)| and ξ = 0:

(W )ij =

{
|N(ui) ∩N(uj)|, if N(ui) ∩N(uj) 6= ∅
0, otherwise.

(1.2)

Mappings like l(ui, uj) are also known as similarity functions. Many filter-
ing techniques use similarity functions to assign weights that become crucial
in reducing the connection density of the projected network by filtering out
those links that are considered not significant according to given criteria (see
Section 1.2.2).

One-mode networks can be obtained through the projection of both sides
of the bipartite network onto the respective sets. In Figure 1.2 we show the
one-mode projections extracted from the bipartite network given in Figure 1.1
when using the co-occurrences similarity function described above, and where
edges with weights higher than one are marked by a bold line. Depending on
the characteristics of the original system, a projected network can also take
the form of a directed graph, i.e. a graph where all the edges are directed from
one vertex to another. For our purposes, however, it will suffice to focus only
on undirected graph.

1.2.2 Statistically validated networks

In several real-world applications, the projected network turns out to be
dense, that is, it has a high number of edges given the number of nodes n
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contained in the network (the closer the number of edges to n(n − 1)/2 , the
denser the network). Such a density may hide the topological properties of the
system, e.g. the presence of communities and other emergent properties.

Reducing the number of edges, by keeping those which carry the essential
information about the structure of the system, is therefore a crucial aspect of
our analysis. Indeed, by setting a lower value of the threshold, ξ, can result to
a poor representation of the important information contained in the network
and the analysis of its topological properties can be misleading ([118], [122]).

We very often deal with bipartite networks that are characterized by a high
level of heterogeneity in terms of vertex degree. In this respect, a validation
process where co-occurrences are tested against a unique threshold will lead
to filtered networks where nodes (and their respective links) are validated just
because they have high degrees, and, therefore, it is likely that they display
sizeable intersections with other nodes. In the insurance specific case, intro-
duced in Chapter 3, that would mean that, for example, subjects like car
repairers would be over-represented in the validated network because of their
“natural” activity within the claim process. Conversely, nodes with lower de-
grees (e.g., drivers) will be excluded a priori, thus removing interactions which
can disclose hidden anomalous behaviours.

To this purpose, we describe the co-occurrence between two nodes as a
conditional event where the conditioning evidences are the degrees of both
nodes and the total number of elements in the projecting set of the bipartite
network. Formally, given the bipartite graph G(U, S,E), ∀ui, uj ∈ U , we define
by

(nij|ni, nj, N), (1.3)

the conditional co-occurrence, where nij = l(ui, uj) is the unconditional co-
occurrence, ni and nj are, respectively, the degree of ui and uj, and N = |S|
is the total number of nodes of the projecting set S.

Observe that, the conditional co-occurrence (1.3) has just a symbolic mean-
ing, however, its introduction allows comparisons with the—more substantial—
conditional threshold that is defined as follows:

(ξij|ni, nj, N) = Q(α), (1.4)

where Q(α) is the right-tail α-quantile of the hypergeometric distribution,

Q(α) = inf

{
q ∈ Z>0 : α ≥

min(ni,nj)∑
x=q

Hyper(x|ni, nj, N)

}
, (1.5)
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and,

Hyper(x|ni, nj, N) =

(
ni

x

)(
N−ni

nj−x

)(
N
nj

) . (1.6)

Armed with the conditional threshold ξij, which is inferred from the null
distribution Hyper(x|ni, nj, N), the link (ui, uj) is statistically significant if

(nij|ni, nj, N) ≥ (ξij|ni, nj, N). (1.7)

It is worth noticing that the validation rule in (1.7) is possible because both
elements are conditioned to the same set of events, which, eventually, simply
turns to verifying that nij ≥ ξij.

Remark (1). Similarity measures that account for the marginal distributions
of ui and uj, i.e. that explicitly make use of ni and nj in their formulas, are
not effective in dealing with the heterogeneity of the bipartite network. For
example, given the bipartite graph G(U, S,E) and the associated adjacency
matrix AM×N , where M = |U | and N = |S|, the Pearson correlation coeffi-
cient between any two binary row vectors of A, ρ(Ai, Aj), is a measure of the
similarity between nodes ui and uj, where nij is “adjusted by” the degree of the
two nodes, ni and nj. The conditional co-occurrence (1.3) is explicitly given
by

(nij|ni, nj, N) = ρ(Ai, Aj) =
nij − ni nj

N√
ni nj

(
1− ni

N

) (
1− nj

N

) . (1.8)

If we consider real instances where N � ni, nj, for classes of nodes with
almost the same vertex degree, ni ' nj = K, we can approximate the relation
(1.8) as follows:

ρ(Ai, Aj) ≈
nij
K
. (1.9)

Equation (1.9) clearly shows that if we set the threshold ξ to a high level in
order to reduce the complexity of the network, we will exclude with very high
probability (unless nij grows with almost the same pace of the vertex degree
K) all those nodes which characterize as hubs, i.e. nodes with a high vertex
degree K. In fraud investigation, that would imply the exclusion, a priori, of
subjects like lawyers or car repairers. Conversely, a low level of the threshold
ξ, calibrated to include node hubs of peculiar interest, it would yield a very
dense and uninformative network, since even drivers sharing a single accident
will be deemed as significant and included in the projected network.

Remark (2). The distribution function Hyper(k|ni, nj, N) exactly computes
the probability that k co-occurrences take place when nj links depart from
node uj and ni links depart from node ui. This is easily assessed if we describe
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the event using an urn model where, n = nj marbles are extracted without
replacement from an urn with a total of N = |S| marbles, and the the urn
contains ni = K marbles with a given property. In this respect, P (X = k)

is the probability that the sample n, drawn without replacement from the
urn, shows exactly k marbles with the chosen attribute. It is worth noticing
that, the Hypergeometric distribution implicitly accounts for the heterogeneity
of the set U . Indeed, the probability of a given intersection depends on the
marginal distribution of the set U through the vertex degree ni and nj.

1.2.3 Multiple hypothesis testing: family-wise error rate vs false
discovery rate

The introduced Hypergeometric null hypothesis can be used to test the
presence of an excess of co-occurrences between any pair of nodes ui and uj

of either sets of a real bipartite network. Indeed, again assuming without loss
of generality that nodes ui, with degree ni, and uj with degree nj belong to
set U in a real bipartite network (U, S,E), and that the actual co-occurrences
of these nodes in set S is n̂ij, then the probability that a value larger than or
equal to n̂ij is observed by chance, according to the null hypothesis, is

p-value(n̂ij|ni, nj, N) =

min{ni,nj}∑
nij=n̂ij

(
ni

nij

)( |S|−ni

nj−nij

)(|S|
nj

) (1.10)

Eq. 1.10 can be used to test the excess of co-occurrences between any pair of
nodes linked in the projected network, and the test fully takes into account
the heterogeneity of nodes ui and uj, since degree ni and nj correspond to the
actual values observed in the real bipartite network. To claim that the number
of co-occurrences n̂ij between nodes ui and uj is too large to be consistent with
the null hypothesis of random co-occurrences, one should introduce a threshold
α of statistical significance to be compared with the p-value. It could be α =

0.01 for instance. However, the value of α does not take into account the fact
that, for a given projected network, the total number of tests that one should
run equals the total number of edges in the projected network, |F |. Therefore,
α should be corrected for multiple hypothesis testing, in order to control for
the family-wise error rate, that is, for errors of type I. Among the several
ways to control type I errors, we consider the Bonferroni correction. The
Bonferroni correction indicates that, given a univariate threshold of statistical
significance, α, then the statistical threshold corrected in presence of |F | tests
is αM = α

|F | . The Bonferroni correction is the most appropriate because it is
the most restrictive and it’s not affected by the fact that tests are dependent.
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The Bonferroni Statistically Validated Network, or simply Bonferroni Net-
work (BN) is obtained by filtering a given real projected network, in order to
only keep links that display a statistically significant number of co-occurrences.
Specifically, given a bipartite network (U, S,E), and the associated network
projected on set U, (U, F ), the Bonferroni network is the network that only
includes all the links in the projected network such that

p-value(n̂ij|ni, nj, |S|) < αM =
α

|F |
. (1.11)

1.2.4 Properties of the Bonferroni SVN

The properties of the Bonferroni correction for multiple hypothesis tests and
those of the hypergeometric distribution induce some interesting properties of
the Bonferroni network, which are summarized in the following propositions.

Proposition 2: Given a bipartite network (U, S,E) and its projection on set
U, (U, F ), then the probability that one link in the Bonferroni network filtered
from (U, F ) is a false positive, according to the null hypothesis of random co-
occurrences, is smaller than α.
Proof : let’s indicate with T0 the (unknown) number of true negative links,
that is, those links that are observed by chance, because of the intrinsic hetero-
geneity of the bipartite network. Of course T0 < |F | by construction. Then the
probability that one true negative link is included in the Bonferroni network is
equal to the probability that the event Eij = p− value(n̂ij|ni, nj, |S|) < αM =
α
|F | occurs, where the link between ui and uj is a true negative. Therefore, if
one lists all of the T0 events Eij as {Ek = pk < αM ,∀k = 1, . . . T0} it turns out
that

P

(
T0⋃
k=1

Ek

)
= P

(
T0⋃
k=1

pk < αM

)
= P

(
T0⋃
k=1

pk
α

|F |

)
≤

T0∑
k=1

P

(
pk <

α

|F |

)
<

T0∑
k=1

α

|F |
= α

T0

|F |
< α. (1.12)

Proposition 3: Given a bipartite network (U, S,E) and its projection on set
U, (U, F ), a co-occurrence n̂ij = 1 between elements ui and uj, with degree ni
and nj, respectively, does not induce a link in the Bonferroni network if

|F | ≥ α|S| (1.13)
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Proof : according to the hypergeometric distribution, we have that

p-value(n̂ij = 1|ni, nj, |S|) > p-value(n̂ij = 1|1, 1, |S|) =
1

|S|
. (1.14)

A link with co-occurrence nij = 1 is included in the Bonferroni network if
p− value(n̂ij = 1|ni, nj, |S|) < α

|F | , which, in light of Eq. 1.14, requires that

α

|F |
>

1

|S|
⇔ |F | < α|S|. (1.15)

Therefore, if |F | ≥ α|S| any link with co-occurrence n̂ij = 1 is not included in
the Bonferroni network.
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Chapter 2

Bipartite complex systems with a
double heterogeneity: a new
measure of similarity

Abstract

Complex bipartite systems are studied in Biology, Physics, Economics, and
Social Sciences, and they can suitably be described as bipartite networks. The
heterogeneity of elements in those systems makes it very difficult to perform a
statistical analysis of similarity starting from empirical data. Though binary
Pearson’s correlation coefficient has proved effective to investigate the similar-
ity structure of some real-world bipartite networks, here we show that both the
usual sample covariance and correlation coefficient are affected by a bias, which
is due to the aforementioned heterogeneity. Such a bias affects real bipartite
systems, and, for example, we report its effects on empirical data from two bi-
partite systems. Therefore, we introduce weighted estimators of covariance and
correlation in bipartite complex systems with a double layer of heterogeneity.
The advantage provided by the weighted estimators is that they are unbiased
and, therefore, better suited to investigate the similarity structure of bipartite
systems with a double layer of heterogeneity. We apply the introduced esti-
mators to two bipartite systems, one social and the other biological. Such an
analysis shows that weighted estimators better reveal emergent properties of
these systems than unweighted ones.

2.1 Introduction and literature review

Bipartite systems consist of two sets of elements in which elements of one set
directly relate to elements of the other set only. Often these systems are de-
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scribed as networks. Complete information about bipartite systems can usually
be incorporated in bipartite networks, however, many studies use the bipartite
structure of the system only to set relationships between the elements of one
of the two sets. For instance, the scientific collaboration network in [149], [150]
can be seen as the projection of the bipartite system of authors and papers,
where co-authored papers are only used to set a relationship between any pair
of authors.

Bipartite networks and their projections are widely used to study complex
systems such as mobile communication [154, 155], criminal activity [182], in-
terbank credit markets [108, 97], investors activity [185], and recommendation
systems for users and objects [127, 67]. A common feature of complex bipartite
systems is heterogeneity, which typically characterizes both sides of the sys-
tem and makes the statistical analysis of the various properties a challenging
task. Here we focus on the heterogeneity of nodes, and, specifically, on the
fact that the distribution of the number of connections of nodes from both
sets, i.e. the degree, is eventually scale-free. This phenomenon is apparent
in all of the systems mentioned above. For instance, in the criminal-crime
bipartite system analysed in [182], there are criminals involved in more than
a thousand events, while most of criminals have been found guilty of only
one crime, as well as there are crimes committed by hundreds of thousands of
people (like crimes against the traffic law in Sweden) and very brutal crimes,
such as omicide of children, which are very rare–a few events over a decade.
Such an heterogeneity of degree in the bipartite network makes it very dif-
ficult to quantify the similarity between two elements of the same set, e.g.,
between two criminals, in order to elicit the similarity of criminal patterns
from historical data series, or between crimes, in order to investigate the asso-
ciation between them, and, eventually, determine the specificities they share.
Another example of a system with such features is the scientific collaboration
network, where there is heterogeneity of authors in terms of the number of
papers they authored, and heterogeneity of papers in terms of the number of
co-authors. Indeed, Newman [150] – to account for such heterogeneity in the
construction of the weighted collaboration network of scientists – weighted a
link between two coauthors by not just counting the number of papers in com-
mon, but weighting each one of such papers inversely according to the number
of co-authors [150]. The heuristic reasoning behind such a choice is that two
scientists participating in a very large collaboration are less likely to know very
well each other than two scientists being the only authors of a specific paper.
In systems as sparse as the collaboration network, the weight introduced by
Newman can be considered as a good measure of the acquaintance between
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scientists, since the probability that two scientists end up authoring the same
paper “by chance" is negligible. However, there are other bipartite systems
where such a probability is not negligible at all. A clear example of such sys-
tems is the one of users and movies of a streaming OTT media provider, such
as Netflix. Suppose that one is interested in measuring the similarity between
two users based on their watching profile over a certain period of time, which is
a key step to develop recommendation systems [127, 67]. The probability that
two users have watched the same n movies just by chance is not negligible, and
it depends on their heterogeneity, i.e., the number of movies each one of them
has watched in the past. This is due to the finite number of movies available to
stream, which is small if compared to number of users in the system. Such an
evidence suggests that a better measure of similarity between users could be
obtained by considering the difference between the number of movies two users
have both watched and the expectation of such a number under an hypothesis
of random selection of movies [127, 67], i.e., a sample covariance. To account
for the heterogeneity of users, that is, their degree, the Pearson’s correlation
coefficient might be used in place of the covariance [67, 102, 41].

However, when one is interested in covariance and correlation coefficients
to estimate the connectivity between two nodes in the projected network, we
show that even Newman’s solution is not sufficient to account for the double
heterogeneity present in complex bipartite systems. In general, the presence of
such heterogeneity of degree may induce a bias in covariance and correlation
coefficient estimates, which, in turn, would make the task of discriminating
information from noise in covariance/correlation matrices even more impervi-
ous [122], [158], [130].

To remove such a bias from covariance and correlation coefficients we in-
troduce weighted estimators that take into account, at once, the heterogeneity
on both sides of a bipartite network. Moreover, we also quantify the improve-
ment of the new estimators compared to unweighted ones and demonstrate
the power of the introduced methodology with applications to two real social
and biological datasets. From a conceptual point of view, the newly proposed
estimators are such that the covariance/correlation between any two given el-
ements in the system depends on all the others, in such a way that adding or
removing even a single element influences the value of the estimator. To prove
the stability of the weighted estimators against such a change in the system,
we ran a robustness analysis and show that the proposed estimators are rather
robust to changes in the system composition up to 30%.

The paper is structured in the following way. Section 2.2.1 discusses the
problem of a bias in the sample covariance and correlation of bipartite sys-
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tems and in Section 2.2.2 we propose a model of the rewiring process which
demonstrates that the expected value of the covariance is different from zero.
In Section 2.2.3 we define the new weighted covariance estimator in the mul-
tivariate case and show that its expected value is indeed null. In Section 2.2.4
we focus on the weighted correlation coefficient and show the improvement it
offers over the unweighted one. Section 2.2.6 introduces the methodology used
to estimate the parameters of the underlying model for the heterogeneity of the
bipartite system. Section 2.3 displays the results of employing the weighted
against the unweighted estimators in two empirical datasets.

2.2 Methods

2.2.1 Sample covariance and correlation in bipartite systems

In bipartite networks elements can be divided in two disjoint, independent sets,
such that only links between the two sets are allowed, see Fig. 2.1.

Figure 2.1: Schematic representation of a bipartite network with N nodes in set A (black), e. g.,
authors, and T nodes in set B (blue), e. g., papers. Links are only possible between
the two sets and are shown in red. A projected network of nodes in set A is obtained
by linking any two nodes in A that share one or more connections to nodes in set B of
the bipartite network.

In the previous section, we discussed the importance of evaluating—within
many applications—the similarity between two nodes, say i and j, which be-
long to one set of a bipartite system, according to their connections to ele-
ments of the other set. Such a similarity measure should have specific prop-
erties, typically depending on the nature of the applications. However, one
desirable feature, which most of the similarity measures share, is that the sim-
ilarity should suitably take into account the heterogeneity of nodes i and j,
i.e., their degree. This is attained in different ways: for instance according to
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Jaccard [110], this is done by taking the number of connections that i and j
share, nij1, divided by the total number of elements in the second set that are
connected to i and j, that is, Ki + Kj − nij

2, where Ki (Kj) is the degree
of node i (j). Another possibility is to consider the difference between the
number nij and the expected value of nij, E(nnij

), according to a simple urn
model. Here it is assumed that node i and node j independently and ran-
domly select Ki, and Kj nodes, respectively, from the second set, the urn with
T labeled marbles, without restitution. According to such a simple model, nij
follows the Hypergeometric distribution (see for instance [183]), and therefore
E(nij) = KiKj/T . In summary, the similarity between node i and j can be
evaluated as nij − KiKj/T , and the method to attain this result is pretty
similar to the one that brought Newman and Girvan to introduce and oper-
ationalize the contribution to “modularity” [151] of a community of nodes as
the difference between number of links observed in that community and the
expected number of links in the same community under an hypothesis of ran-
dom connectivity that preserves the degree of each node. Therefore, typically,
measures of similarity, such as those described above, make use of the observed
value of nij and rescale and/or shift it according to a model in which the degree
of each node is assumed as a constraint, or, in other words, as a conditioning
quantity. Similarity nij − KiKj/T can be interpreted, apart from a scaling
constant, as a sample covariance, as discussed in the next paragraph, and it
explicitly and suitably takes into account the heterogeneity of degree of the
set of nodes i and j belong to, through the quantities Ki and Kj. However,
such a measure totally disregards the heterogeneity of nodes belonging to the
second set, and, as shown below, this absence of consideration determines a
bias in the similarity.
Let’s suppose we measure the sample covariance between two elements i and j
in set A of a bipartite system, as the scalar product between the binary vectors
vi and vj. A component vi,h (vj,h), with h ∈ [1, ..., T ], of vector vi (vj) is equal
to 1 if element i (j) is linked to node h in set B, and 0 otherwise. Therefore,
the sample covariance estimator between two binary vectors can be written
as [67]:

ˆcov(i, j) =
1

T
(vi · vj)−

1

T 2

(
T∑
h=1

vi,h

)(
T∑
h=1

vj,h

)
=

1

T

(
n̂ij −

KiKj

T

)
, (2.1)

the hat is henceforth used to denote an estimator. In Eq.(2.1) n̂ij is the
1 nij is the size of the intersection between the sets of first-neighbors of nodes i and j.
2Ki +Kj − nij is the size of the union of the sets of first-neighbors of nodes i and j.
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observed number of links in common between the pair of elements i and j, of
degree Ki =

∑T
h=1 vi,h and Kj =

∑T
h=1 vj,h. Degrees are parameters which are

kept fixed throughout. For example, looking at Fig. 2.1, we have for the pair
of nodes 4 and 5 in set A, of degree, respectively, K4 = 4 and K5 = 3, binary
vectors v4 = {1, 1, 0, 1, 1, 0} and v5 = {1, 0, 0, 1, 1, 0}, number of common links
n45 = 3, a covariance of ˆcov45 = 1

6
(3− 2) = 1/6.

From Eq.(2.1), the sample correlation coefficient estimator between two
binary vectors becomes:

ρ̂ij =
ˆcov(i, j)

σ̂i σ̂j
=

n̂ij − KiKj

T√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) , (2.2)

where σ̂i and σ̂j are standard deviation estimators of vector vi and vj,

σ̂i =

√
Ki

T

(
1− Ki

T

)
, σ̂j =

√
Kj

T

(
1− Kj

T

)
. (2.3)

An evaluation of the accuracy of an estimator, the covariance and correla-
tion coefficient in the present case, represents a crucial aspect to assess the
performance of the estimator itself. However, evaluating the accuracy of an
estimator requires that the true value of the estimated quantity is known. In
this study, the heterogeneity of both sets of nodes in the bipartite system is a
feature that shall be considered in the assessment of estimators’ accuracy, as
heterogeneity represents a key feature of most real world (bipartite) complex
systems. As far as we know, there is no way to simulate a bipartite network
with a double heterogeneity and controlled connectivity of nodes. Therefore
we started from real data describing a bipartite network, with both layers of
heterogeneity, and performed a random rewiring of the network, in such a way
to destroy any association between nodes’ connectivity [46]. In this way the
expected covariance between two nodes connectivity patterns is zero. Basi-
cally, one step in the rewiring procedure consists of randomly sampling a pair
of links in the bipartite network, involving two nodes on each side, and a swap
of the target nodes of the link in set B, if the latter newly formed links are
not already present in the system. For example, from Fig. 2.1, one randomly
selects the pair of links 4− II and 6− IV and swaps the target nodes in set B
to obtain two new links 4− IV and 6− II, since neither 4 nor 6 were already
linked, respectively, to IV and II. To randomize the network, one needs to
perform a great number of swaps, stopping when the overlapping between the
original and rewired networks, evaluated with an appropriate measure, stabi-
lizes around a minimum value (see Section 2.2.6 for details). However, when
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considering a randomly rewired bipartite network, we note that resulting co-
variance and correlation matrices still display a residual structure as detailed
in section 7.1. The residual structure still present in matrices appears to de-
pend on the degree distributions of both sets of nodes, that is, on the intrinsic
double heterogeneity of the system. Thus, the sample covariance and correla-
tion estimators reported in Eq. 2.1 and 2.2, respectively, appear to be biased
in such systems, and the bias won’t be uniform. Such a bias is evaluated and
interpreted through a biased urn model in the next section.

2.2.2 Expected value of the covariance and correlation under a
biased urn model: the Wallenius’ non-central hypergeometric
distribution

Here, we propose a model which approximately describes the statistical prop-
erties of the outcome of a random rewiring procedure. The model we propose
is a simplification of the problem which, nonetheless, allows us to exactly pre-
serve the degree distribution on one side of the bipartite network, and to keep
the degree distribution on average on the other side. The underlying idea
is to model the random rewiring as a sampling from a biased urn, followed
by a sampling from an unbiased urn, both without replacement (to preserve
degrees).

Our aim is to show the origin of the bias in the covariance and correlation
coefficient in Eqs. (2.1) and (2.2) of the randomized network, by calculating
their expected values and showing that they are different from zero.

To show the presence of a bias we describe a simplified situation, where
nodes in set B only have either a high degree, which we’ll formalize as a heavy
weight w2, or a low degree w1 (a "light" weight). If we now look at how
random links form between a node i in set A and a number Ki of nodes in set
B, such a process can be modeled as a sampling of exactly Ki marbles (node’s
i degree), from the total of T marbles in set B. The crucial hypothesis is
that we assume that marbles have two different probabilities of being selected.
Specifically,mmarbles have a probability to be sampled proportional to weight
w2 (heavy), whereas the remaining T − m marbles have a probability to be
sampled proportional to w1 (light), and we define the weight ratio as w =

w2/w1 > 1. The weight models the heterogeneity in set B. We’ll focus on
Eq.(2.1), and show that the expected value of cov(i, j) is, in general, different
from zero, if w > 1.

In this model, each node i in set A samples a total of Ki marbles, of which
kwi are heavy and the remaining Ki − kwi are light. In a biased urn problem
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without replacement, a single variable w is sufficient to describe the system,
with the stochastic variable kwi ∈ [max(0, Ki − T + m),min(Ki,m)] following
the Wallenius non-central hypergeometric distribution [190].

If all marbles are distinguishable, for example labeled, we now ask ourselves
what would be the intersection nij between the marbles sampled by two differ-
ent nodes, i and j, in A. The expected number of sampled objects E[nij|kwi , kwj ]

in common between i and j will be the sum of the expected number of heavy
marbles in common, nwij, and the expected number of light ones in common,
n1
ij,

E[nij|kwi , kwj ] = E[nwij|kwi , kwj ] + E[n1
ij|kwi , kwj ]. (2.4)

The underlying probability distribution, since each weight-group is now ho-
mogeneous, is the Hypergeometric distribution. Specifically, the probability
that both nodes sampled exactly nwij heavy marbles in common, out of the m
available ones, is given by P (nwij; k

w
i , k

w
j ,m). Similarly, the corresponding prob-

ability for the n1
ij light marbles in common is P (n1

ij;Ki− kwi , Kj − kwj , T −m).
Since the sampling processes are independent, variables nwij and n1

ij are inde-
pendent as well, so that the joint probability distribution is just the product of
the previous two. The expected numbers of common heavy and light marbles
can be easily calculated,

E[nwij|kwi , kwj ] =
kwi k

w
j

m
and E[n1

ij|kwi , kwj ] =
(Ki − kwi )(Kj − kwj )

T −m
, (2.5)

thus the expected number of marbles in common between i and j turns out to
be:

E[nij] =
∑
kwi ,k

w
j

(
E[nwij|kwi , kwj ] + E[n1

ij|kwi , kwj ]
)
W (kwi )W (kwj ) =

µi µj
m

+
(Ki − µi)(Kj − µj)

T −m
,

(2.6)
where µi (µj) is the expected value of kwi (kwj ) calculated with the Wallenius
distribution PMF W (kwi ) (W (kwj )).

Unfortunately, no exact formula for the mean of the Wallenius distribution is
known [190], however, the approximate solution of the following equation is
reasonably accurate [131]:

µi
m

+

(
1− Ki − µi

T −m

)w
= 1. (2.7)

Finally, by calculating the Taylor series up to second order of E[nij] in Eq.(2.6)
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near w = 1 and due to the linearity of operator expectation E, the expected
value of the covariance can be approximated by:

E[cov(i, j)] =
E[nij]

T
− KiKj

T 2
'

' m(T −m)

T 2
[(1− Ki

T
) ln(1− Ki

T
)][(1− Kj

T
) ln(1− Kj

T
)](w − 1)2

(2.8)

For a graphical representation of the dependency of E[cov(i, j)] on Ki, Kj

see Fig.2.2.

Figure 2.2: Left panel: plot of f(x) = (1 − x) ln(1 − x) for x ∈ [0, 1], the function is strictly
negative and displays a minimum in xm = 1 − 1/e ' 0.632. Right panel: 3D plot of
f(x, y) = (1 − x) ln(1 − x) · (1 − y) ln(1 − y) for x, y ∈ [0, 1], the function is strictly
positive and shows a maximum in {xM , yM} = {1− 1/e, 1− 1/e}.

The expected value of the correlation coefficient in Eq.(2.2) can be calcu-
lated from Eq.(2.8) dividing by the standard deviations, which depend only
on fixed parameters:

E[ρij ] '
m(T −m)

T

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

)(1−
Ki

T

)
ln

(
1−

Ki

T

)(
1−

Kj

T

)
ln

(
1−

Kj

T

)
(w − 1)2. (2.9)

From Eq.(2.8) and Eq.(2.9) it’s easy to see how the expected value of both the
covariance and the correlation coefficient depends on i’s and j’s degrees, Ki

and Kj, as well as on w, which is the ratio of w2 to w1 (here representing the
heterogeneity of the other set, B, in the bipartite system). Thus, we’ve shown
there exists a bias due to the interplay between both sets’ heterogeneity in a
bipartite system. In the next section, we introduce estimators of covariance and
correlation coefficient, whose expected value is zero in any randomly rewired
network, that is, they are bias free.

2.2.3 Multivariate weighted covariance estimator

In the most general case, we’re dealing with n < T groups, each containing
m = {m1,m2, ...,mn} marbles of weight w = {w1, w2, ..., wn}. Each node i
samples kqi marbles out of group q, for a total of marbles equal to its own
degree Ki. Our aim here is to show that the bias in the expected value of the
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covariance can be completely removed by opportunely weighing the original
binary vectors. Thus, re-normalizing the vectors leads to the definition of a
new covariance estimator, ˆcov(i, j)w, which possesses the desirable property
that its expected value is zero.

Specifically, focusing on node i, a component q of vector vw
i is now set equal

to 1/f(wq, Ki) if i randomly sampled a marble out of group q and 0 otherwise.
We can then reorder each user’s weighted vector vw

i as follows:

vw
i =

{
δ1

f(w1, Ki)
, ...,

δm1

f(w1, Ki)
,

δm1+1

f(w2, Ki)
, ...,

δm1+m2

f(w2, Ki)
, ...,

δT−mn+1

f(wn, Ki)
, ...,

δT
f(wn, Ki)

}
,

where each δs is either 1 or 0, and the following constraints hold,

m1∑
s=1

δs = k1
i , · · · ,

T∑
s=T−mn+1

δs = kni ;
T∑
s=1

δs =
n∑
q=1

kqi = Ki;
n∑
q=1

mq = T.

Having thus re-normilized the original vectors by the weight functions f(wq, Ki),
we can now define the weighted covariance estimator as:

ˆcov(i, j)w =
1

T

n∑
q=1

n̂q
ij

f(wq ,Ki)f(wq ,Kj)
−

1

T 2

 n∑
q=1

kqi
f(wq ,Ki)

 n∑
q=1

kqj

f(wq ,Kj)

 , (2.10)

where n̂qij is the number of marbles of weight wq in common between i and j.

Working under the multivariate version of the biased urn model introduced
in Section 2.2.2, we’re now in the position to calculate the expected value of
the weighted covariance. Under the Hypergeometric distribution hypothesis,
see Eq.(2.6) we have that,

E[nqij|k1
i , ...k

n
i , k

1
j , ...k

n
j ] =

kqi k
q
j

mq

, (2.11)

so that the expected value of the weighted covariance in Eq.(2.10) can be
written as:

E[cov(i, j)w] =
1

T

n∑
q=1

 E[kqi ]

f(wq ,Ki)

 E[kqj ]

mq f(wq ,Kj)
−

1

T

n∑
p=1

E[kpj ]

f(wp,Kj)

 (2.12)

From Eq.(2.12), we can define the group of weight functions {f(w1, Kj), ..., f(wn, Kj)}
as those which zero the expected value of the weighted covariance, that is, the
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solutions of the following system of equations:

E[k1j ]

m1 f(w1,Kj)
−

1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

E[k2j ]

m2 f(w2,Kj)
−

1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

...

E[knj ]

mn f(wn,Kj)
−

1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0.

(2.13)

System (2.13) is indeterminate and can be solved after assigning an arbi-
trary value to one of the weight functions, for example f(w1, Kj). Then all the
other weight functions can be written relative to f(w1, Kj):

f(wq ,Kj)

f(w1,Kj)
=
m1

mq

E[kqj ]

E[k1j ]
, with q ∈ [2, n]. (2.14)

Thus, by defining the weight functions {f(w1, kj), ..., f(wn, kj)} with Eq.(2.14),
it’s guaranteed that the expected value of the weighted covariance estimator
in Eq.(2.10) is zero.

In the multivariate case, the Wallenius distribution PDF for the vector of
variables kj = {k1

j , k
2
j , ..., k

n
j }, with weight vector w = {w1, w2, ..., wn} and

number of marbles per weight group m = {m1,m2, ...,mn}, takes the form:

W (kj;m,w) =
n∏

q=1

(mq

kqj

)∫ 1

0

n∏
q=1

(1− twq/D)
k
q
j dt, (2.15)

where D = w · (m − kj) =
∑n

q=1wq(mq − kqj ). The group means µq = E[kqj ]

with q ∈ [1, n] satisfy the system of equations [40]:(
1−

µ1

m1

)1/w1

=

(
1−

µ2

m2

)1/w2

= ... =

(
1−

µn

mn

)1/wn

, (2.16)

with the constraint
∑n

q=1 µq = Kj. From this constraint and Eq.(2.14), we
can write each group mean µq in terms of the weight functions,

µq

mq
=

Kj f(wq ,Kj)∑n
p=1mp f(wp,Kj)

, (2.17)

and inserting Eq.(2.17) in Eq.(2.16), we find a set of equations for the weight
functions: (

1−
kj f(w1, kj)∑n

p=1mp f(wp, kj)

)1/w1

= ... =

(
1−

kj f(wn, kj)∑n
p=1mp f(wp, kj)

)1/wn

. (2.18)

System (2.18) provides a way to directly calculate the weight functions,
without having to compute the group means first.

