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Abstract: Despite the existing knowledge concerning the hydrodynamic processes at river junctions,
there is still a lack of information regarding the particular case of low width and discharge
ratios, which are the typical conditions of mountain river confluences. Aiming at filling this gap,
laboratory and numerical experiments were conducted, comparing the results with literature findings.
Ten different confluences from 45◦ to 90◦ were simulated to study the effects of the junction angle
on the flow structure, using a numerical code that solves the 3D Reynolds Averaged Navier-Stokes
(RANS) equations with the k-ε turbulence closure model. The results showed that the higher the
junction angle, the wider and longer the retardation zone at the upstream junction corner and
the separation zone, and the greater the flow deflection at the entrance of the tributary into the
post-confluence channel. Furthermore, it was shown that the maximum streamwise velocity does not
necessarily increase with the junction angle and that it is not always located in the contraction section.

Keywords: channel confluences; junction angle; flow deflection zone; flow retardation zone;
flow separation zone; numerical modelling; PANORMUS

1. Introduction

A confluence is a geomorphological node where typically two upstream channels merge into a
single downstream channel, giving rise to complex 3D flow patterns. By definition, the main stream is
the longest of the two intersecting channels, whereas the tributary is the shortest. Considering that Qm

and Um are the discharge and the mean velocity of the upstream main channel, and Qt and Ut are the
discharge and the mean velocity of the tributary channel, respectively, the discharge ratio between the
two rivers (Qr) was defined by Best [1] as Qt/Qm. Similarly, the ratio between the tributary width (Bt)
and the main channel width (Bm) is known as width ratio (Br).

Although Taylor [2] was the first to study an asymmetrical channel confluence, proposing a
1D approach for the calculation of the water depth ratio between the upstream and downstream
channels, the complete description of the flow field within a channel confluence is attributed to
Best [1]. In fact, he distinguished six elements within a confluence (Figure 1): (1) a retardation zone
at the upstream junction corner (commonly referred to as flow stagnation zone, even though it is
characterized by reduced velocity that never decreases to zero); (2) a flow deflection zone, where each
stream enters the confluence; (3) a flow separation zone, beyond the downstream junction corner;
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(4) an area of maximum velocity, located downstream of the confluence; (5) a flow recovery area,
where the post-confluence flow tends to become unaffected by the confluence hydrodynamics; and
(6) two main shear layers, caused by strong velocity gradients between the separation zone and the
surrounding flow and between the flows coming from the tributary and main channels.

Stagnation
zone

Flow deflection
zone

Maximum velocity

Flow separation
zone

Shear layers

Flow
recovery

Figure 1. Conceptual model of flow dynamics at river confluences, modified from Best [1]. Qpc is the
post-confluence discharge; α is the junction angle.

These zones depend, essentially, on the geometry (such as number of adjoining channels,
cross-sectional area, junction angle α, degree of concordance in elevation of the channel beds at the
entrance to the confluence), flow and sediment parameters (such as Qr between the two streams,
bed material, sediment transport). The effects of these factors have been examined with both
experimentally derived junctions in laboratory (e.g., [1,3,4]), and field investigations (e.g., [5–9]),
recently integrated with numerical modelling (e.g., [10–12]). In particular, with laboratory experiments,
it was possible to isolate and accentuate the effect of certain parameters and processes under controlled
conditions, which then were varied by using numerical simulations in order to overcome limitations
of the physical models.

Initially, focusing on the basic case of asymmetrical confluences with a fixed concordant bed
and subcritical flow, most attention in the experimental campaigns found in the literature has been
paid to determine relationships for the calculation of the flow depth or the energy loss at the junction
(e.g., [13,14]). Subsequently, the determination of the shape and the extent of the separation zone
has become the main objective of the research in the field of open-channel confluences, owing to its
importance in (1) confining the effective width of the post-confluence channel towards the opposite wall
of the junction, giving rise to the adjacent zone of maximum velocity and bed shear stress, and (2) in
the overall head losses at junctions, as well as sediment and solute balances [15]. For instance,
through vertical photography of surface dye traces, Best and Reid [16] showed that the width and
length of the flow separation zone increases with both α and the discharge ratio. Biron et al. [3]
conducted a series of experiments in order to demonstrate the influence of the elevation of bed
discordance on the characteristic zones of a confluence, with respect to the case of concordant beds.
They showed that the difference in bed elevation destroys the flow deflection at the bed and creates
a distortion of the mixing layer between the flows, resulting in fluid upwelling at the downstream
junction corner. This phenomenon is responsible for the absence of a flow separation zone near the
bed at the downstream junction corner and the lack of a zone of marked flow acceleration in the
post-confluence channel. Gurram et al. [17], with their experimental work, yielded expressions for the
pressure force on the lateral side walls, the ratio of flow depths in the junction point, the momentum
correction coefficients, the extent of the separation zone determined with dye injections, and the
lateral momentum contribution. They found that the separation zone increases with increasing
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values of Froude number (Fr), Qr and α. Shumate [18] studied the general junction flow features
occurring in a 90◦ confluence. In particular, he found that the separation zone is larger near the
surface, both in length and width. Moreover, up to a threshold, the separation zone lengthens as Qr