2.2.4 Multivariate weighted correlation estimator

In this section, we write down the weighted estimator for the correlation coef-
ficient and quantitatively show the improvement it offers over the unweighted
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one.

From Eq.(2.12) it’s straightforward to define the weighted correlation coef-
ficient estimator as the Pearson correlation coefficient of the weighted vectors:
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(2.19)

Unfortunately, from Eq.(2.19) one realizes immediately that having E[cov(i, j)w] =

0 is not a sufficient condition for E[ρwij ] = 0, since variables {ki,kj} now appear
in the denominator as well. However, we can approximate E[ρwij ] by its Taylor
series near w = 1 and show that its value is less than the Taylor series of
E[ρij].

2.2.5 Comparison of correlation coefficients near w=1

We now proceed to show the improvement of the weighted estimator over the
unweighted one, by comparing the Taylor series of their expected values. Out
of simplicity, we show our results in the bivariate case, with n = 2 groups and
w = w2/w1. The Taylor series of E[ρij] near w = 1 was calculated in Section
2.2.2, Eq.(2.9).

We now calculate the Taylor series of E[ρwij], starting from the expected
value of ρwij given kwi , kwj , which can be calculated from Eq.(2.19) when n = 2:

E[ρwij |kwi , kwj ] =

[
(T −m) kwi −mf(w,Ki)(Ki − kwi )

]
mT σw

i f(w,Ki)

[
(T −m) kwj −mf(w,Kj)(Kj − kwj )

]
(T −m)T σw

j f(w,Kj)
. (2.20)

From Eq.(2.20), remembering that the Wallenius distribution in w = 1 be-
comes the Hypergeometric distribution, we can calculate the zero order term
in the Taylor series, which turns out to be null. To calculate the first and
second order terms, we define the function:

F (kwi , k
w
j , w) = E[ρwij|kwi , kwj ] ·W (kwi ) ·W (kwj ),

which, summed over all possible values of {kwi , kwj } gives E[ρwij]. Thus, we can
calculate the derivatives as follows,

dE[ρwij ]

dw

∣∣∣∣∣
w=1

=
∑
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i ,kw

j

[
d

dw
E[ρwij |kwi , kwj ]W (kwi )W (kwj )

]
w=1

=
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j

dF (kwi , k
w
j , w)

dw

∣∣∣∣∣
w=1

, (2.21)

by exploiting the advantage of first evaluating the derivatives of F (xi, xj, w)

near w = 1, and then summing over the variables. The first non-null term is
the second order one, so that the expected value of the weighted correlation
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coefficient near w = 1 is:

E[ρwij] '
m(T −m)

T
√
Ki(1− Ki

T
)Kj(1− Kj

T
)
(1− Ki

T
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T
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· (1− Kj

T
)[h(T ) − h(T−Kj) + (1− 1
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) ln(1− Kj

T
)](w − 1)2,

(2.22)

where h(n) =
∑n

k=1 1/k is the n-th harmonic number, that is, the sum of
the reciprocals of the first n natural numbers.

A graphic comparison between the unweighted estimator in Eq.(2.9) and the
weighted estimator in Eq.(2.22) is shown in Fig 2.3, where the improvement
of the latter is clear.

Figure 2.3: Plot of the expected value of the unweighted correlation coefficient (left) against the
weighted one (right) as a function of ki and kj . Parameters are: T = 104 = 2m, where
m is the number of marbles in either group, according to the bivariate biased urn model,
w = w2

w1
= 2, while ki and kj can vary between 1 and 95% of the number of marbles in

the urn (T ), that is, we let ki and kj to span a range large enough to describe sparse,
as well as dense networks. Both correlation estimates assume the same value of 0.0001
when ki = kj = 1. Notice that the vertical scales are different in the left and right plots.

Finally, to quantify the improvement offered by the weighted estimator over
the unweighted one, we use the asymptotic expansion of the harmonic number,

h(T ) − h(T−Ki)
' − ln

(
1−

Ki

T

)
−

1

2T

(
Ki/T

1−Ki/T

)
, (2.23)

valid when T →∞ and T >> Ki.
Within the former asymptotic limit, we have that the ratio of the expected

value of the weighted correlation coefficient to the unweighted one, near w = 1,
is

E[ρwij]
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Thus, when T >> Ki, Kj, which occurs, for instance, when the bipartite
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network is sparse, we find that the expected value of the weighted correlation
estimator is 1/KiKj times the expected value of the unweighted one.

2.2.6 Wallenius’ distribution: weight-groups and odds-ratio esti-
mation

In the previous section, unbiased weighted estimators for the covariance and
correlation coefficient have been introduced, which can be calculated by modi-
fying the original 0/1 incidence matrix on the basis of the degree distributions
of both sets nodes in the bipartite network. That is done, in practice, by
dividing the 1’s of the matrix by the weight function f(wq, kj) if user j has
drawn a marble belonging to weight-group q.
Now, since f(wq, kj) depends on both the expected number of marbles (ac-
cording to a Wallenius’ experiment) drawn by a user with degree kj and the
weight wq, a problem of estimation arises. In fact, once we collect the data,
the composition of the “urn” (marble set) must be characterized, that is, the
number and dimension of groups m and the weights must be estimated.

The only information we have about the marbles is given by their degree,
that is the number of users they are linked to. So, on the basis of that, we need
to put together marbles which are as similar as possible. The most intuitive
and easy choice would be to assume that the odds-ratios w are exactly equal to
the degree of set B in the bipartite system. For example, in a bipartite system
of parliament members and private initiatives (see next section for details), the
weight of an initiative could be set equal to the number of members who signed
it. Such a rough estimate has the benefit of automatically defining the weight-
groups vector m, by grouping together all the initiatives which have the same
weight, with the simple idea of just dividing the original vectors vi (vj) by the
weight w defined by set B’s heterogeneity, as inspired by Newman [150], which
shall henceforth be referred to as Newman’s estimator. Basically, Newman’s
estimator may work well when one is dealing with datasets with low hetero-
geneity, so that the noise can be modeled as a multinomial distribution, but
it becomes dramatically biased as heterogeneity on both sides of the system
grows, as is typically the case in many complex systems. In truth, the esti-
mation of the odds-ratios in a Wallenius distribution with different sampling
processes, that is, a different number of total marbles sampled by each user,
is not straightforward and has not been investigated in the literature.

A very simple and effective method in this case is given by the K-Means
algorithm, which, starting with some initial centers values, iteratively assigns
each marble to the closest mean, until no marble is moved any more [95]. The
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problem about the K-Means algorithm is its deterministic nature, indeed the
number of clusters to find must be given a priori by the researcher. However, it
turns out that the classification performed by K-Means corresponds with the
one performed by the maximum likelihood approach assuming that data come
from a Gaussian Mixture Model (GMM), with clusters distributed normally
with same variances. Via an Expectation Maximization (EM) algorithm it is
possible to maximize the likelihood of the mixture model and compute the
usual BIC statistics, which allows one to find the optimal number of weight-
groups [75]. Once the number of weight-groups and their dimension are avail-
able, it’s quite straightforward to estimate the odds-ratios parameter vector w
of the Wallenius distribution, according to Eq.(2.16), as:

wi
q =

ln
(
1− kiq/mq

)
ln (1− kin/mn)

. (2.25)

The estimation of groups can be performed by using the function WGroupsEst,
while the function WeightsEst is used to estimate the odds-ratios given the
groups (both functions are available in the R package WestC, which is avail-
able upon request to the authors). From Eq.(2.25) it’s possible to reconstruct
each weight by averaging over all the users and keeping in mind that, in a
multivariate Wallenius distribution, the odds-ratios are distributed according
to a log-normal:

〈wq〉 = exp
(〈

ln
(
wi

q

)〉
i

)
(2.26)

The odds-ratios estimates obtained from Eq.(2.26) get more and more accu-
rate as the number of users and marbles grows. Obviously, when going from
Eq.(2.25) to Eq.(2.26), one needs first to remove all the values of wiq that are
either 0, 1 or infinite.

2.3 Empirical Analysis

In this section, we employ the weighted covariance and correlation estimators
we developed, against the unweighted ones, with the aim of showing how the
new estimators outperform the others in 1) revealing no community structure
in randomly rewired networks and 2) highlighting community structure in two
real networks. As a matter of fact, in order to calculate the weighted covariance
and correlation, we simply derive the weight functions as shown in section
2.2.3 and use them to weigh users’ vectors, over which we then compute the
covariance and correlation coefficients. The first step will be identifying the
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weight-groups and estimating their corresponding odds-ratios.

2.3.1 Data

The datasets taken into consideration are two, one pertains to the social
sciences and the other one to the biological sciences. The social database [159]
consists of 1,808 private initiatives submitted between 2011 and 2014 by 201
members of the Finnish parliament, along with information on who signed each
initiative. Data cover an entire parliament of the duration of four years. The
resulting bipartite system displays Members of Parliament (MP) on one side
and initiatives they signed on the other. Info on MP include their party and
district of election. Parties in Finland are:Kristillisdemokraatit - Christian
Democrats (KD), Keskusta - Centre Party (KESK), Kokoomus - National
Coalition Party (KOK), Perussuomalaiset - Finns Party (PS), Ruotsalainen
kansanpuolue - Swedish People’s Party (RKP), Sosialidemokraattinen puolue
- Social Democratic Party (SDP), Vasemmistoliitto - Left Alliance (VAS) and
Vihreä liitto - Green League (VIHR). Electoral districts are 15.

The biological data comes from the Clusters of Ortholous Group (COG)
database3, which stands for Clusters of Orthologous Groups of proteins, from
the sequenced genomes of prokaryotes and unicellular eukaryotes. The database
consists of 4,873 COGs present in 66 genomes of unicellular organisms, be-
longing to 3 broad macro-groups: Archaea, Bacteria or Eukaryota. The corre-
sponding bipartite system consists of organisms on one side and COGs present
in their genome on the other. Organisms belong to 12 different phyla: Acti-
nobacteria (Act), Archaea of type Crenarchaeota (ArC) and Euryarchaeota
(ArE), Cyanobacteria (Cya), Eukariota (Euk), Gram-negative Proteobacteria
of type α (Gr-a), β (Gr-b), ε (Gr-e), γ (Gr-g), Gram-positive bacteria (Gr+),
Hyperthermophilic bacteria (HyT) and other bacteria (Oth). This database
has been widely studied, see for example [178] and [179].

Table 2.1 shows that both datasets present a high degree of heterogeneity
in both sides of the bipartite system, which is at the origin of the bias observed
with usual sample correlation and covariance estimators. However, such a high
degree of heterogeneity is frequently found in bipartite systems.

3 Available at http://www.ncbi.nlm.nih.gov/COG
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Data
Finnish parliament COG

T 1,808 4,873
wm − wM 2-150 3-66

N 201 66
Km −KM 2-793 362-2,243

nL 28,568 83,675
Table 2.1: T is the number of initiatives/COGs; wm−wM is their heterogeneity, that is, the range

(min-max) of degree distributions; N is the number of MP/organisms; Km −KM is the
range (min-max) of their degree distributions; nL is the number of links in the bipartite
network.

2.4 Empirical evidence about the performance of the weighted

estimators

2.4.1 Real and randomly rewired bipartite networks: a comparison
of estimators

If we want to assess how the heterogeneity of nodes affects the correlation
matrix computed according to Eq.(2.2), one of the approaches used in the lit-
erature [46] is the rewiring of the bipartite network, since it keeps constant the
degree of each node, and generates a network where the expected correlation
between two nodes, based on their connectivity patterns, is zero. The rewiring
algorithm samples randomly a pair of MP/organisms according to a probabil-
ity distribution equal to their degree distribution, then samples randomly two
initiatives/COGs out of those already linked to the first sampled pair, again
according to the degree distribution of initiatives/COGs. Then, if neither in
the pair is already linked to the other’s sampled initiative/COG, the two links
are swapped, otherwise the swap is rejected. Such an algorithm performs a
random rewiring of the entire bipartite system, preserving both sides degree
distributions. To efficiently rewire large bipartite networks a Monte Carlo
procedure known as the switching-algorithm (SA) [109] can be used. This
algorithm can be performed by using the function Rewiring of our R package.

We can now compare the weighted estimators against the unweighted ones,
over both datasets. The first result, as shown in Fig. 2.4, is that the weighted
covariance estimator completely destroys the structure still present in the un-
weighted covariance matrix of the rewired network. This feature translates
also to the weighted/unweighted correlation coefficients in Fig. 2.5, although
the expected value of the weighted correlation estimator is only approximately
zero. In Fig. 2.5, we show how the weighed correlation outperforms the
unweighted correlation in randomly rewired networks. Indeed, according to
Fig.2.5, the weighted correlation does not indicate the presence of any structure
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Figure 2.4: Covariance matrices of MP (top-row) and organisms (bottom-row) after random rewiring
of the original bipartite network, calculated without weighing the vectors (left) and
weighing them (right). MP/organisms are ordered by increasing degree with respect to
columns and by decreasing degree with respect to rows. The Color Key scale is identical
in all figures.

in the system, whereas the unweighted one does. Furthermore, Fig.2.6 shows
that the weighed correlation better highlights the cluster-structure present in
the real system. Indeed, the weighted correlation matrix better identifies the
clusters in the original COGs bipartite system (bottom row), by encompassing
a broader scale of values, displayed within the matrix in violet (negative cor-
relations), zero (red), orange (low), yellow (average) and green (high) against
the unweighted matrix which only features the positive correlations, making
it harder to distinguish sub-clusters. Indeed the right weighted matrix shows
sub-clustering corresponding to organisms’ phyla. For example, it neatly dis-
criminates Archaea (red and orange in the left color-bar), Eukariota (Salmon)
and Bacteria (all the rest), by also grouping together Gram-negative bacteria
(shades of green), Gram-positive bacteria (blue), Hyperthermophilic bacteria
(violet), Actinobacteria (pink) and Cyanobacteria (cyan).

Concerning the Finnish parliament dataset (term 2011-2014), results re-
ported in top-row panels of Fig. 2.6 show how the weighing destroys the
cluster of party KESK, implying that this cluster is more due to the hetero-
geneity and consequent bias in the unweighted correlation estimator than to
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Figure 2.5: Correlation matrices of MP (top-row) and organisms (bottom-row) after random
rewiring of the original bipartite network, calculated without weighing the vectors (left)
and weighing them (right). MP/organisms are ordered by increasing degree with re-
spect to columns and by decreasing degree with respect to rows. The Color Key scale
is identical in all figures.

a real collaboration between MP, while, at the same time, weighing preserves
the cluster of party PS. This finding is in agreement with the general trend ob-
served in [159], where the evolution of this network over 4 Finnish parliament
terms is studied. In fact, during previous terms, MP collaborated by district
and by party both, with party being more characterizing in the opposition and
district sub-clustering within the government. If we look at the unweighted
matrix, it appears that not only the two opposition parties strongly cluster
and display a negative correlation with each other, but also the government
splits in two right-wing left-wing sub-clusters. Such a change from the previous
terms was attributed to the sudden rise in numbers of the populist party PS.
From the weighted matrix instead we can see that the situation is more in line
with previous terms, with district subclustering reappearing.

2.4.2 Weight-groups and Odds-ratios Estimation

In this subsection our proposed estimation method will be applied to a sim-
ulation study as well as to the real datasets discussed before to show the im-
provement it brings over the unweighted and Newman covariance/correlation
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Figure 2.6: Unweighted (left) against weighted (right) correlation matrices of MP (top) and organ-
isms (bottom), ordered by hierarchical clustering with average linkage performed on
each matrix [10]. The left-side bar is colored according to party (left legend) or phylum
(right legend), the top bar is colored according to districts (right legend). Diagonals
have been colored white. The Color Key scale is identical in all figures.

estimates. The setting of the simulation is as follows: we define set A hetero-
geneity, by fixing vi’s degree for every i, we consider five groups of marbles
of equal size, and set the odds-ratios as w = {15, 10, 5, 2.7, 1}, since all the
weights can be normalized in terms of any of the other weights, in this case
normalizing with respect to the lightest weight-group. We ran an exploratory
simulation with m = {500, 500, 500, 500, 500}, encompassing the whole spec-
trum of values of Ki, from 10 to 1990 in steps of 30 for a total of 83 users.
With these initial parameters, the simulation runs a random sampling from a
biased urn with odds-ratios w, one user at a time. Then, all of the marbles
sampled by each user are labeled randomly from 1 to the total of 2,500 mar-
bles, so that the corresponding user’s profile binary vector can be constructed.
Finally, the incidence matrix is built from all the profile vectors, after taking
care of having removed any marble labels which were never sampled by any
user (which usually doesn’t happen if the number of users is not too low and
their heterogeneity is not too poor).

Having thus constructed our synthetic database, we can easily calculate
Newman’s covariance and correlation estimators by simply dividing every row
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of the matrix by its corresponding weight, which is just the number of users
who sampled it, and then computing the unweighted estimators on the result-
ing matrix.
For what concerns our newly proposed weighted estimators, in order to cal-
culate the weight functions f(wh, Ki) one needs to estimate both the weight-
groups m and the odds-ratios w from the synthetic dataset. In Fig. 2.7 we
report the results of the exploratory simulation, by showing the plot with the
estimated partition of marbles, the BIC curve with points starting from two
clusters (so that BICmin=19,717.7; therefore 5 is the optimal number of groups
to choose), the plot of both covariance and correlation estimators calculated
with Newman’s weight and with our weighted estimators as a function of users’
degree: KiKj/T

2, ∀i, j > i.
From the simulations we ran, it’s quite clear that the weighted estimators

perform better than Newman’s ones in terms of accuracy (Fig. 2.7). In fact,
the latter ones are still affected by a bias growing as user’s degree increases.
In Fig. 2.8, we compare the estimators in terms of their precision. The results
indicate that precision of all the three estimators is comparable in spite of the
degree. In conclusion, the weighted estimator turns out to be more accurate
than the other estimators, especially when high values of degree are consid-
ered, and all the estimators show a similar precision. The performed analysis
suggests that, while there are many other ways in which one can attempt
to identify the weight-groups in empirical datasets when they are unknown
a priori, our approach, which is quite simple, works well enough to provide
estimates of the parameters that allow the introduced weighted estimators of
covariance and correlation to outperform the other considered estimators.

In Fig. 2.9 and 2.10 we show the above described method to identify groups
and relative odds-ratios for the rewired matrices of the Finnish parliament and
COGs databases. The parameters we obtained from the algorithm are sum-
marized in Table 2.2.
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Figure 2.7: Exploratory simulation, top row shows the estimation process of the number and di-
mension of groups, mid row shows the plot of Newman’s covariance (left) and weighted
covariance (right) as a function of KiKj/T

2 and the bottom row shows the same plot
of Newman’s correlation and weighted one.

Figure 2.8: Standard deviations of covariances (left) and correlations (right) for the Pearson, New-
man and weighted estimators. Standard deviations are calculated over non overlapping
moving windows of the support (ki kj/T ), each one including 500 points.
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Figure 2.9: Finnish parliament rewired data, top row shows the groups estimation process, mid
row shows the plot of Newman’s covariance (left) and weighted covariance (right) as a
function of KiKj/T

2 and the bottom row shows the same plot of Newman’s correlation
and weighted one.
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Figure 2.10: COGs rewired data, top row shows the groups estimation process, mid row shows
the plot of Newman’s covariance (left) and weighted covariance (right) as a function
of KiKj/T

2 and the bottom row shows the same plot of Newman’s correlation and
weighted one.
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Parameters from the algorithm

Exploratory simulation

N.groups 5
BIC 19,717.7
m̂ 537 476 520 470 497
ŵ 12.4 8.4 4.6 2.5 1

Finnish Parliament 11-14 data

N.groups 4
BIC 14,082.9
m̂ 33 417 388 970
ŵ 38.12 5.98 2.21 1

COGs data

N.groups 4
BIC 35,502.8
m̂ 470 603 1094 2706
ŵ 28.98 10.95 4.16 1

Table 2.2: Parameters obtained by running the algorithms implemented by the R package WestC.
The algorithm first estimates the number of groups via GMM likelihood approach and
then calculates the best partition according to the k-means algorithm, from which the
weight-groups vectorm is obtained (this can be performed by the functionWGroupsEst),
while the corresponding odds-ratios vector w is calculated according to Eq.2.26 (function
WeightsEst). The estimates are sorted according to a decreasing weight, with the lighter
fixed to 1.
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2.4.3 Unbiased weighted estimators in a community detection frame-
work

We have also compared the proposed estimators as applied to a more com-
plicated, yet controlled, synthetic system. Specifically, we have considered the
actual marginals observed in the Finnish parliament dataset, i.e., the degree
(number of signers) of initiatives and the degree (number of signed initiatives)
of parliament members, in such a way to be assured that a double heterogene-
ity is included in the model. We have then randomly sorted out parliament
members in three non overlapping groups, G1 and G2 including 60 MP each,
and G3 with the remaining 81 MP. Each one of the 1808 initiatives has been
randomly labeled according to four categories, in order to mimic, in the sim-
ulation, the presence of first signers, i.e., proposers, and the group(s) they
belong to. Specifically, 482 initiatives have been assumed to be proposed by
a member of group G1 and labeled P1, 514 initiatives proposed by a member
of G2 and labeled P2, 542 proposed by a member of G3 and labeled P3, and,
finally, 270 initiatives proposed by one member of G2 and one member of G3

and labeled P4. Then the simulation consisted in randomly selecting, inde-
pendently for each initiative, the list of signers in the following way. For each
initiative m with label Pi and degree k, k MP have been randomly selected,
without restitution, from the list of the 201 MP with probability proportional
to the degree of MP times a weighting factor only depending on the label Pi
of the initiative, that is, the group(s) the proposer belongs to. Specifically,
if i = 1, 2, or 3 then the degree of members of the group(s) Gi (i=1,..,3) has
been multiplied by a factor wi, whereas the degree of the other MP remained
the same, and, if i = 4, then the degree of members of both G2 and G3 has
been multiplied by a factor w4. Weights used in the simulation are w1 = 5,
w2 = 2, w3 = 2, and w4 = 3. Weights w1, w2, and w3 are used to increase the
probability that MP belonging to the same group co-sign initiatives proposed
by a member of their group, while weight w4 plays a double role: on the one
hand it increases the probability of intra-group co-signing for groups G2 and
G3, on the other hand it introduces a mixing factor between these groups,
since it also increases the probability that a member of G2 and a member of
G3 co-sign the same initiative. According to the way in which simulation has
been performed, empirical values of the degree of initiatives are exactly pre-
served in the synthetic realization, whereas the empirical degree of each MP
is preserved only on average, that is, the expected value of the degree of each
MP in the simulation corresponds to the one empirically observed. At least
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to our knowledge, the expected value of connectivity covariance or correlation
between any two MP is unknown for this model.

Once a simulated network has been obtained, we prove here that the in-
formation carried by the introduced weighted estimator turns out to be useful
when performing community detection, for instance, by applying deterministic
algorithms, such as the k-means, but also methods based on generative model
estimation, such as the Stochastic Block Model (SBM) [105].
With respect to a large majority of community detection techniques, SBM has
the advantage of explicitly stating the underlying assumptions of the model,
which improves the interpretability of results. Since the introduction of the
SBM [105], a lot of improvements have been subsequently made to basic SBM
scheme, in order to make it more versatile by increasing the number of model
parameters. Prominent examples are the degree-corrected SBM [117], which
takes into account the heterogeneity of vertex degrees within the same commu-
nities, the biSBM for analyzing bipartite networks [123], and the hierarchical
SBM (hSBM) [156] to overcome the so-called “resolution limit” problem of
community size, that is, the fact that well-defined small clusters were not de-
tectable when dealing with very large networks. In general, for the SBM model
specification, the number of groups can be given independently, otherwise users
are required to resort to heuristics, or more complicated inference approaches
based on the computation of the model evidence, which are not only numeri-
cally expensive, but can only be done under onerous approximations.

There is a subtle difference between SBM and the estimation of similarity
patterns between nodes of a network. On the one hand, the main objective
of SBMs estimation is addressing community detection problems. Its estima-
tion is performed through the inference of parameters of a given specification
of the model, obtaining values of parameters as the ones that best explain
the observed network (Maximum likelihood). On the other hand, the method
proposed in this paper is not based on the estimation of parameters of a genera-
tive model, but rather, on the opportune modification of the original incidence
matrix. This can be easily done by estimating the strategic weight functions
f(w, k) that allow the purification of the covariance/correlation matrix from
the presence of the spurious correlations due to the heterogeneity of both sets
of a bipartite network. From an operative point of view this approach is sim-
ilar to the Newman’s one in that both act directly on the binary vectors of
the original incidence matrix. The weighted covariance/correlation estimators
turn out to be a good instrument to highlight similarity patterns between the
objects of a bipartite network, similarity patterns that eventually are useful in
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a community detection framework.
Therefore, we first performed the Louvain’s clustering algorithm [27], which

is based on the maximization of the weighted modularity function, to estimate
the optimal number of communities in the projection of the synthetic bipar-
tite network discussed above. In particular, we applied it to three different
weighted projected networks, in order to make a direct comparison between
the clustering algorithm performances depending on the kind of weights con-
sidered in the projected network. Specifically, links of the projection of our
synthetic network were weighted according to Pearson’s, Newman’s, and our
weighted correlation coefficients. Since weights have to be positive, the se-
quence w′ = (w−wmin)/(wmax−wmin) was considered to allow weights to vary
within the interval [0, 1]. While the optimal number of groups detected using
the network with weights according to Pearson is two, and the optimal one
using the network with weights according to Newman’s approach is four—thus
underestimating and overestimating the number of groups, respectively—the
network weighted according to our weights leads the algorithm to correctly un-
cover the three groups of objects. With respect to other clustering algorithms
we used, the k-means algorithm with 3 groups proved to have the best class
predictive power. Therefore, here we report the results obtained by using the
k-means algorithm with three groups to compare the three weighting methods
when used as classifiers. The confusion matrix associated with each estimator
has been calculated, as well as the corresponding multivariate Matthews Cor-
relation Coefficient (MCC) [83], which has been used as an overall measure
of performance of the classifiers. The confusion matrices obtained for each
correlation estimator are:

C(biased urn) =

55 5 0

0 54 6

0 45 36

 ; C(Newman) =

55 4 1

2 29 29

2 20 59

 ; C(Pearson) =

56 4 0

0 31 29

2 29 52

 ,

where, each row corresponds to the original classification of MP in the synthetic
network and each column to the classification elicited from the simulated net-
work. The matrices show that all of the estimators easily allow to separate MP
belonging to group G1 from the others, while distinguishing between groups G2

and G3 is more difficult due to the mixing weight w4 used in the simulation.
The three class Matthews correlation coefficients associated with the confu-
sion matrices above are MCC(biasedurn) = 0.63, MCC(Newman) = 0.56,
MCC(Pearson) = 0.53.
We also wanted to investigate the possibility that our weighting method might
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prove useful in the SBM framework. Therefore the degree-corrected hierarchi-
cal SBM (DC-hSBM) was applied to our synthetic network, in the following
two settings:

1. the unweighted bipartite network, represented by the original 0/1 inci-
dence matrix;

2. the weighted bipartite network, where links are weighted according to the
components of vector vw

i (functions of f(wj, Ks)), which depend on both
the degree of subject s and the weight-group of marble j.

By maximizing the models’ posterior distribution, it is possible to estimate the
optimal number of groups of objects, given the graph and the other parameters
of the model.

In case (i), the upper three hierarchical levels of the estimated DC-hSBM
highlighted respectively 5, 2 and 1 clusters, meaning that, according to DC-
hSBM, the number of estimated groups of MP closest to the one used to
generate the synthetic network was two. On the contrary, when case (ii) is
considered, the hierarchical levels of the model unveiled respectively 16, 3 and
1 clusters, suggesting how the introduction of our weights helps the model
to reveal the true underlying structural properties of the analysed bipartite
network, that is, 3 groups of MP. To further improve the classification provided
by DC-hSBM as applied to case (ii), which corresponds to a value of MCC
equal to 0.47, we used the optimal number of groups revealed by DC-hSBM,
i.e. 3 groups, as a prior information for the estimation of the degree-corrected
bipartite SBM [123], leading to a very high level of accuracy in the prediction
of membership of MP. Indeed, the confusion matrix of the classification for
the DC-biSBM is:

C[biSBM(3 groups)] =

60 0 0

0 53 7

1 7 73

 ,

The Matthews correlation coefficient associated with this confusion matrix is
0.91, that is far higher than the ones obtained using the k-means clustering
algorithm. Although we are aware that this is just a preliminary analysis, it
suggests that the biased urn model might be usefully integrated with SBM.
However, an in depth analysis of that is out of the scope of the present paper
and is left for future work.
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2.4.4 Robustness analysis

Since the proposed weighted estimator depends on the heterogeneity of both
sets of elements in a bipartite network, if we sample a subset of elements from
the group of interest (MP/organisms), then the degree of elements on the
other set (initiatives/COGs) decreases as well and, as a result, the weighted
correlations may change for the sampled elements in the set of interest. In
other words, the correlation coefficient between two elements would potentially
depend on the composition of the subset, and therefore a robustness analysis is
in order, to show how the weighted estimator holds up when subsetting data.
We ran 1,000 independent random samplings of 90%, 80% and 70% MP/ or-
ganisms from the randomly rewired network, and calculated the Frobenius
distance between (i) pairs of weighted correlation matrices (by considering
only elements included in both samplings), (ii) weighted correlation matrices
and the identity matrix (which corresponds to the noiseless null-model) and
(iii) unweighted correlation matrices and the identity matrix [106]. In order
to compare matrices of different dimensions, we renormalized each distance by√
n(n− 1), where n is the size of the pair of matrices over which the distance

is calculated.
According to Fig. 2.11, the variability of the distribution of distances in-

creases as the percentage of sampled elements decreases, while their expected
value remains the same.

The distribution of the Frobenius distances between the weighted correla-
tion matrices and the identity matrix is the first one from the left in each
panel, while the the distribution of the Frobenius distances between the un-
weighted correlation matrices and the identity matrix is at right side of each
panel. Furthermore, the distribution of distances between weighted correla-
tion matrices is always in between the other two distributions. These results
indicate a larger accuracy of the weighted estimator.

2.5 Conclusions

Elements’ heterogeneity is a common feature of many real-world bipartite
systems, and we have provided evidence of biasing in the binary covariance and
correlation estimators when applied to bipartite systems with a high degree
of heterogeneity on both sides. Such a bias becomes apparent when looking
at the correlation and covariance matrices of a randomly rewired network,
which is supposed to be completely randomized, whereas both the unweighted
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Figure 2.11: Robustness analysis performed on the weighted correlation coefficient between MP
(top) and between organisms (bottom) in the rewired network. We display in violet
the distribution of Frobenius distances between weighted correlation matrices, in yellow
the distribution of weighted-Identity distances, in green the distribution of unweighted-
Identity distances.

correlation and covariance matrices turn out to be structured instead.

To explain the former structure and devise an unbiased estimator, we devel-
oped a simple theoretical model of the rewiring process, as a sampling without
replacement from a biased urn. Such a model is an approximation of the
randomly rewired network, in the sense that the degrees of the set we are
projecting on is exactly preserved in the model, like in the randomly rewired
network, while the degrees of the other set of nodes is only preserved on aver-
age, while it is exactly preserved in the randomly rewired network. According
to the biased urn model, two users randomly and independently pick a number
of marbles equal to their degree, the underlying distribution being, therefore,
the Wallenius non-central hypergeometric distribution. One can then calcu-
late the expected value of random co-occurrence within each weight-category,
that is the number of marbles with the same label randomly sampled by two
users, by using the standard hypergeometric distribution. The model predicts
a second order correction to the expected value of the unweighted sample co-
variance, which depends on both users degree and quadratically on the weight,
when w ' 1.
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The starting point to construct the unbiased estimator lies on the idea of
including weighs in the binary vectors, in order to remove the bias. Weights are
chosen in such a way as to satisfy the requirement of zeroing the expected value
of the covariance in the purely random case. By doing so, we automatically end
up with a new estimator of covariance whose expectation value is zero under
random rewiring, thus being unbiased. By using the same weighting functions
used to estimate the covariance, the expected value of the correlation keeps
showing a second order bias in w. However, such a bias is much smaller than
the one in the unweighted estimator: it is 1/(KiKj) times the unweighted
one, where Ki and Kj are the degrees of the considered users. Furthermore,
from a more practical point of view, we’ve shown that such an improvement in
the correlation estimator de facto zeroes the expected value of the correlation
coefficient under rewiring as well, at least for a broad range of users’ degrees,
in both real-world examples analysed in the paper.

Finally, the introduced covariance and correlation estimators perform bet-
ter than the unweighted ones at grasping the clustered structure of the real
bipartite networks considered in the paper. Specifically, they better capture
aggregation by phyla in the COGs dataset and better discriminate between
real and noise-induced clusters of members of the Parliament in the Finnish
dataset of initiatives.

We have also assessed how similarity patterns described by the proposed
weighted correlation coefficients can be very helpful in a community detection
framework. We proved it in the specific case where the observed bipartite net-
work presented a hierarchical cluster structure and double heterogeneity.

Of course, we rely on the fact that the improvement brought by our method-
ology can have a positive impact in other real situations as well - for example -
referring to the machine learning algorithms for online recommendation which
currently uses the simple unweighted correlation coefficients to find patterns
of similarity in the data.
In conclusion, our paper serves both as a warning to other researchers when
using binary correlation and covariance to investigate bipartite systems with
a high heterogeneity on both sides, and as a solution to the problem, in that
we propose weighted estimators, which get rid of the bias problem.

The R package named WestC has been implemented, with functions that,
among others, give the user the possibility to calculate bias free correlations
and covariances in bipartite systems, and which is available upon request to
the authors.
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Chapter 3

Emergent phenomena in bipartite
complex networks: detection of
fraudsters’ communities and
motifs in the Italian insurance
sector

Abstract

Fraud is a social phenomenon and fraudsters often act in collaboration with
players having different roles. Supervised methods, although they add value to
the analysis, show two main drawbacks: first, their calibration is based on a
set of known frauds that are very difficult to obtain, and that are a very small
sample with respect to the total claims. Second, they miss a peculiar feature of
frauds in motor insurance, i.e., the existence of “criminal infrastructures”.

We develop an investigation system based on the application of bipartite
networks to highlight the relationships between subjects and accidents or ve-
hicles and accidents. Starting from the dense complex network, we construct
statistically validated networks to prune connections that do not show statisti-
cal anomaly if compared to the random case. We formalize the filtering rules
through probability models and test specific methods to assess the existence of
communities for very large networks and propose new alert metrics of suspi-
cious structures. We apply the methodology to a real database—the Antifraud
Integrated Archive (AIA)—and compare results to out-of-sample fraud scams
assessed by the judicial authorities.
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3.1 Introduction

Information and communication technologies allow storing big mole of data in
very efficient, and cost effective, data warehouses. This is also possible by con-
solidating and integrating data with different levels of heterogeneity and variety
of sources, including social media, email, archives and documents. In the car
insurance industry, accident claims are an example of heterogeneous and multi-
dimensional data as they include—not being exhaustive—coded identity of all
the subjects directly involved in an accident, such as, drivers, passengers, car
owners, witnesses, and pedestrians; professionals, such as, doctors, lawyers, car
repairs, as well as details about injuries, fatalities, requested amount, property
damage, place and time of the accident, and all about the vehicles involved.

Such a variety and volume of data can be properly exploited through large-
scale techniques, integrating ad-hoc mathematical models and fast algorithms
in a context where powerful computers can process enormous amounts of data
in tiny time frames. A specific field that can take advantage of such tech-
niques is the detection of organized insurance frauds. The aim is to enhance
the predictive power of analytical tools by bringing to the surface the hidden
interconnections between subjects and events. Indeed, such interactions are
usually buried under noisy or spurious relationships and only by means of tar-
geted strategies and appropriate technologies we will be able to dig out the
signal content.

The extension of the fraud phenomenon in insurance varies between coun-
tries and depends on how the product classifies: life, health, motor and benefit.
Experts1 admit that “across Europe, 10% of all claim euros paid out are con-
sidered fraudulent with 21% to 36% of claims potentially possessing elements
of fraud.” In their annual report—UK Insurance & Long Term Savings Key
Facts—the Association of British Insurer dedicates a section to the fraud phe-
nomenon and they allege that “fraudulent motor claims were the most common,
with over 68,000 cases in 2016” and they are valued up to £780m, which is 60%
of the total volume of detected cases of attempted claims fraud in 2016 [180].
The phenomenon is very wide and it goes from one side of the spectrum where
opportunists invent or exaggerate a claim, to the other extreme where highly
organized criminal gangs set up sophisticated motor fraud scams. To this pur-
pose, in 2012 ABI launched the Insurance Fraud Register (IFR) to convey all
data on known fraudsters in a single database, and also equipped it with a
comprehensive package of analytics used to provide insurance intelligence.

1 http://www.interfima.org/publications/insurance-fraud-expert-insights-may-2015-part/.

http://www.interfima.org/publications/insurance-fraud-expert-insights-may-2015-part/
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Along the same line, in 2012 the Italian Parliament passed a bill2 to entrust
the IVASS3—the Institute for the Supervision of Insurance—with the task to
“fight against fraud in the motor liability insurance sector by analyzing and
evaluating the information obtained from the claims data bank”, by also giving
IVASS the responsibility to manage the AIA an industry-wide database where
insurance companies are compelled to upload a detailed description of all the
claims for motor policies. Unlike IFR, AIA is a database collecting information
about the many actors involved in an car accident: from the drivers to the
subjects injured (if any) also including lawyers, medical examiners, insurance
repairers, witnesses, amount claimed, vehicles and many other aspects. In
this respect, AIA can be considered a “data lake” [196]. It is a comprehensive
and exhaustive register of the claims issued from 2012, where, however, no
explicit information about fraudsters is given, and any conclusion must be
drawn relying on statistical analysis and specific analytical tools. Since 2011,
IVASS developed a set of alerts to signal its stakeholders unusual levels of some
indicators (e.g., number of accidents of a driver, number of involved injuries,
claimed amount). Usually, such indicators are binary, measuring the presence
or absence of a specific claim characteristic, and an alert is triggered when they
trespass a given thresholds based on recurrences and cross-checks criteria.

The scientific literature offers a rich set of statistical tools to identify in-
surance fraud patterns. They can be partitioned in two wide classes whose
main distinctive feature is if they make use of training sets from the fraud
and the non-fraud groups (supervised methods), or they rely on “unlabelled”
data where account of frauds, together with their covariates, are not available
(unsupervised methods). Both approaches have pros and cons, and there is no
“fit-for-all” method. (See, [54, 189] for a review and [22, 36, 37, 26] for model
specifications and implementations.)

As observed, fraud is a social phenomenon and fraudsters often act in col-
laboration with players having different roles. Supervised methods, although
they add value to the analysis, show two main drawbacks: first, their calibra-
tion is based on a set of known frauds that are very difficult to obtain, and that
are a very small sample with respect to the total claims. Second, they miss
a peculiar feature of frauds in motor insurance, i.e., the existence of “criminal
infrastructures” that also encompass the professional profiles operating in this
field. Network models have been proved to be a successful methodology to
identify social phenomena. In particular, networks methods are suitable to
disentangle complex patterns and obtain hidden signals from large and noisy

2 Decree-Law No 179/2012, article 21, converted to Law 221/2012.
3 Istituto per la Vigilanza sulle Assicurazioni, http://www.ivass.it.

http://www.ivass.it
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set of data ([148] e [60]).
In the vehicle insurance context, many software companies offer products

implementing social network analysis to extract fraudsters patterns from data
lakes. Nevertheless, scientific literature is lacking of a formal and rigorous
discussion on the subject matter. To the best of our knowledge, the sole ar-
ticle interlacing graph theory and insurance fraud is by [176], who describe a
decision support system, to unveil odd network structures in motor insurance
claims. Their approach draws from two basic characteristics of the fraudulent
behaviour: (i) the “collaborative nature” of fraudsters, involving many different
actors, and (ii) the continuous innovation in fraud mechanisms that necessi-
tates a flexible approach, so that “unlabelled relationships” can emerge as soon
as they are committed.A major drawback of [176]’s system is the limited size of
data samples it can handle. Indeed, [176] build networks upon police records.
That is very restrictive since most of the claims do not go through police in-
vestigation activities. When only data lakes are available—as in our case—the
structures of the suspicious have to first be validated by means of a “filtering”
stage, in order that only statistically significant relationships are kept.

The main contribution of our paper is threefold. First, we start by building
bipartite networks to highlight the relationships between subjects and acci-
dents or vehicles and accidents. This is a general approach that allows to
include the whole spectrum of actors around a claim: from the drivers to the
legal professionals. The dense networks obtained has to be filtered out to prune
those connections that score a low likelihood level with respect to random
chance. In this respect, only structures with very strong ties will appear, thus
signalling potential group of fraudsters. Clearly, we are aware that a statistical
anomaly cannot be considered a guilty sentence. But, such an information is
vital for investigating units as it strongly reduces the—virtually—uncountable
number of structures, and, therefore, the cost and the time to liquidate honest
claimants.

Second, we formalize the filtering rules through probability models and we
will also test specific methods to assess the existence of communities for very
large networks and propose new alert metrics of suspicious structures.

Third, we apply the above methodology to a real database—the AIA—and
compare results to out-of-sample fraud scams assessed by the judicial author-
ities. We carry over longitudinal analyses from 2011 to the present to assess
possible persistence phenomena of suspicious relationships, and cross-section
analyses to collect insights about the spatial structures of frauds throughout
the entire Italian territory.
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3.1.1 Main challenges: heterogeneity, non-stationarity, localization
effects and community detection

The whole methodology is tailored to deal with a very large mole of data.
Indeed, AIA is a fully-fledged data lake containing detailed information about
all of the accidents occurred in Italy since 2011, with overall 15M accidents,
20M subjects, and 13M vehicles. The database AIA is a truly, fully-fledged,
data lake gathering dozens of tables and millions of records of disparate types
(see subsection 3.2.1 for a more precise description). The complexity of AIA
requires specific analytical tools to extract the fraudulent patterns and poses
challenges that need to be addressed through an advanced multi-level system.
We list below the main challenges we identified in preliminary discussions with
IVASS’s fraud analysts, and that we faced in analyzing AIA during the project
development:

Challenge I Curse of dimensionality. The complexity of AIA arises from the
combination of two dimensions: to one extent, the variegate forms of its
data that carries the information related to each claim; to the other extent,
the massive size of records that could undermine—or make impossible—to
apply methods that proved to be effective for small–medium size samples.
Community detection is one such example (see subparagraph 3.3.3).

Challenge II Identification and frequency of frauds. Labelling as fraudulent
a claim is not an easy matter. The investigation units of the insurance
companies usually adopt regression models based on a set of indicators
sensitive to the detection of fraud and whose output is the probability that
a given instance contains elements of fraud. Not all the claims deemed
as “suspected” are then prosecuted. In general, the decision to open an
in-depth investigation depends on the cost of the claim settlement. Once
triggers activate an inquiry, negotiations also start. The possible result is
that an agreement is reached and the case is closed, or that the claimant
withdraws his complaint, or that the case is taken to the Court. The
only information available to IVASS (but not included in AIA) are the
claim withdrawals. Their number, however, is very small compared to the
whole AIA and they cannot really assumed to be frauds. Even smaller
is the number of frauds assessed by the Court. The acquisition of such
information is not systematic because legal authorities have no obligation
to inform IVASS.

Challenge III Heterogeneity. The database AIA is populated with informa-
tion about all the actors involved in the “accident/claim chain”: from the
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claimant to the insurance adjuster; from the witness to the lawyer; from
the injured to the physician. In principle, no subject or professional can
be excluded a priori from the scam investigation4. The main consequence
is that subjects with very few connections (a witness, or an injured) will
“live with” others highly connected (lawyers or car repairers). The chal-
lenge here is that any statistical model used to test for anomalies has to
account for such a heterogeneity to avoid that actors with few connections
will be deemed as not statistically significant.

Challenge IV Time and space localization. The data contained in AIA in-
cludes claims in the time span between 2011 and 2016, and it covers all the
accidents occurred within the Italian territory. Any probabilistic model
or data mining approach working with the whole database will run into a
serious issue: a small “perturbation” (the statistical anomaly) in the calm
of the “sea of noise” (the null hypothesis) will be readily highlighted, even
though it is just a “ripple” and not a “tsunami”. Out of metaphor, two
lawyers exercising their activity in the same city could interact in a sig-
nificant number of accidents, if compared to the whole accidents in Italy.
On the contrary, if we restrict to the number of accidents occurred in
the nearby of the city, such a relation might lose its anomalous charac-
ter. Similar examples can be found for the temporal extent. Note that,
focusing the investigation on ex-ante spatial or temporal sub-samples of
AIA is not a viable solution, since network of fraudsters, although they
have a restricted temporal or spatial perimeter, cannot be confined to ad-
ministrative boundaries, or limited to artificial temporal segments (years,
semesters, etc.). Returning to the lawyers example, without any spatial
restriction, we run the risk that lots of relationships, like that described,
are signalled as anomalies, whereas to a lower scale (region, city, etc.)
would be considered as normal ones.

Challenge V Homophily. “Similarity breeds connections” [135], this is in syn-
thesis an outline of the concept of homophily. In crimes related to frauds,
homophily plays a relevant role as frauds require a rather high degree of
cooperation, coordination, and, therefore, trust among the fraudsters. If
not friends, they should be at least acquaintances, which suggests that,
unless an external factor destroys the relationship, the same fraudsters
are likely to be involved in several frauds together over time.

4 In reality, subjects with a specific role in the same insurance company are excluded in advance. For
example, the lawyer and the car repairers of the same company is very unlikely that they participate to a
fraud together.
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3.2 Data

3.2.1 The IVASS Integrated Antifraud Archive

The Antifraud Integrated Archive (AIA) is the result of the integration of
several databases, managed by both public and private bodies. In fact, the
main source is given by the claims database. In addition, AIA gets information
from six external databases: vehicle register; driver license register; insurance
coverage database, black box files; insurance expert list; public vehicle regis-
ter. Among other information, insurance companies are compelled to upload
in real time detailed descriptions of all the claims for motor policies reported
to insurance undertakings. It collects and organizes information about the
many actors involved in a car accident: from the drivers to the subjects in-
jured (if any) also including lawyers, medical examiners, insurance repairers,
witnesses, amount claimed, vehicles and any other person or company directly
or indirectly involved in the accidents. In this respect, AIA can be considered
a “data lake” [196]. It is a comprehensive register of the claims issued since
2011, where, however, no explicit information about fraudsters and frauds is
provided. Therefore, suspected frauds and fraudsters must be detected on the
basis of a statistical analysis of data and the application of specifically devised
software. Since 2011, IVASS developed a set of alerts to signal its stakeholders
and prosecutors accidents with anomalous levels of some indicators. Usually,
such indicators are simply binary variables, denoting the presence/absence of a
specific characteristic of the claim. The weighted combination of two or more
binary variables are used as an alert, which is triggered when they trespass
given thresholds. To give an idea of its size, AIA recorded 16,050,689 accidents
and 21,574,410 people at the end of January 2018, and it is quickly increas-
ing. Indeed, the corresponding amounts are 18,592,317 (increase of 15.8%),
and 23,943,787 (increase of 10.9%), respectively, at the end of February 2019.
AIA represents a complex set of interrelations between subjects and between
vehicles, which turn out to be connected whenever they are involved in one or
more car accidents together. A way to filter all these random interrelations
out of the network, is our main objective.

Such a filtering procedure must properly take into account the heterogene-
ity of subjects. Indeed, the graphs reported in figure 3.1 indicate that, while
accidents show a limited heterogeneity with respect to the number of subjects
involved (130 at most), the heterogeneity of subjects is extreme, with a few
subjects (companies, of course) involved in more than 100,000 accidents over a
period of six years. Therefore, at difference with systems that display a double
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Figure 3.1: Survival function of the degree distributions of subjects (left) and accidents (right) in a
log-log scale.

source of heterogeneity ([184, 160]), only the heterogeneity of subjects really
matters here, and must be taken into account when filtering the network, in
order to detect anomalous patterns. Unlike the bipartite network subjects -
accidents, the network vehicles - accidents shows a lower source of heterogene-
ity on both sets.
An appropriate white list for the network was constructed, adding subject IDs
(for example referring to the army, the police, the government as a legal en-
tity) to the subject IDs that formed the initial AIA white list. This step is
necessary since a lot of professionals had a very high degree in the network,
being connected to many accidents just for their normal professional activity
and not because of fraudulence.

3.3 Methods

3.3.1 ISAAC: an investigation system for Antifraud activity in the
motor insurance sector

ISAAC (Investigation System for Antifraud ACtivity) is a system to investi-
gate the existence of networks of fraudsters in the motor claims sector. Investi-
gation System for Antifraud ACtivity (ISAAC) faces issues raised by IVASS’s
fraud experts and who are responsible for the maintenance and management
of AIA, a database collecting any car accident claim that occurs in the Italian
soil. One of the IVASS’s mission is to return to its stakeholders (the insur-
ance companies) analysis of the fraud phenomenon and alerts about potential
criminal networks. In principle, IVASS benefits of a privileged position since
AIA encompasses the whole insurance claims in the motor market, and it is
not limited to the perspective of a single company.
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3.3.2 The subject-accident bipartite network

The implementation of ISAAC starts with the construction of a preliminary
SVN of subjects. This is done by projecting the subjects-accidents bipartite
network with respect to the set of subjects and then perform a statistical test
for each link of the resulting projected network of subjects. As described in
paragraph 1.2.2 of chapter 1, for each pair of subjects we test the hypothesis
of randomness of co-occurrences (accidents they have in common), considering
the hypergeometric null distribution of eq. 1.6 and adjusting the statistical
significance level according to the Bonferroni correction for allowing multiple
comparisons (described in paragraph 1.2.3). Obviously, due to the huge di-
mension of the SVN, it is practically impossible to view it all. Rather, smaller
parts of it can be viewed. As an example, Figure 3.2 shows a connected com-
ponent belonging to the SVN of subjects.

Figure 3.2: A connected component of the SVN of subjects.

Notice that attention must be paid to the effects that time and geo-localization
of accidents may have on the rate of false positive links, i.e. links formed
by subjects who did not behave in a fraudulent manner and that are classi-
fied as potential fraudsters. This aspect is apparent, for instance, when two
professionals work in the same restricted area. They could show a lot of co-
occurrences due not to fraudulent activity, but just because they operate in
the same area, therefore having a high probability of being involved in the
same accidents together in a certain time window. To overcome this problem,
we introduce a Robustness score (R-score) Rij, computed for each validated
link. Given the pair of subjects i and j,

Rij = log10 T − log10m
∗
ij (3.1)
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Figure 3.3: Example of computation of the R-score (left) and its distribution (right).

where T is the total number of accidents in the system regardless of the place
of occurrence, and m∗ij is the minimum value of T such that link between
subjects i and j is statistically validated. Fig.3.3 shows the rationale behind
the computation of the R-score.

The lowerm∗ij, i.e. the higher Rij, the more robust the link between subjects
i and j will be. Once the R-score has been assigned to every link in the SVN,
decision about whether they must be discarded or not comes after a community
detection procedure.

3.3.3 Community detection

Community detection is a fundamental step in the analysis of the AIA
database, and in particular of the SVN, in order to highlight organized groups
of suspected fraudsters. Community detection in large networks, such as the
present one, is challenging due to the intrinsic nature of the problem. Qual-
itatively speaking, a community in a network is a list of nodes (subjects in
our case) more closely connected among them than to the others. Despite the
simplicity of such a qualitative definition, community detection is challenging
from several points of view. First of all, it is necessary to introduce a suit-
able utility function, which should incorporate the properties of the network,
e.g., directionality of links, weights, quality of nodes, etc.. The most popular
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and adaptive utility function for community detection is modularity, which,
in its basic form, has been introduced by [78]. The modularity of a parti-
tion is an additive function of the modularities associated with each specific
community of nodes, and the modularity of a community is calculated as the
difference between the number of links actually observed among community
members and its expected value under the hypothesis of random connectivity
[151]. Therefore, in principle, modularity should be calculated for all the pos-
sible partitions (in any number of communities) of the vertices of a network,
and the optimal partition is the one that corresponds to the maximum value of
the modularity. Community detection is an NP-complete problem, and many
heuristic methods have been devised to provide sub-optimal solutions in poly-
nomial time ([151, 74]). Alternative methods to modularity optimization have
been proposed in the literature, most of them relying upon the idea of a process
running on the network, e.g., a random walk. If one considers a random walk
in which a particle can travel on the network from one node to another only
crossing existing links and randomly selecting the link to cross, it is intuitive
that it should spend more time cruising in a community, which is unknown
yet, than traveling across communities. A popular method of community de-
tection that is based on this idea is the Infomap, which has been proposed by
[165]. It is worth saying that community detection methods based on modu-
larity optimization and methods based on processes running on the network
can bring to rather different partitions of vertices. How to choose the most
appropriate method in real networks? It depends on the nature of the network
and on the information available, if any, about the expected size and structure
of communities. Our polar star in the present analysis is highlighting groups
of potential fraudsters. This objective sets weak boundaries on the size of
communities. Indeed it is unreasonable to envision the existence of organized
groups of fraudsters made of thousands of individuals. On the other hand, it
is useless to focus on very little communities, made of two or three subjects
involved in a little number of accidents, since the cost of performing an ac-
tual investigation of related events could be much higher than the value of the
fraud itself. Therefore our main focus should be on communities made of tens
to hundreds of individuals. A hundred might also appear a large number, how-
ever empirical evidence indicates that groups of fraudsters of such a dimension
actually exist, in connection with organized crime. In our case, modularity
optimization seems to be the most appropriate approach, as our network is es-
sentially a network based on co-occurrence, and no information naturally flows
on it. However, IVASS uses a SAS procedure to perform community detection
relying on modularity optimization, which in turn involves a tuning parameter.
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Figure 3.4: Distribution of community dimension.

We set the value of the tuning parameter as the one that leads to a partition
of nodes as close as possible to that obtained by the infomap algorithm, and
we have used a combination of different heuristics, such as extreme optimiza-
tion ([58]), taboo search, etc., and introduced weak constraints on community
size, as discussed above, as well as time and geographical corrections, when
appropriate.

Community characterization

Characterization of communities is an important task for modeling the ho-
mophily that is showed by subjects through their behaviour. The same ap-
proach used for the validation of links (see Eq.1.10) is now used for associating
each community with one or more over-expressed attributes, which can be re-
ferred to one or more geographic areas (region or province), years of occurrence
of car accidents, and subjects’ roles (in Fig.3.5 we report some examples).
Denoting by N the number of subjects within the network, Nc by the number
of subjects within community c, Np by the number of pedestrians in the net-
work, and Np,c the number of pedestrians who belong to community C, the
probability linked to Np,c is equal to Eq. 1.6, where x = Np,c, Nc = ni, and
Np = nj. To say that an attribute, e.g. pedestrian, is over-expressed for a
certain community c, we apply the hypergeometric test of Eq. 1.10.

If the observed value of Np,c is statistically greater than what we would
observe in a situation of completely uniform distribution of attributes in the
system, then we’ll say that attribute pedestrian is over-expressed, and there-
fore, characterizes community c, that is, if P (N obs

p,c ≥ N0.05
p,c ) < 0.05, then we’ll

say that attribute pedestrian is over-expressed in community c. In the partic-
ular situations where communities have few nodes or where the attribute we
study is rare in the system, the hypergeometric test leads to unreliable results
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Figure 3.5: Example of communities with over-expressed years, provinces and regions.

due to its discrete nature. Therefore, we say that an attribute characterizes a
community when at least 90% of nodes in the community has that attribute.
Example: community c has 3 subjects, all witnesses. The test for the value
of Np,c may not be statistically significant but, since the attribute witness is
the role of 100% of subjects in the community, we will say that the attribute
witness characterizes that community.

R-score at the community level

Once a first detection of communities is completed, we associate each of
these communities with a value of R-score:

Rk = log10 T − log10 n
∗
k (3.2)

where T is the total number of accidents in the system and n∗k the number
of accidents occurred in the place (or places) and in the year (or years) that
characterize community k. We compare the R-score (Rij) of a link between a
generic pair of nodes i and j with the R-score (Rk) computed for the community
they belong to. This comparison provides a way to remove links that are not
very robust compared to other links belonging to the same community in the
SVN. Indeed, remembering that m∗ij is the minimum value of T such that link
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between subjects i and j is statistically validated,

Rk −Rij = log10

T

n∗k
− log10

T

m∗ij
= log10

m∗ij
n∗k

⇒ 10Rk−Rij =
m∗ij
n∗k

(3.3)

On one hand, if m∗ij < n∗k, then Rk − Rij < 0 meaning that the link between
i and j is very robust and should be kept within community k. On the other
hand, if m∗ij > n∗k, then it means that the link between i and j is not validated
when considering a number of accidents that exceed the number of accidents
characterizing community k, therefore being less robust than expected within
the same community. Specifically, we remove the link between nodes i and j
if

Rk −Rij > t∗ ∀i 6= j : {i, j} ∈ community k

The threshold t∗ is fixed to 0.1, that is, whenm∗ij is about 26% greater than n∗k.
The choice of t∗ is made in order for us to be not too restrictive when deleting
links from the SVN. Also, there is no unique way to choose this threshold.
Eventually, this procedure will bring the benefit of reducing potential false
positive links from the SVN, leading to the final SVN. After this step is com-
pleted, the community detection algorithm used before is again performed to
find the new community structure in the SVN, together with the characteri-
zation of its communities.

Bipartite SVN and enlarged SVN

The SVN allows one to spot anomalous relationships between subjects but
it does not give explicit information about the accidents these subjects were
involved in. In fact, accidents may represent our unit of interest in order to
further investigation activity. Starting from the SVN of subjects one can define
the bipartite SVN, linking subjects to the accidents that contributed to the
statistical validation of their relationships. If we also include all the subjects
that were directly involved in the accidents of the bipartite SVN, then we refer
to the enlarged SVN, which leads to an increase of 2 people per person on
average.

3.3.4 The vehicles-accidents network

The approach used for the construction of the SVN of subjects, aimed at the
detection of anomalous relationships between subjects, can be extended to the
study of the bipartite network vehicles-accidents in order to detect anomalous
relationships between vehicles.
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Unlike the SVN of subjects, the SVN of vehicles is much less structured as
in general a vehicle is linked to a limited number of subjects (see Tab. 3.1).
Therefore, community detection and the correction for time-space localization
are not needed in this case and the focus is given to small highly connected
components.

Table 3.1: Dimension of SVN of subjects and SVN of vehicles.

Nodes Links Connected Com-
ponents (CC)

Dimension of the
biggest CC

SVN of subjects 2,016,505 1,919,897 638,878 651,267
SVN of vehicles 112,771 61,311 54,563 12

The information carried by the SVN of the vehicles-accidents network is use-
ful to be integrated with that of the SVN of subjects-accidents network. Its
inclusion in the detection fraud activity will allow to study a complete set
of complementary knowledge of the linkages between subjects, vehicles and
accidents.

3.3.5 Network structure and properties

Relying on the data stored in AIA at the end of February 2019, the number
of communities detected within the SVN reaches 488,362. About the 60.2% of
these communities is made up by only four nodes (two subjects and two acci-
dents), while about 9,767 communities (the highest 2% of all the communities)
has a number of nodes between 26 and 13,778.
In Tab. 3.2 we report the number of communities belonging to each combina-
tion of the macro-groups formed according to the characterization of roles of
subjects and time/space localization.5.
A description of the network community indicators and a descriptive analysis

P NP P -NP P -NP None Overall

# of communities 15,403 112,103 310 300,564 59,982 488,362
# accidents (average) 58.5 2.3 45.3 3 3 4.6
# subjects (average) 6.2 2.1 10.1 2.2 2.3 2.3
# links (average) 123.2 4.7 97.3 6.2 6.2 9.6

Table 3.2: Number of communities and average of nodes, subjects and links, according to com-
munity characterization: professional roles only (P); non-professionals only (NP); both
professionals and non-professionals (P -NP ); only time and/or space attributes (P -NP );
no characterization.

of their conditional distributions according to macro-categories classification
are reported in Tables 3.8 and 3.9 respectively. Communities characterized

5 communities characterized only by time and/or space attributes show a limited variability in the network
indicators, as shown in Tab. 3.2 under column P -NP
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by attributes related to professionals are basically the biggest ones, highly
connected and with more robust links, also showing a higher variability in
the community network indicators. On the other hand, communities that are
characterized only by attributes related to non-professionals, tend to be smaller
and sparser. Communities belonging to the combinations (P-NP and P-NP)
are halfway between the previous extreme cases.

3.3.6 SVN for classification purposes

The objective of this work is to enhance the IVASS antifraud activity with
a very powerful and effective tool, but also simple for usage and interpretation
at the same time. Once the SVN is constructed, the objective is predicting
the degree of statistical anomaly of co-occurrence of future accidents. With
the definition of an integrated indicator of statistical anomaly, we will be able
to give a simple and immediate way to tell insurance undertakings which acci-
dents, subjects and so communities of subjects they should pay closer attention
to. First, since we start from a set of correlated variables describing the as-
pects of size, connectivity and robustness of a community at the network level,
as well as indicators at the individual level of accidents, we perform a PCA to
capture all the core information in the system and make the predictive model
as parsimonious as possible by reducing redundant information from the data.
The number of principal components is chosen based on the Random Ma-
trix Theory (RMT) (see Fig. 3.6), showing that three eigenvalues (and so,
principal components) are actually useful to grasp a statistically significant
proportion of the variance in the system. Second, we use a classification model
to discriminate reported accidents and random ones. Many machine learning
algorithms could be used to deal with binary classification problems, such as
logistic model, Support Vector Machine, binary classification trees etc. We
use the logistic model to estimate the predictive power of the principal compo-
nents. This choice is preferred to other approaches because of its simplicity and
easiness in the interpretation of results. This phase of the analysis exploited
the information of 9,199 accidents, 4,566 of these being accidents reported by
insurance undertakings to IVASS and 4,633 accidents being a random sample
of accidents picked from AIA, sampled based on an opportune stratification
of AIA according to geographical and time localization, which reflects that of
reported accidents.
When estimating the model the fourth principal component is statistically sig-
nificant (but not the fifth) and therefore relevant in discriminating between
random and reported events. This step allows us to associate the estimated
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coefficient with each principal component, and finally, use these coefficients to
build our final indicator.

II = α̂1PC1 + α̂2PC2 + α̂3PC3 + α̂4PC4 (3.4)

where α̂αα = (0.113, 0.213, 0.368,−0.833)′.
Accidents reported by the insurance undertakings tend to have higher values
of the principal components, and so of the integrated indicator (see Fig. 3.7
(right)).
Moreover, for practical reasons, the integrated indicator was used to define four
classes of statistical anomaly, specifically null, low, medium, and high. The
thresholds are chosen based on the percentiles of the distribution of the inte-
grated indicator, and in particular, the 33th percentile, that is approximately
the mode of the distribution, and the 66th percentile, that is approximately the
value for which the Matthews Correlation Coefficient is maximized. Another
aspect that is considered when classifying accidents is whether they belong to
the SVN or not (see Tab. 3.3).

a /∈ SVN a ∈ SVN
X(a) ≤ t33rd null low
t33rd < X(a) < t66th low medium
X(a) ≥ t66th medium high

Table 3.3: Classes of statistical anomaly according to the value of the integrated indicator and to
whether the accident a belongs to the SVN or not.

Figure 3.6: The set of eigenvalues under the random case of no correlation structure in the data
is represented by the black distribution (centered in 1). Red vertical lines are the
eigenvalues of the correlation matrix of the observed standardized data.
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3.3.7 Statistical anomaly of communities

Since any accident can be associated with a level of statistical anomaly,
consequently any community of the SVN can also be associated with a level
of statistical anomaly, based on the anomaly of its accidents: for instance, one
way of associating a community with a “high” statistical anomaly could be
based on whether the community contains a given number of accidents with a
high statistical anomaly, depending on the dimension of the community.