increases. Based on new confluence experiments, the detailed characteristics of the separation zone
were analysed by Wang et al. [19] and Qing-Yuan et al. [20]. Specifically, Wang et al. [19] observed
a zone of separation immediately downstream of the junction branch channel, the maximum and
minimum velocity regions at the upstream and downstream in the confluent channel, and a shear
plane developed between the two combining flows downstream of the confluent channel. Secondary
circulations in different directions at the highest and lowest velocity zones were observed as well.
Qing-Yuan et al. [20] used two different methods based on velocity streamlines and velocity isolines
to investigate the geometry of the separation zone, which presented different forms with variations
of distance to the flume bottom. Furthermore, they showed that the discharge ratio also influences
the separation zone from bottom to surface. Also in the experiments of Biswa et al. [21], the width
and the length of the flow separation zone increase with the contribution from the tributary channel
to the discharge in the post-confluence channel (Qpc), while its shape remains practically unchanged.
The most recent experimental campaigns were conducted separately by Schindfessel et al. [22] and
by Birjukova et al. [23], investigating the time-averaged flow patterns in a 90◦ confluence when Qt

largely exceeds Qm [22] and in a 70◦ confluence when Qm largely exceeds Qt [23]. In the first case,
the separation zone was wider with respect to the literature reference cases, and a recirculating eddy
appeared in the upstream main channel, confining the main channel incoming discharge and inducing
a zone of reduced downstream momentum in its wake. Moreover, a new recirculation cell appeared
with respect to the confluences studied by Gurram et al. [17] and Shumate [18], resulting in a change of
sign of the lateral surface velocity near the bank opposite to the junction. Birjukova et al. [23] observed
that, in their conditions, the separation zone limits the effective lateral flow cross-section, and hence
results in the added acceleration of the mainstream flow near the downstream junction corner. Finally,
Yuan et al. [24] analysed the distortion of the shear layer developed from the upstream junction corner
at a 90◦ open-channel confluence with a small width-to-depth ratio. They found that the distortion of
the shear layer resulted in an increase in occurrence probabilities of ejection and sweep events within
the shear layer, which were related to the turbulence presenting vortices induced by the wall.

In order to compare the experimental tests found in the literature, concerning laboratory
asymmetrical confluences with fixed beds, Table 1 shows for each of them a brief overview of
the geometrical and hydraulic conditions adopted. Moreover, it shows for each of the numerical
simulations found in the literature: (1) the respective reference of the experimental tests used for the
validation of the models and (2) the geometrical and hydraulic conditions.
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Table 1. Experimental tests and numerical studies on channel confluences in chronological order.

Reference of the
Reference Study a Experimental Qr Br α(◦)

Test

Webber and Greated [13] E - 0.25÷4.00 1.00 30,60,90
Lin and Soong [25] E - 0.18÷1.40 1.00 90
Best and Reid [16] E - 0.11÷9.00 1.00 15,45,70,90
Ramamurthy et al. [14] E - 0.30÷1.50 0.99 90
Biron et al. [3] E - 1.23 0.67 30
Gurram et al. [17] E - 0.33÷3.00 0.60÷1.00 30,60,90
Hsu et al. [26] E - 0.11÷8.90 1.00 90
Hsu et al. [27] E - 0.09÷9.31 1.00 30,45,60
Shumate [18] E - 0.09÷11.00 1.00 90
Bradbrook et al. [28] N Biron et al. [3] - 1.00 30,45,60
Biron et al. [10] N Biron et al. [3] 0.67,1.74 1.00 30,60,90
Wang et al. [19] E - 0.77 0.40 30
Qing-Yuan et al. [20] E - 0.36 0.50 90
Biswa et al. [21] E - 0.48÷2.09 1.00 90
Shakibainia et al. [29] N Shumate [18] 0.33,1.00,3.00 0.66,1.00 15,45,90,105
Bonakdari et al. [30] N Wang et al. [19] 0.77 0.40 30
Djordjevic [12] N Shumate [18] 0.71 1.00 90
Yang et al. [31] N Shumate [18] 3.00 1.00 90
Schindfessel et al. [22] E - 3.00,19.00 1.00 90
Birjukova et al. [23] E - 0.11 0.15 70
Brito et al. [32] N Birjukova et al. [23] 0.11 0.15 70
Schindfessel et al. [33] N Schindfessel et al. [22] 0,3.00,19.00 1.00 90
Yuan et al. [24] E - 0.65 1.00 90
Schindfessel et al. [15] N Schindfessel et al. [22] 3 1.00 90

a E: experimental study; N: numerical study.

In fact, using as a reference some of the experimental tests of Table 1 for the calibration of
their models, several authors have performed Computational Fluid Dynamics (CFD) simulations to
investigate detailed flow structures at confluences, changing the geometry, the hydraulic conditions or
both. In particular, most of the CFD simulations have been conducted using the Reynolds Averaged
Navier–Stokes (RANS) equations or Large Eddy Simulation (LES) models. For instance, the data of
Biron et al. [3] were taken into account for the simulations of Bradbrook et al. [28] and Biron et al. [10].
Shakibainia et al. [29] used SSIIM 2.0, a RANS-based turbulent model, to reproduce the experiments
of Shumate [18]. The same model and experimental test were used by Djordjevic [12] to study
the effects of upstream planform curvature and bed elevation discordance between the tributary
and main channels on the confluence hydrodynamics. However, Yang et al. [31], by using the
commercial software FLUENT (ANSYS Inc., Canonsburg, PA, USA) and, again, the data of Shumate
[18], showed how the adoption of dynamic meshes could give much higher accuracy than that
of Volume of Fluid (VoF) or rigid lid method. The experimental tests of Birjukova et al. [23] were
reproduced by Brito et al. [32], comparing the results obtained with different turbulence closure models
for solving the RANS equations. More recently, Schindfessel et al. [33] used LES of the OpenFOAM
suite to investigate the flow patterns for three different Qr, considering the experimental tests by
Schindfessel et al. [22]. They demonstrated that the tributary flow impinges on the opposing bank
when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream
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channel of the confluence, which induces significant changes in the incoming velocity distribution.
The changed flow patterns also influence the mixing layer and the flow recovery. In their successive
work, Schindfessel et al. [15] analysed the influence of the cross-sectional shape on the flow patterns in
a 90◦ confluence. They showed that the shape of the cross-section, and more particularly the geometry
of the downstream corner, can induce lateral currents directed into the separation zone.