We focus the attention on communities that include at least 4 accidents,
since start detecting very small communities is not convenient in terms of costs
and benefits comparison. Moreover, we say that a community is statistically
highly anomalous when at least the 66.7% of its accidents shows a high score
of the integrated indicator. Also, we take into account for the presence of ac-
cidents that belong to two or more communities. In fact, these accidents show
a higher proportion of accidents with a high score of the integrated indicator,
70% (175,304 out of 250,370) against the 54% characterizing the accidents be-
longing to only one community (1,092,222 out of 2,014,525). Therefore, the
6.1% (29,965 out of 488,362) of communities are associated with a "high" level
of statistical anomaly.

3.3.8 Effectiveness of the method: case studies and out-of-sample
validation

The usual approach to solve this kind of classification problems involves
the quantities shown in Table 3.4. By varying the value of the threshold x0,

Random Reported
X ≤ x0 TN True Negatives FN False Negatives TN+FN Negatives

X > x0 FP False Positives TP True Positives TP+FP Positives

TN + FP Real Negatives TP+FN Real Positives

Table 3.4: Quantities involved in a classification problem; x0 is the generic threshold for the com-
posite indicator X.

the aim is minimizing the number of false positives, as the more they are, the
more the costs for insurance undertakings in terms of time and money will be,
but also false negatives. Measures that give the idea of correct classification
in terms of true positives and true negatives are, respectively, sensitivity as
TP/(TP+FN) and specificity as TN/(TN+FP). Instead, a measure that takes
into account true and false positives and negatives and is generally regarded as
a balanced measure is the Matthew’s correlation coefficient (MCC) introduced
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Figure 3.7: Estimation of the optimal threshold based on MCC maximization (left) and the two
kernel distributions of random and reported sub-samples (right).

by [133].

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.5)

We perform an out-of-sample validation process. Specifically, the initial
dataset was partitioned in two parts such that the 80% (7,359 units) forms
the training set and the remaining 20% (1,840 units) the test set. Also, the
same proportion of reported and random units was maintained while form-
ing the training set. This procedure was iterated 500 times so that the first
two moments of the sampling distributions of the main performance measures
could be studied (see Tab. 3.5).

Using this approach, the integrated indicator is reasonably sensitive, clas-
sifying as fraudulent the 67.7% of true frauds, and specific, classifying as non-
fraudulent the 57.1% of the accidents belonging to the random group of acci-
dents drawn from AIA. It is worthy to note that while frauds are associated
with a hard label, controls are associated with a soft label, since AIA consists
of about the 20% of frauds. Also, the ability of the model to detect frauds
among true frauds is higher than that among the controls, eventually reaching
on average an accuracy of 62.3%

3.3.9 K-fold cross-validation performance of the model

In the previous subsection we described the integrated indicator used by
the IVASS for associating an accident of interest with a score of statistical
anomaly. In this subsection we run logistic regressions through a 5-fold cross-
validation technique, using, this time, the set of original variables. We show
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Performance measure P E[P ] (se[P ])

MCC 0.253 (0.023)
Specificity 0.571 (0.090)
Sensitivity 0.677 (0.087)
Relative Risk 1.601 (0.059)
Accuracy 0.623 (0.012)

Table 3.5: Out-of-sample empirical expected values and standard errors (in parentheses) of main
classification performance measures.

how the introduction of SVN improves the classification performance of the
classifier when compared to the case where, in fact, only the score AIA was
used. In particular, we derive Receiver Operating Characteristic (ROC) curves
for three cases: (1) we consider only the score AIA as explanatory variable; (2)
we consider only network variables and a dummy variable indicating whether
or not the accident belongs to the SVN, and (3) we consider both points
(1) and (2) together. Moreover, for each of the three cases, we trained the
model under both balanced and unbalanced data settings. Results are shown
in Table 3.6, and Figure 3.8 shows the ROC curves. It is worth to note that

Reported vs Random
AUC I - 400 vs 400 II - 400 vs 4,000 III - 400 vs 40,000 IV - 400 vs 400,000

(1) AIA score 0.62 0.62 0.61 0.62
(2) Network 0.86 0.86 0.83 0.83
(3)=(1)+(2) 0.87 0.87 0.85 0.85

Table 3.6: AUC for the balanced and unbalanced cases (ratios reported/random accidents: 1:1,
1:10, 1:100, 1:1000). Results are shown for three cases: (1) score AIA only; (2) network
indicators only; (3) score AIA and Network indicators.

the performance of the model increases thanks to the application of the SVN,
and the AUC increases when considering both the score AIA and community
network indicators as features of the model. Also, the same results hold in the
case of unbalanced data.

Random Reported Random ∈ SVN Reported ∈ SVN Random Reported ∈ SVN
X ≤ x∗ 307 (76.7%) 79 (19.8%) 358 (89.5%) 87 (21.8%) 371 (92.7%) 13 (3.3%)
X > x∗ 93 (23.3%) 321 (80.2%) 42 (10.5%) 313 (78.2%) 29 (7.3%) 387 (96.7%)

Table 3.7: Confusion matrices under the case I-(3) reported by Table 3.6 – comparison between re-
ported accidents and random accidents both belonging to the SVN, and between reported
accidents belonging to the SVN and random accidents from AIA; x∗ is the probability
threshold that maximizes MCC. In parentheses the percentages with respect to column
totals are reported.
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Figure 3.8: From top-left to bottom-right: ROC curves for cases I, II, III, IV, with the specification
of (3) according to Tab. 3.6

3.3.10 Effectiveness of the method: three case studies of detected
communities of fraudsters

A crucial aspect in evaluating the effectiveness of our method concerns the
ability to spot empirical cases of fraudulent organizations that are referred
to IVASS from external sources, assessing the presence of fraudulent people
and accidents in the SVN. This paragraph remarks the positive impact that
our investigation system brings to the fraud detection activity performed by
IVASS. Specifically, we report here three empirical case studies of fraudulent
organizations, that are structurally different in terms of link formation, nature
of nodes, and scale dimension.

The first case study considers the information about three fiscal codes be-
longing to three out of the five components of a family. For this case, the
father, that divorced his wife, was the one claiming to the insurance company
that the wife and one of their children were organizing frauds. We first checked
for their presence in the SVN, and after that, we observed how many car ac-
cidents they were involved in. Consequently, we added all subjects that were
involved in the accidents of the SVN, obtaining the enlarged SVN. Fig. 3.10
shows the fraudulent sub-network with accidents involving at least one of the
family members, which highlights the connections between the mother, the
father, their three sons (one of them being 3 years old), two mother’s relatives
and two professionals, specifically a physician and a technical expert.
It’s important to notice that the method is able to detect fraudulent organiza-
tions acting on very different scale dimensions—small in the latter instance—
and it also manages to integrate information that is not known a priori: two
out of three children and two relatives of the mother were not initially claimed
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by the father to IVASS, while they are spotted in the SVN. Moreover, six out
of seven (85.7%) accidents have been associated by the integrated indicator
with a high level of statistical anomaly (marked in red in the graph), and one
accident with a medium level of statistical anomaly (marked in orange in the
graph).

The second case study consists of a network on a larger scale if compared
to the previous one of family members. It comes from nineteen fiscal codes re-
ported to IVASS by the prosecutor office of an Italian city, and it describes the
fraudulent activity of people belonging to organized criminality (Fig. 3.11).
Also in this case, the integrated indicator manages to associate the majority of
accidents with a high level of statistical anomaly (60% and most of them being
in the deepest and most connected part of the network), a 20% of accidents is
associated with a medium level, and therefore the remaining 20% with a low
level of statistical anomaly. Note that no accident is associated with a null
level of anomaly as long as it belongs to the SVN.

Finally, the third case study consists of a network on an even larger scale
if compared to the previous networks. It’s a network of people and accidents
involving 313 car plates in the context of a legal identity theft reported to
IVASS by the prosecutor office. The number of car accidents and subjects
linked to the 313 plates are 874 and 3,004 respectively in AIA. When we look
at the bipartite SVN, 1,313 of those subjects are involved in 88,672 car acci-
dents, forming a total of 979 communities. One of the subjects (marked with
a bigger black node in Fig. 3.12) is linked to the VAT number of the robbed
company, covering a central position/role in the network. The integrated indi-
cator classifies as highly potential frauds the 42.2% of the accidents, while the
19.4% and 38.2% are classified as having, respectively, a medium and a low
level of statistical anomaly. Therefore, starting with external information
about a set of claimed subjects/accidents/car plates, and despite the relatively
low proportion of subjects and accidents being in the SVN (8.4% and 13.3% of
respectively subjects and accidents that are in the SVN), the method proved to
be able to detect frauds and to integrate them with other useful information.

3.3.11 Life-cycle of communities

We also studied the dynamics of communities of fraudsters. The principled
idea is that any community has to have a starting point, a phase of prolif-
eration, and, when they are discovered, a progressive decline. We analysed
the dynamics of the communities of fraudsters considered in subsection 3.3.10.
Fig. 3.9 shows the time series of the average of the integrated indicator of
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Formula 3.4 over the years for the three communities of fraudsters. The net-
work of family members (black solid line) lasts four years, starting in 2012 and
ending in 2015. It is rather cohesive and every accident has a high level of
statistical anomaly leading to a high average value each year of its existence.
The organized criminality network (red solid line) starts in 2011 and its sta-
tistical anomaly begins to decrease starting from 2014. That’s because in that
year some of the criminals are detected by the legal authorities. Finally, the
legal identity theft network (blue solid line) starts in 2014, and again, after
about three years of activity and proliferation, its anomaly start decreasing
from 2017, when some of the people are detected and stopped.

Figure 3.9: Yearly average values of the integrated indicator for the three case studies. Dashed lines
represents the thresholds separating respectively low-medium, and medium-high classes
of statistical anomaly.

3.3.12 Fraud detection activity from the user-perspective

A dedicated Graphical User Interface (GUI) has been implemented at the
IVASS in order for an analyst to be able to benefit from ISAAC. Specifically,
the enabled user interfacing with the GUI may input the name and surname
or the fiscal code of a subject, or the ID of a car accident, or even a car plate
number to search a vehicle. After entering the requested data, the system will
output the level of statistical anomaly of accidents/subjects/vehicles according
to the value of the integrated indicator, and some descriptive statistics in the
mask can be viewed if the user wants to, as additional information, such as the
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Figure 3.10: Enlarged SVN with accidents involving the reported fraudsters (colored in black).
Rectangular nodes are accidents while circular nodes are subjects. Accidents are in
red if they have been assigned a “high” level of anomaly according to the integrated in-
dicator; accidents are in orange if they have been assigned a “medium” level of anomaly
according to the integrated indicator.

number of people involved in an accident, or the number of accidents linked
to a subject, number of links, clustering coefficient, H-K score, etc. Moreover,
if a subject/accident/vehicle is in the SVN, then the system will plot the
community or communities that contain it, allowing the user to choose between
a projected and a bipartite (enlarged or not) network. Also, the user will be
able, if interested, to view a particular shell of a network rather than all the
network.

3.4 Discussion and conclusions

In this work we developed a novel statistical tool for the detection of frauds
and fraudsters’ communities in Italy. In particular, we used a statistically
validated network approach to analyse AIA, the comprehensive and exhaustive
Antifraud Integrated Archive managed by the IVASS. The method proved
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Figure 3.11: Enlarged SVN with accidents involving the reported fraudsters (colored in black).
Rectangular nodes are accidents while circular nodes are subjects. Accidents are: in
red if they have been assigned a “high” level of anomaly; in orange if they have been
assigned a “medium” level of anomaly; in yellow if the have been assigned a “low” level
of anomaly according to the integrated indicator.
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Figure 3.12: Enlarged SVN with accidents involving the reported car plates. Rectangular nodes are
accidents while circular nodes are subjects. Accidents are: in red if they have been
assigned a “high” level of anomaly; in orange if they have been assigned a “medium”
level of anomaly; in yellow if the have been assigned a “low” level of anomaly according
to the integrated indicator.
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to be very effective in uncovering the anomalous patterns between subjects
in the bipartite complex system subjects-accidents and between vehicles in
the bipartite complex system vehicles-accidents. We construct an integrated
indicator that synthesizes the information at node and system/network level
to define a level of statistical anomaly of car accidents, and so subjects and
vehicles linked to them. Moreover, we showed that the introduction of the
SVN improves the ability of the model to detect frauds with respect to the case
where only the score AIA is considered. Based on the evidence that emerges
from the new tool, IVASS will inform all the competent authorities, police,
prosecutor offices, eventually restraining fraudulent activities and improving
the efficiency of the car insurance market in Italy.

3.5 Future research: triplets tests and recommendation

methods for fraud detection

Triadic closure is a social mechanism that lies on the more fundamental
concept of homophily, is also relevant for frauds [A. Rapoport, Bulletin of
Mathematical Biophysics 15(4), 523-533 (1953)]. Indeed, triadic closure repre-
sents a simple mechanism through which fraudsters may learn to collaborate
with each other. Let’s suppose that fraudster A cooperates, separately, with
fraudster B, and fraudster C, and nonetheless, B and C don’t even know each
other. Triadic closure suggests that the presence of A as a common associate
provides the opportunity (that B and C come to know each other), the trust
(due to the common trust in A) and the incentive (A may want to perpetrate
a fraud with both B and C together) to the possibility that B and C become
associates (in frauds). Therefore, as a future research advancement the pres-
ence of a series of frauds in which the same subjects appear and the presence
of triplets and triangles of cooperation should both be taken into account to
spot potential frauds among car accidents.

Moreover, fraud detection activity can be perceived as a recommendation
system task. In principle, it is possible to suggest or associate any accident
with a list of other accidents based on their similarities. There are many al-
gorithms that allow to construct recommendation lists, which are based on
similarities between accidents or between people/vehicles involved in the acci-
dents, or again, a hybrid version involving the two cases [198].
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Chapter 4

Assessing the impact of the REF
on scientific excellence in the UK

Abstract

The Research Excellence Framework (REF) is the main UK government policy
on public research in the last 30 years. The primary aim of this policy is to
promote and reward research excellence through competition for scarce research
resources. Surprisingly, and despite the severe criticisms, little has been done
to systematically evaluate its effects. In this paper we evaluate the impact of
the REF 2014.
We exploit a large database that contains all publications in Economics, Busi-
ness, Management and Finance available in Scopus since 2001. We use a syn-
thetic control method to compare the performance of each of the 85 universities
from the UK with a counter-factual similar unit in terms of past research con-
structed using 121 US universities. Among other interesting insights, we find
an overall increase of the number of published papers, but the effect reverses
when we focus on per-capita productivity. The proportion of papers published
in a 3*, 4* or 4** journal had a significant increase in 2012 but the propor-
tion of articles published by Economics Department decreased. The twenty-four
universities belonging to the Russell group reported almost only benefits, and
when negative effects took place, they were the units that suffered the least.

4.1 Introduction

4.1.1 The politics of the REF (ex RAE) in the UK

The main government policy on public research in the last 30 years has
been the university RAE, formally known as Research Selectivity Exercise,
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then as Research Assessment Exercises, and now as REF. The RAEs produce
comparable ratings of research performance of all the departments of all the
universities and public research institutions in the UK. Based on the results
of this assessment, undertaken every three to seven years (1986, 1989, 1992,
1996, 2001, 2008, 2014), core government funding for the subsequent years is
allocated. But, besides universities’ funding, the RAE results also influence
the UK departments.

The primary aim of this policy is to promote and reward research excellence
through competition for scarce resources. The RAEs facilitate the concentra-
tion of research funding in better-performing institutions [101, 24, 100]. But,
even after several modifications, the RAEs are still receiving severe criticisms,
both in terms of the benefits obtained as well as on the costs incurred [132].
Some commentators question whether they are really fostering high quality
research (e.g. the University and College Union). Others claim that, as they
are currently designed, the RAEs favour the “old”, large universities and those
represented on the decision panels [57, 162, 24, 43] and also show that panels
were biased in favour of the Russell-Group Universities [177]. Critics also com-
plain that the RAEs have substantial costs of preparation and submission and
even more costly side-effects or indirect costs [94]. Some claim, for example,
that the RAEs have distorted universities’ hiring decisions, especially in the
years around RAE submission deadlines [99, 121].

Surprisingly, and despite the severe criticisms, little has been done to sys-
tematically evaluate the effects of such an ambitious policy. Probably because
of lack of data, most existing analyses are descriptive, bibliometric or apply
sociological perspectives [114, 57, 24, 79, 141, 171, 177]. More recent papers
use the output submitted to the REF to create a ranking of economics jour-
nals [104] or to predict the results of the next REF using departmental h-index
[147].

Among the few quantitative studies, [191] analyse thirty years of UK aggre-
gate publication data, identify three structural changes at the national level,
and relate one of them to one RAE. At the international level, [76] provide
evidence that country-level incentives rewarding research performance in the
OECD lead to more submissions and publications in the academic journal Sci-
ence. [103] presents a review of fourteen performance-based research funding
systems (PRFSs) policies in different countries (including the RAE), stating
that while the aim of these policies is to increase excellence of a nation’s re-
search, it may compromise other important values such as equity or diversity.

This paper investigates if the REF of 2014 increased research in economics,
business and management in terms of quantity and quality, both in total and
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on a per-capita basis. To analyse the impact of the 2014 REF on academic
performance, we make use non-UK departments’ exposure to the 2014 REF
using US economics departments and business schools. To do so, we apply the
synthetic control method (SCM) which allows the creation, for each university
in the UK, of a comparable research unit combining a set of US universities.

Our results indicate that the REF increased significantly the overall num-
ber of publications in the UK in the years 2012 to 2015. In terms of quality—
number of publications in journals graded as 3* and 4* in the Academic Journal
Guide (AJG)1—it also increased significantly from 2013 onwards. We analyse
the effect of the REF 2014 for the Russell Group Universities, per author,
proportion of publications in Economics and Econometrics journals and pub-
lications in Economics only. These extensions show that the REF had a more
positive impact in terms of quantity and quality for the Russell Group Univer-
sities and that there was a negative and significant effect on the proportion of
publications in Economics and Econometrics journals graded as 3∗, 4∗, 4∗∗ for
2014 and 2015. Moreover, results also show a negative and signifcant effect of
the REF on the number of publications in journals per author.

4.2 Data

This research is possible thanks to the Scopus Database from which we were
authorised to download all articles published by all the academics in the UK
and in the US, for the last 15 years (2001-2015), in the fields of Economics and
Econometrics and Business and Management.

Our sample includes all published articles by authors affiliated to univer-
sities in the UK that submitted their research to the Economics and Econo-
metrics REF Panel (Panel 18) and to the Business and Management Panel
(Panel 19) in 2014. This amounts to 103 UK universities. In order to create
a control group not exposed to the REF 2014, we select the publications of
the top 25% Departments of Economics and the top 25% Business Economics
(in terms of RePEc number of publications) in the US, which amounts to 135
US universities. Further, we only include publications of universities that pub-
lished an average of at least 10 papers in the pre-treatment period 2001-2007.
As a result, our final dataset includes articles of 121 US universities and 85
UK universities.

The definition of our output variables is reported in Table 4.1. The first
measure refers to the total number of publications, the second to their quality.
We use the classification of scientific journals by the Academic Journal Guide

1 http://www.CharteredABS.org/academic-Journal-Guide-2018.

http://www.CharteredABS.org/academic-Journal-Guide-2018
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(AJG) for 2018 as a proxy of the quality of published papers. The possible
values of this classification can be 1∗ (worst), 2∗, 3∗, 4∗ and 4∗∗ (most influential
journals). We assume - and believe it is reasonable - that the classification of
journals remains almost invariant over time.

Table 4.1: Description of the research output measures considered in the analysis.

Number of publications in journals Count the number of unique publications by institution and year in only scientific
journals, and so, after deducting all the publications in books and/or conferences.

Number of publications in a 3∗, 4∗, and
4∗∗ journal

Papers published in journals with an Academic Journal Guide (AJG) 2018 grade
of 3∗, 4∗, and 4∗∗, by institution and year.

In Figure 4.1, we present the total number of research papers published and
the proportion of papers that are 3∗ and 4∗ from 2001 to 2015 for both the UK
and the US.

Figure 4.1: Descriptive analysis, comparing UK and US universities.

Figure 4.1 reveals that, on average, the net number of publications increases
over time for both UK and US units. The proportion graded as 3∗, 4∗ and 4∗∗,
show a slightly more volatile trajectory.

Tables A1 and A2 of Appendix A present the list of universities included
for the US and UK, and the summary statistics of the outputs along with
the average number of co-authors per article, number of affiliated authors and
number of papers per author, by university and country, both for the pre
and the post treatment periods. We sort the university in decreasing order
according to the average number of publications in column (1).
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4.3 Methods

4.3.1 The Synthetic Control Method (SCM)

To estimate the impact of the REF 2014 on the Economics, Econometrics
and Business research output, we use the Synthetic Control Method (SCM).
This method was introduced by [2] to evaluate the effect of an intervention
on a unit (region) in terms of a certain output of interest by comparing it to
that of an artificial unit created as a convex combination of multiple untreated
units. [2] proposes that a convex combination of some untreated units (con-
trols) allows to reproduce the characteristics of the treated one better than
when using just a single control unit. The artificial comparator group is cho-
sen taking into account a series of covariates which have good predictive power
over the pre-intervention period. The artificial or counterfactual unit provides
information on what the treated unit would have experienced in absence of the
intervention. Thus, the comparison takes into account the difference, which we
denote by α̂t, between the actual values of the outcome, Y , for the treated unit
and the artificial one, Yt∗, i.e. α̂t = Yt − Yt∗. Moreover, unlike the difference-
in-differences model, which has been used many times in the literature for
comparative case studies, the SCM allows for the presence of unobserved con-
founders whose effects can vary over time, and , also, it does not rely on the
parallel trend assumption [3]. Indeed, [4] states that, intuitively, only units
that are alike in both observed and unobserved determinants of the outcome
variable as well as in the effect of those determinants on the outcome variable
should produce similar trajectories of the outcome variable over extended peri-
ods of time. One limitation of the SCM is that traditional statistical inference
is inappropriate when there are small number of treated and control units and
the fact that units are not sampled probabilistically [29].

Because the REF 2014 is an intervention that affects all UK universities
submitting to the Economics, Econometrics and Business REF panel, we apply
a variation of the original SCM designed to the case of multiple treated units
as opposed to one [7].

Our control group is made of US universities, not exposed to the REF 2014
by definition. The treatment period is from January 1 of 2008 to the of De-
cember of 2014, which is the deadline of the submission to the REF panels.
The modified SCM allows us to create as many artificial units combining US
universities as UK universities there are, i.e. the SCM creates a control artifi-
cial university for each UK university.

To create the artificial control group for each UK university we use informa-
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tion on each outcome variable(s) in Table 4.1, one at a time. The pre-treatment
period covariates used to run the matching algorithm are the means over all
pre-treatment period (2001-2007) of: the number of publishing authors; the
total number of publications; the total number of publications in a 3∗, 4∗ or
4∗∗ journal; the total number of publications in a 4∗ journal; and the outcome
in interest. Also, we use the last value of the outcome in the pre-treatment
period (2007).

Therefore, the SCM follows an iterative two-step optimization process:
(i) in the inner optimization step, we estimate the weights that minimize

the distance between treated and untreated units’ covariates over the pre-
treatment period

w = argw min ||X1−X0w||V = argw min
√

(X1 −X0w)′V(X1 −X0w) (4.1)

where X1 is the matrix containing the values of the covariates over the pre-
treatment period for the treated units; X0 the same but for the untreated units;
w is the vector of optimal weights to create a convex combination of untreated
units; and V is a positive-definite and diagonal matrix, which is initialized at
the beginning of the iterative algotithm and allows to assign some weights to
the variables used in the optimization process;

(ii) in the outer optimization step we use the current optimal value of w

to estimate V. Specifically, matrix V is chosen to be the one minimizing the
Mean Square Predictive Error (MSPE) for the outcome over the pre-treatment
period. Thus, denoting the pre-treatment period by (1, 2, . . . , T0) , where T0

is the time prior to intervention, and by Yit the value of the outcome for the
treated unit i at time t

Y ∗it =
∑

j∈untr.wijYjt (4.2)

MSPEi = 1
T0

∑T0
t=1(Yit − Y ∗it )2. (4.3)

Steps (i) and (ii) are repeated iteratively until convergence.
To implement the SCM to estimate wi, ∀i = 1, 2, . . . , NT , where NT is the
number of treated units, we use the R packages Synth and improveSynth. The
estimated coefficients, wi , are reported in Table A5.

4.3.2 Robustness check: placebo based p-values

Once all the effects have been estimated, αit = Yit − Y ∗it ∀i = 1, 2, . . . , NT ,
where NT is the number of treated units and t = 2008, 2009, . . . , 2015, we
check if these differences between the actual and counterfactual values are due
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to chance or, actually, to a statistically significant effect of the REF2014. We
conduct exact inference on these parameters, running the so-called placebo
tests [3].

Performing placebo tests allows us to construct the null distributions of the
placebo effects against which we compare or actual estimates. To do so, we
use our untreated units as if they were the treated ones and apply SCM to
them. So, eventually, we obtain 121 placebo patterns of gaps over time. If the
REF did not have any effect on UK universities, we would expect the placebo
effects to be similar to the ones computed for the treated units.

Then, we conduct a two-sided hypothesis test on the placebo effects. The
p-values for a generic treated unit i at time t can be calculated as

pit =
#{|αPLit | ≥ |α̂it|}

NPL

∀i = 1, 2, . . . , NT , t = T0 + 1, . . . , T (4.4)

where NPL is the number of generated placebo effects.
Between all placebo patterns, we remove from the computation of p-values the
ones that have a pre-treatment MSPE greater or equal than twice that of the
treated unit [3].

4.3.3 Average Treatment Effect on the treated

To calculate the overall effect that REF had on the whole treated group,
at the system level, we obtain the so-called Average Treatment effect on the
Treated (ATT).
As suggested by [7], a fit-weighted ATT can be computed as:

ˆATT =

∑
i∈Treat

(∑T
t=T0+1 α̂it

σ̂i

)
∑

i∈Treat
1
σ̂i

(4.5)

where σ̂i =

√∑T0
t=1 α̂

2
it

T0
, that is, the RMSPE over the pre-treatment period, and

α̂it is the estimated effect for the treated unit i = 1, . . . , NT at time t ∈ [T0 +

1, . . . , T ] where, again, NT is the number of treated units and [T0 + 1, . . . , T ]

the post-treatment period.
Equation 4.5 describes a weighted average of the effects using the inverse

of the RMSPE over the pre-treatment period as weights. This implies that
universities with a better matching have a higher impact on the estimate of
ATT which provides an unbiased estimate of ATT. To compute the p-value,
again, a null distribution of placebo ATT effects is needed. [7] suggest forming
5,000 placebo treatment groups of size NT from the NC controls.
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4.3.4 Quality of the matching

Although there is currently no consensus on what constitutes a ‘good fit’
or how to judge similarity between treated and control units [29], most of the
works making use of SCM consider the RMSPE of the estimates within the
two groups of units in the pre-treatment period to assess the quality of the
matching. Therefore, to assess the goodness of the matching, we consider the
proportion of placebos that have a pre-treatment RMSPE at least as large
as the average RMSPEs of the treated units in the pre-treatment period. If
placebo RMSPEs are basically smaller than those of the treated, then it means
that the control group is not able to properly replicate the patterns of the
treated units. Moreover, we assume that control units are somehow similar, in
the sense that we should not expect their RMSPEs to be too high. Therefore,
if the control group can reasonably reproduce the treated units, we expect the
two RMSPE distributions to be very close one another. On the other hand,
if that value is significant (small proportion of placebos with pre-treatment
RMSPE at least as large as the average RMSPEs of the treated units), then
RMSPEs of the treated are higher and there is concern about the quality of
the matching.

4.4 Results

Below, we present the results for our two outcomes of interest: the total
number of publications and the total number of papers published in top jour-
nals (3*, 4* and 4**). We show the ATTs.

We introduce our results in a variety of ways so that we compare the impact
of the REF2014 on the number of publications and publications in top journals
for different types of universities and for different fields.

We compare the results for the Russell group universities to the non-Russell
group ones. We also distinguish the universities that submitted to the Eco-
nomics and Econometrics panel of the REF 2014 and compare them to the ones
that did not. We also examine the impact in terms of number of publications
in journals (all ranks and top ranked) in Economics and Econometrics and in
Finance and Management journals (see Table A7 of Appendix Appendix A).

The goodness of fit of our estimates is discussed at the end of the section.
The weights, wi, that matching algorithm gives US universities to create the
artificial control group for each UK university is included in Table A5 in the
Appendix.
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4.4.1 ATT for the number of publications

Table 4.2 shows the estimated ATT on the number of publications in scien-
tific journals associated to the REF 2014 by post-treatment year, by university
and overall.

The overall results are in the second-last and last columns, which contain
the universities’ ATTs across the post-treatment period (2008 to 2014) and
the ATT including year 2015 (2008-2015), respectively. Overall, the ATT
aggregated for all universities is positive and about of 150.74 publications. In
the Appendix A (from page 134) we report the graphs of the estimated effects
for each of the UK universities.

Universities in the Russell group (top panel) experience positive or negative
effects in specific years but the aggregated effects (in the last two columns) are
not significantly different than zero for all universities. For instance, this is
the case of Cardiff or Newcastle Universities. However, overall results for the
Russell group show that they experienced a positive effect on publications due
to the REF 2014 as the average up to 2014 is of a significant increase of 11.42
and up to 2015 of 15.16.

Within this group, the most exceptionally striking results are for the Uni-
versity of Cambridge - as it has positive ATTs almost all years and an overall
average above 85 publications. Oxford University has more variability but has
96.66, 83.89 and 96.04 the last three years and ATTs of 42.22 more publica-
tions up tp 2014 and 48.95 up to 2015. In the case of Nottingham, nevertheless,
the effect is negative for almost all years and for the average over the post-
treatment period.

The Non-Russell group has a non significant overall average treatment ef-
fect. For this group, the effects are of smaller magnitude than the Russell
group: Bournemouth University experienced a significant overall effect (35.95
and 39.37 up to 2014 and 2015, respectively), and so did City, University of
London (32.25 and 39.86), University of Essex (22.29 and 28.36). Instead,
Glasgow Caledonian University and University of Aberdeen suffered a signifi-
cant reduction in the number of publications (over 20 in both cases).

Comparing Russell and non-Russell group, results show a significant differ-
ence in ATTs between the two groups of about 10.28 and 12.44 publications
per year in favour of the Russell group (up to 2014 and 2015, respectively). To
assess if the effect of the REF has been significantly different for universities
belonging to the Russell group versus not we ran placebo sampling tests. To
do so, we create a null (placebo) distribution against which we test the point
estimate of the difference, 10.28 and 12.44 reported in Table 4.2 .
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To generate the null distribution for the difference, we construct two groups
of universities by selecting 24 (number in the Russell group) and 61 (number
of the non-Russell group) units randomly from the original full set of univer-
sities. We calculate the ATT for each group, overall and by year. We repeat
this process 100,000 times and obtain the null (placebo) distribution set of the
difference. The point estimate - in the second-last row- is 10.28 and 12.44 - in
the last row- and significant at a level of 1%. The same approach is used to
test the difference year by year.

Moreover, the same approach was used to compare universities that left the
Economics and Econometrics panel and the ones that remained. Results show
a significant and positive difference in ATTs between the two groups of about
11.1 and 11.9 publications per year in favour of the universities that remained
in the Economics and Econometrics panel (up to 2014 and 2015, respectively).
As before, we run placebo tests to associate these figures with p-values.

4.4.2 ATT for the number of papers in a 3∗, 4∗, and 4∗∗ journals

In Table 4.3 we present the estimated ATTs associated to the REF 2014 by
post-treatment year, by university and overall on the number of publications
in scientific journals which quality is ranked 3∗, 4∗, and 4∗∗. Table 4.3 shows
that the overall ATT is 24.26 up to 2014 and 49.38 up to 2015, which are
statistically significant. This effect is lower than our previous finding in number
of publications. With respect to yearly ATTs, it is negatively significant for
the year 2008, and positively significant for years 2011, 2013, 2014, and 2015.

Regarding the Russell group universities (top panel), there are only four
universities that experience a positive aggregated effect up to 2014 or 2015,
i.e. University of Oxford (48.44 and 51.86 up to 2014 and 2015, respectively),
University of Warwick (23.74 up to 2015), Imperial College London (23.02 and
21.13 up to 2014 and 2015, respectively) and University of Cambridge (22.62
and 23.10 up to 2014 and 2015, respectively). However, overall results for the
Russell group show that they experienced a positive effect on 3∗, 4∗, and 4∗∗

journal’s publications due to the REF 2014 only for the aggregated figure until
2015, 8.61.

The Non-Russell group has a non significant overall average treatment ef-
fect, which goes in line with the previous on the total number of publications
analysis. For this group, only Lancaster University (18.56 and 25.48 up to
2014 and 2015, respectively) and University of Kent (21.55 and 26.96 up to
2014 and 2015, respectively) experienced a positive and significant overall ef-
fect. For the rest of universities of this group, even if the aggregated ATT
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Table 4.2: ATT for the REF 2014 by post-treatment year on the number of publications in scientific journals.

Russell group 2008 2009 2010 2011 2012 2013 2014 2015 ATT−2015 ATT
Cardiff University 3.31 37.10*** 24.68 -30.54* -0.19 20.01 3.56 13.04 8.27 8.87
Imperial College London -9.62 -3.18 -16.96* -3.32 1.02 2.63 15.47 5.03 -1.99 -1.11
King’s College London 21.49** 3.83 3.30 -17.36 8.45 31.54** 37.88** 51.96*** 12.73 17.63
LSE 9.28 -9.46 14.15 45.35** 30.15 58.20** 52.91* 69.21** 28.65* 33.72*
Newcastle University -19.00** 11.01* -13.38* -10.36 4.26 37.81**** 25.86* 61.72**** 5.17 12.24
Queen Mary University of London 12.25 3.61 10.41 -1.34 17.43 34.36* 41.11* 33.42 16.83 18.90
Queen’s University Belfast 10.35 2.70 -0.70 -7.57 6.06 -9.16 -0.99 6.34 0.09 0.87
University College London 13.06 -13.18 -34.99* -25.67 13.39 52.71** 86.44*** 86.74**** 13.10 22.31
University of Birmingham 16.13* 18.56* 10.39 25.87* 35.76** 22.61* 10.45 31.07** 19.96* 21.35*
University of Bristol 1.50 9.86 18.06 8.47 -4.70 18.12 46.57* 28.25 13.98 15.77
University of Cambridge 45.26** 73.51**** 84.38*** 94.09*** 95.63**** 109.08*** 92.72*** 114.10**** 84.95**** 88.59****
University of Durham -13.40 -36.20*** -32.60** -26.99 20.70 14.87 25.92 57.33** -6.81 1.20
University of Edinburgh -3.53 19.91 -0.94 1.26 -4.79 25.98 35.91* 47.64** 10.54 15.18
University of Exeter -31.96** -4.15 -19.18 1.14 18.64 29.11 22.11 29.53 2.24 5.65
University of Glasgow 15.95*** -6.70* -9.60* 1.47* 22.49** 43.31**** 26.68** 34.42*** 13.37 16.00
University of Leeds -6.14 -24.47 -23.96 -28.06 -5.03 24.00 39.89 64.04* -3.39 5.03
University of Liverpool 4.58 -0.33 14.26 16.30 12.18 49.96** 53.62** 66.36** 21.50 27.11*
University of Manchester 53.75** 29.96* -37.79* -52.62** 4.86 -10.35 2.87 -7.48 -1.32 -2.09
University of Nottingham -9.51 -21.44 -83.84** -84.64*** -33.15 -64.39** -67.90** -78.55** -52.12** -55.42**
University of Oxford 18.58 45.56** 10.02 -6.59 47.45* 96.66*** 83.89** 96.04**** 42.22** 48.95**
University of Sheffield 18.94 -4.43 -3.24 -8.13 -18.60 -24.11 8.87 54.15* -4.38 2.93
University of Southampton -7.08 3.86 8.97 20.93 61.94*** 77.09** 89.63**** 92.50**** 36.47** 43.48**
University of Warwick 15.89 16.19 -53.1**** 22.48 26.33 28.79 44.32* 26.15 14.41 15.88
University of York -7.74 -12.63 9.85 -6.38 -20.25 12.45 21.73 8.70 -0.42 0.71
Total Russell group 6.34 5.81 -5.07 -3.01 14.17* 28.38* 33.31** 41.32*** 11.42* 15.16**

Non-Russell group 2008 2009 2010 2011 2012 2013 2014 2015 ATT−2015 ATT
Aberystwyth University -6.32 -4.56 -3.17 -12.04 5.86 -3.49 9.62 -4.87 -2.01 -2.37
Aston University 3.62 -3.75 2.15 12.08 -14.06 25.15 -3.45 14.94 3.10 4.58
Bangor University -0.92 13.00 8.60 16.93 25.88* 23.29 35.47* 21.61 17.98 17.46
Birkbeck College -5.23 2.40 -18.59 -10.86 -23.69 -3.51 -19.69 -9.22 -11.31 -11.05
Bournemouth University 1.31 23.74* 22.04 27.28 36.79* 66.52** 74.02** 63.35** 35.95** 39.37**
Brunel University London -2.28 22.73* -45.85** -11.24 -7.21 -4.55 -39.58* -2.71 -12.57 -11.33
City University London 24.89 22.99 4.16 21.05 23.64 53.42** 75.63** 93.08**** 32.25* 39.86**
Coventry University -4.88 -14.04 0.30 -6.03 -12.80 -18.26 12.74 7.72 -6.14 -4.40
Cranfield University 0.58 -9.19 -24.88 -2.34 -21.57 -9.65 -35.44* -4.83 -14.64 -13.41
De Montfort University 1.82 -10.00 10.13 -8.03 4.37 20.36 9.59 -13.19 4.03 1.88
Edinburgh Napier University -12.37 -13.90 -4.46 -9.01 -18.26 -35.70 -7.33 -7.75 -14.43 -13.59
Glasgow Caledonian University -22.41 -33.59** -17.66 -15.20 -41.89** -21.30 -22.04 -4.45 -24.87* -22.32
Heriot-Watt University 3.54 3.23 -11.68 1.40 -18.48 5.26 4.30 36.32 -1.77 2.98
Keele University -19.70 -1.90 -0.37 -11.31 -11.32 -26.66 -7.07 -8.80 -11.19 -10.89
Kingston University -11.64 3.89 3.86 10.13 20.90* -1.12 23.17 36.47* 7.02 10.70
Lancaster University 2.77 10.00 -21.61 8.52 17.45 44.28* 42.50 72.50** 14.84 22.05
Leeds Beckett University -5.75 5.45 15.22 4.02 16.71 13.82 21.51 21.77 10.13 11.59
London Business School -29.63* -11.04 -7.63 -29.66 -17.30 -25.85 -25.25 -51.35* -20.91 -24.71
London Metropolitan University -0.01 5.14 11.39 20.83 3.59 -1.44 -12.00 -18.23 3.93 1.15
London South Bank University -4.47 -4.19 -4.40 -10.45 -25.13 -29.65 -24.58 -12.49 -14.69 -14.42
Manchester Metropolitan University -0.91 13.74 -16.76 -17.26 -23.26 0.81 -31.58 -6.57 -10.74 -10.22
Middlesex University -15.79 -7.73 3.33 8.66 8.14 24.47 6.18 57.04** 3.89 10.54
Nottingham Trent University 6.10 20.18* 16.44 -2.19 20.98* 8.40 23.00 29.96* 13.27 15.36
Open University 2.61 23.72* 18.57 18.38 8.92 22.04 29.30 26.55 17.65 18.76
Oxford Brookes University 16.74 -0.23 -4.77 -1.01 8.40 21.98 10.09 18.75 7.31 8.74
Robert Gordon University 5.89 -1.27 -4.14 -4.63 -2.64 3.33 6.21 3.64 0.39 0.79
Royal Holloway, University of London -6.35 13.28 -4.74 1.63 11.12 36.74** 21.88* 25.47** 10.50 12.38
Sheffield Hallam University -17.27* 1.62 -10.04 -1.04 9.69 -1.38 3.99 13.20 -2.06 -0.15
Staffordshire University -12.86 -16.01 -8.08 -15.01 -6.86 0.07 0.00 -7.58 -8.39 -8.29
Swansea University 3.97 -13.18 -4.49 -12.41 -29.91* -31.72* -26.54 -30.44 -16.32 -18.08
University of Aberdeen -22.34* -14.42 -12.64 -21.13 -36.26** -10.56 -38.21** -55.35*** -22.20* -26.36*
University of Bath 17.84 18.61 4.78 7.92 -2.05 29.89* 24.64 37.26* 14.51 17.36
University of Bedfordshire -11.62 -7.21 -6.00 -0.21 -2.30 8.40 3.21 5.98 -2.24 -1.22
University of Bradford -9.61 -10.96 -26.95 -32.68 -28.75 -43.46* -40.35 -39.52 -27.54 -29.03
University of Brighton -7.57 3.62 -2.46 18.57 -0.32 13.81 18.55 30.05 6.31 9.28
University of Central Lancashire -6.36 -1.13 1.21 0.28 17.25 11.94 21.37 7.23 6.36 6.47
University of Dundee -14.35 -18.06 -29.55* -23.43 -11.63 -19.64 -31.30 -19.95 -21.14 -20.98
University of East Anglia 6.17 -6.02 21.25 5.88 26.89* 30.09* 47.94** 40.55* 18.88 21.59*
University of East London -12.63 -7.11 0.82 4.93 9.67 13.23 -0.01 2.15 1.27 1.38
University of Essex 3.99* 19.36*** 16.14** 31.87*** 25.50** 14.09* 45.16**** 70.84**** 22.29*** 28.36****
University of Greenwich -7.50 -8.11 -4.28 -13.23 5.92 19.81 21.50 8.69 2.01 2.85
University of Hertfordshire 0.49 3.65 2.26 7.79 20.30 13.47 19.78 3.68 9.67 8.92
University of Hull 12.37 -1.80 4.10 -3.09 21.63 10.04 25.04 52.36* 9.75 15.08
University of Kent 26.09* 17.15 24.14 27.14 22.65 56.89** 37.83* 70.97** 30.26** 35.36**
University of Leicester 15.44 32.39** 6.02 8.77 20.43 14.82 -4.17 29.39 13.38 15.38
University of Northumbria at Newcastle -3.27 8.11 7.84 2.37 24.31 29.15 45.40* 62.18** 16.27 22.01
University of Plymouth -4.58 -1.20 3.34 -4.11 17.92 21.22 52.61** 19.36 12.17 13.07
University of Portsmouth -4.67 -14.90 -0.95 -18.00 -9.62 -3.60 -8.42 26.33 -8.59 -4.23
University of Reading 2.69 12.90 -21.00 -18.42 -31.09 -3.15 5.87 26.94 -7.45 -3.15
University of Salford -1.89 5.36 -2.30 -2.35 -3.87 -6.21 -20.29 -25.35 -4.50 -7.11
University of South Wales 5.59 3.15 -11.43 -1.04 -0.30 -2.22 -1.37 -8.48 -1.09 -2.01
University of St Andrews 2.19 35.06**** 23.21* 11.00 7.67 14.89 25.33* 45.08*** 17.04 20.55
University of Stirling 18.71* 9.24 -6.99 1.10 -6.36 17.60 14.82 16.34 6.87 8.05
University of Strathclyde 15.99* -16.61* -2.94 15.82 11.62 15.67 15.69 -5.12 6.26 7.89
University of Sunderland -19.67 -18.00 -12.00 -26.00 -15.17 -13.33 -7.00 -11.34 -15.88 -15.31
University of Surrey 0.89 -19.49 -12.89 -20.04 -11.48 -42.96* -3.76 15.67 -15.67 -11.75
University of Sussex 9.64 -18.32* -22.92 -7.70 -4.59 12.90 31.95* 52.35*** 0.13 6.67
University of the West of England, Bristol 6.89 -4.26 6.82 15.78 10.29 18.38 17.61 26.58 10.21 12.26
University of Ulster -0.71 -33.55*** -6.35 -22.03 -34.43** 5.82 -41.76** -25.03* -18.99 -19.75
University of Westminster -7.99 10.21 15.06 -4.54 25.74 -2.88 19.12 10.61 7.81 8.16
University of Wolverhampton -3.84 5.72 -8.36 -22.39 -11.64 -26.11 11.12 10.46 -7.92 -5.63
Total Non-Russell group -1.61 0.39 -2.46 -1.80 0.09 5.79 7.58 13.78* 1.14 2.72
Russell group - Non-Russell group 7.96** 5.42 -2.61 -1.20 14.07*** 22.58**** 25.73**** 27.54**** 10.28*** 12.44***
Remainers - Leavers 10.44*** 10.77*** -0.51 7.03* 12.42*** 18.16*** 19.32*** 23.34*** 11.1*** 11.9***
yearly ATT 11.62**** 0.33 -3.52 8.34 22.47**** 36.01**** 31.11*** 44.35**** 106.38*** 150.74****

Notes The last two columns contain each university ATT overall the post-treatment years (2008-2014) and adding 2015 (2008-2015), respectively. The last row of the table contains the overall
yearly ATT for each year, and note that there are two panels, the top displays the results and subtotal for the Russell Group universities and the panel below for the non-Russell group ones.
The last value at the bottom-right corner is the overall ATT for all universities included. The third and second-last rows contain the differences of means of ATTs respectively between the
Russell and non-Russell groups and between Remainers and Leavers. Values are marked by *, **, ***, **** if they are significant at a level of, 0.10, 0.05, 0.01 or 0.001, respectively.
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is negative in most of the cases, it is not significant. It is only significant for
some specific years, for instance, University of Reading for the year 2008, 2009,
2010, 2011 and 2014.

Comparing Russell and non-Russell group, results show a significant differ-
ence in ATTs between the two group of about 6.79 and 7.90 publications per
year in favour of the Russell group (up to 2014 and 2015, respectively). Even if
the ATTs effect between groups is smaller than in the number of publications,
it is significant and shows that the Russell group universities benefits more
of the REF 2014 than the Non-Russell group. Also, we find a positive and
significant difference in ATTs between the universities that remained in the
Economics and Econometrics panel against the ones that left, with a difference
of 8.9 and 8.8 up to 2014 and 2015, respectively.

4.4.3 Goodness of Fit Measures

As a measure of fit, we compare the distribution of the RMSPEs in the pre-
treatment period between treated and untreated units. The more overlapped
the two distributions are, the better the overall matching. For the number
of publications, the proportion of placebo RMSPEs greater than the average
of treated RMSPEs is equal to 0.36 denoting that, overall, the matching is
acceptable. Nevertheless, looking at particular universities, Harvard has a
very high value of RMSPE (73.8), confirming that this university stands out
and is not comparable to any other university in terms of its history in number
of publications.

For the number of publications in a 3∗, 4∗, 4∗∗ journal the matching is also
acceptable, with a p-value of 0.35. Since the outcome variable to be matched
in the SCM optimization process illustrated in section 4.3 is different, the set
of matching coefficients are allowed to be different from the previous ones.
(Table A6 of Appendix A).

Figures 4.2 and 4.3 present respectively the graphical comparison between
the distributions of the pre-RMSPE of the number of publications in journals
and of the number of publications in top journals. As can be appreciated in
the figures, the overlapping of the two distributions is quite good in both cases,
eventually leading to a not significant p-value.

4.4.4 Other outcomes

In the sections that follows we present the estimates of the impact of the
REF 2014 on additional research outcomes such as the number of publications
in Economics and Econometrics in journals graded 3∗, 4∗, or 4∗∗; the number
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Table 4.3: ATT for the REF 2014 by post-treatment year on the number of publications in a scientific journals graded
as 3*, 4* or 4**.

Russell group 2008 2009 2010 2011 2012 2013 2014 2015 ATT−2015 ATT
Cardiff University 0.89 8.95 -1.92 -10.01* 27.94** 16.88* 9.43 36.00*** 7.44 11.01
Imperial College London 8.48 -8.07 3.97 5.17 56.83**** 42.12** 52.70*** 7.89 23.02* 21.13*
King’s College London -1.94 -9.51 -0.39 -29.43* -11.78 -0.02 1.10 2.28 -7.42 -6.21
LSE 3.14 -10.30 4.36 28.89 -15.41 60.77** 37.34* 49.50*** 15.54 19.78
Newcastle University -5.52 1.38 -7.28 -23.28 8.00 19.38 19.21 57.66**** 1.69 8.69
Queen Mary University of London 10.34 5.02 -1.52 6.04 5.42 28.45 17.21 24.28 10.13 11.90
Queen’s University Belfast 8.30 7.06 3.54 10.21 22.54 13.24 18.27 13.19 11.87 12.04
University College London -1.12 -23.78 -27.99* -5.98 -12.01 2.00 36.53* 15.10 -4.62 -2.15
University of Birmingham 20.65* -4.96 10.88 22.51 13.74 21.24 22.06 28.05 15.16 16.77
University of Bristol -1.77 6.52 7.57 1.20 -16.05 20.46 36.60** 14.72 7.78 8.65
University of Cambridge 8.66 36.47** -2.85 1.38 46.65**** 37.05 31.02* 26.43 22.62* 23.10*
University of Durham -8.11 0.61 -29.57* -2.26 8.61 17.41 15.81 34.96 0.35 4.68
University of Edinburgh -14.76 -12.42 -20.09 -29.04* 2.98 -12.24 19.12 20.63 -9.49 -5.73
University of Exeter -31.31*** -8.95 -11.28 -3.25 20.96** 19.69 13.10 7.77 -0.14 0.84
University of Glasgow -17.33 0.14 -7.82 -1.35 21.55 38.54* 26.36 34.62* 8.58 11.83
University of Leeds -9.15 -35.14* -24.77* -14.86 -3.30 15.18 -1.55 39.49** -10.51 -4.26
University of Liverpool -0.98 -8.50 -2.24 -9.73 -11.60 17.98 4.56 6.36 -1.50 -0.52
University of Manchester -3.77 0.83 -31.28* -40.74** 31.97** -3.14 13.20 1.65 -4.70 -3.90
University of Nottingham -4.30 70.96**** 41.82** -36.93* 1.23 6.62 -14.54 -25.44 9.26 4.92
University of Oxford 30.09*** 42.86** 32.77*** 6.69 71.87**** 86.47**** 68.40**** 75.80**** 48.44**** 51.86****
University of Sheffield -6.72 -0.98 1.14 -12.37 4.35 -14.88 -13.14 13.80 -6.08 -3.60
University of Southampton -20.50* -4.12 1.96 4.46 11.43 23.15 42.19*** 30.48* 8.36 11.13
University of Warwick 25.52* 8.41 8.78 1.01 19.86 36.52 25.63 64.22**** 17.96 23.74*
University of York -14.46* -5.43 -4.23 -17.59 -16.17 -21.82 1.35 6.99 -11.19 -8.91
Total Russell group -1.06 2.37 -2.35 -6.22 12.06* 19.62* 20.08* 24.43** 6.35 8.61*

Non-Russell group 2008 2009 2010 2011 2012 2013 2014 2015 ATT−2015 ATT
Aberystwyth University -13.06 -3.42 -7.17 -12.04 0.08 0.94 -3.93 -2.69 -5.51 -5.16
Aston University -3.63 8.48 4.72 13.22 20.05 41.94* 23.68 36.68** 15.49 18.14
Bangor University -4.66 2.40 4.82 9.49 18.74 34.88* 32.74* 21.74 14.05 15.02
Birkbeck College 1.15 1.48 -11.77 -7.42 -4.99 -2.60 -4.41 -8.69 -4.08 -4.65
Bournemouth University -0.10 0.92 -3.13 16.87 17.78 23.77 29.70* 11.74 12.26 12.19
Brunel University London 16.12* 12.71 -7.36 -5.88 11.50 23.62* -0.69 5.52 7.14 6.94
City University London 5.80 11.19 -13.76 -19.71 15.30 11.64 49.42*** 70.70**** 8.55 16.32
Coventry University 1.93 -6.92 -9.77 -10.75 -8.04 -4.95 -1.41 11.40 -5.70 -3.56
Cranfield University -5.44 -20.14 -21.19 -14.58 -27.04 -23.89 -36.84* -21.76 -21.30 -21.36
De Montfort University -4.29 -6.93 2.34 -2.73 -8.61 -4.26 -10.84 -18.90 -5.04 -6.77
Edinburgh Napier University -2.54 -6.46 -5.54 -12.00 -3.16 -0.62 1.65 -4.70 -4.09 -4.17
Glasgow Caledonian University -4.03 -7.94 -8.22 -12.18 -17.06 -18.47 -22.23 -11.60 -12.87 -12.71
Heriot-Watt University -7.38 -6.22 0.39 -0.93 3.40 2.46 22.29 7.17 2.00 2.64
Keele University -11.43 -9.90 -15.77 -21.38 -17.51 -17.75 -23.32 -17.63 -16.72 -16.83
Kingston University -7.85 -4.83 -3.82 -2.05 26.46* 11.38 3.23 19.48 3.21 5.25
Lancaster University -5.71 9.32 -9.24 8.41 27.57* 35.71* 63.86**** 73.99**** 18.56* 25.48**
Leeds Beckett University -7.14 -7.82 -7.87 -9.17 1.09 -3.17 1.88 0.72 -4.59 -3.93
London Business School 3.49 -15.71 -3.37 -14.35 -12.02 -19.95 -33.50* -22.74 -13.63 -14.77
London Metropolitan University -3.75 1.46 -6.31 -2.90 -2.36 -13.90 -6.53 -8.48 -4.89 -5.35
London South Bank University -12.61 -8.36 -11.40 -14.36 -5.35 -10.81 -11.22 -8.36 -10.58 -10.31
Manchester Metropolitan University 8.91 8.05 -3.34 -4.54 -5.20 -0.08 -3.87 4.63 -0.01 0.57
Middlesex University -2.29 1.35 -8.14 8.85 18.05 6.35 17.06 37.09** 5.89 9.79
Nottingham Trent University -2.81 1.33 1.38 -5.98 5.73 3.70 2.00 10.39 0.76 1.96
Open University 20.02* 11.38 5.15 9.71 8.23 11.16 20.05 25.86* 12.24 13.94
Oxford Brookes University -4.22 -5.27 -0.26 -1.09 11.02 13.50 10.17 4.02 3.40 3.48
Robert Gordon University 0.80 -1.38 -6.69 -8.47 -4.77 -5.23 2.53 -5.11 -3.31 -3.54
Royal Holloway, University of London -5.42 13.72 0.72 -4.01 9.17 21.31 12.97 5.43 6.92 6.73
Sheffield Hallam University -5.78 -11.04 -7.20 -7.00 -4.05 -3.24 -11.92 -1.46 -7.17 -6,46
Staffordshire University -8.99 -8.95 -8.89 -13.93 -3.97 -2.97 -4.07 -5.00 -7.39 -7.09
Swansea University -1.03 -5.69 -4.63 -1.50 -5.25 -14.44 -16.87 0.54 -7.05 -6.11
University of Aberdeen -7.68 -11.93 -4.86 -14.83 -14.64 -11.02 -20.48 -9.72 -12.20 -11.89
University of Bath -21.62* -6.72 -15.15 -37.45* -16.79 -10.48 18.71 16.58 -12.78 -9.11
University of Bedfordshire -8.00 -7.00 -7.00 -9.00 1.00 6.00 1.00 7.00 -3.28 -2.00
University of Bradford -3.15 -3.36 -3.14 -0.83 4.53 4.86 -0.78 -17.14 -0.26 -2.37
University of Brighton -3.68 -6.69 -2.75 -7.82 8.27 3.00 2.50 5.83 -1.02 -0.16
University of Central Lancashire -8.08 -7.78 -5.79 -6.25 4.87 1.49 4.71 5.65 -2.40 -1.39
University of Dundee -9.29 -2.80 -6.61 -14.59 -12.73 -19.64 -7.74 -6.95 -10.48 -10.04
University of East Anglia -8.92* 0.87 8.08* 10.27* 42.08**** 19.83* 37.71**** 32.74**** 15.70 17.83
University of East London -9.00 -9.00 -7.00 -11.00 2.00 2.00 -5.00 -1.00 -5.28 -4.75
University of Essex -13.88 7.91 -14.13 -4.63 6.00 7.27 21.28 33.16** 1.40 5.37
University of Greenwich -5.56 -2.04 -5.92 -10.19 5.62 3.54 3.83 3.10 -1.53 -0.95
University of Hertfordshire -5.56 -3.70 0.07 -11.41 4.42 7.37 7.67 0.84 -0.16 -0.04
University of Hull 7.09 14.12 3.92 5.94 13.42 22.90 23.66* 28.46** 13.00 14.94
University of Kent 7.10 19.75 11.47 17.78 23.95* 40.74* 30.12* 64.77**** 21.55* 26.96**
University of Leicester -6.02* 0.57 2.66 -12.77* 4.58 3.59 11.85 10.73* 0.63 1.89
University of Northumbria at Newcastle -10.03 -6.55 -7.62 -12.22 -0.40 -6.72 2.28 6.45 -5.89 -4.35
University of Plymouth -5.66 -5.02 -12.62 -9.98 13.12 3.04 8.78 3.76 -1.18 -0.57
University of Portsmouth -15.93 -14.82 -5.01 -6.66 -3.56 0.41 7.23 10.98 -5.47 -3.42
University of Reading -11.97* -18.89** -22.74** -26.52** 3.76 -2.44 -7.85* 25.17** -12.37 -7.68
University of Salford 16.41* 2.49 7.11 5.45 3.35 11.82 -5.35 1.16 5.89 5.30
University of South Wales -10.39 -7.77 -13.19 -19.20 -13.90 -14.88 -11.56 -10.67 -12.98 -12.69
University of St Andrews 2.38 23.90 19.37* 5.34 1.18 18.26 10.93 17.33 11.62 12.34
University of Stirling -4.54** 1.41** -5.92** 7.45*** -4.42** 10.15** 24.29**** 25.11**** 4.06 6.69
University of Strathclyde 4.74 -8.29 -11.33 27.14* 8.17 4.90 33.76* -1.41 8.44 7.21
University of Sunderland -8.00 -9.00 -11.00 -14.00 -4.00 -8.00 -4.00 -4.00 -8.28 -7.75
University of Surrey 16.13 -4.70 6.55 -13.43 41.50*** 7.48 21.28 39.73** 10.68 14.31
University of Sussex 1.24 -10.99 -6.68* -1.01 21.45** 23.55* 65.99**** 35.49**** 13.36 16.13
University of the West of England, Bristol -1.38 -2.54 7.25 8.52 6.24 -5.46 8.71 12.45 3.04 4.22
University of Ulster -2.98 -11.97 -5.36 -15.24 -17.88* -15.31 -13.51 -15.43 -11.74 -12.21
University of Westminster -6.07 -1.70 -0.42 -6.62 9.60 0.08 13.60 6.43 1.20 1.86
University of Wolverhampton -6.00 -4.00 -11.00 -12.00 -5.00 -6.00 0.00 -3.00 -6.28 -5.87
Total Non-Russell group -3.34 -2.44 -4.65 -5.44 3.28 3.25 6.31 8.74* -0.43 0.71
Russell group - Non-Russell group 2.27 4.83* 2.30 -0.77 8.78*** 16.37**** 13.76*** 15.68*** 6.79*** 7.90***
Remainers - Leavers 3.52 10.9*** 5.5** 1.7 10*** 14.4**** 16.6**** 16.8**** 8.9*** 8.8****
yearly ATT -4.80** 0.67 -6.53 6.22*** -4.12 9.69** 23.13**** 25.11**** 24.26** 49.38***

Notes The last two columns contain each university ATT overall the post-treatment years (2008-2014) and adding 2015 (2008-2015), respectively. The last row of the table contains the overall
yearly ATT for each year, and note that there are two panels, the top displays the results and subtotal for the Russell Group universities and the panel below for the non-Russell group ones.
The last value at the bottom-right corner is the overall ATT for all universities included. The third and second-last rows contain the differences of means of ATTs respectively between the
Russell and non-Russell groups and between Remainers and Leavers. Values are marked by *, **, ***, **** if they are significant at a level of, 0.10, 0.05, 0.01 or 0.001, respectively.
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Figure 4.2: Distribution of pre-treatment RMSPE for placebos (US) and UK universities for the
assessment of the quality of SCM matches for the total number of publications. Red
and green lines refer to US and UK, respectively.

Figure 4.3: Distribution of pre-treatment RMSPE for placebos (US) and UK universities for the
assessment of the quality of Synthetic Control Method (SCM) matches for the number
of publications in a 3*, 4*, 4** journal. Red and green lines refer to US and UK,
respectively.

of publications in Finance/Management in journals graded 3∗, 4∗, or 4∗∗; the
number of publications per author; the number of publications per author in
journals graded 3∗, 4∗, or 4∗∗; the number of publications in Economics and
Econometrics journals graded as 3∗, 4∗, or 4∗∗ per author; and, the number
of publications in Finance/Management in journals graded as 3∗, 4∗, or 4∗∗

per author. We also present these same measures in proportions rather than
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numbers, i.e. the proportion of publications in Economics and Econometrics
journals; the proportion of publications in Finance/Management journals; the
proportion of publications in journals graded as 3∗, 4∗, or 4∗∗; the proportion of
publications in Economics and Econometrics journals graded as 3∗, 4∗, or 4∗∗;
and, finally, the proportion of publications in Finance/Management journals
graded as 3∗, 4∗, or 4∗∗.

Table A7 presents results for all universities together, Table A8 the results
for universities in the Russell Group and Table A9 for those that are not. The
two top rows in these tables repeat information from Tables 4.2 and 4.3 to ease
comparisons. With these extensions we want to explore whether or not the
REF2014 affected the relative weight of these outcomes by sub-field and/or
type of university.

As can be seen in Table A7, although the number of publications (ATT of
106.38**** and 150.74**** up to 2014 and to 2015, respectively) and the num-
ber of publications in 3∗, 4∗, or 4∗∗ journals (ATT of 24.26** and of 49.38***
for up to 2014 and to 2015, respectively) increased significantly since 2008,
the number of publications per author decreased very significantly (ATT of
-.53**** and -.60**** up to both years) and had done so on each individual
year since 2009. At the same time, the number of publications in 3∗, 4∗, or 4∗∗

journals in Finance/Management per author increased slightly (insignificant
ATT of 0.008 up to 2014 but significant ATT of 0.164*** up to 2015) while
the proportion of publications in Economics and Econometrics went down (-
0.126* and -0.150** respectively).

All other outcomes did not significantly change due to the REF2014. Thus,
one hypothesis is that, while the total number of publications and those in
3∗, 4∗, or 4∗∗ journals went up overall, it was due to the increase in the number
of publications per capita in 3∗, 4∗, or 4∗∗ journals in Finance/Management
but not in Economics and Econometrics.

It is somehow surprising that the number of publications in 3∗, 4∗, or 4∗∗

journals for both Economics and Econometrics and Finance/Management did
not change significantly (although the latter estimate is twice that of the for-
mer) and that the aggregate number of publications in 3∗, 4∗, or 4∗∗ journals
per author did not change for Economics and Econometrics but increased sig-
nificantly for Finance/Management.

We also observe that although the proportion of publications in Economics
and Econometrics decreased, the proportion of publications in 3∗, 4∗, or 4∗∗

journals did not change significantly, neither aggregately nor by subfield.
To understand from where the above results stem from, we analyse the

outcomes by separately for universities in the Russell Group and universities
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that are not.
What stands out in Table A8 below for the Russell Group is the fact that,

although the number of publications (significant ATT of 11.42* up to 2014 and
of 15.16** up to 2015) and the number of publications in top journals increased
significantly (insignificant ATT of 6.35 up to 2014 but significant and of 8.61*
up to 2015), nor the relative number of publications in 3∗, 4∗, or 4∗∗ journals
by subfield, nor per author changed significantly. Similarly, the proportion of
publications by sub-field, overall and per author, did not change significantly.
The number in Finance and Management in top journals per author has some
significant changes (-0.039** in 2008, 0.038* in 2014 and 0.085*** in 2015) but
the overall ATTs are insignificant.

In contrast, Table A9 provides a very different picture. For universities that
did not belong to the Russell Group, the number of publications and those in
3∗, 4∗, or 4∗∗ journals do not change significantly (as reported in Tables 4.2
and 4.3) but, looking in more detail, we see that number of publications per
author (-0.07* and -0.06*, respectively) and per author in 3∗, 4∗, or 4∗∗ journals
declined (-.08* and -0.07*, respectively). At the same time, the proportion of
publications in Economics and Econometrics journals declined (-.070* and -
0.073*, respectively) while the proportion of those in Finance and Management
increased (0.069* and 0.072*, respectively).