Despite the extensive research in hydrodynamic processes at junctions, it is evident how there is
still a lack of information regarding channel confluences characterized by low discharge and width
ratios. On a prototype scale, these conditions are characteristic of highly channelized mountain–river
confluences and not common for low-land confluences, which, on the contrary, have inspired most of
the literature studies on that topic [4,34]. Moreover, only a few studies have analysed the changes in the
flow dynamics at a confluence as a function of the junction angle and all of them are referred to Br = 1,
except the cases investigated by Gurram et al. [17] and Shakibainia et al. [29], for which the minimum
value of Qr was set equal to 0.33. Therefore, the research works in this field are not comprehensive and
the extension of the existing knowledge to not yet explored conditions must be pursued.

In light of the above considerations, the paper describes the effects of the junction angle on the
flow structure of a confluence with fixed concordant beds and both low width and discharge ratios,
on the basis of the experimental campaign carried out by Birjukova et al. [23].

To this end, numerical simulations were initially carried out through the open-source
numerical model known as PANORMUS (PArallel Numerical Open-souRce Model for Unsteady
flow Simulation; [35]), available at www.panormus3d.org, which was adapted on purpose to the cases
studied hereinafter. Then, the results of the numerical simulations were compared to the experimental
data of Birjukova et al. [23] to validate the consistency of the model. Besides the original layout of
the physical model, other nine layouts with different α values from 45◦ to 90◦ were considered, in
order to analyse their effects with particular attention paid to: (1) the extension of the retardation zone
in the main and tributary channels; (2) the deflection of the tributary flow from the junction angle;
(3) the length and width of the separation zone; and (4) the maximum streamwise velocity in the flow
structure of the confluence.

Therefore, this study contributes to a better understanding of the flow processes occurring in a
channel confluence, seeking to answer the following two main questions:

1. What happens at low width and discharge ratios when junction angle is modified? How does this
modification influence the flow dynamics?

2. What do lower flow and width ratios imply with respect to the literature cases?

2. Description of Experiments and Simulations

2.1. Laboratory Flume: Set-up and Measurements

The experiment was conducted in the horizontal rectangular concrete flume of the Hydraulics
Laboratory of the Instituto Superior Técnico (IST), Lisbon, Portugal (Figure 2a,b) as described in
Birjukova et al. [23]. The length of the main and tributary channels were Lm = 12 m and Lt = 4.5 m,
respectively, and the junction was located 5 m downstream of the inlet of the main channel, forming a
70◦ confluence angle. The width of the main and tributary channels were Bm = 1 m and Bt = 0.15 m,
respectively, resulting in a low Br equal to 0.15. Regarding the hydraulic conditions, the main
channel discharge was set equal to Qm = 0.044 m3s−1, whereas the tributary one to Qt = 0.005 m3s−1,
with hm = ht = 0.11 m, where hm is the main channel flow depth upstream the confluence and ht is the
tributary flow depth. The discharge ratio, Qr, assumes a low value equal to 0.114. To guarantee
the development of a fully turbulent flow at cross-section no. 1 (Figure 2b), a layer of gravel
(with d50 = 6 mm) was placed on the channel bed.
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Figure 2. (a) plan view and (b) photograph of the experimental facility used by Birjukova et al. [23] with
the measurement grid. Streamwise coordinates of the measured cross-sections: x1 = 0 m, x2 = 0.7 m,
x3 = 0.78 m, x4 = 0.95 m, x5 = 1.05 m, x6 = 1.15 m, x7 = 1.25 m, x8 = 1.45 m.

An Acoustic Doppler Velocimeter (ADV), with a sampling frequency of 100 Hz and acquisition
time per point equal to 90 s, was used to measure the flow field at the confluence, considering the
sampling grid depicted in Figure 2a. In particular, the origin of the coordinate system is fixed at
cross-section no. 1, 70 cm to the upstream junction corner at the left bank of the main channel.
The horizontal axes x and y are directed in the streamwise and spanwise directions, respectively,
whereas the vertical axis z, not shown in Figure 2a, starts at the bottom and is directed towards the
water free surface. As many as 128 vertical profiles were considered in this study: eight cross-section
and 16 lateral positions, starting at 2.5 cm from the right wall of the main channel, with a step of
5 cm from y = 0.05 m to 0.55 m and of 10 cm from y = 0.55 m to 0.95 m. Each profile is constituted
by 18 measuring points (i.e., 11 points at a vertical displacement of 2 mm in the lower ≈ 30% of the
flow depth and seven points with a step of 7 mm in the upper flow region). Note that no velocity
measurements were undertaken in the tributary channel.

2.2. Analysis of the Experimental Data

The analysis of the experimental data is a crucial aspect for the correct interpretation of the results
obtained with numerical simulations. In fact, the consistency of the model is evaluated on the basis of
this preliminary investigation, which reveals the actual flow pattern found in the laboratory confluence.