4.4.5 Extension: Remainers versus Leavers. The survival of the
fittest or the sinking of the weakest?

Because since the beginning of the introduction of the RAE/REFs in the
UK the absolute number of Economics departments submitting to the Eco-
nomics/Econometrics Panel has decreased (from 41 in 2001 to 28 in 2014), we
examine the impact of the REF 2014 on the research productivity separately
for universities that submitted to this panel both in 2008 and 2014 (remainers)
from those that submitted in 2008 to the Economics/Econometrics panel but
switched to other panels in 2014 (leavers).

From Tables A10 and A11 below, we observe that the universities that re-
main in the Economics/Econometrics panel in 2014 increase significantly their
number of publications (ATT of 11.48** up to 2014 and of 14.69*** up to
2015), their publications in good journals (7.46*** and 9.59***, respectively),
as well as publications in top journals in Finance/Management (4.07** and
4.08**, respectively). On some of the years they experience significant in-
creases or decreases in other outcomes intermittently but the overall ATTs are
not significant.
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The leavers experience a very different fate: from 2008 to 2014, the total
number of publications and the publications in top journals do not change;
but all other measures decrease significantly, most importantly the number of
publications in top journals in Economics/Econometrics (-2.71** and -2.99**,
respectively) while those in Finance/Management top journals do not change
significantly (-0.21).

Every other indicator is significantly negative, the number of publications
per author and in 3∗, 4∗, or 4∗∗ journals per author; per author and for each
subfield, total and in top journals; as well as for all the proportions in each
subfield, total, in top journals, total and per author (which means that the
proportion of unclassified must have increased).

The difference in the fate of these two groups (Tables 4.2 and 4.3) is even
more striking when we calculate the difference in the average effects in number
of publications: 11.9 (p-value=0.004). Moreover, this difference is 10.44***,
10.77***, -0.51, 7.03*, 12.42***, 18.16***, 19.32***, 23.34***, respectively for
the years 2008 through 2015.

Consistently, the difference in the estimated effects between the two groups
of universities for the total number of publications in top journals is again
positive and significant for the overall period 8.87 (p-value=0.0003), being 3.52,
10.9***, 5.5**, 1.7, 10***, 14.4****, 16.6****, and 16.8**** the differences in
the average effects, for the years 2008 through 2015.

4.5 Conclusion and future research

A plausible interpretation of our results is that the overall increase in the
number of publications and the number of publications in top journals due
to the REF2014 stems from an increase in the number of publications in Fi-
nance/Management and a decrease in the proportion of Economics and Econo-
metrics publications steered mainly by universities in the Russell Group that
remained in the Economics and Econometrics panel.

The REF2014 did increase the total number of publications and those in top
journals at the expense of the number of publications in top journals in Eco-
nomics/Econometrics, the proportion of publications in Economics and Econo-
metrics and the decrease in overall productivity of the Non-Russell group and
the decay in the results of universities that left the Economics/Econometrics
panel. This is counter-balanced by an increase in the proportion of publica-
tions in Finance/Management, in absolute and relative numbers. The number
of publications per author did not increase. Therefore, the RAE/REFs have
reinforced the strong position of the already strong departments in economics
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and depressed the weaker ones.
In fact, the REF may have introduced changes in the way academics work,

incentivizing collaborative research and/or created distortions in the way uni-
versities recruit academics. Scientific collaboration is widely assumed to en-
hance the quality and impact of scientific research. Individuals with many
links to others may have access to a larger pool of available ideas, methods,
and resources, which allows cost sharing and time saving as a result of division
of labour.

A potential future research would be to explore whether academics are be-
coming more connected to others similar to them, creating links within clus-
ters, thus working more efficiently but not necessarily doing better research,
or if they are bridging communities, achieving competitive advantage from
inter-cluster weak ties, thus becoming empowered to tackle more important
and difficult, possibly interdisciplinary, problems. The aim would be then to
explore if the policy response mechanisms are sustainable or if they may in-
duce negative feedback on research productivity in the longer term (such as
if research excellence becomes more and more concentrated within few insti-
tutions); if the mechanisms at play are different for different disciplines or for
different types of academics and if these mechanisms are gender (or otherwise)
biased.
In particular, my idea is to focus on the development of a new interdisci-
plinary approach to evaluate the impact of policy interventions on agents that
belong to connected communities. The new approach would challenge stan-
dard academic thinking in the way policies are assessed, by considering both
direct and indirect effects stemming from spillovers that the policy may have
on the behaviour of the community of interest, and its feedback on the vari-
able directly targeted by the policy. In particular, the new approach would
integrate state-of-the-art concepts and methodologies from two distinct fields
of knowledge, Economics and Network Sciences (a field which draws theory
and methods from computer science, physics and statistics), creating a new
interdisciplinary methodological space.

Therefore, it’s my intention to apply the proposed methods for the study of
direct and indirect (unintended) effects, if any, due to REF on the dynamics
of mobility (universities’ hiring decisions) and collaboration (preferential at-
tachment of authors for joint research) networks of researchers in the UK and
the impact of these changes on research productivity.
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Chapter 5

The doom-loop: financial
correlation networks based on
Credit Default Swaps

Abstract

We analyse the interdependence between sovereigns and financial institutions
in terms of risk transmission. In particular, we analyse CDS data issued by
sovereigns and financial institutions between 2009 and 2016 to infer spillover
effects in the global financial system.

We introduce a SVN approach, which is novel in this context, and show
that traditional approaches to compute spillover effects can benefit when used
in companion with SVNs.
Specifically, we bring forth two benefits: 1) overcome the problem observed in
the orthogonalized FEVD related to the dependence of the results on the order
of the variables in the VAR model, and 2) prove both formally and empir-
ically that the generalized FEVD is not suitable for the description of pure
spillover effects, since its coefficients reflect both a synchronous part—due to
the co-movement of variables in the system (R-squared)—and an asynchronous
component that represents the pure spillover effect.

We derive pure spillover effects from the generalized FEVD to then con-
struct SVNs, which provide insights on which preferential patterns risk trans-
mits across the agents of the financial system.

5.1 Introduction

Sovereigns are exposed to bank risk and, at the same time, banks are ex-
posed to sovereign risk. During the euro-area sovereign debt crisis started in
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2010, this two-way risk exposure generated a “vicious circle”, also known as the
“doom loop” [66]. At a point when government bonds were considered risky
assets, euro-area banks faced with both balance sheet and reputational risks,
making it hard to compete with their non-euro area counterparts, forcing to
tight their exposure to sovereign credit risk, thus igniting the most disruptive
financial crisis has ever jeopardized the Euro currency system. Understanding
the relationship between sovereign and banking risk is therefore fundamental
to deploy policies and regulatory measures aimed at reducing the probability
and impact of financial crises.

We focus our analysis on the interdependence between sovereigns and finan-
cial institutions in terms of their risk transmission. We termed with “interde-
pendence” the bidirectional relationship between the risk profile of a govern-
ment and of owned financial groups over time. Notice that a “feedback loop”
is a special case of such interdependence, when risk factors for either banks or
sovereigns lead to a self-reinforcing deterioration of credit risk.

There is a growing body of theoretical studies that illustrate how increas-
ing interconnectedness can pose a serious threat to the stability of a financial
system due to contagion and amplification effects ([6, 62], [81, 80]). For exam-
ple, Acemoglu et al. (2012) [5] show that intersectorial input-output linkages
between firms can give rise to aggregate (or economy-wide) fluctuations when
idiosyncratic or sector shocks propagate, thus leading to network effects that
impact the aggregate economy. Covi and Eydam (2017) [47] analysed a panel
data on European banks and sovereigns ranging from 2012 and 2016 in order
to test the effects of the Bank Recovery and Resolution Directory (BRRD)
on the two-way feedback process, finding that there was a pronounced feed-
back loop between banks and sovereigns from 2012 to 2014, which disappeared
after the implementation of the new regulatory framework. Acharya et al.
2013 [8] analyse CDS rates on European sovereigns and banks for 2007-11,
showing that bailouts triggered the rise of sovereign credit risk, highlighting
how post-bailout changes in sovereign CDS explain changes in bank CDS even
after controlling for aggregate and bank-level determinants of credit spreads,
confirming the sovereign-bank loop. Diebold and Yielmaz (2012) [56] use a
generalized VAR framework and FEVD coefficients that are invariant to the
variables ordering, proposing some measures of volatility spillovers to charac-
terize daily volatility spillovers across US stocks, bonds, foreign exchange and
commodities markets from 1999 to 2010, showing that cross-market volatility
spillovers were quite limited until the global financial crisis began in 2007, and
as the crisis intensified, the volatility spillovers did too. Acemoglu et al. 2015
[6] highlight that dense networks facilitate propagation of shocks, leading to
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a more fragile financial system, and that the same factors that contribute to
the resilience under certain conditions may function as significant sources of
systemic risk under others.

We introduce a validated network approach, which is novel in this context.
In particular, SVNs [183] allow one to assess the “excess” of risk transmission
among the agents of the financial system, therefore going beyond the observed
interconnections due to the “physiological” heterogeneity that characterizes
the system. The new approach allows one to better highlight the nodes and
patterns in the network that are less resilient when risk propagates in the sys-
tem. We study spillover effects among sovereigns and financial institutions
in the global financial market. Specifically, we analyse CDS data issued by
sovereigns and financial institutions between April 2009 and July 2016 to infer
their risk transmission. Also, we deal with the estimation of high-dimensional
regularized VAR models by using the Least Absolute Shrinkage and Selection
Operator (LASSO) and post-LASSO method, which leads to regularized net-
works. We then resort to the FEVD [129, 157] to compute the spillover effects.
We show that traditional approaches to compute spillover effects can benefit
when used in companion with SVNs. Specifically, we bring forth two benefits:
1) overcome the problem observed in the orthogonalized FEVD related to the
dependence of the results on the order of the variables in the VAR model,
and 2) prove both formally and empirically that the generalized FEVD is not
suitable for the description of pure spillover effects, since its coefficients reflect
both a synchronous part—due to the co-movement of variables in the system
(correlations or R-squared)—and an asynchronous component that represents
the pure spillover effects. We derive pure spillover effects from the generalized
FEVD to then construct SVNs, which eventually, show an overlap with the
SVNs constructed using the orthogonalized FEVD.

5.2 Data and Methods

5.2.1 Data

We downloaded the data from the Thomson Reuters Eikon Database. The
data refer to 147 daily CDS spread with a maturity of 5-years and issued by
sovereigns and financial companies all across the globe (see Tables B1 and B2
of Appendix B for the list of financials and sovereigns considered in the study).
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5.2.2 Variance Decomposition for high-dimensional problems

We study financial networks in which we have n nodes. A subset of these
nodes includes sovereigns, while the remaining nodes are financial companies.
We study the links among these sovereigns and financial companies focusing
on their CDS. Therefore, we compute the CDS returns of the n nodes at time
t, which we include in a n × 1 vector Rt = [R1,t · · · Rn,t]

′, for t = 1, · · · , T .
Following [89], we use the Generalized Dynamic Factor (GDF) model (see
[73, 71, 70] and [72]) to separate common shocks from idiosyncratic shocks.
We then compute the following decomposition:

Rj,t = Cj,t +Xj,t = bj,1(L)u1,t + · · · bj,q(L)uq,t +Xj,t, (5.1)

where Cj,t and Xj,t denote, respectively, the common and the idiosyncratic
components of Rj,t, for j = 1, · · · , n, ut = [u1,t · · ·uq,t] is an unobservable q-
dimensional orthonormal white noise with square-summable filters bj,1(L), · · · ,
bj,q(L), whereas L is the lag operator.1

We adopt the decomposition in Eq. (5.1) because we focus on the so-called
‘pure’ contagion risk component of systemic risk; that is, we filter the shock
arising from a given node which subsequently propagates towards other nodes
within the network [89]. Following [55], [53] and [89], we use the FEVD method
to measure the spillover effects among the n nodes. The FEVD, in turn, builds
on the estimation of the following covariance stationary VAR model:

Xt = ννν +

p∑
i=1

ΦΦΦiXt−i + εεεt, (5.2)

where Xt = [X1,t · · · Xn,t]
′, ΦΦΦi is an n × n parameter matrix, ννν is a n × 1

vector of intercept terms and εεεt ∼ N (0,ΣΣΣ), with E(εεεtεεε
′
s) = 0, for s 6= t.2

Under the stability assumption, the model in Eq. (5.2) admits the following
infinite Moving Average (MA) representation [129]:

Xt = µµµ+
∞∑
i=0

Aiεεεt−i, (5.3)

where the coefficient matrix Ai can be iteratively computed as Ai = ΦΦΦ1Ai−1 +

ΦΦΦ2Ai−2 + · · · + ΦΦΦpAi−p, for i = 1, 2, · · · , whereas A0 = IN and Ai = 0 for
i < 0.

An alternative way to compute Ai in Eq. (5.3) takes the following form

1 Following [70] and [89], we employ the method of [91] to estimate the optimal value of q. This rule
suggests q = 1, which is consistent with the findings of [89].

2 Following [89], we set p = 2 in our empirical analysis.
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[129]:
Ai = JΦΦΦiJ′, (5.4)

where

ΦΦΦ =


ΦΦΦ1 ΦΦΦ2 · · · ΦΦΦp−1 ΦΦΦp

In 0 · · · 0 0
0 In · · · 0 0
...

... . . . ...
...

0 0 · · · In 0

 (5.5)

is an np× np matrix, J = [In 0 · · · 0] and In is an n× n identity matrix.

Our method should be flexible in dealing with large values of n. However,
the coefficients derived from the standard VAR model in Eq. (5.2) are affected
by serious issues related to the accumulation of estimation errors when n takes
large values. Furthermore, we do not know a priori which of the variables in Eq.
(5.2) have a significant impact onXt. Our method would suffer from overfitting
problems when using too many covariates. On the other hand, we run the risk
of an omitted variable bias when shrinking the set of such regressors. We deal
with the curse of dimensionality using a well–known variable selection and
regularization method; that is, the LASSO introduced by [181]. This method
consists of adding an `1-norm penalty to the Ordinary Least Squares (OLS)
loss function. As a result, we estimate the parameters from the following
optimization problem:

β̂ββj = argmin
βββj

( T∑
t=p+1

(Xj,t − νj −
p∑
i=1

φφφi,jXt−i)
2 + λj

p∑
i=1

|φφφi,j|
)
, (5.6)

for j = 1, · · · , n, where βββj = [νj φφφ1,j · · ·φφφp,j], φφφi,j is the j-th row of ΦΦΦi, νj is
the j-th element in ννν and λj > 0 is a tuning parameter.

λj determines the intensity of the penalization in (5.6). The larger λj is,
the larger the number of coefficients that approach zero, providing a sparser
solution. We select the optimal value of λj by employing the 10-fold cross-
validation method, which is widely used in the statistical and econometric
literature (see, e.g., [96]).

We differ from [89] who, instead, used the elastic net shrinkage method
in place of the LASSO. Indeed, according to [89], the elastic net penalty has
the advantage of being relatively less aggressive in reducing the number of se-
lected variables. Nevertheless, on the other hand, this method leads to denser
networks, in which it could be difficult to identify the relevant transmission
channels among the n nodes. In contrast, we prefer the LASSO because it leads
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to sparse solutions, selecting the nodes that have a stronger impact on the en-
tire network. Moreover, we also differ from [89] because we do not directly
use the coefficients computed from the penalized problem in (5.6) to build
our network, but we improve the accuracy of the estimates by implementing
a further exercise. Indeed, penalized regression models suffer from some lim-
itations. For instance, they typically provide biased estimates, overshrinking
the values of the selected variables. In this study, we address this issue by
using the post-LASSO method, which is described as follows. We solve in a
first step the problem in (5.6) and select the regressors whose coefficients are,
in absolute value, greater that a given threshold η.3 We include the selected
regressors in X(s)

t−i and solve, in a second step, the following problem, which
does not include any penalty function:

β̂ββ
(s)

j = argmin
βββ
(s)
j

T∑
t=p+1

(
Xj,t − νj −

p∑
i=1

φφφ
(s)
i,jX

(s)
t−i

)2

. (5.7)

We finally obtain the estimate of ΦΦΦi, denoted as Φ̂ΦΦi, for i = 1, · · · , p. Note
that the coefficients in Φ̂ΦΦi are classified in two groups: i) the coefficients of the
covariates that are LASSO-selected in the first step, which are computed from
(5.7); and ii) the coefficients of the covariates that are not LASSO-selected
in the first step (i.e., the ones whose absolute value is lower than or equal to
η), which we set equal to zero. Notably, the post-LASSO method provides
superior estimates (see, e.g.,[65], [23] and [98])4.

After estimating the coefficients of the penalized VAR model, we compute
the FEVD; that is, the proportion of the h-step ahead forecast error variance
of variable i that is accounted for by the innovations in variable j [129]. We
first define the orthogonalized FEVD [129], which takes the following form:

θoi,j(H) =

∑H−1
h=0 (e′iAhPej)

2∑H−1
h=0 (e′iAhΣΣΣA′hei)

, (5.8)

where ej is an n× 1 selection vector with unity as its j-th element and zeros
elsewhere, whereas P is computed from the Cholesky decomposition of ΣΣΣ:
PP′ = ΣΣΣ.

Despite being widely used in many statistical applications, the orthogonal-
ized FEVD suffers from an important limitation. Indeed, the results depend

3 We set η = 0.000001 in our empirical analysis.
4 We also evaluate the statistical significance of the coefficients resulting from (5.7), comparing the results

with the ones obtained with the elastic net. We checked that the LASSO provides a relevant percentage of
selected variables that are also statistically significant at the 1% level. In contrast, a relevant percentage of
variables that are selected by the elastic net are not statistically significant at the 5% level. This evidence
further supports our choice of using the LASSO.
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on the ordering of the variables in the VAR model. We attempt to overcome
this gap by randomly permuting the positions of the variablesW times and, for
each permutation, we estimate the penalized VAR along with the correspond-
ing FEVD. We then select the vertices that are stable with a given frequency.

We compare the orthogonalized FEVD with the generalized FEVD intro-
duced by [157], which is defined as follows:

θgi,j(H) =
σ−2
jj

∑H−1
h=0 (e′iAhΣΣΣej)

2∑H−1
h=0 (e′iAhΣΣΣA′hei)

, (5.9)

where σij is the element placed in the i-th row and in the j-th column of ΣΣΣ,
for i, j = 1, · · · , n.

Note that
∑n

j=1 θ
o
i,j(H) = 1, whereas

∑n
j=1 θ

g
i, j(H) 6= 1 in general.

As in [89], we then normalize θgi,j(H) by computing the following quantity:

γi,j =
θgi,j(H)∑n
j=1 θ

g
i,j(H)

× 100. (5.10)

The main advantage of the generalized FEVD is that it provides results that
are invariant to the ordering of the variables in the VAR model. However, we
check that this method often produces values of γi,j which are clearly distant
from zero even if the variable j is not LASSO-selected as a relevant regressor
to explain variable i. In contrast, the values of γi,j are mainly driven by
synchronous correlations. In this case, we could simply compute a correlation
matrix in place of the generalized FEVD to obtain similar information. We
formally show this evidence in Section 5.2.4.

5.2.3 SVN of spillover effects

To construct the SVN, the idea is to discretize the FEVD coefficients as
follows. We first perform a bootstrap algorithm on the starting date to generate
the sampling distribution of FEVD coefficients. By doing so, we are able to
find a threshold based on the results deriving from the generated bootstrap
samples. We define this threshold as the standard deviation of the sampling
distribution: θ∗i,j = 0.005.

Therefore, we use this threshold to associate each θi,j with a positive integer
kij, taken as the greatest integer less than or equal to the ratio between the
observed coefficient θi,j and the threshold θ∗i,j:⌊

θi,j
θ∗i,j

⌋
= kij (5.11)
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We then statistically validate link between i and j if:

p-value(kij) = 1− Phyper
(
kij;
∑
j

kij,
∑
i

kij,
∑
i

∑
j

kij

)
<

0.01

#tests
(5.12)

using a Bonferroni correction for multiple tests with #tests = n(n − 1),
that is, two tests per pair.

5.2.4 A simple model to describe how synchronous and lagged cor-
relation among variables influence FEVD coefficients

In this subsection, we show that, although the generalized FEVD does not
depend on the ordering of variables in the VAR model, it is biased when it
comes to measure pure spillover effects. Indeed, we show that it involves
two parts, a part due to synchronous correlations, and another part due to
asynchronous correlations, which measure the pure spillover effects among the
variables. Assuming the matrix of coefficients of lag 1 of a VAR process as
being the result of the following model, which depends on parameters (λ1, λ2)

∈ [0, 1]2 : λ1 + λ2 = 1

Φ(λ1, λ2) = (λ1 − λ2)I + λ2U (5.13)

where I is the identity matrix of dimension n, and U is the all-ones matrix of
dimension n, with n the number of variables.
λ1 is an intensity parameter of the auto-correlation process, while λ2 the one
of the process of lagged cross-correlations between variables.
For simplicity, we assume that any lag greater than one is not statistically
significant: Φi = 0nxn, ∀i > 1.

We model the process as the sum of two effects: an effect due to lagged
auto-correlations of features; and an effect due to lagged cross-correlations
between features.
So, if only auto-correlations are present, we would have

Φ1(λ1, λ2 = 0) =

λ1 0 0

0 λ1 0

0 0 λ1
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and with only lagged cross-correlations,

Φ1(λ1 = 0, λ2) =

 0 λ2 λ2

λ2 0 λ2

λ2 λ2 0


The coefficients of the MA representation of the generic VAR model can be

written recursively as follows

Ai =
i∑

j=1

ΦjAi−j, ∀i = 1, 2, . . .

Proposition: Assuming the process being a VAR(1) with coefficients Φi =

0nxn, ∀i > 1; By construction, A0 = I. Also, for lag=1: A1 = Φ1A0 = Φ1I =

Φ1; for lag=2: A2 = Φ1A1 + Φ2A0 = Φ2
1

So, in general, the coefficients of the MA representation of VAR(m) are Am =

Φm
1

Proof
By mathematical induction: assuming Am−1 = Φm−1

1 as true.
For m = 1: A1 = Φ1A0 = Φ1

Am = Φ1Am−1 + Φ2Am−2 + · · · + ΦmA0 = Φ1Am−1 = Φm
1 , since Φi =

0nxn, ∀i > 1

Therefore, to evaluate Am = Φm
1 , it is necessary to evaluate the matrix

Φm
1 = [(λ1 − λ2)I + λ2U]m

By indicating λ1−λ2 = ∆λ and using the Binomial theorem (which can be
used since matrices I and U commute), we can derive the following equations5:

Φm
1 = (∆λI + λ2U)m

=
m∑
k=0

(
m

k

)
∆λkIk · λm−k2 Um−k =

U

n
[(∆λ+ nλ2)m −∆λm] + ∆λmI = Am

(5.14)
If λ1 = λ2 = λ ⇒ ∆λ = 0 and Am = U

n
nmλm = nm−1λmU

Let Σ = {σij}i,j=1,2,...,n be the variance-covariance matrix of model residuals
5 In Appendix B we report the detailed steps leading to the result
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and UΣU = STU, where ST = UΣ =
∑n

i=1

∑n
j=1 σij

It’s also useful to introduce the notation: σ̄i =
∑n

j=1 σji

n
.

Following the notation of Demirer et al. 2018 [53] (and correcting the typo
σ−1
jj → σ−2

jj ), the H-step-ahead generalized forecast error variance θgij(H) is:

θgij(H) =
σ−2
jj

∑H−1
h=0 (eTi AhΣej)

2∑H−1
h=0 (eTi AhΣAT

hei)
, H = 1, 2, . . . (5.15)

It can be shown by using some algebra (in Appendix B we report the detailed
steps leading to the result) that:

• if H=1, then

θgij(H = 1) =
σ2
ij

σ2
iiσ

2
jj

= R2
ij (5.16)

• if H=2, then

θgij(H = 2) = R2
ij

{ 1 + (
nλ2σ̄j
σij

+ ∆λ)2

1 + ∆λ2 + ST

σ2
ii
λ2

2 + 2nλ2∆λ σ̄i
σ2
ii

}
(5.17)

Therefore, with VAR(1) and H=1, FEVD coefficients just reflect the syn-
chronous relationships among variables. On the contrary, Eq. 5.17 highlights
that for H=2 the FEVD can be written as the combination of two effects: a syn-
chronous effect, summarized by coefficient R2

ij, and another one that accounts
for pure spillover effects due to asynchronous relationships among variables
(the outcome of VAR). In particular, spillover effects will depend on Σ, the
number of variables n, and parameters λ1 and λ2. It’s worth to note that if
λ2 = 0 then, according to the VAR, the system does not reveal significant
lagged cross-correlations, and, as a consequence, the FEVD leads again to the
R2.

5.3 Empirical results

In this section, we first show empirically that the spillover effects that derive
from the generalized FEVD are biased, since they involve both an asynchronous
and a synchronous component. Indeed, by randomly shuffling the original
data only with respect to time dimension—in order to completely remove the
asynchronous effects—results remain the same as in the case of original data.

Secondly, we show that the orthogonalized FEVD better describes spillover
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effects in the system, and we use SVNs to overcome the problem of dependence
of the method on the ordering of the variables in the phase of estimation of
the VAR model.

Thirdly, we construct the SVN using: (i) the biased generalized FEVD;
(ii) the unbiased generalized FEVD; and (iii) the orthogonalized FEVD. We
also compute Jaccard index values and overlap coefficients to compare the
resulting SVNs in the different cases. In fact, we show that there is a good
overlap between the SVNs using the unbiased version of the generalized FEVD
and the ones using the orthogonalized FEVD.

5.3.1 Construction of the SVN using biased generalized FEVD co-
efficients

We construct the SVN according to the method introduced in subsection 5.2.3.
In Figures 5.5, 5.6 and 5.7 we show the SVN respectively for the first, second,
and third sub-period. In all the sub-periods, most of the relationships be-
tween nodes are bidirectional, meaning that almost only synchronous effects
are highlighted by the method.

We then randomly shuffle the data with respect to time dimension and con-
struct the SVNs. We repeat the procedure 100 times and find that, despite the
shuffled time dimension, some of the links are still persistent in the networks.
Fig. 5.1 describes a bimodal distribution of stable links for all sub-periods;
it shows that the resulting SVNs have a peak of stable links even beyond 90
time permutations, which are clearly due to synchronous effects (R2) among
variables. Moreover, in Figure 5.4 we show the values of the Jaccard index to
quantify the overlap between the networks resulting from the shuffling proce-
dure. For all the sub-periods Jaccard values are quite high, meaning that, no
matter the temporal ordering is, the networks keep showing the synchronous
component contained in the data, which dominates the asynchronous one.

Figure 5.1: Link stability of SVNs constructed using biased generalized FEVD coefficients and
data with shuffled time dimension: sub-periods 04/2009-08/2011 (left), 09/2011-01/2013
(middle), 02/2013-07/2016 (right)
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5.3.2 Construction of the SVN using orthogonalized FEVD coeffi-
cients

Unlike the generalized FEVD, the orthogonalized FEVD treats shocks as
orthogonal to each other and, therefore, it allows to write the variance of the
total forecasting error as a sum of variances of the single shocks (as the covari-
ance terms are zero following the orthogonality property of structural shocks)
and most importantly, it is not affected by synchronous effects. Nevertheless,
one crucial drawback of the orthogonalized FEVD is that it depends on the
order of the variables defined in phase of estimation of the VAR model. We
use SVNs to overcome the problem. Therefore, we run many permutations of
variable orderings and build the SVNs using the respective estimated orthog-
onalized FEVD coefficients. For the final networks we consider links that are
stable in more than 90 random permutations. Fig. 5.2 shows the peak of sta-
ble links in correspondence of 100 random permutations. Figures 5.8, 5.9, and
5.10 show the SVNs for the first, second, and third sub-period, respectively.
Morover, the networks don’t show bidirectional links, suggesting the absence
of synchronous effects.

Figure 5.2: Link stability of SVNs constructed using orthogonalized FEVD coefficients and original
data: sub-periods 04/2009-08/2011 (left), 09/2011-01/2013 (middle), 02/2013-07/2016
(right).

5.3.3 Construction of the SVN using unbiased generalized FEVD
coefficients

We remove the first addend (referring to h = 0) in both the numerator and
denominator of Formula 5.15 to “clean” the total effects from the synchronous
component and obtain the pure spillover effects. We construct the SVNs us-
ing the resulting unbiased FEVD coefficients. This time, stability of links in
the SVNs obtained by randomizing the data with respect to time converges
towards 0 right after 5 permutations (see Fig. 5.3).

We show the networks for the three sub-periods in Figures 5.11, 5.12, and
5.13, respectively. The networks show a dense interconnectedness in all the
sub-periods. They also show that the most interconnected nodes (and therefore
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systemically important) are sovereigns and financial companies from Europe,
and this “doom-loop” interplay is seen since the “explosion” of the European
sovereign debt crisis, which started at the end of 2009.
These networks show a greater number of statistically significant spillover ef-
fects compared to the other types of networks, actually highlighting a global
interdependence in the system. Nevertheless, it is worth to note how the
SVN using unbiased generalized FEVD and SVN using orthogonalized FEVD
share a common source of information about the system interconnectedness.

Indeed, we quantify the overlap between the SVNs obtained using the unbi-
ased generalized FEVD and the ones obtained using the orthogonalized FEVD
to see if they actually attempt to measure the same thing. Since the networks
being compared have a different number of nodes, the overlap coefficient (also
called Szymkiewicz–Simpson coefficient) is preferred to the Jaccard coefficient.
The overlap coefficient amounts for 0.53, 0.56, 0.52 (statistically significant in
all three cases through a hypergeometric test) for the first, second, and third
sub-period, respectively, denoting that the two networks share the information
on spillover effects among the agents of the system.

Figure 5.3: Link stability of SVNs constructed using unbiased generalized FEVD coefficients and
data with shuffled time dimension: sub-periods 04/2009-08/2011 (left), 09/2011-01/2013
(middle), 02/2013-07/2016 (right).

Figure 5.4: Histograms of Jaccard index values comparing the set of links of the SVNs constructed
using biased generalized FEVD coefficients and randomly shuffling time dimension: sub-
periods 04/2009-08/2011 (left), 09/2011-01/2013 (middle), 02/2013-07/2016 (right).
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5.4 Conclusions

We have studied the interdependence between the agents of the financial
system through CDS data over the period that goes from April 2009 to July
2016. We have introduced an approach based on SVNs to measure such interde-
pendencies. Through a SVN we have assessed the “excess” of risk transmission
among the agents of the system compared to the case of random connectedness
while controlling for the heterogeneity in the system.

We have shown both formally and empirically that the generalized FEVD
needs to be modified when used for measuring pure spillover effects. There-
fore, we have untangled the asynchronous relationships from the synchronous
relationships, and we have proved the validity of the approach through the ap-
plication of SVNs on data randomly shuffled with respect to time dimension.

Also, we have overcome the problem of the dependence of spillover effects
on the ordering of variables defined in the VAR model when the orthogonal-
ized FEVD is used. In particular, we have constructed as many SVNs as the
number of generated random permutations of variable ordering, and we have
selected the links that persisted beyond a given threshold of the number of
permutations.

Finally, we have found a statistically significant overlap between the SVNs
constructed using unbiased generalized FEVD and the ones constructed using
orthogonalized FEVD, meaning that there is consistency in what they aim to
measure.

Therefore, the new approach properly highlights the patterns of the network
that are less resilient when it comes to risk propagation.
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Figure 5.5: SVNs using biased generalized FEVD coefficients and original data: sub-period 04/2009-
08/2011.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania; Light
blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.6: SVNs using biased generalized FEVD coefficients and original data: sub-period 09/2011-
01/2013.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania; Light
blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.7: SVNs using biased generalized FEVD coefficients and original data: sub-period 02/2013-
07/2016.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania; Light
blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.8: SVNs using orthogonalized FEVD coefficients: links stable in at least 90 permutations:
sub-period 04/2009-08/2011.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania; Light
blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.9: SVNs using orthogonalized FEVD coefficients: links stable in at least 90 permutations:
sub-period 09/2011-01/2013.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania; Light
blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.10: SVNs using orthogonalized FEVD coefficients: links stable in at least 90 permutations:
sub-period 02/2013-07/2016.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania;
Light blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.11: SVNs using unbiased generalized FEVD coefficients and original data: sub-period
05/2009-08/2011.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania;
Light blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.12: SVNs using unbiased generalized FEVD coefficients and original data: sub-period
09/2011-01/2013.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania;
Light blue= European not in EU; Brown=Russia; Red=US.
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Figure 5.13: SVNs using unbiased generalized FEVD coefficients and original data: sub-period
02/2013-07/2016.
Squared nodes are financial companies. Colours: Yellow=Asia; Blue=EU and UE (EU
with own currency); Pink=Middle East; Light red= Other Asian; Green=Oceania;
Light blue= European not in EU; Brown=Russia; Red=US.