The time-averaged components of the velocity vector (ū, v̄, w̄, in the streamwise, spanwise and
vertical directions, respectively) measured at cross-section no. 1, normalized with the mean flow
velocity upstream to the confluence (Um0 = Qm/(B hm) = 0.38 ms−1) are shown in Figure 3, where ŷ
is defined as y/Bm and ẑ as z/hm. Specifically, Um0 was used as a reference, even though, from the
analysis of the ADV data, a mean velocity equal to 0.41 ms−1 was obtained, with a relative error with
respect to Um0 equal to −8%. This difference can be attributed to the fact that the ADV measurements
do not cover the entire width and depth of the channel, along cross-section no. 1.
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Figure 3. Patterns of some hydrodynamic variables at cross-section no. 1: (a) schematic of secondary
currents; (b) normalized streamwise velocity component, û = ū/Um0; (c) normalized spanwise velocity
component, v̂ = v̄/Um0; (d) normalized vertical velocity component, ŵ = w̄/Um0.

The analysis of such patterns reveals the presence of a comparatively strong secondary currents
over the entire width of the cross-section (Figure 3a), even if, as the experiment was designed with an
aspect ratio Bm/hm = 8.8, either a weak or inexistent secondary circulation pattern would be expected
in the central region of the channel. The reason behind the existence of such strong heterogeneity
in Figure 3b derives, essentially, from a combination of two processes. In fact, near the lateral walls,
the presence of the secondary currents is due to the amplification of the surface-corner vortex caused
by the difference in roughness between the bank and the bed [36,37], whereas, along the width of the
main channel, the turbulent secondary flows are attributed to the spanwise heterogeneity in roughness
height, which causes low-momentum regions (LMRs) spanwise-adjacent to high-momentum regions
(HMRs) (their spanwise positions are labelled in Figure 3). In fact, the layer of gravel was not uniformly
glued on the channel bed and, therefore, different topographical scales were arranged in a highly
irregular manner. Several studies showed how the formation of these vortical structures are influenced
by the roughness height (e.g., [38–40]). In general, the identified LMR and HMR patterns tend to occur
at spanwise locations of recessed and elevated roughness (relative to the mean elevation), respectively,
with the swirling motions residing at spanwise locations of intense spanwise gradients in topographical
height [39]. The same trend could be recognized in the other cross-sections (see Figures 4 and 5).
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Figure 4. Patterns of some hydrodynamic variables at cross-section no. 2: (a) schematic of secondary
currents; (b) normalized streamwise velocity component, û = ū/Um0; (c) normalized spanwise velocity
component, v̂ = v̄/Um0; (d) normalized vertical velocity component, ŵ = w̄/Um0.
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Figure 5. Patterns of some hydrodynamic variables at cross-section no. 7: (a) schematic of secondary
currents; (b) normalized streamwise velocity component, û = ū/Um0; (c) normalized spanwise velocity
component, v̂ = v̄/Um0; (d) normalized vertical velocity component, ŵ = w̄/Um0.
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2.3. Computational Domain and Validation of the Numerical Model

The numerical simulations have been carried out by using the finite-volume numerical code
PANORMUS (second-order accurate both in time and space). It solves the 3D RANS equations with
the k-ε turbulence closure by using a finite-volume method on a three-dimensional, non-orthogonal,
structured grid. For the time advancement of the solution, the numerical model uses the explicit
Adams–Bashforth method, whereas to overcome the pressure-velocity decoupling, typical of
incompressible flows, the fractional-step technique is employed. The predictor–corrector system
is solved through the Line Successive OverRelaxation method (L-SOR) algorithm. For details on the
numerical model and the mathematical formulation of the RANS equations, see [41]. The model is
resolved in a computational domain reproducing the experimental laboratory facility. Specifically,
the length of the tributary was determined arbitrarily because no velocity measurements were available
from the experimental campaign, which would be used to validate the numerical results in the tributary.
The confluence domain, after a grid sensitivity analysis, was discretized in 128 × 96 × 32 cells in the
streamwise, spanwise and vertical directions, respectively, by using a MATLAB (The MathWorks,
Inc., Natick, MA, USA) code programmed on purpose. This resolution was selected so that the
implementation of a finer grid did not show a considerable difference in the results. The mesh was
refined near the walls and in the confluence zone (Figure 6), in order to obtain a finer discretisation
close to the momentum transfer regions and the boundaries. A non-uniform grid was also used in the
vertical direction, which was refined near the bottom and near the free-surface (imposed at 0.114 m
above the bottom). The computational resolution is fine enough to reproduce the experiments and
give a new insight into the dynamics of the channel confluence.

Both in the main and tributary channels, the flow is driven with assigned inflow conditions.
Specifically, at the inlet of the two channels, a mean velocity profile is imposed to achieve the same
values of flow rate Qm and Qt as in the experimental channel by means of a centrifugal pump.
The logarithmic law of the wall was used near the solid boundaries (lateral walls and bottom) and
null derivatives for all variables and hydrostatic pressure distribution were prescribed at the outflow
boundary (Neumann-type boundary conditions). At the upper boundary, the free slip condition was
adopted, which is justified as the tested Fr numbers (defined with the flow depth and mean velocity in
the incoming and downstream channels) were smaller than 0.5 [11]. At the bottom wall, an equivalent
roughness height of 3 mm (thus, lower than d50) was considered for all simulations, in order to take
into account the difference in roughness between the vertical walls and the channel bed. Such value
was verified successively to be acceptable by comparing the experimental and numerical data.

Figure 6. Computational domain of the confluence.
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The measured flow field at cross-section no. 1 and Qm were used to calibrate the inflow in the
main channel, whereas, for the tributary, only Qt was taken into account.

Figure 7a shows the comparison between the measured and the simulated velocity profiles of the
non-dimensional streamwise component at eight lateral positions along cross-section no. 1. Despite
the presence of secondary currents, the results obtained with PANORMUS demonstrated a satisfactory
agreement between the experimental and numerical data in the central part of the main channel
(from ŷ = 0.35 to ŷ = 0.75). Here, the major discrepancies occurred in the lower part of the velocity
profiles, near the bottom, where the velocity values were slightly underestimated owing to the use of
the wall function.

To quantify such discrepancies, Figure 7b shows the matching between measured (ūm) and
simulated (ūs) streamwise velocity components, from ŷ = 0.35 to ŷ = 0.75, with the perfect agreement
line and the ±10% and ±15% bands. It is evident that the maximum deviation is confined between
−10% and +10%. Moreover, Figure 7c shows the Root Mean Square Error (RMSE) obtained for each

velocity profile and calculated as

√
1
N

N
∑

i=1
(ūmi − ūsi )

2, where N is the total number of measurement

points along the vertical direction.
Figures 8 and 9 show the same comparisons along cross-section no. 3, in correspondence of the

tributary channel, and along four different longitudinal profiles. It is clearly visible that the maximum
deviation, in both cases, is generally confined between −15% and +10%.

a)

b) c)

Figure 7. (a) comparison of measured (blue dots) and simulated (green lines) non-dimensional
streamwise velocity component profiles in cross-section no. 1; (b) comparison of measured and
simulated streamwise velocity components; (c) Root Mean Square Error (RMSE) of the streamwise
velocity component profiles from ŷ = 0.35 to ŷ = 0.75 in cross-section no. 1.
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a)

b) c)

Figure 8. (a) comparison of measured (blue dots) and simulated (green lines) non-dimensional
streamwise velocity component profiles in cross-section no. 3; (b) comparison of measured and
simulated streamwise velocity components; (c) RMSE of the streamwise velocity component profiles
from ŷ = 0.35 to ŷ = 0.75 in cross-section no. 3.

However, it is important to highlight that, near the internal wall, where strong flow recirculation
occurs, differences in measured and estimated values were detected (as an example, see Figure 10).
This behaviour was not unexpected. In fact, similar deviation in the separation zone was shown in
other literature studies (i.e., [29,42]), using different experimental data and numerical models.

For this reason, the model was also validated considering the shape of the separation zone in
terms of its length (Ls) and width (Bs).

Different techniques were employed in the past for accurately determining the separation zone
(e.g., [15,20]). However, since this is a region of decreased downstream momentum, the delineation
of the separation zone extension is not an easy task. Generally, for a given z coordinate, the length
of the separation zone is defined as the distance from the downstream corner of the junction to
the reattachment point. In addition, according to the boundary layer theory, the separation zone
starts when the velocity near the wall is zero or negative. Therefore, the general hypothesis that
considers the downstream junction corner as the starting point of the separation zone (known as the
separation point) is misleading. Especially in the case of low α angles, it is expected that the flow
arriving from the tributary channel tends to adhere to the wall downstream of the confluence and,
only when the flow velocity can no longer overcome adverse pressure gradient, flow separation occurs.
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Therefore, the separation point is not coincident with the downstream junction corner, but it is located
downstream of it.

a)

b)

Figure 9. (a) comparison of measured (blue dots) and simulated (green lines) non-dimensional
streamwise velocity component profiles in cross-sections Nos. 1, 2 and 3 along four longitudinal
profiles; (b) comparison of measured and simulated streamwise velocity components.

Figure 10. Comparison of measured (blue dots) and simulated (green lines) non-dimensional
streamwise velocity component profiles in cross-sections Nos. 1, 3, 7 and 8 along the longitudinal
profile ŷ = 0.95.

Specifically, the separation zone was delimited by the streamlines shown in Figure 11, where the
time-averaged velocity v̄xy =

√
ū2 + v̄2 in the horizontal plane ẑ ∼ 0.5 was plotted. Ls was defined as
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the distance from the separation point to the reattachment point, whereas Bs was the distance from
the wall to the point belonging to the streamline passing through the reattachment point, in which v̄
is null.

For α = 70◦, Ls and Bs were 48.6 cm and 6.4 cm, respectively. These two main features were also
obtained from the experimental data and were approximately 46 cm and 6 cm, respectively, showing
that the numerical model slightly overestimates Ls with a relative error equal to 5.6%. The error is
greater for Bs and is equal to −8%, since the predicted width is narrower than the measured one.
This discrepancy can be attributed to the effect of the secondary currents, discussed in Section 2.2.
Such results were compared with those obtained by Brito et al. [32], who modelled the free surface
with the VoF method. In particular, they obtained the following separation zone characteristic sizes:
Ls = 54 cm and Bs = 8.7 cm. Therefore, the estimations of both Ls and Bs are more precise in the present
study, with respect to that of Brito et al. [32].

x

y

Figure 11. Time-averaged velocity v̄xy in the horizontal plane ẑ ∼ 0.5 for α equal to 70◦. Here, x̂ = x/Bm

is the non-dimensional abscissa directed in the streamwise direction centred in the downstream corner
of the confluence.