Appendix A

Table A1: US universities: means of the outcome variables of Tab. 4.1 over the pre-treatment years
(2001-2007). Universities are listed in a decreasing order according to the pre-treatment
mean of the number of publications.

Universities of US N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

Harvard University 297.29 241.00 2.20 587.72 1.66
University of California-Berkeley 241.00 189.29 2.18 425.68 1.74
University of Pennsylvania 238.14 203.71 2.26 388.48 1.72
University of Michigan 213.43 168.29 2.37 495.12 1.45
Columbia University 206.29 154.29 2.19 350.27 1.71
New York University (NYU) 203.43 164.86 2.15 340.20 1.68
Pennsylvania State University 197.43 132.00 2.43 469.41 1.37
Cornell University 194.71 137.43 2.24 370.92 1.49
Massachusetts Institute of Technology (MIT) 190.57 156.71 2.26 337.10 1.76
University of Illinois at Urbana-Champaign 188.00 134.86 2.31 397.12 1.49
Stanford University 186.00 145.14 2.17 369.01 1.61
University of Maryland 179.00 142.14 2.38 358.30 1.55
Texas A&M University 173.00 116.00 2.44 367.03 1.45
Michigan State University 167.71 139.14 2.42 359.96 1.50
Northwestern University 162.86 128.00 2.19 257.38 1.69
Ohio State University 152.86 94.71 2.29 295.42 1.52
Rutgers University-New Brunswick 151.86 100.86 2.30 333.17 1.51
University of Wisconsin-Madison 151.43 106.00 2.19 303.88 1.50
University of California-Los Angeles 151.14 116.00 2.23 277.48 1.68
University of Chicago 151.00 126.71 2.07 233.93 1.82
University of Texas-Austin 148.43 126.86 2.41 308.32 1.52
Indiana University 145.86 96.14 2.28 333.52 1.45
Arizona State University 139.57 109.29 2.61 319.03 1.36
Purdue University 139.43 94.29 2.54 316.83 1.37
University of Florida 135.00 99.57 2.63 269.07 1.36
Duke University 131.43 112.14 2.35 243.15 1.56
Yale University 130.00 89.29 2.17 215.34 1.88
University of Minnesota 124.29 85.14 2.44 269.67 1.56
University of Southern California 119.71 97.14 2.36 243.44 1.54
University of Washington 119.43 82.86 2.43 273.48 1.41
University of North Carolina-Chapel-Hill 115.86 84.43 2.48 239.66 1.48
University of Georgia 113.43 67.71 2.47 240.31 1.36
Georgia Institute of Technology 106.71 86.29 2.65 259.43 1.28
Iowa State University 104.57 72.71 2.33 220.67 1.30
Georgia State University 102.86 73.57 2.37 190.27 1.56
Carnegie Mellon University 101.29 91.14 2.51 255.13 1.40
University of California-Davis 100.14 66.71 2.33 180.32 1.63
North Carolina State University 100.00 58.43 2.49 224.28 1.33
University of Arizona 99.29 71.86 2.57 196.50 1.48
Princeton University 99.00 77.71 2.11 172.32 1.64
George Mason University 96.57 47.57 2.08 189.35 1.66
City University of New York 89.57 52.14 2.03 212.46 1.54
Florida State University 89.29 53.29 2.43 186.06 1.41
University of Connecticut 87.86 69.71 2.55 168.31 1.38
George Washington University 86.14 40.29 2.01 183.33 1.48
University of California-Irvine 80.43 56.14 2.10 150.65 1.61
University of Central Florida 79.86 55.29 2.46 180.64 1.46
Boston University 78.14 63.29 2.21 165.89 1.55
University of Colorado at Boulder 74.71 47.00 2.42 135.32 1.68
University of Pittsburgh 73.86 51.29 2.28 176.43 1.48
University of Missouri 73.29 42.29 2.36 157.02 1.34
Louisiana State University 73.14 43.71 2.38 157.93 1.41
University of Virginia 73.00 48.29 2.34 161.21 1.59
Auburn University 71.71 33.14 2.36 157.30 1.37
Syracuse University 70.86 44.57 2.21 145.44 1.51
University of South Carolina 69.86 49.14 2.39 147.20 1.43
Georgetown University 68.00 46.29 2.10 136.93 1.53
Emory University 67.14 51.86 2.38 124.64 1.59
Boston College 65.29 52.14 2.23 119.18 1.66
University of California-San Diego 64.71 44.86 2.13 97.66 1.96
University of Illinois at Chicago 64.57 34.43 2.26 154.29 1.44
University of Houston 63.00 42.57 2.43 138.91 1.58
University of Iowa 62.86 50.29 2.38 144.89 1.34
University of Alabama-Tuscaloosa 60.43 34.00 2.50 143.22 1.48
Vanderbilt University 59.86 34.57 2.12 100.82 1.67
Johns Hopkins University 59.14 34.29 2.36 151.12 1.34
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Universities of US N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

University of Kentucky 59.00 37.71 2.48 132.94 1.45
University of Texas-Dallas 57.71 54.00 2.54 95.09 1.62
University of Miami 57.43 37.00 2.29 107.47 1.70
Washington University in St. Louis 56.43 45.29 2.28 109.82 1.64
Dartmouth College 55.57 42.57 2.18 86.95 1.74
University of Notre Dame 55.43 38.14 2.15 118.02 1.38
Colorado State University 55.00 23.29 2.35 117.50 1.47
University of Oklahoma 55.00 40.29 2.72 122.67 1.29
Rensselaer Polytechnic Institute 54.57 42.43 2.38 94.94 1.67
Temple University 54.43 38.14 2.31 104.51 1.65
Clemson University 53.86 37.00 2.52 116.35 1.41
University of Rochester 52.29 46.14 2.18 103.05 1.51
University of Tennessee-Knoxville 52.00 23.14 2.40 108.61 1.47
State University of New York-Buffalo 51.29 41.86 2.32 109.76 1.42
Southern Methodist University 49.86 37.57 2.31 85.94 1.49
University of Delaware 49.00 24.71 2.23 106.58 1.34
Rice University 48.29 38.57 2.31 89.76 1.52
Case Western Reserve University 48.14 38.29 2.16 94.02 1.52
University of Massachusetts-Amherst 48.14 27.29 2.33 148.07 1.34
Drexel University 46.57 29.43 2.37 99.87 1.36
Oklahoma State University 45.71 24.57 2.51 89.37 1.53
Brigham Young University 43.86 33.43 2.33 120.26 1.13
Brown University 42.71 32.00 2.07 77.87 1.82
Florida Atlantic University 41.71 24.29 2.54 82.31 1.55
University of California-Santa Barbara 41.57 24.14 2.16 88.33 1.58
American University 41.29 19.86 2.20 78.13 1.64
University of Oregon 40.57 26.00 2.29 79.60 1.59
University of California-Riverside 40.43 23.29 2.32 75.66 1.56
University of Kansas 39.14 23.00 2.29 83.64 1.44
University of Wyoming 38.00 29.71 2.23 50.45 2.00
University of Hawaii-Manoa 35.43 16.57 2.14 77.91 1.58
West Virginia University 35.29 13.14 2.24 88.36 1.37
State University of New York-Binghamton 35.00 22.71 2.31 70.77 1.53
Virginia Commonwealth University 33.43 17.29 2.44 84.62 1.30
California Institute of Technology 33.43 25.86 2.52 53.69 2.09
Utah State University 31.29 16.29 2.61 64.53 1.43
Tufts University 30.86 16.71 2.02 54.05 1.77
University of Colorado at Denver 30.57 21.43 2.37 67.71 1.40
Fordham University 29.29 12.14 1.91 52.97 1.75
Tulane University 28.86 22.29 2.31 65.93 1.45
College of William & Mary 28.71 20.43 2.11 58.53 1.46
State University of New York-Albany 28.00 15.57 2.07 82.34 1.35
University of Nevada-Reno 27.86 14.29 2.26 62.11 1.43
Baylor University 27.29 20.14 2.44 52.47 1.37
DePaul University 26.14 17.00 2.28 68.81 1.37
Santa Clara University 25.29 17.00 2.12 48.44 1.46
University of North Carolina-Greensboro 25.00 14.00 2.23 62.98 1.30
University of California-Santa Cruz 23.86 15.43 2.21 35.06 2.02
Stony Brook University 21.43 11.71 2.31 38.47 1.60
University of Maryland-Baltimore County 18.43 10.29 2.54 51.75 1.31
Appalachian State University 18.00 7.43 2.28 46.24 1.26
Brandeis University 16.00 12.43 2.66 34.73 1.56
Middlebury College 13.57 3.86 1.83 23.55 1.79
Williams College 11.86 7.29 2.11 24.77 1.58
Claremont McKenna College 11.43 8.14 2.06 18.28 1.60
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Table A2: UK universities: means of the outcome variables of Tab. 4.1 over the pre-treatment years
(2001-2007). Universities are listed in a decreasing order according to the mean of the
number of publications.

Universities of UK N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

University of Manchester 181.00 126.86 2.28 427.56 1.40
London School of Economics and Political Science 168.57 115.14 2.00 341.11 1.72
University of Warwick 148.43 109.86 2.16 279.70 1.63
University of Oxford 147.71 89.86 1.97 293.14 1.80
University of Nottingham 147.43 115.57 2.32 273.41 1.53
University of Cambridge 127.57 88.29 2.09 284.88 1.74
Cardiff University 110.29 85.57 2.27 233.36 1.33
University College London 89.29 62.71 2.51 189.63 1.66
Imperial College London 83.86 56.43 2.49 184.81 1.39
University of Leeds 81.29 57.14 2.20 200.73 1.35
Lancaster University 79.86 62.29 2.16 192.84 1.38
University of Strathclyde 78.00 50.86 2.28 162.22 1.47
University of Birmingham 77.86 38.57 2.11 187.41 1.64
University of Sheffield 75.86 35.86 2.44 177.22 1.46
London Business School 74.14 57.29 2.11 124.21 1.72
University of Southampton 73.14 55.29 2.50 172.68 1.34
City University London 70.86 55.00 2.24 158.48 1.47
Cranfield University 68.57 43.86 2.28 156.98 1.22
University of Reading 68.29 35.43 2.14 150.86 1.58
University of York 68.14 37.71 2.16 141.64 1.52
Brunel University London 68.00 32.57 2.47 149.81 1.44
University of Bath 67.43 49.86 2.28 141.71 1.38
University of Edinburgh 58.00 38.71 2.25 139.28 1.50
Aston University 55.29 38.00 2.51 87.04 1.64
Newcastle University 55.00 29.71 2.43 149.20 1.29
University of Exeter 52.43 35.43 2.24 110.13 1.50
University of Surrey 51.71 28.14 2.42 121.56 1.47
University of Essex 51.29 42.57 2.04 115.11 1.50
University of Leicester 51.00 27.86 2.17 114.10 1.50
University of Glasgow 49.00 28.43 2.29 120.46 1.44
University of Durham 47.86 28.43 2.10 105.02 1.53
University of Bristol 46.43 33.14 2.45 114.86 1.41
University of East Anglia 43.14 32.00 2.23 108.31 1.39
University of Ulster 42.14 15.57 2.46 98.45 1.33
University of Aberdeen 40.29 24.57 2.32 103.63 1.39
University of Sussex 39.57 25.29 1.91 122.16 1.67
King’s College London 39.43 30.86 2.54 95.29 1.49
Queen Mary University of London 37.86 25.57 2.41 62.75 2.04
University of Salford 37.71 14.00 2.29 112.40 1.12
Royal Holloway, University of London 36.86 22.00 2.14 72.03 1.60
Manchester Metropolitan University 36.57 12.86 2.12 96.77 1.35
University of Stirling 36.29 21.86 2.18 72.77 1.58
University of Bradford 36.14 17.57 2.24 79.48 1.63
Open University 35.14 13.57 2.04 115.80 1.30
University of Kent 34.57 20.29 2.18 70.34 1.61
Birkbeck College 34.43 22.86 2.05 65.05 1.93
University of Liverpool 34.43 19.14 2.47 101.33 1.30
Queen’s University Belfast 33.86 17.00 2.29 84.48 1.36
Heriot-Watt University 32.71 10.43 2.29 84.68 1.39
University of Hull 32.00 11.14 1.99 68.76 1.50
Middlesex University 30.86 10.43 2.30 66.71 1.46
Swansea University 29.29 14.14 1.90 52.52 1.57
University of St Andrews 29.29 17.86 2.10 53.52 1.66
University of Portsmouth 29.14 16.14 2.54 67.58 1.21
University of the West of England, Bristol 27.14 12.00 2.03 79.77 1.39
Glasgow Caledonian University 25.14 10.43 2.29 76.76 1.25
University of Dundee 24.00 18.14 2.48 62.50 1.07
University of Plymouth 24.00 10.29 2.42 68.85 1.21
London Metropolitan University 23.71 8.86 1.78 61.71 1.42
Oxford Brookes University 22.71 6.71 1.93 53.48 1.58
De Montfort University 21.57 16.29 2.64 54.67 1.50
Sheffield Hallam University 20.57 8.86 2.04 61.78 1.46
Kingston University 20.29 8.57 2.09 61.59 1.37
Nottingham Trent University 19.71 8.43 1.98 54.09 1.53
Keele University 18.43 10.57 1.84 41.27 1.68
University of Westminster 17.86 6.29 2.40 48.38 1.37
Edinburgh Napier University 16.86 4.00 2.35 48.49 1.27
Leeds Beckett University 16.43 3.71 2.11 45.73 1.50
Coventry University 16.29 8.00 2.48 43.71 1.39
University of South Wales 16.14 6.00 2.70 50.21 1.34
London South Bank University 15.71 6.86 2.18 42.27 1.64
University of Northumbria at Newcastle 15.00 6.00 1.94 51.40 1.36
University of Wolverhampton 14.29 2.14 2.07 43.96 1.34
University of Brighton 14.29 7.14 2.39 39.38 1.61
Aberystwyth University 13.57 7.43 2.27 33.46 1.47
University of Greenwich 13.29 6.14 2.24 36.36 1.59
University of Hertfordshire 12.71 7.57 1.95 36.97 2.13
Bournemouth University 12.57 3.57 1.93 38.38 1.31
Bangor University 12.43 6.29 2.25 20.60 1.76
Robert Gordon University 11.57 6.57 2.24 31.53 1.28
University of Central Lancashire 11.14 4.57 1.63 23.83 2.71
University of Sunderland 8.71 1.71 2.03 19.86 1.51
University of Bedfordshire 8.43 2.71 2.46 19.85 1.62
University of East London 8.43 2.29 2.28 20.97 1.55
Staffordshire University 8.00 2.71 1.94 23.70 1.47
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Table A3: US universities: means of the outcome variables of Tab. 4.1 over the post-treatment
years (2008-2015). Universities are listed in a decreasing order according to mean of the
number of publications.

Universities of US N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

Harvard University 454.38 309.25 2.37 748.65 1.89
University of Michigan 360.75 228.88 2.58 634.60 1.63
Pennsylvania State University 350.25 190.25 2.80 635.10 1.59
Texas A&M University 343.50 177.38 2.80 613.65 1.57
University of California-Berkeley 341.12 216.75 2.42 540.37 1.93
Stanford University 330.50 211.75 2.58 553.75 1.83
Columbia University 330.50 208.50 2.39 483.57 2.02
University of Pennsylvania 324.12 236.75 2.55 500.74 1.91
Cornell University 307.00 177.38 2.47 496.00 1.77
New York University (NYU) 294.62 194.88 2.41 476.98 1.88
Indiana University 287.50 159.88 2.59 515.77 1.69
University of Illinois at Urbana-Champaign 280.88 151.00 2.66 517.14 1.61
Michigan State University 274.88 172.50 2.83 479.50 1.54
Massachusetts Institute of Technology (MIT) 273.50 201.62 2.63 444.14 1.86
Arizona State University 259.38 161.12 2.82 453.68 1.63
Purdue University 252.00 141.50 2.77 473.63 1.53
Rutgers University-New Brunswick 241.75 130.00 2.57 434.40 1.66
University of Maryland 239.38 167.75 2.74 462.81 1.68
Northwestern University 238.75 178.62 2.40 368.70 1.74
University of Chicago 237.50 173.38 2.37 316.60 2.03
University of Florida 236.62 131.12 2.81 415.05 1.58
Ohio State University 234.38 133.38 2.72 398.25 1.62
Duke University 231.75 169.88 2.71 356.12 1.73
University of Texas-Austin 228.38 147.62 2.69 407.71 1.59
University of Wisconsin-Madison 221.38 126.25 2.67 400.15 1.66
University of Washington 216.00 116.88 2.83 399.07 1.63
Yale University 202.12 126.62 2.60 275.79 2.22
University of Southern California 198.25 121.75 2.45 356.74 1.67
University of Georgia 194.88 105.12 2.72 343.00 1.54
University of California-Los Angeles 191.88 111.62 2.45 305.30 1.88
Georgia Institute of Technology 182.50 129.62 2.86 373.13 1.50
University of North Carolina-Chapel-Hill 178.38 115.25 2.75 317.70 1.62
City University of New York 169.88 73.12 2.34 353.14 1.54
George Mason University 168.88 70.88 2.27 314.92 1.84
Georgia State University 167.50 99.50 2.68 249.64 1.87
University of Minnesota 166.75 96.62 2.72 287.28 1.78
Florida State University 158.75 94.62 2.83 244.64 1.64
Princeton University 158.50 97.12 2.29 247.64 1.96
North Carolina State University 158.38 75.62 2.80 309.97 1.48
Iowa State University 155.75 80.25 2.75 301.10 1.37
Carnegie Mellon University 153.25 118.62 2.79 310.83 1.51
University of California-Davis 152.62 103.62 2.61 250.65 1.72
George Washington University 150.38 66.00 2.54 269.15 1.69
University of Connecticut 139.75 80.25 2.70 223.03 1.60
Temple University 136.25 81.62 2.61 194.43 1.84
University of South Carolina 134.25 78.00 2.76 232.61 1.56
Boston University 133.12 77.62 2.37 217.85 1.72
University of Arizona 130.62 80.50 2.91 234.27 1.76
University of Central Florida 123.75 62.75 2.65 229.03 1.52
University of Virginia 122.38 79.88 2.48 229.51 1.62
University of Alabama-Tuscaloosa 121.25 56.88 2.78 213.06 1.65
University of California-San Diego 120.00 76.25 2.37 184.77 1.89
University of Texas-Dallas 119.38 102.12 2.91 159.69 1.91
Auburn University 118.62 46.62 2.78 209.47 1.48
Johns Hopkins University 118.12 57.62 2.67 220.34 1.70
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Universities of US N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

University of Houston 115.00 67.88 2.70 216.79 1.66
University of California-Irvine 114.50 65.50 2.39 193.42 1.81
Clemson University 112.50 58.12 2.86 204.23 1.48
Syracuse University 112.00 59.75 2.54 190.32 1.76
University of Pittsburgh 111.88 74.12 2.76 233.19 1.45
University of Colorado at Boulder 109.50 59.25 2.64 195.11 1.67
Boston College 104.50 74.62 2.42 153.51 1.85
University of Tennessee-Knoxville 104.25 41.38 2.88 172.58 1.74
Colorado State University 103.00 42.00 2.82 197.35 1.50
University of Iowa 102.00 61.25 2.64 177.91 1.57
University of Kentucky 101.25 43.12 2.74 207.16 1.41
University of Missouri 99.25 45.62 2.61 173.13 1.77
Louisiana State University 99.12 38.38 2.73 185.51 1.58
University of Massachusetts-Amherst 96.75 45.38 2.52 197.47 1.64
University of Illinois at Chicago 94.88 45.62 2.67 197.27 1.61
Vanderbilt University 92.75 53.62 2.49 155.10 1.62
Georgetown University 91.00 53.50 2.46 167.60 1.67
Washington University in St. Louis 90.62 67.00 2.53 150.24 1.73
University of Oklahoma 89.38 53.62 2.97 187.30 1.49
Drexel University 88.25 45.62 2.70 153.84 1.67
State University of New York-Buffalo 86.12 50.38 2.71 168.60 1.53
University of Miami 84.38 54.50 2.81 155.67 1.59
Emory University 81.38 54.25 2.68 154.14 1.62
Brigham Young University 80.38 46.75 2.75 177.25 1.30
American University 79.88 36.25 2.34 133.82 1.76
Rice University 79.00 53.12 2.46 110.74 1.82
University of Notre Dame 78.88 53.88 2.37 135.83 1.71
University of Kansas 77.38 37.38 2.67 149.34 1.51
West Virginia University 76.12 26.12 2.55 139.94 1.55
Fordham University 75.00 37.50 2.38 100.32 1.84
University of Hawaii-Manoa 74.00 25.88 2.53 129.88 1.76
University of Rochester 73.00 49.50 2.33 120.39 1.55
University of California-Santa Barbara 72.50 28.75 2.66 131.61 1.78
University of Delaware 71.12 30.00 2.67 148.86 1.43
Oklahoma State University 70.50 33.38 2.92 123.28 1.74
Southern Methodist University 70.25 38.75 2.38 111.00 1.76
Dartmouth College 69.25 52.12 2.55 101.27 1.85
University of Oregon 65.88 32.62 2.34 124.32 1.70
Virginia Commonwealth University 64.62 28.62 2.77 123.74 1.42
University of California-Riverside 62.88 32.75 2.56 86.83 1.90
Florida Atlantic University 62.75 27.50 2.93 134.62 1.48
Brown University 62.12 34.62 2.37 98.80 1.87
DePaul University 60.62 25.50 2.48 134.49 1.39
State University of New York-Albany 59.00 31.50 2.48 120.58 1.46
State University of New York-Binghamton 57.25 37.12 2.76 108.04 1.73
University of North Carolina-Greensboro 56.38 21.25 2.58 93.65 1.74
Rensselaer Polytechnic Institute 54.88 38.88 2.59 95.51 1.62
Utah State University 52.12 25.62 2.67 98.08 1.56
University of Colorado at Denver 52.00 23.88 2.55 99.96 1.55
Case Western Reserve University 50.00 27.50 2.62 84.63 1.88
University of Wyoming 46.62 24.75 2.69 69.02 1.71
Santa Clara University 45.75 28.75 2.31 71.94 1.67
Baylor University 45.62 24.88 2.80 87.00 1.42
University of California-Santa Cruz 44.75 22.62 2.44 61.93 2.20
Appalachian State University 44.38 12.38 2.64 83.60 1.42
College of William & Mary 43.12 23.00 2.44 82.58 1.48
California Institute of Technology 39.88 27.75 2.61 67.24 1.84
Tulane University 39.62 17.50 2.50 68.37 1.93
Stony Brook University 39.00 14.12 2.64 60.70 1.90
University of Nevada-Reno 36.12 11.25 2.71 81.66 1.50
Tufts University 35.00 17.38 2.18 66.92 1.97
University of Maryland-Baltimore County 28.50 8.88 2.44 59.57 1.63
Brandeis University 26.12 12.00 2.46 46.32 1.84
Claremont McKenna College 22.38 12.75 2.31 29.29 1.78
Middlebury College 19.75 8.50 2.15 28.95 2.13
Williams College 12.62 6.38 2.14 23.57 1.62
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Table A4: UK universities: means of the outcome variables of Tab. 4.1 over the post-treatment
years (2008-2015). Universities are listed in a decreasing order according to the mean of
the number of publications.

Universities of UK N. publi-
cations in
journals
(Means)

N. publi-
cations in
3∗, 4∗, 4∗∗
journals
(Means)

Average N. of
coauthors per
paper (Means)

N. of affili-
ated authors-
Interpolated
(Means)

N. of papers
per author
(Means)

University of Manchester 323.38 179.00 2.49 615.38 1.79
University of Oxford 322].00 157.62 2.34 559.23 1.98
London School of Economics and Political Science 298.38 171.88 2.22 518.33 1.94
University of Cambridge 281.25 145.88 2.46 518.55 1.92
University of Warwick 271.50 166.00 2.45 429.53 1.84
University of Nottingham 233.50 167.00 2.76 418.17 1.63
Cardiff University 178.38 116.12 2.51 306.05 1.70
University College London 175.38 84.62 2.63 334.96 1.87
Lancaster University 175.00 122.25 2.58 312.01 1.65
University of Leeds 154.00 87.38 2.68 300.88 1.63
City University London 152.12 100.38 2.51 225.32 1.90
University of Southampton 150.12 84.25 2.64 286.33 1.56
University of Birmingham 149.62 59.25 2.36 267.89 1.84
Imperial College London 143.00 93.12 2.83 262.14 1.73
University of Bath 133.00 69.50 2.57 215.05 1.76
University of Sheffield 129.75 61.88 2.86 238.90 1.79
University of Strathclyde 126.75 75.88 2.67 228.35 1.74
Brunel University London 122.25 59.25 2.76 223.77 1.68
University of Edinburgh 116.62 54.38 2.57 242.65 1.69
University of Reading 110.38 53.12 2.49 237.42 1.69
University of Essex 108.50 71.12 2.52 183.72 1.65
University of Surrey 100.75 56.25 2.67 173.78 1.78
University of Glasgow 100.38 51.38 2.46 226.86 1.68
Cranfield University 100.00 51.88 2.83 217.50 1.37
University of East Anglia 98.62 56.00 2.80 182.15 1.77
University of Durham 98.50 48.62 2.61 173.35 1.84
University of Kent 97.75 53.12 2.53 159.40 1.75
University of York 97.62 44.75 2.55 186.74 1.73
London Business School 96.38 68.00 2.32 135.66 1.86
Aston University 95.00 64.50 2.78 138.85 1.91
University of Leicester 95.00 41.62 2.20 157.71 1.73
University of Bristol 94.75 49.62 2.39 176.91 1.64
Newcastle University 94.38 45.75 2.60 203.63 1.47
University of Exeter 93.25 53.00 2.77 182.60 1.70
University of Sussex 91.75 49.62 2.49 188.53 1.87
University of Liverpool 90.88 39.38 2.76 164.06 1.68
King’s College London 89.38 38.12 2.48 183.31 1.92
Queen Mary University of London 87.38 46.00 2.38 138.86 1.88
Royal Holloway, University of London 77.75 39.62 2.35 126.73 1.93
Open University 75.38 29.88 2.40 188.80 1.50
University of Stirling 74.00 33.38 2.39 118.93 1.93
University of St Andrews 69.62 38.88 2.41 105.55 1.93
Queen’s University Belfast 68.12 35.38 2.80 127.92 1.64
University of Hull 66.25 29.12 2.58 109.01 1.85
Heriot-Watt University 66.12 21.88 2.73 127.04 1.53
Middlesex University 61.88 26.38 2.38 122.68 1.72
Bournemouth University 60.75 20.88 2.44 112.79 1.72
University of the West of England, Bristol 60.25 18.62 2.53 139.15 1.59
University of Salford 55.25 20.38 2.68 131.49 1.57
Swansea University 53.25 20.75 2.62 93.96 1.60
University of Portsmouth 53.12 19.12 2.59 113.33 1.51
Manchester Metropolitan University 51.88 13.00 2.50 121.68 1.55
University of Ulster 51.62 17.88 2.91 146.60 1.20
University of Plymouth 50.12 13.88 2.77 113.89 1.38
Nottingham Trent University 50.00 14.62 2.33 101.90 1.63
Birkbeck College 49.00 20.75 2.34 91.20 1.99
University of Northumbria at Newcastle 47.12 9.88 2.33 117.43 1.55
University of Aberdeen 47.12 18.50 3.00 112.49 1.54
University of Bradford 46.88 23.50 2.57 108.02 1.56
Kingston University 45.75 17.38 2.55 93.40 1.79
Oxford Brookes University 45.62 14.38 2.37 94.72 1.66
University of Westminster 41.62 12.38 2.76 100.58 1.57
Leeds Beckett University 40.00 5.25 2.19 82.85 1.69
Bangor University 39.50 24.62 3.05 59.19 1.75
De Montfort University 36.50 13.50 2.68 78.33 1.62
London Metropolitan University 35.00 10.38 1.99 67.57 1.98
Sheffield Hallam University 34.38 8.38 2.32 92.82 1.48
University of Hertfordshire 33.88 14.12 2.17 71.23 1.72
University of Central Lancashire 32.50 8.12 2.54 68.15 1.79
University of Greenwich 31.38 10.00 2.52 73.32 1.69
Coventry University 31.25 7.75 2.93 90.44 1.62
University of Brighton 28.88 8.25 2.31 71.02 1.54
Glasgow Caledonian University 28.50 6.38 2.69 87.20 1.29
University of Dundee 27.88 12.50 2.83 65.25 1.40
University of South Wales 26.88 3.12 3.20 68.13 1.59
Edinburgh Napier University 26.12 5.38 2.41 67.26 1.48
University of East London 23.00 3.75 2.31 51.26 1.83
Robert Gordon University 22.75 6.50 2.53 57.88 1.78
Aberystwyth University 22.62 6.75 2.89 44.61 1.78
University of Wolverhampton 21.75 2.62 2.42 75.39 1.36
Keele University 21.25 7.12 2.08 52.07 1.99
University of Bedfordshire 20.38 6.50 2.67 53.66 1.45
London South Bank University 13.25 1.75 1.99 37.18 2.11
Staffordshire University 12.00 1.38 2.49 27.69 1.79
University of Sunderland 6.62 0.75 2.06 20.96 1.97
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Table A5: SCM estimated coefficients: number of publications in journals.