3. Results and Discussion

To study the effects of the junction angle on the flow structure of a confluence with fixed
concordant beds and low width and discharge ratios, the computational domain created on the
basis of the facility used by Birjukova et al. [23] was modified according to nine other different junction
angles, ranging from 45◦ to 90◦ with a step of 5◦.

The simulations were carried out using the same Qr of the experimental test in order to compare
the obtained results as a function of solely α, maintaining constant hydraulic conditions for both
channels. The modification of the junction angle implies the change of the constant mass force (per unit
mass) that drives the flow into the tributary. Such value is just the slope of the tributary towards
the main channel. Therefore, to always guarantee the same value of Qt, preliminary and separate
simulations of fully developed turbulent flows were performed adapting the constant mass force to
each simulated geometry. The main channel flow, upstream to the confluence, was not affected by the
changes of the junction angle.

The results are presented by comparing the effects of the junction angle on the retardation zone,
the flow deflection zone, the flow separation zone and the maximum streamwise velocity zone.
Although these regions are strongly related, hereinafter they are analyzed independently for a better
understanding of each involved hydrodynamic process.
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3.1. Retardation Zone

The retardation zone within each channel originates from the deflection of flows away from the
upstream junction corner. It is a region of reduced velocities, whose size depends on the junction
angle. Two particular points, for each of the two incoming channels, characterize this zone and were
identified in this work by the respective distances from the upstream junction corner to the points
in which the velocity vector deflects from the wall with an angle greater than 1◦ (points Pm and Pt,
respectively, in the main and tributary channels) (Figure 12a,b). In particular, xsm is the streamwise
distance between the upstream junction corner and the point Pm, while yst is the lateral distance
between the upstream junction corner and the point Pt.

Figure 12a,b shows such values made non-dimensional with Bm for different α angles at elevation
ẑ ∼ 0.5. It is possible to note that, as α increases, x̂sm and ŷst increase quasi-linearly, causing a more
extended retardation zone. In addition, for α equal to 45◦ and 50◦, the retardation zone is confined only
within the tributary channel, since x̂sm is equal to 0. The maximum extension of such region occurs at
90◦, where xsm and yst are about 0.1 m and 0.09 m, respectively.

a) b)

Pm

Pt

xsm
ysm

Pt

xsm
ysm

c) d)

vx
y vx
y

Figure 12. Distributions of (a) x̂sm and (b) ŷst with respect to α at ẑ ∼ 0.5 and of the relative flow
velocity at points (c) A and (d) B within the retardation zone with respect to α at ẑ ∼ 0.5.

Therefore, the higher the junction angle, the more extended the retardation zone and the lower
the velocities in this region. In fact, as an example, Figure 12c,d shows the relative flow velocity at
points A and B located immediately upstream to the junction corner within the main and tributary
channels, respectively, and their variation with the confluence angle. The relative flow velocity at point
A is expressed as v̄xy/Um0, where v̄xy =

√
ū2 + v̄2 at point A. The relative flow velocity at point B is

expressed as v̄xy/Ut0, where v̄xy =
√

ū2 + v̄2 at point B and Ut0 is the mean velocity of the tributary
channel (equal to 0.29 ms−1). It is evident that the flow retardation rate increases at a higher junction
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angle, since, increasing α, a progressively strong retardation of the flow velocity is observed in both
the channels.

The results are consistent with the findings of several researchers (e.g., [1,13,18]), who, however,
focused on the position of a stagnation point only within the tributary channel. Actually, as it was
observed in this work, two particular points in the two incoming channels can be taken into account to
delimit the extension of the retardation zone. However, they can not be defined as stagnation points
since the velocity in that points is not equal to zero.

3.2. Flow Deflection Zone

As Gurram et al. [17] observed, assuming that the inflow angle along the junction cross-section
is equal to the junction angle is a wrong hypothesis. In fact, the lateral inflow velocity varies from
the upstream to the downstream junction corners, increasing towards this latter, as it occurs in curve
flow, but always with a smaller angle with respect to α. To measure the deflection of the flow on
the horizontal plane at the tributary entrance into the confluence, the flow angle δ was calculated,
along the entire cross-section connecting the upstream and downstream junction corners, on the basis
of the streamwise and spanwise time-averaged components of the velocity vector: δ = arctan(v̄/ū).
Then, the angle of deflection was made non-dimensional by dividing by α, giving the new variable δ̂.

Figure 13 shows, for each layout, the distribution of the δ̂-angle at the tributary entrance. It is
readily noticeable that, close to the bottom, the flow deflection angles assume lower values than those
at the surface (especially near the upstream junction corner), where the resulting vector (v̄xy) tends to
maintain the same direction as that of the tributary, but always with δ < α. This trend is more visible
at high α-angles (from Figure 13f–j), where δ is about 0.5α at the bottom and near the upstream lateral
wall, while it is about 0.9α at the surface near the downstream junction corner.

This means that, as α increases, the confluent channels undergo a progressively greater deflection
with respect to the flow direction in the post-confluence channel, as it was observed also by Best [1].
Furthermore, it confirms that, near the left bank of the tributary channel, the degree of flow
retardation increases.

It is also evident that at low α-values the penetration of the main channel flow into the tributary
channel flow never occurs.

Extrapolating the data at elevation ẑ ∼ 0.5, a direct comparison among the different distributions
of the deflection angle along the x̂t-axis is shown in Figure 14. It is possible to note that all the data
collapse within a band, with a slight deviation for the case of α = 45◦. In particular, δ̂ increases along
the interfacial plane between the tributary and the main channels, assuming the maximum values near
the downstream junction corner (as it was observed by Djordjevic [12]), whereas the variability of δ̂ for
α = 45◦ is limited in the range 0.76 ÷ 0.83, owing to the combination of low α, Br and Qr, which leads
to a more uniform distribution of δ̂ across the interfacial layer between the tributary and the main
channel flows.

3.3. Flow Separation Zone

The analysis on the tributary flow deflection demonstrates that, at the downstream junction corner,
δ is always lower than α, which means that, in correspondence of this point, the velocity vectors have
a streamwise component that is neither zero nor negative. Such a behaviour supported the procedure
proposed in this study for the definition of the separation zone, which is based on the assumption that
the separation point is not coincident with the junction point, but it is located downstream of it.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 13. Distribution of the δ̂-angle at the tributary entrance for α equal to (a) 45◦, (b) 50◦, (c) 55◦,
(d) 60◦, (e) 65◦, (f) 70◦, (g) 75◦, (h) 80◦, (i) 85◦, (j) 90◦. Here, x̂t = xt/Bm is the non-dimensional abscissa
directed in the streamwise direction centred in the upstream corner of the confluence.

Figure 15 shows the time-averaged velocity v̄xy in the horizontal plane ẑ ∼ 0.5, obtained by the
numerical simulations, and the shape of the flow separation zone for the analysed layouts. It is evident
that, as α increases, the separation zone becomes longer and wider. This trend is the same of that
reported in other studies (see Introduction). For example, Best and Reid [16] found that increasing the
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junction angle and, also, the contribution of the tributary to total discharge results in an increase of the
width and length of the flow-separation zone.

Figure 14. Effects of α on the δ̂-angle distributions at the tributary entrance into the confluence at
ẑ ∼ 0.5.

Anyway, this behaviour confirms the findings regarding the flow deflection zone: at the
downstream bank of the tributary, the higher the deflection angles (occurring in the case of high junction
angles), the stronger the separation downstream of the confluence (as observed by Djordjevic [12]).
Furthermore, it is possible to note, especially for low α values, that the separation point is always
located beyond the origin of the downstream junction angle, as it was specified previously.

The dimensions Ls and Bs were calculated for each confluence angle and were plotted in Figure 16a
after normalisation with Bm (L̂s, B̂s). Specifically, they are linearly correlated with α according to the
equations shown in Figure 16a, with a coefficient of determination (R2) equal to 0.97 for L̂s and 0.99
for B̂s. It is important to highlight that, in contrast with the literature findings, the separation zone
does not occupy the half of the width of the post-confluence channel, as it was observed in other
studies with high Qr. In fact, it is confined within about 13 cm from the wall (inner bank of the flume),
considering that its maximum width occurs at α = 90◦. Only Hsu et al. [27], for Br = 1, obtained a value
of Bs comparable with that reported here.

For junction angles less than 55◦, the separation zone is no longer observed, owing to the low
deflection angles with respect to α at the tributary entrance into the confluence. Therefore, it is possible
to state that, in the geometrical and hydraulic conditions of the present study, the separation zone
starts appearing for α between 50◦ and 55◦. However, it is important to point out that this result is
valid for the particular case of highly channelized confluences, since it was demonstrated by several
authors that the flow separation might be suppressed by the gentle curvature of natural confluence
corners (e.g., [5]).
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Figure 15. Time-averaged velocity v̄xy in the horizontal plane ẑ ∼ 0.5 for α equal to: (a) 50◦; (b) 55◦;
(c) 60◦; (d) 65◦; (e) 75◦; (f) 80◦; (g) 85◦; (h) 90◦. Here, x̂ = x/Bm is the non-dimensional abscissa directed
in the streamwise direction centred in the downstream corner of the confluence.

3.4. Contraction Zone and Maximum Streamwise Velocity

The flow separation causes the establishment of a contraction zone beside it, in which the flow
is forced to increase its velocity. The reason behind this fact is the reduction of the effective width
of the post-confluence channel. To quantify such reduction, a contraction coefficient was calculated
as Cc = (Bm − Bs)/Bm for all the analysed layouts, as shown in Figure 16b. It is illustrated how Cc

decreases linearly as α increases, since the width of the separation zone increases. The result is coherent
with the findings observed in Figure 16a, for the recirculation width Bs. Aiming at giving a relationship
that would be useful in 1D modelling to determine the effective mean velocity in the post-confluence
channel, an equation is proposed in Figure 16b, valid for low values of Br and Qr. Obviously, Cc is
equal to 1 for α less than 50◦, since no separation zone occurs (Bs = 0).

The contraction coefficient can be used for the determination of the head losses (∆hL) at junctions

with the Borda–Carnot formula for a sudden flow expansion (e.g., [15]) as (1− Cc)2 ·
U2

pc

2g
(where

Upc is the mean velocity in the post-confluence channel). In turn, ∆hL can be used to estimate the
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water level elevations in the separation and contraction zones. Specifically, since Cc decreases as α

increases, it is expected that the head losses increase as well. This means that a reduced extent of the
separation zone will lead to lesser water level differences. Note that the local decrease in water level in
correspondence with the separation zone had been noted in many laboratory experiments, including
that of Birjukova et al. [23].