Treated Synthetic control composition
Aberystwyth University Brandeis University (0.452), Claremont McKenna College (0.432), University of Maryland-Baltimore

(0.104), Baylor University (0.013)
Aston University Florida Atlantic University (0.791), University of Georgia (0.209)
Bangor University Middlebury College (0.330), Claremont McKenna College (0.294), University of Maryland-Baltimore

(0.231), Williams College (0.144)
Birkbeck College Middlebury College (0.393), West Virginia University (0.269), Syracuse University (0.199), University of

Rochester (0.056), University of Massachusetts-Amherst (0.046), Brandeis University (0.036)
Bournemouth University Williams College (0.430), University of Maryland-Baltimore (0.240), Middlebury College (0.225), Ap-

palachian State University (0.105)
Brunel University London University of Texas-Dallas (0.777), Arizona State University (0.088), State University of New York-Buffalo

(0.061), Purdue University (0.044), University of North Carolina-Greensboro (0.023), Florida Atlantic
University (0.007)

Cardiff University University of Chicago (0.274), Washington University in St. Louis (0.216), Vanderbilt University (0.197),
New York University (0.158), Oklahoma State University (0.093), University of Illinois at Urbana-
Champaign (0.038), University of Texas-Dallas (0.025)

City University London University of Delaware (0.381), Florida Atlantic University (0.292), University of Georgia (0.254), North-
western University (0.073)

Coventry University Claremont McKenna College (0.423), Middlebury College (0.198), Fordham University (0.197), Ap-
palachian State University (0.148), University of Maryland-Baltimore (0.024), Brandeis University (0.010)

Cranfield University Florida Atlantic University (0.652), University of Georgia (0.288), Texas A&M University (0.040), Uni-
versity of Arizona (0.021)

De Montfort University University of Nevada-Reno (0.423), Claremont McKenna College (0.352), University of North Carolina-
Greensboro (0.133), College of William & Mary (0.091)

Edinburgh Napier University Appalachian State University (0.631), University of Maryland-Baltimore (0.139), Claremont McKenna
College (0.118), Baylor University (0.112)

Glasgow Caledonian University Appalachian State University (0.562), Florida Atlantic University (0.293), Baylor University (0.116),
West Virginia University (0.029)

Heriot-Watt University Baylor University (0.410), West Virginia University (0.334), Florida Atlantic University (0.103), Univer-
sity of North Carolina-Greensboro (0.092), University of Alabama-Tuscaloosa (0.060)

Imperial College London University of California-Santa Barbara (0.278), University of North Carolina-Greensboro (0.247), Stan-
ford University (0.187), Georgia State University (0.180), University of California-Davis (0.068), Univer-
sity of California-Los Angeles (0.039)

Keele University Brandeis University (0.548), University of Maryland-Baltimore (0.345), Fordham University (0.106)
King’s College London Baylor University (0.304), University of North Carolina-Greensboro (0.304), Syracuse University (0.193),

Williams College (0.100), Temple University (0.070), Harvard University (0.017), Florida Atlantic Uni-
versity (0.011)

Kingston University Appalachian State University (0.271), Williams College (0.270), University of Maryland-Baltimore
(0.250), Florida Atlantic University (0.105), Baylor University (0.057), Oklahoma State University (0.047)

Lancaster University University of Texas-Dallas (0.626), University of Georgia (0.274), Texas A&M University (0.066), Florida
Atlantic University (0.034)

Leeds Beckett University Brandeis University (0.558), University of Maryland-Baltimore (0.242), Baylor University (0.106), Clare-
mont McKenna College (0.095)

London Business School State University of New York-Buffalo (0.755), Boston College (0.152), Harvard University (0.087), Uni-
versity of Oklahoma (0.006)

London Metropolitan University University of Nevada-Reno (0.590), Middlebury College (0.204), Baylor University (0.148), Brandeis Uni-
versity (0.053)

LSE Harvard University (0.336), University of Georgia (0.296), University of Connecticut (0.213), MIT (0.150)
London South Bank University Williams College (0.504), Middlebury College (0.201), Fordham University (0.198), Brandeis University

(0.091), Claremont McKenna College (0.007)
Manchester Metropolitan University Middlebury College (0.264), Boston College (0.233), Baylor University (0.170), University of North

Carolina-Greensboro (0.153), Florida Atlantic University (0.100), Syracuse University (0.078)
Middlesex University Florida Atlantic University (0.275), University of Maryland-Baltimore (0.243), University of Nevada-

Reno (0.168), Claremont McKenna College (0.135), University of Alabama-Tuscaloosa (0.131), Baylor
University (0.048)

Newcastle University University of Nevada-Reno (0.499), Baylor University (0.150), Tufts University (0.085), Princeton Univer-
sity (0.064), Rutgers University-New Brunswick (0.064), Auburn University (0.061), Syracuse University
(0.040), Harvard University (0.037)

Nottingham Trent University University of Colorado at Denver (0.345), Claremont McKenna College (0.253), Middlebury College
(0.235), University of North Carolina-Greensboro (0.089), Williams College (0.052), University of
Maryland-Baltimore (0.025)

Open University Brandeis University (0.322), University of California-Riverside (0.248), University of Oklahoma (0.184),
Baylor University (0.113), University of Iowa (0.098), University of Maryland-Baltimore (0.035)

Oxford Brookes University Middlebury College (0.483), Baylor University (0.180), Florida Atlantic University (0.144), Oklahoma
State University (0.109), University of Maryland-Baltimore (0.084)

Queen Mary University of London University of Maryland-Baltimore (0.293), Florida Atlantic University (0.282), University of Tennessee-
Knoxville (0.252), University of North Carolina-Greensboro (0.089), University of Alabama-Tuscaloosa
(0.070), University of Georgia (0.013)

Queen’s University Belfast University of North Carolina-Greensboro (0.588), University of California-Santa Barbara (0.227), Uni-
versity of Maryland-Baltimore (0.095), University of Texas-Dallas (0.043), Purdue University (0.036),
Florida Atlantic University (0.010)

Robert Gordon University Middlebury College (0.516), Claremont McKenna College (0.433), University of North Carolina-
Greensboro (0.033), Williams College (0.018)

Royal Holloway, University of London University of California-Santa Cruz (0.533), Florida Atlantic University (0.215), University of California-
Santa Barbara (0.137), City University of New York (0.078), University of Texas-Dallas (0.029), Georgia
State University (0.009)

Sheffield Hallam University Brandeis University (0.437), University of Maryland-Baltimore (0.301), Baylor University (0.177), West
Virginia University (0.085)

Staffordshire University Claremont McKenna College (0.786), Williams College (0.214)
Swansea University Fordham University (0.622), Appalachian State University (0.205), University of Texas-Dallas (0.102),

University of Maryland-Baltimore (0.041), West Virginia University (0.030)
University College London University of Chicago (0.315), Rice University (0.273), City University of New York (0.273), Fordham

University (0.093), University of California-Santa Barbara (0.046)
University of Aberdeen Brigham Young University (0.350), State University of New York-Albany (0.258), Stony Brook University

(0.140), Washington University in St. Louis (0.091), Fordham University (0.070), University of Iowa
(0.060), University of Minnesota (0.030)

University of Bath Florida Atlantic University (0.488), University of Georgia (0.284), University of Alabama-Tuscaloosa
(0.210), University of Michigan (0.010), West Virginia University (0.008)

University of Bedfordshire Claremont McKenna College (0.702), Middlebury College (0.298)
University of Birmingham Stanford Uni (0.237), Rensselaer Polytechnic Institute (0.196), Uni of California-Santa Cruz (0.186), Uni

of Colorado at Denver (0.180), Uni of Rochester (0.116), Georgia State Uni (0.050), Temple Uni (0.034)
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Treated Synthetic control composition
University of Bradford University of Tennessee-Knoxville (0.473), Fordham University (0.204), Baylor University (0.152), Uni-

versity of Maryland-Baltimore (0.086), Claremont McKenna College (0.085)
University of Brighton Williams College (0.596), University of Maryland-Baltimore (0.388), Florida Atlantic University (0.016)
University of Bristol West Virginia University (0.393), University of Delaware (0.231), Brandeis University (0.170), Iowa State

University (0.123), Syracuse University (0.053), Boston College (0.031)
University of Cambridge University of California-Santa Barbara (0.433), Harvard University (0.261), Rensselaer Polytechnic Insti-

tute (0.150), MIT (0.069), Georgia State University (0.045), University of California-Los Angeles (0.042)
University of Central Lancashire Claremont McKenna College (0.521), University of Maryland-Baltimore (0.433), Appalachian State Uni-

versity (0.045)
University of Dundee West Virginia University (0.493), Middlebury College (0.353), University of Maryland-Baltimore (0.152)
University of Durham University of Tennessee-Knoxville (0.533), University of Alabama-Tuscaloosa (0.237), Fordham University

(0.117), Baylor University (0.059), University of Maryland-Baltimore (0.054)
University of East Anglia Appalachian State University (0.337), Syracuse University (0.255), University of North Carolina-

Greensboro (0.155), Oklahoma State University (0.132), University of Texas-Dallas (0.061), Iowa State
University (0.046), University of Rochester (0.013)

University of East London Claremont McKenna College (0.674), Middlebury College (0.315), University of Maryland-Baltimore
(0.011)

University of Edinburgh Claremont McKenna College (0.323), University of Texas-Dallas (0.294), Georgia State University (0.225),
University of California-Santa Barbara (0.108), MIT (0.050)

University of Essex University of Maryland-Baltimore (0.288), Georgia Institute of Technology (0.181), Oklahoma State Uni-
versity (0.164), University of Wyoming (0.158), University of Rochester (0.077), University of California-
Santa Barbara (0.070), Iowa State University (0.056), University of Massachusetts-Amherst (0.006)

University of Exeter University of Maryland-Baltimore (0.263), University of Delaware (0.250), University of California-
Riverside (0.163), Arizona State University (0.157), Baylor University (0.115), University of Iowa (0.039),
North Carolina State University (0.014)

University of Glasgow University of Maryland-Baltimore (0.322), University of Massachusetts-Amherst (0.257), Iowa State Uni-
versity (0.169), University of North Carolina-Greensboro (0.100), George Washington University (0.086),
Oklahoma State University (0.038), University of Tennessee-Knoxville (0.025)

University of Greenwich Claremont McKenna College (0.747), University of North Carolina-Greensboro (0.126), Appalachian State
University (0.069), University of Maryland-Baltimore (0.059)

University of Hertfordshire Claremont McKenna College (0.737), University of Maryland-Baltimore (0.232), Baylor University
(0.017), Fordham University (0.014)

University of Hull University of Maryland-Baltimore (0.428), Oklahoma State University (0.375), Florida Atlantic University
(0.193)

University of Kent University of California-Santa Cruz (0.483), Florida Atlantic University (0.214), University of California-
Santa Barbara (0.148), University of Texas-Dallas (0.134), University of Maryland-Baltimore (0.021)

University of Leeds University of North Carolina-Greensboro (0.290), University of Georgia (0.264), University of Florida
(0.226), University of Texas-Dallas (0.210), Arizona State University (0.010)

University of Leicester University of North Carolina-Greensboro (0.364), Williams College (0.225), Dartmouth College (0.195),
Boston College (0.095), Harvard University (0.066), Rensselaer Polytechnic Institute (0.055)

University of Liverpool University of California-Santa Cruz (0.405), College of William & Mary (0.290), University of Texas-
Dallas (0.171), Claremont McKenna College (0.068), City University of New York (0.066)

University of Manchester Pennsylvania State University (0.565), Texas A&M University (0.205), Purdue University (0.165), North-
western University (0.064)

University of Northumbria at Newcastle Middlebury College (0.691), Baylor University (0.174), Brandeis University (0.135)
University of Nottingham Texas A&M University (0.739), Florida Atlantic University (0.124), Syracuse University (0.066),

Columbia University (0.048), City University of New York (0.023)
University of Oxford Harvard University (0.477), University of Chicago (0.231), Georgia State University (0.141), City Uni-

versity of New York (0.119), Stanford University (0.032)
University of Plymouth University of Maryland-Baltimore (0.460), University of Nevada-Reno (0.377), Claremont McKenna Col-

lege (0.074), University of Alabama-Tuscaloosa (0.061), Baylor University (0.028)
University of Portsmouth University of North Carolina-Greensboro (0.586), Florida Atlantic University (0.193), University of

California-Santa Barbara (0.110), Stony Brook University (0.100), University of Maryland-Baltimore
(0.011)

University of Reading Florida Atlantic University (0.298), Oklahoma State University (0.286), University of Florida (0.225),
Syracuse University (0.190)

University of Salford University of Maryland-Baltimore (0.552), Stony Brook University - SUNY (0.181), University of Chicago
(0.102), Oklahoma State University (0.088), University of Texas-Dallas (0.077)

University of Sheffield Oklahoma State University (0.547), University of Georgia (0.453)
University of Southampton University of Maryland-Baltimore (0.625), Iowa State University (0.208), University of California-

Berkeley (0.157), University of Illinois at Urbana-Champaign (0.011)
University of South Wales Claremont McKenna College (0.289), University of Maryland-Baltimore (0.243), Stony Brook University

(0.184), Brandeis University (0.177), Middlebury College (0.078), Fordham University (0.029)
University of St Andrews University of Maryland-Baltimore (0.521), Colorado State University (0.135), Baylor University (0.125),

California Institute of Technology (0.115), University of Texas-Dallas (0.074), Stony Brook University
(0.030)

University of Stirling University of California-Santa Barbara (0.391), University of North Carolina-Greensboro (0.361), Florida
Atlantic University (0.229), City University of New York (0.009), University of Texas-Dallas (0.007)

University of Strathclyde University of California-Santa Barbara (0.399), University of Virginia (0.357), University of California-
Los Angeles (0.160), University of Minnesota (0.030), University of Pittsburgh (0.023), Stanford Univer-
sity (0.019), University of Illinois at Urbana-Champaign (0.011)

University of Sunderland Claremont McKenna College (0.834), Middlebury College (0.166)
University of Surrey Temple University (0.485), Syracuse University (0.245), West Virginia University (0.189), University of

North Carolina-Greensboro (0.080)
University of Sussex Fordham University (0.555), University of Texas-Dallas (0.259), University of Maryland-Baltimore

(0.098), Iowa State University (0.049), Appalachian State University (0.026), University of Rochester
(0.016)

University of the West of England, Bristol Appalachian State University (0.311), University of Maryland-Baltimore (0.308), Florida Atlantic Uni-
versity (0.216), University of California-Santa Barbara (0.097), Oklahoma State University (0.069)

University of Ulster Virginia Commonwealth University (0.434), Middlebury College (0.278), Boston College (0.144), Baylor
University (0.054), Harvard University (0.033), Syracuse University (0.032), Florida Atlantic University
(0.025)

University of Warwick Pennsylvania State University (0.297), Yale University (0.257), Purdue University (0.231), University of
Georgia (0.120), Florida State University (0.058), University of Chicago (0.037)

University of Westminster University of Maryland-Baltimore (0.426), Middlebury College (0.248), Appalachian State University
(0.183), University of North Carolina-Greensboro (0.105), Florida Atlantic University (0.038)

University of Wolverhampton Middlebury College (0.535), Appalachian State University (0.304), University of Maryland-Baltimore
(0.081), Williams College (0.080)

University of York Dartmouth College (0.643), Princeton University (0.287), Boston College (0.059), University of North
Carolina-Greensboro (0.011)
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Table A6: SCM estimated coefficients: number of papers published in a 3*, 4*, 4** journal

Treated Synthetic control composition
Aberystwyth University Claremont McKenna College(0.512), Middlebury College(0.257), Brandeis University(0.153), Appalachian

State University(0.046), Baylor University(0.032)
Aston University University of Missouri(0.592), Baylor University(0.347), Texas A&M University(0.06)
Bangor University Middlebury College(0.497), University of Maryland-Baltimore County(0.428), University of North

Carolina-Greensboro(0.074)
Birkbeck College College of William & Mary(0.491), University of Nevada-Reno(0.317), University of Kentucky(0.144),

Oklahoma State University(0.024), Arizona State University(0.022)
Bournemouth University Middlebury College(0.793), Fordham University(0.104), West Virginia University(0.103)
Brunel University London University of Hawaii-Manoa(0.34), University of Texas-Dallas(0.27), University of Nevada-Reno(0.225),

State University of New York-Buffalo (SUNY)(0.059), University of Washington(0.051), Temple Univer-
sity(0.044), University of Arizona(0.012)

Cardiff University Rice University(0.279), University of Pennsylvania(0.227), Baylor University(0.19), City University of
New York (CUNY)(0.156), Michigan State University(0.087), University of Delaware(0.04), New York
University (NYU)(0.021)

City University London University of Georgia(0.543), Baylor University(0.274), Temple University(0.066), University of Ari-
zona(0.064), University of Michigan(0.03), University of Washington(0.024)

Coventry University Middlebury College(0.574), University of Maryland-Baltimore County(0.211), University of Colorado at
Denver(0.137), Claremont McKenna College(0.055), University of Hawaii-Manoa(0.023)

Cranfield University State University of New York-Buffalo (SUNY)(0.327), Florida State University(0.253), Temple Univer-
sity(0.173), University of Texas-Dallas(0.137), Florida Atlantic University(0.097), Arizona State Univer-
sity(0.012)

De Montfort University Tufts University(0.358), University of Nevada-Reno(0.322), University of Hawaii-Manoa(0.215), Fordham
University(0.094), University of Wisconsin-Madison(0.011)

Edinburgh Napier University Middlebury College(0.730), Appalachian State University(0.270)
Glasgow Caledonian University Williams College(0.528), Fordham University(0.315), Baylor University(0.157)

Heriot-Watt University Middlebury College(0.364), West Virginia University(0.34), Baylor University(0.246), University of
Hawaii-Manoa(0.038), Brandeis University(0.012)

Imperial College London Emory University(0.494), University of Washington(0.235), City University of New York (CUNY)(0.177),
Fordham University(0.074), Georgia State University(0.02)

Keele University West Virginia University(0.408), Middlebury College(0.287), Fordham University(0.245), University of
Delaware(0.038), University of Colorado at Denver(0.023)

King’s College London University of Hawaii-Manoa(0.41), Brandeis University(0.269), Arizona State University(0.14), Syracuse
University(0.098), Baylor University(0.082)

Kingston University Middlebury College(0.324), Williams College(0.316), Florida Atlantic University(0.187), Claremont
McKenna College(0.173)

Lancaster University University of Texas-Dallas(0.431), Baylor University(0.357), University of Michigan(0.17), University of
Washington(0.042)

Leeds Beckett University Middlebury College(0.667), Williams College(0.300), Fordham University(0.029), West Virginia Univer-
sity(0.004)

London Business School State University of New York-Buffalo (SUNY)(0.489), Florida State University(0.3), Pennsylvania State
University(0.085), Dartmouth College(0.08), Stanford University(0.043)

London Metropolitan University Middlebury College(0.672), Baylor University(0.186), Fordham University(0.07), West Virginia Univer-
sity(0.045), Syracuse University(0.026)

LSE University of Michigan(0.413), University of Minnesota(0.253), University of California-Riverside(0.214),
Harvard University(0.063), Duke University(0.036), Baylor University(0.021)

London South Bank University Middlebury College(0.704), Tufts University(0.173), Santa Clara University(0.095), Brandeis Univer-
sity(0.028)

Manchester Metropolitan University University of Nevada-Reno(0.443), Brandeis University(0.262), Williams College(0.236), University of
Massachusetts-Amherst(0.039), Dartmouth College(0.02)

Middlesex University Middlebury College(0.396), Baylor University(0.289), Claremont McKenna College(0.147), University of
Hawaii-Manoa(0.14), West Virginia University(0.017), Williams College(0.01)

Newcastle University Brandeis University(0.714), University of Alabama-Tuscaloosa(0.152), University of Michigan(0.044),
Baylor University(0.042), University of Pennsylvania(0.035), University of California-Riverside(0.013))

Nottingham Trent University Middlebury College(0.679), Tufts University(0.179), University of Colorado at Denver(0.072), Santa Clara
University(0.054), University of Delaware(0.015)

Open University Middlebury College(0.317), University of Maryland-Baltimore County(0.306), University of
Wyoming(0.222), Colorado State University(0.113), Williams College(0.041)

Oxford Brookes University Middlebury College(0.629), University of Maryland-Baltimore County(0.213), University of Hawaii-
Manoa(0.093), Brandeis University(0.039), State University of New York-Albany (SUNY)(0.018), Baylor
University(0.009)

Queen Mary University of London Florida Atlantic University(0.904), University of Texas-Dallas(0.067), Temple University(0.029)
Queen’s University Belfast University of North Carolina-Greensboro(0.440), University of California-Santa Cruz (UCSC)(0.213),

Florida Atlantic University(0.178), University of Maryland-Baltimore County(0.102), State University
of New York-Buffalo (SUNY)(0.067)

Robert Gordon University Middlebury College(0.661), University of Nevada-Reno(0.3), Baylor University(0.035)
Royal Holloway, University of London Claremont McKenna College(0.551), University of California-Santa Cruz (UCSC)(0.245), University of

Washington(0.135), Florida State University(0.039), Florida Atlantic University(0.027)
Sheffield Hallam University Middlebury College(0.569), Santa Clara University(0.17), Williams College(0.103), University of North

Carolina-Greensboro(0.075), California Institute of Technology(0.061), Rice University(0.022)
Staffordshire University Middlebury College(0.786), Williams College(0.214)
Swansea University Fordham University(0.412), University of Maryland-Baltimore County(0.256), Oklahoma State Univer-

sity(0.182), College of William & Mary(0.111), Claremont McKenna College(0.039)
University College London University of Virginia(0.349), Rice University(0.202), Michigan State University(0.201), College of

William & Mary(0.147), Georgia State University(0.102)
University of Aberdeen University of Delaware(0.358), Brandeis University(0.318), West Virginia University(0.172), University

of Minnesota(0.105), Baylor University(0.047)
University of Bath University of Georgia(0.464), Baylor University(0.309), University of Texas-Dallas(0.088), University of

Washington(0.082), Temple University(0.038), University of Hawaii-Manoa(0.019)
University of Bedfordshire Middlebury College(0.400), Baylor University(0.389), Claremont McKenna College(0.211)
University of Birmingham Emory University(0.315), Tulane University(0.303), Dartmouth College(0.264), University of Notre

Dame(0.114)
University of Bradford Claremont McKenna College(0.4), Florida Atlantic University(0.324), University of Hawaii-Manoa(0.194),

University of Texas-Dallas(0.062), Baylor University(0.019)
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Treated Synthetic control composition
University of Brighton Williams College(0.641), Middlebury College(0.228), Baylor University(0.063), Brandeis Univer-

sity(0.054), Claremont McKenna College(0.014)
University of Bristol College of William & Mary(0.415), University of Delaware(0.354), Syracuse University(0.135), Michigan

State University(0.069), Oklahoma State University(0.028)
University of Cambridge University of Southern California(0.468), University of Michigan(0.163), University of Texas-

Dallas(0.137), City University of New York (CUNY)(0.124), Baylor University(0.059), Temple Univer-
sity(0.05)

University of Central Lancashire Middlebury College(0.609), Claremont McKenna College(0.226), University of Maryland-Baltimore
County(0.165)

University of Dundee Brandeis University(0.471), Baylor University(0.301), Oklahoma State University(0.201), Syracuse Uni-
versity(0.014), Arizona State University(0.011)

University of Durham Baylor University(0.701), University of Texas-Dallas(0.16), Fordham University(0.086), University of
Florida(0.053)

University of East Anglia University of Nevada-Reno(0.412), University of Kentucky(0.175), State University of New York-Buffalo
(SUNY)(0.137), Syracuse University(0.106), University of Miami(0.097), Georgetown University(0.041),
Arizona State University(0.033)

University of East London Middlebury College (0.621), West Virginia University (0.379)
University of Edinburgh Temple University(0.393), College of William & Mary(0.195), University of Nevada-Reno(0.149), Univer-

sity of Miami(0.114), University of Wisconsin-Madison(0.08), University of Arizona(0.069)
University of Essex Washington University in St. Louis(0.437), University of Texas-Dallas(0.205), Baylor University(0.169),
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Figure A14: Graphs of placebo effects for the total number of publications.
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Appendix B

Derivation of Eq. 5.14.

Since Ik = I and Um−k = nm−k−1U,

Φm
1 = (∆λI + λ2U)m =

m∑
k=0

(
m

k

)
∆λkI · λm−k2 nm−k−1U =

= U
m−1∑
k=0

(
m

k

)
∆λkλm−k2 nm−k−1 + ∆mI =

=
U

n
[
m−1∑
k=0

(
m

k

)
∆λk(λ2n)m−k] + ∆λmI =

=
U

n
[
m∑
k=0

(
m

k

)
∆λk(λ2n)m−k −∆λm] + ∆λmI =

=
U

n
[(∆λ+ nλ2)m −∆λm] + ∆λmI = Am

Derivation of the numerator of Eq. 5.15
1)

eTi AhΣej = eTi
U

n
[(∆λ+ nλ2)h −∆λh]Σej + ∆λheTi Σej =

= [(∆λ+ nλ2)h −∆λh]
1

n
eTi UΣej + ∆λheTi Σej =

= [(∆λ+ nλ2)h −∆λh](
1

n

n∑
i=1

σij) + ∆λhσij =

= [(∆λ+ nλ2)h −∆λh]σ̄j + ∆λhσij

(18)

Derivation of the denominator of Eq. 5.15
2)

eTi AhΣAT
hei = eTi

[U
n

[(∆λ+ nλ2)h −∆λh] + ∆λhI
]
Σ
[U
n

[(∆λ+ nλ2)h −∆λh] + ∆λhI
]
ei =

= eTi UΣUei
1

n2
[(∆λ+ nλ2)h −∆λh]2 + eTi Σei∆λ

2h+

+
1

n
eTi (UΣ + ΣU)ei∆λ

h[(∆λ+ nλ2)h −∆λh] =

=
ST
n

[(∆λ+ nλ2)h −∆λh]2 + σ2
ii∆λ

2h + ∆λh[(∆λ+ nλ2)h −∆λh]− 2σ̄i

(19)
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Substituting Eqs. 18 and 19 to Eq. 5.15, the 1-step-ahead generalized FEVD
(H = 1) is:

θgij(H = 1) =
σ−2
jj (eTi A0Σej)

2

eTi A0ΣAT
0 ei

=
σ2
ij

σ2
iiσ

2
jj

= R2
ij (20)

Instead, the 2-step-ahead generalized FEVD is

θgij(H = 2) =
1

σ2
jj

{
(eTi A0Σej)

2 + (eTi A1Σej)
2

(eTi A0ΣAT
0 ei) + (eTi A1ΣAT

1 ei)

}
=

= R2
ij

{ 1 + (
nλ2σ̄j
σij

+ ∆λ)2

1 + ∆λ2 + ST

σ2
ii
λ2

2 + 2nλ2∆λ σ̄i
σ2
ii

} (21)
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Table B1: Financial companies. AS=Asia; EU=European Union; ME=Middle East; OA= Other
Asian; OC=Oceania; OE= European not in EU; RU=Russia; UE= Europe with own
currency; US=US.

Geopolitical Area label
ME ABU DHABI COMR BK
EU AEGON NV
AS AGRI BANK OF CHINA
ME AKBANK TURK ANONIM
EU ALLIANZ SE
EU ALLIED IRISH BANKS
EU ALPHA BANK SA
AS AOZORA BANK LTD
EU ASSIC GENI-SO PER
OC AU & NZ BANKING GP
UE AVIVA PLC
EU AXA
EU BANCA MONTE PASCHI
EU BANCO COM PORTUGUES
EU BANCO DE SABADELL
EU BANCO POP ESPANOL
EU BANCO POPOLARE SOCO
EU BANCO SANTANDER
US BANK OF AMERICA
AS BANK OF CHINA LTD
OA BANK OF INDIA LTD
EU BANK OF IRELAND
UE BANK OF SCOTLAND
EU BANKINTER SA
UE BARCLAYS BANK PLC
EU BAWAG PSK
EU BAYERISCHE LANDESBK
EU BBV ARGENTARIA
EU BCA NAZ DEL LAVORO
EU BCA PPO MILANO
US BK NY MELLON CORP
RU BK OF MOSCOW (OJSC)
EU BNP PARIBAS SA
US CAP 1 BK USA NA
AS CHINA DEVELOPMENT BK
OC CMWL BK OF AUSTRALIA
EU COMMERZBANK AG
EU COOP RABOBANK UA
EU CREDIT AGRICOLE SA
EU CREDIT LYONNAIS
OE CREDIT SUISSE GROUP
UE DANSKE BANK A/S
OA DBS BANK LTD
EU DE VOLKSBANK NV
EU DEUTSCHE BANK AG
EU DEXIA
EU ERSTE GROUP BANK AG
EU EUROBANK ERGASIAS
OA EXP-IMP BK OF INDIA
UE FCE BANK PLC
US GOLDMAN SACHS GROUP
EU HAMBURG COML BANK
EU HANNOVER RUECK SE
UE HBOS PLC
UE HSBC BANK PLC
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Geopolitical Area Label
OA ICICI BANK LIMITED
EU IKB DT INDSTRBK AG
AS IND & COM BK OF CHIN
AS INDL BK OF KOREA
EU ING BANK NV
EU INTESA SANPAOLO SPA
OA JSC BK CENTERCREDIT
RU JSC VTB BANK
EU KBC BANK
AS KOOKMIN BANK
EU LB BADENWUERTTEMBERG
EU LB HESSTHRGN GIRO
UE LLOYDS BANK
OC MACQUARIE BANK LTD
OA MALAYAN BKG BERHAD
EU MEDIOBANCA SPA
AS MIZUHO BANK LTD
US MORGAN STANLEY
AS MUFG BANK, LTD
EU MUNICH REINSURANCE
EU NAT BK OF GREECE SA
EU NATIXIS SNR
UE NATWEST MARKETS PLC
EU NORDDEUTSCHE LB
UE NORDEA BANK AB
AS NORINCHUKIN BANK LTD
AS OVERSEA-CHINESE BKC
EU PORTIGON AG
EU RAIF ZENTRALBANK
RU SBERBANK OF RUSSIA
AS SHINHAN BANK
UE SKANDINAVISKA ENSK BNKN
EU SOCIETE GENERALE
UE STD CHARTERED BK
AS SUMITOMO BK
UE SVENSKA HB
UE SWEDBANK AB
OE SWISS REINSURANCE
AS THE EXPT-IMPT BK OF CH
AS THE EXPT-IMPT BK OF KO
AS THE KOREA DEV BANK
US THE PNC FIN SVS GP
ME TURKIYE IS BANKASI
OE UBS AG
EU UNICREDIT BANK AG
EU UNIONE DI BANCHE
US UNITED OS BK LTD
EU VAN LANSCHOT NV
OC WESTPAC BANKING CORP
AS WOORI BANK
OE ZURICH INSURANCE
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Table B2: Sovereigns. AS=Asia; EU=European Union; ME=Middle East; OA= Other Asian;
OC=Oceania; OE= European not in EU; RU=Russia; UE= Europe with own currency;
US=US.

Geopolitical Area Label
OC COMMONWEALTH OF AUSTRALIA
UE CZECH REPUBLIC
EU GERMANY
RU RUSSIA
EU HELLENIC REPUBLIC
UE HUNGARY
AS JAPAN
EU IRELAND
ME KINGDOM OF BAHRAIN
EU KINGDOM OF BELGIUM
UE KINGDOM OF DENMARK
EU KINGDOM OF NETH
OE KINGDOM OF NORWAY
EU KINGDOM OF SPAIN
UE KINGDOM OF SWEDEN
OA KINGDOM OF THAILAND
OA MALAYSIA
AS REP OF CHINA
OA REPUBLIC OF INDONESIA
OA REPUBLIC OF KAZAKHSTAN
EU REPUBLIC OF LITHUANIA
OA REPUBLIC OF PHILIPINES
EU REPUBLIC OF AUSTRIA
UE REPUBLIC OF BULGARIA
UE REPUBLIC OF CROATIA
EU REPUBLIC OF CYPRUS
EU REPUBLIC OF ESTONIA
EU REPUBLIC OF FINLAND
EU REPUBLIC OF ITALY
EU REPUBLIC OF FRANCE
AS REPUBLIC OF KOREA
EU REPUBLIC OF LATVIA
UE REPUBLIC OF POLAND
EU REPUBLIC OF PORTUGAL
EU REPUBLIC OF SLOVENIA
ME REPUBLIC OF TURKEY
UE ROMANIA
EU SLOVAK REPUBLIC
ME STATE OF QATAR
UE UK AND NI
US USA
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Summary

In the last decades, complex networks have started to attract the interest of
scientists studying complex systems from a variety of application fields. The
main reason is likely that complex networks provide a natural and mathemat-
ically manageable description of many real complex systems. In particular,
they represent a very useful tool to investigate emergent phenomena in com-
plex systems, without invoking strong assumptions on the type of interactions
among the elements of the system. In this thesis, we develop multivariate
and network methods for the study of complex systems monitored through
a detailed recording of data for many and heterogeneous variables, stored in
integrated data warehouses. The thesis consists of four essayes.

The first work is a methodological contribution in which we introduce an
unbiased pairwise similarity measure between the elements of a bipartite com-
plex network with a double source of heterogeneity. The introduced weighted
covariance and correlation coefficients remove the bias observed when using
standard metrics, such as the binary Pearson’s and Newman’s correlation co-
efficients. The new measures are useful to perform all the tasks that exploit
similarities among the elements of a bipartite system, e.g. unsupervised clas-
sification problems, recommendation systems etc.

In the second work, we propose a method to investigate the Italian car
insurance system, and, in particular, we develop an investigation automatic
system, based on Statistically Validated Networks (SVN), aimed at uncovering
anomalous subject-accident patterns, which might represent a mark of poten-
tial frauds. The tool has been developed within the framework of a project
funded by the Italian Institute for the Supervision of Insurance (IVASS) and it
is currently operative, for internal use only, at the IVASS to process the inte-
grated database AIA - the Antifraud Integrated Archive - managed by IVASS.

The third work concerns with the empirical analysis of the effects of the
so-called Research Excellence Framework (REF) on the scientific productivity
of universities in the UK. In this context, we have focused the attention on two
Units of Assessments (UOA): Economics and Econometrics, and Business and
Management studies. To evaluate the effects due to the REF on both quan-
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titative (number of published papers) and qualitative (quality of the journals
they published in) outcomes, we analyse the Scopus database, exploiting the
information on all of the indexed papers with at least one author affiliated in a
university from the UK and/or the US in the time period 2001 and 2015. Al-
though REF2014 has increased the overall number of publications in journals
and the number of publications in top-starred journals, the effect stems from an
increase in the number of publications in Finance, Business and Management
and a decrease in the proportion of Economics and Econometrics publications,
steered mainly by universities in the Russell Group that remained in the Eco-
nomics and Econometrics panel.

Finally, in the fourth work, we integrate SVN with regularized VAR model
and Forecast Error Variance Decomposition (FEVD) theory to study spillover
effects in finance. Specifically, we focus on the CDS market, with the aim of
finding the statistically significant (lagged) interdependencies between CDS
spreads of sovereigns and financial institutions from all around the world.
Eventually, the application of SVNs allows one to reveal prominent patterns
of contagion, where an excess of risk transmission would lead to effects that
could undermine the stability of the whole financial system.
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