B

B

B

B

a)

b)

Figure 16. (a) non-dimensional width and length of the separation zone as a function of α;
(b) distribution of the contraction coefficient as a function of α at ẑ ∼ 0.5.

Table 2 shows the position in the computational domain and the value of the non-dimensional
maximum streamwise velocity (normalised with Upc = 0.049 ms−1) in the flow field at each analysed
layout, ∆x being the distance from the downstream junction corner and ∆y the distance from the
inner bank of the post-confluence channel to the point in which the streamwise velocity achieves its
maximum value.

It is readily noticeable that the maximum velocity occurs at α = 45◦ and, then, increasing the
junction angle, it starts to decrease up to α = 70◦, where a reverse trend leads to an increasing of ū.
This tendency could be justified considering the interference induced by the separation zone into
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the main channel flow and also by the increased discharge due to the added tributary flow. In fact,
for α = 45◦, owing to the low entrance angle of the lateral flow, the tributary flow almost does not
interfere with the main channel flow. The separation zone does not exist and, therefore, the zone
of maximum flow velocity is confined near the wall (∆y = 1 cm) at the downstream junction corner
(∆x = 0 cm), occupying a very small area. For α = 50◦, this area becomes wider and, since the discharge
of the tributary flow is not changed, the maximum flow velocity in the post-confluence channel is
smaller than for α = 45◦. Note that, also in this case, since no separation occurs, the maximum flow
velocity zone is confined near the wall (∆y = 2 cm) at the downstream junction corner (∆x = 0 cm).
Increasing α, the streamwise velocity component reduces its magnitude because the flow acceleration
is limited, owing to the presence of the separation zone that always gets wider. The maximum velocity
zone increases its width too. This trend is visible up to α = 70◦. It should be highlighted that the
numerical simulations are in accordance with the experiment of Birjukova et al. [23], since it was
demonstrated that the zone of generally high streamwise velocities is located from 4 cm to 40 cm
beyond the downstream junction corner for α = 70◦. Starting from α = 75◦, the streamwise maximum
flow velocity increases and it is found at 35 ÷ 38 cm from the wall and at 43 ÷ 50 cm from the
downstream junction corner. This means that such velocity values are not related to the acceleration
induced by the lateral flow that approaches the post-confluence channel, which continues to decrease
increasing α. They are, instead, due to the increased discharge, owing to the tributary flow that should
pass through the contraction section.

Table 2. Non-dimensional maximum streamwise velocity component at different junction angles.

α(◦) ∆x (m) ∆y (m) ū/Upc

45 0.00 0.010 1.475
50 0.00 0.020 1.336
55 0.10 0.070 1.238
60 0.15 0.100 1.231
65 0.16 0.110 1.211
70 0.20 0.130 1.205
75 0.43 0.355 1.224
80 0.45 0.355 1.249
85 0.49 0.380 1.272
90 0.50 0.380 1.290

Therefore, as it was discussed and unlike the common opinion or other literature findings
(e.g., [1,29]), in the case of a channel confluence with low Br and Qr, the maximum velocity does not
necessarily occur in the contraction zone, but rather along the inner wall. This clarification is important
with respect to possible scouring phenomena that can occur in correspondence of the maximum
velocity zone and, thus, of the maximum bed shear stresses, in the case of mobile beds.

4. Conclusions

This paper constitutes a novelty in the study of the dynamics of open-channel confluences, since it
focuses on a particular type of confluence characterized by fixed concordant beds and low width
and discharge ratios. Specifically, it illustrates the development of the flow structure increasing
the junction angle from 45◦ to 90◦. The paper is based on numerical simulations performed with
the use of the PANORMUS code adapted ad hoc, which were compared and calibrated with the
experiment performed by Birjukova et al. [23] for α equal to 70◦. Ten different junction angles were
analysed, focusing on the retardation zone in both the main and tributary channels, the deflection of the
tributary flow from the junction angle, the extension of the separation zone downstream the channel
confluence and the maximum streamwise velocity. The simulation results and analysis suggested that,
as α increases:
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1. near the upstream lateral bank of the tributary channel, the degree of flow retardation increases,
which implies wider and longer retardation zone and lower velocity in this region. In fact,
the streamwise distance between the upstream junction corner and the point Pm decreases with
increasing α, as well as the lateral distance between the upstream junction corner and the point Pt;

2. the confluent channels undergo a progressively greater deflection with respect to the flow direction
in the post-confluence channel. Specifically, for all the junction angles, the deflection of the flow
in the horizontal plane at the tributary entrance to the confluence increases along the interfacial
plane between the tributary and the main channels, except for α = 45◦, where its distribution was
more uniform than in the other cases, owing to the combination of low α, Br and Qr;

3. the separation zone becomes longer and wider, following a linear relationship, since, at the
downstream lateral bank of the tributary, the higher the deflection angles (occurring in the case of
high junction angles), the higher the separation downstream of the confluence. Moreover, for α

less than 55◦, the separation zone is no longer observed, owing to the low discharge ratio and
deflection angles with respect to α at the tributary entrance into the confluence;

4. the contraction coefficient decreases linearly, since the width of the separation zone increases.
The determination of this coefficient would be useful in 1D modelling to determine the effective
mean velocity in the post-confluence channel;

5. the maximum streamwise flow velocity in the whole confluence region does not necessarily
increase because it does not always occur in the contraction zone. This fact could be caused by the
acceleration induced by the lateral flow that approaches the post-confluence channel, especially
in the case of low α, Br and Qr.
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